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Abstract. There are several attempts to build asymmetric pubic key
encryption schemes based on multivariate polynomials of degree two over
a finite field. However, most of them are insecure. The common defect in
many of them comes from the fact that certain quadratic forms associated
with their central maps have low rank, which makes them vulnerable to
the MinRank attack. We propose a new simple and efficient multivariate
pubic key encryption scheme based on matrix multiplication, which does
not have such a low rank property. The new scheme will be called Simple
Matrix Scheme or ABC in short. We also propose some parameters for
practical and secure implementation.

Keywords: Multivariate Public Key Cryptosystem, Simple Matrix Scheme,
MinRank Attack.

1 Introduction

Public key cryptography plays an important role in secure communication. The
most widely used nowadays are the number theoretical based cryptosystems
such as RSA, DSA, and ECC. However, due to Shor’s Algorithm, such cryp-
tosystems would become insecure if a large Quantum computer is built. Recent
progress made in this area makes this threat realer than ever before. Moreover,
the computing capacity of these Number Theoretic based systems is proved to
be limited. These are some reasons which motivate researchers to develop a new
family of cryptosystems that can resist quantum computers attacks and that are
more efficient in terms of computation. Researchers usually use Post Quantum
Cryptography (PQC) to denote this new family.

Multivariate public key cryptosystems (MPKC) belong to the PQC family.
If well designed, they can be a good candidate for PQC. The public key of an
MPKC is a system of multivariate polynomials, usually quadratic, over a finite
field. The security of MPKCs is based on the knowledge that solving a set of
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multivariate polynomial equations over a finite field, in general, is proven to
be an NP-hard problem [9]. In fact quantum computers do not appear to have
an advantage when dealing with NP-hard problems. However, this does not
guarantee that these cryptosystems are secure. The first such practical system
was proposed in 1988 by Matsumoto and Imai with their scheme called C* or
MI. Nonetheless, Jacques Patarin proved it insecure using linearization equations
attack a few years later [18].

In [5], the authors showed that the rank of the quadratic form associated to
the central map of C* is only two and therefore the private key could be also
recovered with the help of the MinRank Attack.

In [19] Patarin extended the C* scheme by using a new central map to con-
struct a new encryption scheme called Hidden Field Equations (HFE). But Kip-
nis and Shamir found a way to recover the private keys using the MinRank Attack
[13]. Furthermore, it is showed in [8] that inverting HFE is quasi-polynomial if
the size of the field and the degree of the HFE polynomials are fixed.

In [15], T.T. Moh proposed a multivariate asymmetric encryption scheme
called TTM.

But again, it was broken by exploiting the fact that some quadratic form
associated to the central map is of low rank [3].

In the last two decades, many other MPKCs have been proposed for encryp-
tion but almost all of them are proven to be insecure and many of them share
a common defect; that is some quadratic forms associated to their central maps
have low rank and therefore are vulnerable to the MinRank Attack. In con-
sequence, for a MPKC to be secure, it is necessary that all quadratic forms
associated with the central map have a rank high enough.

This paper will propose a new multivariate public key scheme for encryption
having the property that the quadratic forms associated to the central map do
not have a low rank but a rank related to a certain parameter n. The scheme
is constructed using some simple matrix multiplications and it will be called
Simple Matrix encryption scheme or ABC in short.

This paper is organized as follows. In Section 2 we give an illustration of the
MinRank attack using HFE. In Section 3, we describe the construction of the
ABC scheme. The security analysis is presented in Section 4. Section 5 shows
a practical implementation of the ABC scheme while Section 6 discusses the
efficiency and Section 7 concludes the paper.

2 MinRank Attack

The MinRank attack is a cryptanalysis tool that can be used to recover the secret
key of MPKCs whose quadratic form associated to the central map is of low rank.
In this section, we give an illustration by describing the MinRank attack on the
HFE scheme. The attack was first performed by Kipnis and Shamir [13] who
showed that the security of HFE can be reduced to a MinRank problem.
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2.1 The HFE Scheme

The HFE cryptosystem was proposed by Jacques Patarin in [19]. It can be
described as follow. Let q = pe, where p is a prime and e ≥ 1. Let K be an
extension of the finite field k = Fq of degree n. Clearly, K ∼= kn.

Let φ : K → kn be the k-linear isomorphism map between the finite field K
and the n-dimensional vector space kn. The central map of HFE is a univariate
polynomial P (x) of the following form

P (x) =

r−1∑

i=0

r−1∑

j=0

pijx
qi+qj ∈ K[x],

where pij ∈ K and r is a small constant chosen in a way such that P (x) can
efficiently inverted. The public key is given to be

F̄ = T ◦ φ ◦ P ◦ φ−1 ◦ S,
where T : kn −→ kn and S : kn −→ kn are two invertible linear transformations
and the private key consist of T, P and S.

