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Abstract. Let X = (x1, .., xn) and Y = (y1, ..., ym) be a pair of cor-
responding plaintext and ciphertext for a cryptosystem. We define an
embedded surface of this cryptosystem as any polynomial equation:

E(X,Y ) = E(x1, .., xn, y1, ..., ym) = 0,

which is satisfied by all such pairs. In this paper, we present a new
attack on the multivariate public key cryptosystems from Diophantine
equations developed by Gao and Heindl by using the embedded surfaces
associated to this family of multivariate cryptosystems.

1 Introduction

The security of cryptosystems such as RSA, ECC, and Diffie-Hellman key ex-
change scheme, depends on assumptions about the hardness of certain number
theoretic problems, such as the Integer Prime Factorization Problem or the Dis-
crete Logarithm Problem. However, in 1994 Peter Shor [12] showed that quantum
computers could break all public key cryptosystems that are based on these hard
number theoretic problems. In recent years, significant efforts have been devoted
to the search for alternative public key cryptosystems, which would remain se-
cure in an era of quantum computers. Multivariate public key cryptosystems
(MPKC) are one of the main families of cryptosystems that have the potential
to resist quantum computer attacks.

The public key of a MPKC is a system of multivariate polynomials, mostly
quadratic, over a finite field. This construction is based on the fact that solving
a random multivariate polynomial system over a finite field is an NP-complete
problem. In general, MPKCs have the following structure. Let k be a finite field
with q elements. A public key is a map

F̄ : kn → km

constructed as:
F̄ = L1 ◦ F ◦ L2,
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where L1 and L2 are are two random invertible affine transformations over km

and kn respectively. The central map F : kn → km is a nonlinear multivariate
polynomial map that has the property of being easily invertible computation-
wise. The key of building a good MPKC is to find a good polynomial system F
that makes the cryptosystem secure.

There are many attempts in building MPKC for encryption. For MPKCs,
the encryption schemes standing in general are much slower than the signature
schemes. Therefore, there is still a need to find good constructions for MPKCs
for encryption.

In 2009, a new construction was built using a very different idea from be-
fore, namely one uses a special function solution to certain special Diophantine
equation [8][7]. Even though, this construction also uses a triangular construc-
tion, Oil-Vinegar construction[11], the key component comes from certain special
solutions of the Diophantine equation:

AB = CD + EF +GH + IJ +KL,

which is inspired by the construction in MFE[13], a generalization of HFE[10].
For this new family, the authors [7] propose three concrete cases for practical

applications. They have very strong security claims, which is at the level of 2113

or higher. Also the decryption process is very efficient. By now, no one could yet
find any weakness in the system.

1.1 The Contributions of This Paper

Let X = (x1, .., xn) and Y = (y1, ..., ym) be a pair of corresponding plaintext
and ciphertext for any cryptosystem. We define an embedded surface of this
cryptosystem as any polynomial equation:

E(X,Y ) = E(x1, .., xn, y1, ..., ym) = 0,

which is satisfied by all such pairs. This name comes from the fact that this
equation defines an algebraic surface in the space km+n, where all the plaintext
and ciphertext pairs for this cryptosystems belong, or we can embed all the such
pairs in such a surface.

In the case of MPKCs, the public key equation itself: yi = f̄i(x1, ..., xn), gives
an embedded surface in km+n. In terms of attack on cryptosystems, one general
approach should try to find the embedded surfaces that could help us to attack
the systems. We call such an embedded surface a non-trivial embedded surface.

The first non-trivial embedded surface is used as the linerization equation by
Patarin to defeat the Matsumomto-Imai MPKCs[10]:

∑
ai,jxiyj +

∑
biyi +

∑
cixi + e = 0.

If we know the value of a ciphertext, this equation will give us a linear equation
satisfied by the plaintext, which is very useful in attacking the system. This is
also the idea used to build algebraic attack on AES.
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Later, another embedded surface, a high order linerization equation is used
in breaking the MFE MPKCs[3].

