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Abstract. MIFARE Classic is the world’s most widely deployed RFID
(radio-frequency identification) technology. It was claimed to be crypto-
graphically protected by the proprietaryCrypto-1 streamcipher.However,
it proved inadequate after weaknesses in the design and implementation of
Crypto-1 and MIFARE Classic started surfacing since late 2007
[7,8,12–17]. Some operators of MIFARE Classic-based systems reacted by
upgrading to more secure alternatives such as MIFARE DESFire. How-
ever, many (especially in Asia) opted to “patch” MIFARE Classic instead.
Their risk analysis might have gone as follows: “The most serious threat
comes from efficient card-only attacks, where the attacker only needs an
off-the-shelf reader and a PC to tamper a target tag. All efficient card-only
attacks depend on certain implementation flaws. Ergo, if we just fix these
flaws, we can stop the most serious attacks without an expensive infrastruc-
ture upgrade.” One such prominent case is “EasyCard 2.0,” today accepted
in Taiwan as a means of electronic payment not only in public transporta-
tion but also in convenient stores, drug stores, eateries, cafes, supermar-
kets, book stores, movie theaters, etc. Obviously, the whole “patching”
approach is questionable becauseCrypto-1 is fundamentally aweak cipher.
In support of the proposition, we present a new card-only attack based on
state-of-the-art algebraic differential cryptanalytic techniques [1,2]. Still
using the same cheap reader as previous attacks, it takes 2–15min of com-
putation on a PC to recover a secret key of EasyCard 2.0 after 10–20 h of
data collection. We hope the new attack makes our point sufficiently clear,
and we urge that all MIFARE-Classic operators with important transac-
tions such as electronic payment upgrade their systems to the more secure
alternatives soon.

Keywords: RFID security · MIFARE Classic · Card-only attack · Alge-
braic cryptanalysis

1 Introduction

MIFARE Classic, a brand owned by the NXP Semiconductors, is the most
widely used RFID technology in the world today, with billions of chips sold
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worldwide. It is used in many public-transportation ticketing systems in, e.g.,
Beijing, Chongqing, Guangzhou, Boston, the Netherlands, London, Seoul, Taipei,
etc. In recent years, it has even found its way into electronic payment systems
in several Asian countries including China and Taiwan.

The proprietary Crypto-1 stream cipher is designed to provide cryptographic
protection to MIFARE Classic. NXP Semiconductors has never made public the
detailed algorithm of Crypto-1. Nevertheless, starting from late 2007 in a series
of papers, the specifications and several weaknesses of the cipher have been
found via reverse engineering and cryptanalysis [7,8,12,13,15–17]. As Courtois
et al. concluded: “The security of this cipher is therefore close to zero” [8]. Users
of MIFARE Classic around the world responded differently to this incident.
Some kept silent, while others promptly announced plans of replacing MIFARE
Classic—unfortunately not always with more secure technologies.

In this paper, we shall investigate in detail one such replacement being
deployed in Taipei, an early adopter and aggressive user of MIFARE Classic.
Branded under the name “EasyCard,” more than 35 million cards have been
issued in Taipei since the official release in 2002, with more than 4.6 million
transactions per day in 2012. Starting from 2010, the card is also accepted as
a means of electronic payment by almost all convenient store chains, as well
as drug stores, eateries, cafes, supermarkets, book stores, movie theaters, etc.
Similar use of MIFARE Classic is reported in several cities in China including
Beijing, Chongqing, and Guangzhou.

In a nutshell, not only does Crypto-1 use way too short a key (48 bits)
by today’s standards, its cipher structure also allows very easy recovery of its
internal state (and hence the secret key) if the attacker learns a small number
of contiguous keystream bits [12]. This allows a sniffer to recover the secret key
if it is placed in proximity when a pair of legitimate reader and tag are in a
transaction.