2.2 MinRank Attack on HFE

In [14], Kipnis and Shamir showed that the public key F̄ and the transformations
S, T, T−1 can be viewed as maps G∗, S∗, T ∗, T ∗−1 over K. More precisely,

S∗(x) =
n−1∑

i=0

six
qi , T ∗−1(x) =

n−1∑

i=0

tix
qi .

and G∗(x) = T ∗(P (S∗(x))). We can express G∗(x) in the form:

G∗(x) =
n−1∑

i=0

n−1∑

j=0

gijx
qi+qj = xGxt,

where x = (x, xq , . . . , xqn−1

) is a vector over K, xt is the transposition of x and
G = [gij ] is a matrix over K. The identity T ∗−1(G∗(x)) = P (S∗(x) implies that

G′ =
n−1∑

i=0

tkG
∗k = WPW t,

where P = [pij ] over K, G∗k and W are two matrices over K whose repective

(i, j) entries are gq
k

i−k,j−k and sq
i

i−j , with i− k, j− k and i− j computed modulo

n. Since the rank of WPW t is not more than r, recovering t0, t1, . . . , tn−1 can
be reduced to solving a MinRank problem, that is, to find t0, t1, . . . , tn−1 such
that

Rank(

n−1∑

i=0

tkG
∗k) ≤ r.
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Methods to solve the MinRank problem for small r can be found in [11]. Once
the values t0, t1, . . . , tn−1 are found, T and S will be then easily computed.
Therefore, the key point to attack HFE is to solve the MinRank problem.

The Kipnis-Shamir attack was improved by Courtois using a different method
to solve the MinRank problem [3]. However, Ding et al. showed that the original
Kipnis-Shamir attack and the improvement of Courtois are not valid in [4]. Later,
Faugère et al. proposed a more comprehensive improvement of the Kipnis-Shamir
attack against HFE [2].

3 Construction of ABC Cryptosystem

Let n,m, s ∈ Z be integers satisying n = s2 and m = 2n. For a given integer s,
let ks denote the set of all s-tuples of elements of k. We denote the plaintext by
(x1, x2, . . . , xn) ∈ kn and the ciphertext by (y1, y2, . . . , ym) ∈ km. The polyno-
mial ring with n variables in k will be denoted by k[x1, . . . , xn]. Let L1 : kn → kn

and L2 : km → km be two linear transformations, i.e.

L1(x) = L1x and L2(y) = L2y,

where L1 and L2 are respectively an n × n matrix and an m ×m matrix with
entries in k, x = (x1, x2, . . . , xn)

t, y = (y1, y2, . . . , ym)t, and t denote the matrix
transposition.

The Central map Let

A =

⎛

⎝
x1 x2 ... xs

xs+1 xs+2 ... x2s

...
...

. . .
...

x(s−1)s+1 x(s−1)s+2 ... xs2

⎞

⎠ ; B =

⎛

⎝
b1 b2 ... bs

bs+1 bs+2 ... b2s

...
...

. . .
...

b(s−1)s+1 b(s−1)s+2 ... bs2

⎞

⎠ ;

and C =

⎛

⎝
c1 c2 ... cs

cs+1 cs+2 ... c2s

...
...

. . .
...

c(s−1)s+1 c(s−1)s+2 ... cs2

⎞

⎠ be three s × s matrices, where xi ∈

k, bi and ci are randomly chosen as linear combination of elements from the
set {x1, . . . , xn}, where i = 1, 2, . . . , n. Define E1 = AB, E2 = AC and let
f(i−1)s+j and fs2+(i−1)s+j ∈ k[x1, . . . , xn] be respectively the (i, j) element of
E1 and E2 (i, j = 1, 2, . . . , s). Then we obtain with this notation m polynomials
f1, f2, . . . , fm, and we define the central map to be

F(x1, . . . , xn) = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)).

We note that for any 1 ≤ i ≤ m, the rank of the quadratic form fi which is
associated with the central map F is close to or equal to 2s. Define

F̄ = L2 ◦ F ◦ L1 = (f̄1, f̄2, . . . , f̄m),

where L1 : kn → kn and L2 : km → km are as above, f̄i ∈ k[x1, . . . , xn] are m
multivariate polynomials of degree two. The secret key and the public key are
given by:
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Secret Key The secret key is made of the following two parts:

1) The invertible linear transformations L1,L2.
2) The coefficients of xi of the elements in matrices B,C.