A natural question is:
can more general embedded surfaces other than linearization type

of equations be useful to attack cryptosystems?
What we did in this paper is to give a positive answer to this question by

using it to attack the new MPKCs from Diophantine equations.
What we observe is that, in the new MPKCs using the Diophantine equations,

the decryption process actually implies that we can use the embedded surfaces
to get what is done in the decryption process. Namely special embedded surfaces
will help us to decrypt the message efficiently. In this case, the corresponding
embedded surfaces will be in the form:

∑
Ai,j,s,tyiyjysyt +

∑
Bi,j,syiyjys +

∑
Ci,jyiyj +∑

Djyj +
∑
A′

i,j,s,tyiyjx
2
sx

2
t +

∑
B′

i,s,tyix
2
sx

2
t +

∑
C′

i,j,syiyjx
2
s +∑

D′
i,syix

2
s +

∑
E′

s,tx
2
sx

2
t +

∑
H ′

sx
2
s + E = 0. (1)

The embedded surfaces will produce equations in the form:
∑

A′′
s,tx

2
sx

2
t +

∑
B′′

s x
2
s + C′′ = 0, (2)

once the values of the ciphertext yi are given. This enables us to derive new
quadratic equations due to the fact that the field is of characteristic 2. This
allows us to break the system efficiently. We could break the three systems
proposed at the complexity of 252, 261 and 252 over the corresponding fields
respectively.

This paper is organized as follows. In Section 2, we introduce the new MPKCs
from Diophantine equations. In Section 3, we will present the cryptanalysis of
the new MPKCs by using embedded surfaces. We conclude in Section 4.

2 Multivariate Public Key Cryptosystems from
Diophantine Equations

In this section, we will present the MPKCs from Diophantine equations, and we
will follow the notations in[7].

Let k be a finite field with q elements, and let F be an extension of k with
degree d. In an MFE type (”medium field”) construction, we fix a basis α1, ..., αd

of F over k, which identifies F with kd via the natural map p : F → kd:

p(a1α1 + . . .+ adαd) = (a1, ..., ad). (3)

Then we view a polynomial f ∈ F [X1, ..., Xn] component-wise over k by writing

Xi = xi1α1 + . . .+ xidαd,

and then
f = f1α1 + . . .+ fdαd,

with fi ∈ k[x11, ..., xnd].
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Throughout this paper, we assume that the finite field F has characteristic
two. If the field isGF (2), the embedded surfaces of (1) and (2) should be modified
slightly, since there are not square terms.

2.1 The Origin of the Diophantine Equations

In the MFE MPKC, the key idea comes the fact that

det(M1M2) = det(M1)× det(M2),

for two 2× 2 matrices:

M1 =

(
X1 X2

X3 X4

)
, M2 =

(
X5 X6

X7 X8

)
.

This gives a quadratic polynomial solution to the the Diophantine equation over
a polynomial ring F [X1, ..., X8]:

AB = CD + EF,

namely

(X1X4 +X2X3)(X5X8 +X6X7) = (X1X5 +X2X7)(X3X6 +X4X8) +

(X1X6 +X2X8)(X3X5 +X4X7).

To build new type of MPKCs, Gao and Heindl were able to find solutions to the
following new Diophantine equation:

AB = CD + EF +GH + IJ +KL,

over the ring F [X1, ..., X8, Y1, ..., Y8]. In the context of their work, they rewrite
this equation as

ψ1ψ2 = f1f2 + ...+ f9f10, (4)

where each polynomial is quadratic and

– ψ1 ∈ F [X1, ..., X8], ψ2 ∈ F [Y1, ..., Yn];
– fi ∈ F [X1, ..., X8, Y1, ..., Y8], for 0 < i < 9, are oil-vinegar polynomials;
– fi ∈ F [X1, ..., X8, Y1, ..., Y8], i = 9, 10.