In addition, there are two serious implementation flaws which also cause
weaknesses: (i) parity bits are computed over plaintext and then encrypted ; (ii) the
32-bit tag nonces used in the authentication satisfy a degree-16 linear recur-
rence relation and can be controlled by appropriately timing the authentication
attempts. Furthermore, there is a convenient way for the attacker to extract infor-
mation on keystream bits from (i), as a tag would respond differently depending
on whether the parity bits are correct or not. Together, they allow extremely
efficient attacks even when the attacker only has access to the tag [13].

Compared with sniffer-based attacks, these efficient card-only attacks are
arguably much more serious because of the low entry barriers. All the attacker
needs is a PC and a cheap, off-the-shelf reader, so any ordinary person can
launch such an attack in private by downloading the appropriate software from
the Internet.

In late 2012, the EasyCard Corporation rolled out “EasyCard 2.0,” a dual-
interface smart card that is compatible with existing EasyCard readers, yet with
all implementation flaws fixed. The tag nonces seem random, both unpredictable
and uncontrollable, and the tag responses are indistinguishable whether the par-
ities sent by the reader are correct or not. This renders all existing efficient
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card-only attacks [7,8,12,13,15] ineffective, as we have verified through exper-
iments. This does not stop, of course, brute-force attacks, which are arguably
less threatening because it takes years of computation on an ordinary PC. The
attacker would need to have access to expensive supercomputers, e.g., GPU or
FPGA clusters, in order to recover the keys within a reasonably short amount
of time [5]. As a result, the EasyCard Corporation seems confident that Easy-
Card 2.0 can be “reasonably secure,” as the computational power required by
brute-force attacks is way beyond the reach of an ordinary person.

In this paper, we will show that such a sense of security is false. Namely, we
will present a new card-only attack based on state-of-the-art algebraic differential
cryptanalytic techniques [1]. The attack is highly practical: it uses the same
cheap reader as previous attacks [7,8,12,13,15] and takes 2–15 min on a PC
to recover the secret key of EasyCard 2.0 or other similar implementations of
MIFARE Classic. The extra price the attacker needs to pay for the new attack is
a slightly longer time for data collection, typically 10–20 h. We note that this is
not atypically long for differential attacks and still makes the new attack a serious
threat because the data collection can be done by the attacker in private without
needing access to a legitimate reader. Overall, this is a significant improvement
over the brute-force attacks, which would take about 4 years on the same PC.

The rest of this paper is organized as follows. In Sect. 2, we will first give
some background information on the cipher itself and the cryptanalytic tech-
niques we have used to attack it. We will then present our new attack in Sect. 3
and experiment results in Sect. 4. Finally, we will discuss the implications and
conclude this paper in Sect. 5.

2 Background and Related Work

2.1 Crypto-1 and the MIFARE Classic Authentication Protocol

Crypto-1 is a stream cipher used to provide cryptographic protection to MIFARE
Classic tags and contactless smart cards. For more than a decade, its design
was kept secret by NXP, along with the rest of MIFARE Classic. After the details
of MIFARE Classic was reverse-engineered in 2007 [12,16,17], many weaknesses
have been discovered, and with them many attacks. These attacks vary greatly
in efficacy. The first few key-recovery attacks exploit the weaknesses of the cipher
and gather the required information either by direct communication with a legit-
imate reader or by eavesdropping a communication session. Although some sys-
tem vendors argue even today that these attacks are impractical, the cipher itself
was by then considered cryptographically broken.

A few months later, better, card-only attacks were published [13]. These
exploit several properties in the authentication protocol of MIFARE Classic as
well as flaws in generating tag nonces.