Public Key The public key is made of the following two parts:

1) The field k, including the additive and multiplicative structure;
2) The maps F̄ or equivalently, its m total degree two components

f̄1(x1, x2, . . . , xn), . . . , f̄m(x1, x2, . . . , xn) ∈ k[x1, . . . , xn].

Encryption
Given a message x1, x2, . . . , xn, the corresponding ciphertext is

(y1, y2, . . . , ym) = F̄(x1, x2, . . . , xn).

Decryption
To decrypt the ciphertext (y1, y2, . . . , ym), one need to perform the following

steps:

1 Compute (ȳ1, ȳ2, . . . , ȳm) = L−1
2 (y1, y2, . . . , ym).

2 Put

E1 =

⎛

⎝
ȳ1 ȳ2 ... ȳs

ȳs+1 ȳs+2 ... ȳ2s

...
...

. . .
...

ȳ(s−1)s+1 ȳ(s−1)s+2 ... ȳs2

⎞

⎠ ;

E2 =

⎛

⎜⎝

ȳs2+1 ȳs2+2 ... ȳs2+s

ȳs2+s+1 ȳs2+s+2 ... ȳs2+2s

...
...

. . .
...

ȳs2+(s−1)s+1 ȳs2+(s−1)s+2 ... ȳ2s2

⎞

⎟⎠ .

Since E1 = AB,E2 = AC , we consider the following cases:

(i) If E1 is invertible, then BE−1
1 E2 = C. We have n linear equations with

n unknowns x1, . . . , xn.
(ii) If E2 is invertible, but E1 is not invertible, then CE−1

2 E1 = B. We also
have n linear equations with n unknowns x1, . . . , xn.

(iii) If both E1 and E2 are not invertible but A is invertible, then A−1E1 = B,
A−1E2 = C. We interpret the elements of A−1 as the new variables Wi

and we end up with m = 2n linear equations in m unknowns. Then we
eliminate the new variables to derive n linear equations in the xi.

(iv) If A is a singular matrix and the rank of A is n − r, then there exits

a nonsingular matrix W such that WA =

(
I 0
0 0

)
, where I is a (n −

r) × (n − r) identity matrix, 0 is a zero matrix. Let W =

(
W1 W2

W3 W4

)
,

B =

(
B1 B2

B3 B4

)
, C =

(
C1 C2

C3 C4

)
, E1 =

(
E11 E12

E13 E14

)
, E2 =

(
E21 E22

E23 E24

)
,

where W1, B1, C1, E11, E21 are a (n−r)×(n−r) matrices. Since WE1 =
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WAB,WE2 = WAC, that is W1E11 +W2E13 = B1, W1E12 +W2E14 =
B2, W1E21 +W2E23 = C1, W1E22 +W2E24 = C2.
We interpret the elements of W1,W2 as the new variables and we end
up with 2s(s − r) linear equations in s(s − r) + n unknowns. Then we
eliminate the s(s − r) elements of W1,W2 in these equations. If these
2s(s−r) linear equations are independent, we gain n−sr linear equations
with the variables x1, x2, ..., xn.

The dimension of the solution space of the linear equations with the vari-
ables x1, x2, ..., xn is in general very small. Solving this system by Gaussian
elimination enables us to eliminate most of the unknowns, say Z of them.
Then we write these Z variables as linear combinations of the remaining
unknown variables and then substitute them into the central equations. We
then obtain a new system of equations of degree two in the remaining n−Z
unknowns which can be easily solved since the number of variables of this
new system of equations is very small. Sometimes we may have more than
one solution, but the probability is very small.

3 Compute the plaintext (x1, x2, . . . , xn) = L−1
1 (x̃1, x̃2, . . . , x̃n).

Our experiments show that even if A is a singular matrix, decryption remains
successful as long as the rank of A is no less than s− 2. When the rank of A is
less than s−2, decryption may fail. Let r > 0 be the rank of A, then the number

of s × s matrix of rank r over k is
qr(r−1)/2

s∏

i=s−r+1

(qi−1)2

r∏

i=1

(qi−1)
, thus for any s × s

matrix A, the probability of A of rank r is
qr(r−1)/2

s∏

i=s−r+1

(qi−1)2

qs2
r∏

i=1

(qi−1)
. Therefore,

the probability of A of rank less than r is 1 −
s∑

j=r

qj(j−1)/2
s∏

i=s−j+1

(qi−1)2

qs2
j∏

i=1

(qi−1)

. For

example, let q = 28, s = 8, then the probability of A of rank less than 6 is about
2.125919×10−22, thus, in this case, the probability of decryption failure is about
2.125919× 10−22. This means that we can adjust the parameters to make sure
that decryption will not be a problem.