An oil-vinegar polynomial is a quadratic polynomial, where we divide the vari-
ables into two sets: the oil variables and the vinegar variables, and an oil-vinegar
polynomial has not any quadratic terms with only oil variables:

∑
aijxix

′
j +

∑
bijx

′
ix

′
j +

∑
cjxi +

∑
djx

′
j + e = 0,

where xi are oil variables and x′j are the vinegar variables.
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The design starts with the polynomial ring

R = F [x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4].

Let
pijxy = xiyj + xjyi,

for 1 = i < j = 4;
pij(x, y, z, w) = pijxz + pijyz + pijyw,

for 1 = i < j = 4.
In algebraic geometry terms, the pijxy are simply Plück coordinates, which are

known to satisfy the quadratic relations:

0 = (p12
xy + p12

zw)p
34(x, y, z, w) + (p13

xy + p13
zw)p

24(x, y, z, w) +

(p14
xy + p14

zw)p
23(x, y, z, w) + (p23

xy + p23
zw)p

14(x, y, z, w) +

(p24
xy + p24

zw)p
13(x, y, z, w) + (p34

xy + p34
zw)p

12(x, y, z, w). (5)

2.2 The Central Map

Let ρ be a ring homomorphism from R to F [X1, ..., X8, Y1, ..., Y8] induced by the
map:

(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4) →
(X1, X3, Y1 + Y5, Y3 + Y7, X4, X2, Y5, Y7, X5, X7, Y4 + Y8, Y2 + Y6, X8, X6, Y8, Y6).

Let

ψ1 = ρ(p12xy + p12zw) = X1X2 +X3X4 +X5X6 +X7X8

ψ2 = ρ(p34(x, y, z, w)) = Y1Y2 + Y3Y4 + Y5Y6 + Y7Y8

f1 = ρ(p13xy + p13zw) = X4Y1 +X8Y4 + (X1 +X4)Y5 +X5Y8

f2 = ρ(p24(x, y, z, w)) = (X2 +X3)Y2 +X7Y3 +X2Y6 +X6Y7

f3 = ρ(p14xy + p14zw) = X8Y2 +X4Y3 +X5Y6 + (X1 +X4)Y7

f4 = ρ(p23(x, y, z, w)) = X7Y1 + (X2 +X3)Y4 +X6Y5 +X2Y8

f5 = ρ(p23xy + p23zw) = X2Y1 +X6Y4 + (X2 +X3)Y5 +X7Y8

f6 = ρ(p14(x, y, z, w)) = (X1 +X4)Y2 +X5Y3 +X4Y6 +X8Y7

f7 = ρ(p24xy + p24zw) = X6Y2 +X2Y3 +X7Y6 + (X2 +X3)Y7

f8 = ρ(p13(x, y, z, w)) = X5Y1 + (X1 +X4)Y4 +X8Y5 +X4Y8

f9 = ρ(p34xy + p34zw) = Y1Y7 + Y2Y8 + Y3Y5 + Y4Y6

f10 = ρ(p12(x, y, z, w)) = X1X7 +X2(X5 +X8) +X3X5 +X4(X6 +X7)

Note that f1, ..., f8 are Oil-vinegar polynomials, where we can take either X =
(X1, ..., X8) or Y = (Y1, ..., Y8) be the vinegar variables. This implies that, if
either X or Y is known, we can use the polynomial equations coming from
knowing the value of these polynomials to find the value of the other one by
plugging in the values of variables given.
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In terms of the original notation, we rename each ψj and fj above as ψ1,j and
f1,j respectively, and define ψi,1 = ψ1,1, and fi,j = f1,j, for i = 2, 3, 4, j = 1, 3,
5, 7, 9.

Again, in terms of the original notation, interchanging z with w in (5), we
define

ψ2,2 = ρ(p34(x, y, w, z)),

f2,2 = ρ(p24(x, y, w, z)),

f2,4 = ρ(p23(x, y, w, z)), (6)

f2,6 = ρ(p14(x, y, w, z)),

f2,8 = ρ(p13(x, y, w, z)),

f2,10 = ρ(p12(x, y, w, z)).