For the sake of completeness, we include here a brief description of Crypto-1
and its use in the authentication protocol of MIFARE Classic. Crypto-1 uses a
48-bit linear feedback shift register (LFSR) with nonlinear output filter [12]. The
feedback function of the LFSR is F (s0, s1, . . . , s47) := s0 ⊕ s5 ⊕ s9 ⊕ s10 ⊕ s12 ⊕
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Fig. 1. The structure of the Crypto-1 stream cipher

s14⊕s15⊕s17 ⊕s19 ⊕s24⊕s25 ⊕s27⊕s29 ⊕s35⊕s39 ⊕s41⊕s42 ⊕s43. With every
tick of the clock, 20 bits from the LFSR are fed into the function f to generate
one new bit of the keystream. Then the LFSR shifts one bit to the left, and the
new rightmost bit is filled by the output of F—or, if the operational phase calls
for inputs, F XORed with an input bit. F is primitive: the LFSR has a period of
248 − 1, the maximum possible.

The function f or output filter consists of two layers of nonlinear functions.
The first layer is a mixed combination of two 4-input nonlinear functions fa and
fb, and the second layer is a 5-input function fc. Here, fa = 0x2c79, fb = 0x6617,
fc = 0x7907287b in “table form” (collating the output bits as the input goes
lexicographically over its range), and f can then be expressed as

f(s0, . . . , s47) := fc(fa(s9, s11, s13, s15),
fb(s17, s19, s21, s23), fb(s25, s27, s29, s31),
fa(s33, s35, s37, s39), fb(s41, s43, s45, s47)). (1)

Note that each has an equal number of 0 and 1 bits and hence outputs 0 or 1 each
with probability 1/2 if input bits are independently and uniformly distributed
over F2 [13].

On being powered up by the reader’s electromagnetic field, the tag sends its
unique identifier uid to the reader to start the anti-collision phase. The reader
may then request to authenticate a specific block. On receiving the request,
the tag loads the secret key for the block as the initial state of the cipher and
sends a randomly chosen challenge nonce nT to the reader. Meanwhile, nT ⊕ uid
is shifted into the LFSR. All subsequent communication is encrypted with the
keystream, and we will use the notation {X} to represent the ciphertext of X,
i.e., X ⊕ keystream. Next, the reader picks its challenge nR, which will also be
shifted into the LFSR, and sends {nR} followed by the answer {aR} to the tag’s
challenge. Finally, the tag replies with its answer {aT } to conclude the authenti-
cation procedure (see Fig. 2). If the tag and the reader used the same secret key
for the initial state of their ciphers, this authentication procedure should bring
the ciphers on either side to the same internal state, and the two keystreams
generated by both ends will be henceforth in synchronization.

2.2 Existing Card-Only Attacks Against MIFARE Classic

The best known attacks have been summarized by Garcia et al. [13], which we
will recapitulate here for the sake of completeness. The card-only attacks mainly
exploited the following weaknesses.
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auth(block)

Fig. 2. The authentication protocol in MIFARE Classic

1. The communication of MIFARE Classic follows the ISO 14443-A standard,
which requires that a parity bit be sent after every 8 bits of transmission.
However, in MIFARE Classic, these parity bits are computed over the plain-
text, and the keystream bit used to encrypt the parity bits is reused to encrypt
the next bit of plaintext. Furthermore, during authentication, the tag would
not reply anything if the received messages have incorrect parity, i.e., the
tag checks the authenticity of the reader’s answer only if the parity bits are
correct.

2. If all parity bits are correct but the encrypted answer {aR} to the tag’s nonce
cannot be correctly verified, the tag responds with an encrypted 4-bit NACK
code. Since the NACK code is fixed, this leaks 4 keystream bits.

3. The 32-bit tag nonce is actually generated by a 16-bit LFSR that runs in
a deterministic cycle after it powers up, i.e., timing is used as the source
of randomness to the internal random number generator (RNG). Therefore,
controlling or measuring when the reader sends every authentication request
basically gives us control or a very good guess to the next tag nonce.