4 Security Analysis

In this section, we will study the security of the ABC scheme in order to able us
to choose the appropriate parameters for a secure encryption.

4.1 High Order Linearization Equation Attack

Linearization equation attack was first discussed in [18] to attack MI [16]. Later,
high order linerlization equation attack was proposed to attack MFE cryptosys-
tem [6]. We use this method to attack our scheme. Since BE−1

1 E2 = C (the case
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where CE−1
2 E1 = B is similar), there exists polynomial g1, with deg(g1) ≤ s,

such that Bg1(E1)E2 = Cdet(E1). Therefore, the plaintext and the ciphertext
satisfy the equation:

n∑

i0=1

m∑

i1,...,is=1

μi0,i1,...,isxi0yi1 · · · yis+

+

n∑

i0=1

m∑

i1,··· ,is−1=1

νi0,i1,...,is−1xi0yi1 · · · yis−1 + · · ·+

+
n∑

i0=1

γi0xi0 +
m∑

i1=1

ξi1yi1 + θ = 0,

which means that we derive linearization equations with order n+ 1. The coef-
ficients μi0,i1,...,is , νi0,i1,··· ,is−1 , . . . , γi0 , ξi1 , θ are variables taking value in k. The
number of variables is

n

s∑

j=0

(
m

j

)
+m+ 1 = n

(
m+ s

s

)
+m+ 1.

Using the public key we can generate many plaintext-ciphertxet pairs. By substi-
tuting these plaintext-ciphertxet pairs into the equations, we have n

(
m+s
s

)
+m+1

linear equations with n
(
m+s
s

)
+m+1 variables. However, the computation com-

plexity of solving this linearization equation is
(
n
(
m+s
s

)
+m+1

)ω

, where ω = 3

in the usual Gaussian elimination algorithm and ω = 2.3766 in improved algo-
rithm which is impractical for a bit size greater than or equal to 64. Note here
that the computation complexity is even high in the case where E1 and E2 are
not invertible.

4.2 Rank Attack

There are two different methods of using the rank attack. The first one is called
MinRank attack or Low Rank attack and an illutration was discussed in section
2. The other one is called the High Rank Attack. We will look at these two at-
tacks against the ABC scheme. For the MinRank attack, let us assume without
lost of generality that the public key polynomials and the secret polynomials are
homogeneous quadratic polynomials. Let L1,L2 be two invertible linear trans-
formations. Let Q̄1, Q̄2, . . . , Q̄m be the symmetric matrices associated with the
public key quadratic polynomials and Q1, Q2, . . . , Qm be the symmetric matrices
associate with the secret key quadratic polynomials. Clearly, the rank of Qi is
bounded by 2s. With the MinRank attack, one tries to find (t1, t2, . . . , tm) ∈ km

such that the rank of the linear combinations
m∑
i=1

tiQ̄i is no more than 2s. In

order to find such a linear combination, one can choose any vector υ ∈ kn and

try to solve the equations (
m∑
i=1

tiQ̄i)υ = 0 with the unknowns t1, . . . , tm. After
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finding at least one linear combination of this form, attacker can recover L2.
The attacker can recover L1 and Q1, . . . , Qm when L2 is known. More detail
about the MinRank attack can be found in [3,10]. The complexity of this attack
against the ABC scheme is O(q�

m
n �2sm3).

For the High Rank Attack, we form an arbitrary linear combinations Q =
m∑
i=1

αiQ̄i, then we find V = Ker(Q). IfQ have a nontrivial kernel, set
m∑
i=1

λiQ̄iV =

0 and check if the solution set V̂ of λi has a dimension n− 2s. This attack uses
about O(n6q2s) field multiplications. Moreover, note that for every vector v of
dimension n, there exists a linear combination of the 2n secret polynomials that
yields zero with probability roughly 1− 1

qn . So we are faced with a lot of parasitic
solutions, which have to be ruled out at the end. Also as it was mentioned earlier
the rank of the Qi is associated with 2

√
n which means that the complexity of

the rank attack may not be polynomial time in the number of variables. These
facts prove that the Rank attack is really inefficient against the ABC scheme.