Similarly, by interchanging x with y in (5), we define ψ3,2 and f3,j , for j = 2, 4,
6, 8, 10; by interchanging x with y, and z with w in (5), we define ψ4,2 and f4,j

, for j = 2, 4, 6, 8, 10. Then we have four identities:

ψi,1ψi,2 = fi,1fi,2 + . . . fi,9fi,10, (7)

for 0 < i < 5.
The central map:

(Z1, ..., Z74) = F (X1, ..., X24, Y1, ..., Y32),

is defined as

Z1 = X1 + ψ1,1(X1, ..., X8) + φ1(X1)

Z2 = X2 + ψ1,2(Y1, ..., Y8) + φ2(X1, X2)

Z3 = X3 + ψ2,2(Y9, ..., Y16) + φ3(X1, X2, X3)

Z4 = X4 + ψ3,2(Y17, ..., Y24) + φ4(X1, X2, X3, X4)

Z5 = X5 + ψ2,1(X9, ..., X16) + φ5(X1, X2, X3, X4, X5)

Z6 = X6 + ψ3,1(X17, ..., X24) + φ6(X1, X2, X3, X4, X5, X6)

Z7 = X7 + ψ4,2(Y25, ..., Y32) + φ7(X1, X2, X3, X4, X5, X6, X7)

Z7+i = f1,i(X1, ..., X8, Y1, ..., Y8) i = 1, .., 10

Z17+i = f2,i(X1, ..., X8, Y9, ..., Y16) i = 1, .., 10

Z27+i = f2,i(Y1, ..., Y8, Y9, ..., Y16) i = 1, .., 8

Z36 = f2,10(Y1, ..., Y8, Y9, ..., Y16)

Z36+i = f3,i(X1, ..., X8, Y17, ..., Y24) i = 1, .., 10

Z46+i = f2,i(X9, ..., X16, Y9, ..., Y16) i = 1, .., 8

Z55 = f2,10(X9, ..., X16, Y9, ..., Y16)

Z55+i = f3,i(X17, ..., X24, Y17, ..., Y24) i = 1, .., 8

Z64 = f3,10(X17, ..., X24, Y17, ..., Y24)

Z64+i = f4,i(X9, ..., X16, Y25, ..., Y32) i = 1, .., 10
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Here φi are randomly chosen quadratic functions.
Note that f2,9(Y1, ..., Y8, Y9, ..., Y16) is not explicitly in the central map due to

the redundancy that

f2,9(Y1, ..., Y8, Y9, ..., Y16) = f2,9(X1, ..., X8, Y9, ..., Y16) = Z26. (8)

Similar situation is also true for:
f2,9(X9, ..., X16, Y9, ..., Y16) and f3,9(X17, ..., X24, Y17, ..., Y24).
There are 7 oil-vinegar polynomial systems inside the central map:

1. Z8, ..., Z15, where Y1, ..., Y8 are viewed as oil variable and X1, ..., X8 are
viewed as vinegar variables;

2. Z18, ..., Z25, where Y9, ..., Y16 are viewed as oil variable and X1, ..., X8 are
viewed as vinegar variables;

3. Z28, ..., Z35, where Y1, ..., Y8 can be viewed either as oil or vinegar variables
and Y9, ..., Y16 are viewed as the opposite variables;

4. Z37, ..., Z44, where Y17, ..., Y24 are viewed as oil variable and X1, ..., X8 are
viewed as vinegar variables;

5. Z47, ..., Z54, where X9, ..., X16 are viewed as oil variable and Y9, ..., Y16 are
viewed as vinegar variables;

6. Z56, ..., Z63, where X17, ..., X24 are viewed as oil variable and Y17, ..., Y24 are
viewed as vinegar variables;

7. Z65, ..., Z72, where Y25, ..., Y32 are viewed as oil variable and X9, ..., X16 are
viewed as vinegar variables.

The public key is constructed as a map from k56×d to k74×d:

Y = (y1, ..., y74×d) = F̄ (x1, ..., x56×d) = L1 ◦ Φ ◦ F ◦ Φ′ ◦ L2(x1, ..., x56×d),

where Φ′ is the map from k56d to F56 induced from the map P in (5), and Φ is
the map from F74 to k74d induced from P−1.