4. When a reader is already communicating with a tag (i.e., having authenticated
to certain sector), the protocol of a subsequent authentication for a new sector
differs slightly from the initial one in that the tag nonce will be encrypted by
the new sector key before transmitted to the reader. Since the first tag nonce
was sent in plaintext, and the timing between two authentication attempts
is known, the attacker can guess the second tag nonce and recover 32 bits of
keystream with high accuracy.

Taking advantage of the weakness in the parity bits, the attacker can ask to
authenticate for a sector of the tag at hand and answer the tag’s challenge with
random {nR} and {aR} (totally 8 bytes) accompanied with 8 random parity bits.
On average, one out of 256 trials will the attacker receive the encrypted NACK
code from the tag. Each such trace reveals 12 bits of information (8 from parity
bits and 4 from NACK code) on the secret key. In practice, six traces are enough
for the offline brute-force check of the secret key. It takes 6 ·256 = 1536 trials on
average to gather these traces and can be accomplished within a minute. The
offline part of this attack is to check which key out of the 248 possible keys gener-
ates all “correct” parity and NACK code bits in these traces, and the computing
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time depends on the implementation realized by the attacker. Pessimistically,
the run-time of checking on a powerful FPGA cluster like COPACOBANA is
around half an hour.

Two other attacks try to trade online communication for the offline com-
puting time using the weakness that tag nonces nT can be controlled precisely
by timing the authentication requests. The attacker may substantially reduce
offline search space by fixing either tag or reader nonce while varying the other,
and look for specific properties.

In the second card-only attack [13], the tag nonce nT is fixed. The attacker
searches for a reader nonce nR such that flipping the last bit in each byte of
nR also flips the following encrypted parity bit, which averages around 28500
authentication attempts or 15 min. Such an nR let us cut approximately 15
bits from the offline search space, enabling a standard desktop to finish the
computation in around 1 min.

For the third attack [13], the attacker fixes response of the reader to {nR} =
0 = {aR} = 0, and searches for an nT such that the tag responds with the desired
encrypted NACK code. For example, it might be desired that the keystream bits
are all zero, which means that the ciphertext would be identical to the plaintext.
Such search takes 4096 attempts on average since we need 12 bits (8 parity
plus 4 keystream bits) to be exactly zero. The direct offline search in a huge
precomputed table (with around 236 entries) of the cipher states that could lead
to such pattern may take about one day. However, with some further attempts
to find the parity bits that correspond to the same nT but different nR and aR

(e.g., {nR} = {aR} = 0xffffffff), one can split the table into 4096 parts. This
not only makes it easier to store and read the table but also speeds up the offline
search significantly.

A fourth attack [13] tries to derive from a known sector key 32 keystream bits
generated by another unknown sector key. Because Crypto-1 is structured such
that the internal state can be separated into odd- and even-numbered bits, this
allows us to further reduce the search space in exploiting the parity-bit weakness.
As a result, the attacker can determine the second sector key in less than a second
of computation time after about three nested authentication attempts.

Impact and current countermeasures. The last attack is particularly critical as
it takes very little time to recover additional keys once a first key is known,
making it feasible to “pickpocket” a card wirelessly if a deployed system leaves
unused sectors with default keys or does not diversify keys. In response to the
attacks outlined above, several countermeasures have been implemented in newer
versions of MIFARE Classic cards, such as EasyCard 2.0, that are still compatible
with legacy systems.

First and most importantly, the generator of the tag nonce is replaced by
a better RNG such that we can no longer control or predict nT . From our
experiments, it seems a true 32-bit RNG instead of having a period of 216. This
improvement breaks almost all efficient card-only attacks depicted above except
the brute-force attack, as all the techniques to reduce search space make use
of the flaw in tag nonce generation. Furthermore, these new cards now always
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reply with encrypted NACK code if the authentication fails, whether the parity
bits are correct or not. This closes the last loophole of the brute-force attack
described above, as it is no longer possible to gather the required information to
attack the parity-bit weakness.