4.3 Algebraic Attack

Let f̄1(x1, . . . , xn), . . . , f̄m(x1, . . . , xn) ∈ k[x1, . . . , xn] be the public key poly-
nomials. Let y1, y2, . . . , ym be the ciphertext. We try to solve the system of
equations ⎧

⎪⎪⎨

⎪⎪⎩

f̄1(x1, x2, . . . , xn) = y1;
f̄2(x1, x2, . . . , xn) = y2;
. . . . . . . . . . . . . . . . . . . . .
f̄m(x1, x2, . . . , xn) = ym,

directly by Gröbner bases or XL method and its variations Mutant XL algo-
rithm[25][26][27].

We carried out a number of experiments with MAGMA [1], which contains an
efficient implementation of F4 algorithm [9] for computing Gröbner bases. Table
1 shows the results of our experiments to attack an instance of ABC scheme in
a finite field k of 3 elements.

Table 1. Result of experiments with direct attack using MAGMA(2.12-16) on a
1.80GHz Intel(R) Atom(TM) CPU

n 9 16 25

time(s) 0.016 3.494 17588.380

memory(MB) 3.4 8.1 1111.7

degree of regularity 4 5 6

As the table 1 shows, the time and memory complexity increase as n grows.
Also the degree of regularity increases as n grows which indicated that complex-
ity is exponential.
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4.4 Special Attacks

In terms of the design, one may think that maybe we can choose B and C
such that their entries are randomly selected sparse linear functions or even
monomials, which will allow us to have smaller secret key. However in the case
of using only monomials, there is a possible new risk, namely there is a possibility
that the central map polynomials are so sparse that they may have hidden UOV
structures, that is there are no quadratic terms of a set of variables in the central
map polynomials. One may then use UOV Reconciliation attack to find such
structure [23][24]. It is not a good ideal to use monomials for B and C, such a
distinguished feature is in general not desired. But in the case of general B and
C such a feature does not exist. It is an open interesting problem to find out
what really happens in the case of sparse B and C.

On the other hand, one may say that how about making A also more general,
namely entries are selected as random linear functions. It is clear this is not
needed since a linear transformation will easily remove such a feature. Using a
matrix A of variables and L1 is equivalent to using a matrix A of linear functions,
without any transformation L1. In the case of A also more general, one may
consider certain tensor related attack, but we cannot see yet any effective way
to do so.

5 A Practical Implementation for Encryption

For a practical implementation, we let k be the finite field of q = 28 elements
and n = 64. In this case, the plaintext consist of the message (x1, . . . , x64) ∈ k64.
The public map is F̄ : k64 → k128 and the central map is F : k64 → k128.

The public key consists of 128 quadratic polynomials with 64 variables. The
number of coefficients for the public key polynomials is

128× 66× 65/2 ∈ {274560, or about 280KB of storage}.

The private key consists of the coefficients of the xi of the entries of the matrices
B and C. and the two linear transformations L1,L2. The total size is about
30KB.

The size of a document is 8n = 8 × 64 = 512bits and the total size of the
ciphertext is 1024bits.

Based on the preceding discussion in section 4, security level for this imple-
mentation is lager than 286. Using odd characteristic field may be good to resist
algebraic attack, but it requires more storage.

6 Efficiency of ABC Scheme

In this section, we will compare the efficiency of decryption in ABC scheme with
HFE challenge 1 by Patarin [19]. This HFE was broken using algebraic attack
[13]. In this HFE scheme, J.Patarin chose the parameters as follow: q = 2, n = 80,
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the degree of central map is 96. Let P (x) be the central map of HFE, the main
computation of decryption is to solve the equation P (x) = y over the finite field
of 280 elements. In [20], J.Patarin estimated that the complexity of solving this
equation is aboutO(d2n3) orO(dn3+d3n2)–depending on the chosen algorithms,
where d is the degree of P (x). Thus the decryption process needs about 6.4×109

times field multiplication over the finite field of 280 elements.
For the proposed parameters of the ABC scheme above, q = 28, n = 64 and

m = 128, the steps of decryption were presented in section 3. The computation
of step 1) and step3) of decryption are very fast. The main computation of
decryption is step 2), solving a set of linear equations. Therefore, we only need
about 1283 = 221 ≈ 2.1 × 106 times field multiplications over the finite field of
28 elements for decryption. It is much faster than HFE scheme.

7 Conclusion

In this paper, we propose a new multivariate algorithm for encryption called
ABC. A highlight of ABC scheme is that all the quadratic forms associated
with the central map are not of low rank but related to some variable integer
n. Therefore, it is immune to the MinRank Attack. Another highlight of ABC
scheme is that the computation of decryption is very fast, because the main
computation is to solve certain linear equations. However we still cannot show
that ABC is provably secure.
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