2.3 The Decryption Process

The decryption process requires to invert the maps and the key is how to invert
the central map.

The key step is first to unmask the triangular system (Z1, ..., Z7), and to
derive the value of X1, .., X7 and then X8. The rest is just to solve the oil-
vinegar systems. We start by focusing on the first three equations of the central
map system.

We will first write some of the Diophantine equations satisfied by components
of the central map. Let

g1 = Z8Z9 + Z10Z11 + Z12Z13 + Z14Z15 + Z16Z17

= ψ1,1(X1...X8)ψ1,2(Y1...Y8),

g2 = Z18Z19 + Z20Z21 + Z22Z23 + Z24Z25 + Z26Z27

= ψ2,1(X1...X8)ψ2,2(Y9...Y16), (9)

g3 = Z28Z29 + Z30Z31 + Z32Z33 + Z34Z35 + Z26Z36

= ψ2,1(Y1...Y8)ψ2,2(Y9...Y16).
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Note that Z26 appears in both g2 and g3 because of (7), (8).
Since

ψ2,1(X1, ..., X8) = ψ1,1(X1, ..., X8), ψ2,1(Y1, ..., Y8) = ψ1,2(Y1, ..., Y8),

we have

h1 = (g1g2g
−1
3 )1/2 = ψ1,1(X1, ..., X8) (10)

h2 = g1h
−1
1 = ψ1,2(Y1, ..., Y8) (11)

h3 = g2h
−1
1 = ψ2,2(Y9, ..., Y16). (12)

This allows us to compute the value of ψ1,1(X1, ..., X8), ψ1,2(Y1, ..., Y8) and
ψ2,2(Y9, ..., Y16).

Since we also have the Diophantine equations:

g4 = Z37Z38 + Z39Z40 + Z41Z42 + Z43Z44 + Z45Z46

= ψ3,1(X1, .., X8)ψ3,2(Y17, .., Y24), (13)

g5 = Z47Z48 + Z49Z50 + Z51Z52 + Z53Z54 + Z26Z55

= ψ2,1(X9, .., X16)ψ2,2(Y9, .., Y16), (14)

g6 = Z56Z57 + Z58Z59 + Z60Z61 + Z62Z63 + Z45Z64

= ψ3,1(X17, .., X24)ψ3,2(Y17, .., Y24), (15)

g7 = Z65Z66 + Z67Z68 + Z69Z70 + Z71Z72 + Z73Z74

= ψ4,1(X9, .., X16)ψ4,2(Y25, .., Y32). (16)

Then, since
ψ3,1(X1, ..., X8) = ψ1,1(X1, ..., X8),

and
ψ4,1(X9, ..., X16) = ψ2,1(X9, ..., X16),

we have

h4 = g4h
−1
1 = ψ3,2(Y17, ..., Y24), (17)

h5 = g5h
−1
3 = ψ2,1(X9, ..., X16), (18)

h6 = g6h
−1
4 = ψ3,1(X17, ..., X24), (19)

h7 = g7h
−1
5 = ψ4,2(Y25, ..., Y32). (20)

Using the value of h1, ..., h7, we can restore the triangular structure of Z1, ..., Z7,
and recover the values of X1, ..., X7.

Then we recover X8 by using the value of h1 = ψ1,1(X1, ..., X8), as long as
X7 is nonzero, or we can use Z17 to recover X8 as long as X2 is not zero.

One finishes the inversion of the central map by using the 1,2,4,5,6,7 oil-
vinegar systems described in the section above to derive the remaining variables
X9, ..., X24 and Y1, ..., Y32.