2.3 Algebraic Differential Cryptanalysis

Algebraic cryptanalysis brings the concept of applying algebraic techniques to
attack various cryptographic primitives, e.g., block ciphers, stream ciphers, and
public key systems. It is usually done in two major steps. First, a set of mul-
tivariate polynomial equations over a finite field is constructed to describe the
cryptographic scheme. This system of equations is formulated in a way that its
solutions correspond to certain secret information of the cryptographic scheme.
The second step is then to solve the system using techniques such as SAT solvers
or Gröbner-basis algorithms. As a result, the efficiency of this category of attacks
is strongly related to the quality of the constructed equations as well as the per-
formance of the system-solving technique in use.

The idea of algebraic cryptanalysis is not new. Back in 1949, Shannon already
noted the relationship between breaking a good cipher and solving a complex
system of equations [18]. Shannon was probably thinking about how to build
a good cipher, but this concept gives us a hint of checking possible weaknesses
of cryptosystems using algebraic techniques. However, it was not until the huge
progress in the efficiency of system solving, especially the solving of multivariate
polynomial systems, that people started to consider system-solving as legiti-
mate attacks. The invention of F4 [10], XL [6], F5 [11], and their variants greatly
boosted the speed of solving multivariate polynomial systems. Also, the sub-
stantial advances in the performance of SAT solvers [9,19] provides us with an
alternative, namely to transform problems into boolean formulas and search for
solutions.

Differential cryptanalysis exploits information leaked by special pairs of input
and output differences, called differentials, in a block cipher to distinguish its
output from random or to recover (some of) its key bits [3]. Such an attack is
statistical in nature and usually requires a large number of plaintext-ciphertext
pairs, especially in the context of known-plaintext or ciphertext-only attacks, for
which the attacker cannot freely choose the plaintexts. Even before its publica-
tion, differential cryptanalysis has played a very important role in cipher design.
It is so successful that today’s standard procedures for designing a new cipher
include checking differential immunity.

In the recent seminal work [1], Albrecht and Cid tried to incorporate the infor-
mation obtained from differential characteristics into algebraic attacks. They
proposed three methods, labeled simply as Attack A, B, and C, of obtaining and
using such information. Even though Attack B was not very effective against the
PRESENT cipher [20], it did inspire our attack, which we will describe in more
detail in Sect. 3.
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3 Construction of Attacks

In this section, we illustrate the proposed attack against the patched MIFARE
Classic cards based on modern cryptanalysis techniques. The critical step of
a successful algebraic attack is to construct as many informative multivariate
equations as possible. Three types of algebraic equations are collected in our
attack, namely NACK equations, differential equations, and filter equations.

3.1 NACK Equations

As mentioned in Sect. 2.2, the patched MIFARE Classic cards, e.g., EasyCard 2.0,
blocks all existing efficient card-only attacks by incorporating better RNG and
replying every authentication error with encrypted NACK while maintaining
compatibility with legacy readers. Since the plaintext of the 4-bit NACK code
is fixed (0x0 for EasyCard 2.0), replying encrypted NACK codes leaks four
keystream bits per authentication failure. The data collected in each failed
authentication attempt is called a trace and can be used to construct a set
of four algebraic equations as the following.

Let x = (x0, . . . , x47) denote the initial state of the LFSR, i.e., the secret key.
The new state of the LFSR after an input of n-bit sequence i can be written in
a form like:

Ai(x) = Lnx + vi, (2)

where L is a linear transformation that depends only on the LFSR’s feedback
function F , and vi is a 48-bit vector that depends on the input i (and, of course,
the LFSR’s feedback function F ). Here the important thing to note is that
vi does not depend on the secret key and hence can be computed based on
the information available in a trace. Then the keystream bit generated by the
nonlinear filter right after the input i can be obtained by

ai = f(Ai(x)). (3)

Both uid and nT are transmitted in plaintext. It is then easy to express
the LFSR state after the input of uid⊕ nT in terms of the unknowns x0, . . . , x47

using Eq. (2). Although only the encrypted reader nonce is available (in fact, it is
generated by the attacker in card-only attacks), it is still possible to decrypt {nR}
using the keystream bits obtained by Eq. (3) and derive subsequent LFSR states
and keystream bits in the form of polynomials of x0, . . . , x47. By equating the
4 keystream bits to their corresponding polynomials, we get 4 NACK equations
per trace of failed authentication session. It is then possible, at least in theory,
to collect sufficiently many equations (≥ 12) and solve the resulted system using
Gröbner-basis or SAT solvers.

In practice, however, the main difficulty of the algebraic attack described
above lies in the last step, namely, solving the resulted polynomial system. In
fact, the degree of such systems saturates due to the nonlinearity introduced by
the recurrent decryption of {nR}. In order to speed up the solving procedure,
we need to extract more information from the traces using algebraic differential
cryptanalytic techniques.
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3.2 Differential Equations

From Eq. (2), we can see that the difference of two LFSR states that descend
from a common initial state would be Ai(x) ⊕ Aj(x) = vi ⊕ vj if i and j are
two input bit streams of the same length. It means that we can know the LFSR
state difference after two different tag nonces even though we cannot control
them. This is easy to circumvent, however, as one can keep authenticating with
a card at hand, hoping that the desired differences will eventually show up. For
example, we are interested in those pairs that have only one bit difference in the
LFSR state after an input of uid⊕nT , especially when the different bit lies at the
leftmost possible position. As will be clear later, the reason why we are interested
in such pairs is because such pairs of difference are easy to “cancel,” which gives
more information in recovery of the secret key. More specifically, let ynT

, yn′
T

denote the LFSR states after inputting two different tag nonces nT and n′
T , then

our targets would be the pairs such that Δy = ynT
⊕ yn′

T
= 0x000080000000.

Since nT has only 32 bits, one bit difference at position 16 (cf. Fig. 1) is the
furthest we can get. Thanks to the birthday paradox, it does not take too long
to gather sufficiently many such pairs.

Once such a pair is observed, we then try to “cancel” the state difference by
properly manipulating the reader’s nonce in the second trace. This could be done
by carefully selecting and guessing {n′

R} in the second trace according to {nR}
in the first trace because the reader’s nonces are transmitted in ciphertext and
we, as the attacker, do not have the secret key to produce the correct keystream
bits. More specifically, our goal in this stage is to keep pushing bits with zero
difference into the LFSR. Since there is only one bit of difference at position 16
of the LFSR state at the beginning of this stage, we only need to keep our eyes
on it. When it is shifted to a position that is not part of input to the nonlinear
filter function f , the output keystream bits of these two traces should be the
same. In this case, we can obtain the exact difference in the corresponding bits
of {nR} by simply inspecting the feedback function of LFSR and then cancel
it by altering the input accordingly. However, for positions 15, 13, 11, and 9
(cf. Fig. 1), we need to guess the output keystream bits of the nonlinear function
f . If all four guesses are correct, we will arrive at a target pair of traces with
identical LFSR states.

Figure 3 demonstrates how the first three bits of {n′
R} are decided or guessed

by showing the differential view of the LFSR states of target pairs. Let zk, z′
k

be the LFSR states of the pair after shifting in k bits (including nT ). For any
target pair of traces, we have

Δz32 = z32 ⊕ z′
32 = vnT

⊕ vn′
T

= 0x000080000000. (4)

In this state, both the outputs of the feedback function and the filter function
are identical for these two traces, so the first bit of {n′

R} should be the same
as {nR} (cf. the zero values in Fig. 3a). When the bit difference is pushed to
position 15, we can only choose the second bit of {n′

R} by guessing since the
difference of f(z33) and f(z′

33) cannot be obtained purely from this differential
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(a) Before inputting the first bit of the reader’s nonce (Δz32).
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(b) Before inputting the second bit of the reader’s nonce (Δz33).
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(c) Before inputting the third bit of the reader’s nonce (Δz34).