Note that the decryption process succeeds with a high probability but not 1,
and our attack only deals with ciphertexts, whose decryption can be performed
successfully as above.
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2.4 Practical Parameters and Security Claims

The authors [7] suggested the following practical parameters:

1. q = 216, d=1, the number of variables 56, the number of public key polyno-
mials 74, and the security level claim is 2113;

2. q = 216, d=2, the number of variables 56 × 2 = 112, the number of public
key polynomials 74× 2 = 148, and the security level claim is 2221;

3. q = 232, d=1, the number of variables 56, the number of public key polyno-
mials 74, and the security level claim is 2114.

3 Embedded Surface Attack

We will present the attack using the embedded surfaces.

3.1 Embedded Surface Attack

We will now concentrate our attack using the first suggested parameter. Namely
we have: q = 216, d=1, F = k = GF (216), the number of variables is 56, the
number of public key polynomials is 74, and the security level claim is 2113.

It is very clear that the key decryption process is in the relations (9), without
which the decryption will not be possible. Let us first rewrite these relations
explicitly as:

g1 = h1 × h2, (21)

g2 = h1 × h3, (22)

g3 = h2 × h3. (23)

However, from these relations, we can derive the following very interesting rela-
tions:

g1g2 = g3 × h2
1,

g2g3 = g1 × h2
3, (24)

g1g3 = g2 × h2
2.

Let us look at the first relation explicitly as:

(Z8Z9 + Z10Z11 + Z12Z13 + Z14Z15 + Z16Z17)×
(Z18Z19 + Z20Z21 + Z22Z23 + Z24Z25 + Z26Z27) =

(Z28Z29 + Z30Z31 + Z32Z33 + Z34Z35 + Z26Z36)× (ψ1,1(X1, ..., X8))
2. (25)

which can be further written in the form:

∑
ai,j,s,tZiZjZsZt =

∑
a′i,j,s,tZiZjX

2
sX

2
t . (26)



Embedded Surface Attack from Diophantine Equations 131

or ∑
ai,j,s,tZiZjZsZt −

∑
a′i,j,s,tZiZjX

2
sX

2
t = 0. (27)

Here we would like to point out that this relation is true due to the
fact that F = k is of characteristics 2, where

(a+ b)2 = a2 + b2.

This means that if

g1 × g2 × g3 �= 0,

an assumption required for decryption, again, due to the fact that F = k is of
characteristics 2, if we have all relations in the form of (26), given the values of
Zi, we should be able to derive the values of

h2
1 = (ψ1,1(X1, ..., X8))

2,

h2
2 = (ψ1,2(Y1, ..., Y8))

2,

h2
3 = (ψ2,2(Y9, ..., Y16))

2,

and therefore the value of h1 = ψ1,1(X1, ..., X8), h2 = ψ1,2(Y1, ..., Y8) and h3 =
ψ2,2(Y9, ..., Y16), by taking squareroot in k, a field of characteristic 2.

The above implies that, for the public key cryptosystem, for a pair of ci-
phertext and plaintext (x1, .., x56) and (y1, ..., y74) , there are relations in the
form:

∑
ai,j,s,tyiyjysyt +

∑
bi,j,syiyjys +

∑
ci,jyiyj +

∑
djyj +∑

a′i,j,s,tyiyjx
2
sx

2
t +

∑
b′i,s,tyix

2
sx

2
t +

∑
c′i,j,syiyjx

2
s +

∑
d′i,syix

2
s +∑

e′s,tx2
sx

2
t +

∑
h′sx2

s + e = 0, (28)

which comes from (27). This new form is due to the affine transformations L1

and L2.
This can give us a none-trivial embedded surface, since if we are given the

value of all yi, we can derive polynomial equations in the form of

∑
a′′s,tx

2
sx

2
t +

∑
b′′sx

2
s + c′′ = 0, (29)

which gives us the value of polynomials corresponding to h1 and h2 and h3,
and they are not components in in the central map. This is true, as long as
the corresponding value of g1 × g2 × g3 is not zero, an assumption required for
decryption.

The means that, if we get all the embedded surfaces as a linear space in the
form of (28), we will actually be able to derive the corresponding value of h1 and
h2 and h3 for any valid (decryption possible)ciphertext (y′1, ..., y′74). If we amend
those equations to the original system, in the context of original polynomial
system derived from the known ciphertext, we will be able to derive the values
corresponding to X1, X2, X3.
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Now, let us look at again the relations that are used to derive h3, .., h7 in the
decryption process, which we will rewrite as:

h4h1 = ψ3,2(Y17, ..., Y24)h1 = g4 =

Z37Z38 + Z39Z40 + Z41Z42 + Z43Z44 + Z45Z46, (30)

h5h3 = ψ2,1(X9, ..., X16)h1 = g5 =

Z47Z48 + Z49Z50 + Z51Z52 + Z53Z54 + Z26Z55. (31)

and

h6h4 = ψ3,1(X17, ..., X24)h1 = g6 =

Z56Z57 + Z58Z59 + Z60Z61 + Z62Z63 + Z45Z64, (32)

h7h5 = ψ4,2(Y25, ..., Y32h5 = g7 =

Z65Z66 + Z67Z68 + Z69Z70 + Z71Z72 + Z73Z74. (33)

This means, in the central map system, if we amend the h1 and h2 and h3 to the
map, and if we apply either Groebner basis algorithm like F4 or F5 of Faugere or
the mutant XL family of algorithms [9],[2], in the first computation round when
the algorithm reaches degree 4, we will derive the values of h4 and h5 as mutants,
and in the next computation round, which is still at degree 4, we will derive h6

and h7 as mutants. This implies that we can derive the values of X4, .., X7 and
therefore the value of X8 as in the decryption process. Since the rest are just
Oil-Vinegar type of systems, this further implies that we can solve the system
at degree 4 using polynomial solving algorithms once the values h1, h2, h3 are
derived using the embedded surfaces in the form (28).

The above enables us to make a complete algorithm to attack the system.

1. Step 1. Find all the embedded surfaces

Randomly pick

(
74 + 4

4

)
+

(
56 + 2

2

)
×
(
74 + 2

2

)
= 1426425+ 4711050 = 6137475

ciphertext and plaitext pairs derived from the public key, and substitute
them into the equation in the form of (28), where the coefficients of the
system are treated as variables. This will give us a set of linear equations
with 6137475 variables over GF (216) and the same number of equations.

Find the solutions for this set of linear equations. The solution space
should be of dimension:

(76× 75)/2× 76 + 76× 76 + 76 + 3 = 222455,

where 222455 of them come from equations derived from the trivial relations
from terms like ZiZjZ

2
k , Z

2
jZi and Z

2
i , and only 3 of them is what we really

need, namely the ones coming from (24).
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2. Step 2. Derive new equations from the embedded surfaces

With the 222455 embedded surfaces, once given any valid ciphertext, we
substitute it into the embedded surfaces, we will derive 74 + 3 = 77 linearly
independent degree 4 equations in the form:

∑
As,tx

2
sx

2
t

∑
Bsx

2
s + C = 0.

Then, we take the square root of these equations due to the fact that it is
over a field of characteristic 2, namely

∑
A

1/2
s,t xsxt

∑
B1/2

s xs + C1/2 = 0,

since

(
∑

A
1/2
s,t xsxt

∑
B1/2

s xs + C1/2)2 =
∑

As,tx
2
sx

2
t

∑
Bsx

2
s + C,

and comuting the square root over a field of of characteristic 2 is easy to do.
This gives us a set of 77 linearly independent quadratic equations. All the
public equations derived from the public key and the known ciphertext are
already included in the span of this set of equations.

3. Step 3. Reduce three variables

Perform Gaussian elimination on this set of equations to look for an equation
in the form of ∑

aix
2
i +

∑
bixi + c = 0,

where
ai = b2i × α,

for a fixed constant α. Solving this quadratic equation will give us a linear
in the form ∑

aixi + b = 0.

This corresponds to deriving the value of X1, which comes from Z1 by elim-
inating ψ1,1(X1, ..., X8) due to the known value of h1 = ψ1,1(X1, . . . , X8).
We will then substitute this linear equation into the system, and perform
Gaussian elimination, which gives us again an equation in the form of

∑
aix

2
i +

∑
bixi + c = 0,

where again
ai = b2i × α′,

for a some fixed constant α′. Solving this quadratic equation will give us a
linear equation in the form

∑
aixi + b = 0.

This corresponds to deriving the value of X2, which comes from Z2 and
the known value of h2.

We will repeat the process to derive a new linear equation, which corre-
sponds to deriving the value ofX3 coming from Z3 and the known value of h3.
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4. Step 4. Solve the system

We will feed the new system including the 3 new linear equations into a
Groebner solver like F4 or the mutant XL algorithm. We will solve the sys-
tems at degree 4. This will give us the value of the whole plaintext.

In principle, we can merge Step 3 and Step 4 by using directly the algebraic
solver like F4 or the mutant XL algorithm, which will yield the same results.

3.2 The Complexity of the Attack

From the attacking steps, it is clear that the complexity of the attacks concen-
trates on Step 1 and Step 4.

In Step 1, the key part is to solve a system of linear equations with N =
6137475 variables and the same number of equations. If we use usual Gaussian
elimination, the complexity will be roughly

2N3/3 = 154126724635276031250≈ 268,

over the field GF (216). Assume that we use the best optimized linear solver, we
should have the complexity N2.3 ≈ 252 theoretically.

In Step 4, we will need to solve a linear system roughly with
(

53+4
4

)
= 395010

variables and the same number of equations. Clearly this system is much smaller
than the system above, whose complexity is much smaller.

Therefore, we conclude that if we use the optimized Gaussian elimination,
the complexity will be roughly 252 theoretically, and the complexity will be 268

with usual Gaussian elimination. This complexity is based on operations over
GF (216). The original security claim for the system is 2113 with the assumption
of using the optimized Gaussian elimination.

3.3 The Complexity for Attacking the Other Two Systems

For the case, where q = 232 and d=1, the attack complexity will be precisely
the same except that everything will be on a field over GF (232). The original
security assumption is 2114 with the assumption of using the optimized Gaussian
elimination.

As for the case, where q = 216, d=2, it is clear the complexity will be de-
termined by solving a set of linear equations with the number of variables and
equations as

N =

(
2 ∗ 74 + 4

4

)
+

(
2 ∗ 56 + 2

2

)
∗
(
2 ∗ 74 + 2

2

)
= 93352225.

If we use normal Gaussian elimination, the complexity will be roughly

2N3/3 ≈ 279,
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over the field GF (216). Assume that we use the best optimized linear solver, we
should have the complexity N2.3 ≈ 261 theoretically. The original security claim
is 2221 with assumption of using the optimized Gaussian elimination.

Due to the memory constraints in our own equipments, we could not perform
the experiments to attack the system in practice. But we did perform some small
scale toy experiments, where we set some of the variables in the central map to
be 0, to confirm that our attack works indeed.

3.4 Direct Algebraic Attack

One may ask what if we use F4 or the mutant XL directly against the new
MPKCs? One can see easily, our embedded surface actually implies that the
degree of regularity of the systems [1] is actually 8, since each yi is of degree 2
and our surface is actually of degree 4 in yi. This means that the direct algebraic
solver would be much less efficient since our method finishes at degree 4.

4 Conclusion

We present a new attack on the new MPKCs from Diophantine equations de-
veloped by Gao and Hendl. This attack uses embedded surfaces associated with
the new MPKCs. We show that this new attack can break the system efficiently.
We believe such an approach is a very useful approach, which can be applied on
other types of systems including symmetric systems.

We would like to point out that our attack relies very much on the fact
that the field is of characteristic 2. We believe it deserves further attention to
seek possibilities to rebuild the system using fields of odd characteristics, whose
security could be very different as pointed out in[4].
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