Fig. 3. Differential view of Crypto-1’s LFSR states

view (cf. Fig. 3b). For the third bit, the difference of {nR} and {n′
R} should be

1 because of the feedback function (cf. Fig. 3c).
Following similar procedure, we push the bit difference out of the LFSR

and hope to cancel the differences in the input bits. Such cancellation of input
difference could be examined by checking whether the tag responds with an
identical encrypted NACK code. In other words, the four keystream bits obtained
after each authentication failure are used as an oracle for confirming whether our
guesses in {n′

R} successfully produce the desired differential or not. There are, of
course, false positives from this oracle due to collision in practice, and we leave
the discussion about this issue to Sect. 3.4.

If the guessed bits successfully cancel the differences, the following 4 differ-
ential equations, corresponding to the four guessed bits, should hold.

f(z′
k) ⊕ f(zk) = f(zk ⊕ e48−k) ⊕ f(zk) =

∂f

∂z48−k
(zk) = δk, (5)

where ek is the 48-bit vector with 1 in the k-th position and 0 elsewhere, and δk

is the guessed difference, for k = 33, 35, 37, 39.

3.3 Filter Equations

In addition to Eq. (5), by taking a closer look at state z33, we devise the following
formula as the filter equation to further reduce the search space of our attack.

(
∂f

∂z15
(z33) ⊕ δ33

) (
∂2f

∂z15∂z47
(z33) ⊕ 1

)
= 0. (6)
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Any state assignment that does not satisfy Eq. (6) would result in ∂f
∂z15

(z33) �= δ33

and ∂2f
∂z15∂z47

(z33) = 0 at the same time. This means, no matter what the value
of the newly input bit (z47) is, the output of f would not be equal to our guessed
value, which contradicts with the fact that we have already reached the same
LFSR state in both traces at the end of the authentication session. As a result,
we can include Eq. (6) from each successful pair of traces to the final system of
equations, and each such equation is expected to work as a filter that eliminates
1/4 of the solution space.

Empirically, there is a high degree of dependency among the equations acquired
from different traces, but it does not take too long to collect sufficiently many pairs
such that only a few candidate solutions can pass all filters. Based on our experi-
ence, these filters help tremendously in solving the nonlinear system.

3.4 Dealing with False Positives

Up until this point, we have assumed that our oracle can 100 % accurate in telling
whether two internal states are the same or not. This does not hold in practice:
as we can only observe four keystream bits, it is possible for two traces to have
the same keystream bits yet different internal states. In our experiments, around
26 % of the cases where the four keystream bits agree are actually false positives.
As a result, not all the collected differential relations, i.e., Eqs. (5) and (6), can
be incorporated in the final system to solve. In this section, we will describe how
we deal with this problem by more aggressive filtering.

We note that only 18 bits (z9, z11, z13, z17, z19, . . . , z45) might have an effect
on the evaluation of Eq. (6). Random assignments to these 18 bits should be in
the solution space of the filter equation with probability q = 3/4, given that
the filter function f is unbiased. Additionally, the correct assignment should
be a solution to those filter equations collected from the true positive results.
If we collect sufficiently many pairs and rank all 218 possible assignments by
their number of correct evaluations to the collected filter equations, the correct
assignment should be very close to the top of the list with high probability.
Therefore, the list serves as a good guide for guessing the 18 bits in the resultant
system of equations. We can substitute the 18 variables with the bit assignments
according to the list and try solving the system using SAT solvers. Note that we
should eliminate the equations derived from the traces where Eq. (6) evaluates
to false while trying each 18-bit assignment. According to our empirical results,
it takes around 2 to 15 min for CryptoMiniSat to solve the system if the 18 bits
are assigned with correct values.

The next question is how many pairs are sufficient to put the correct assign-
ment at the top of the list with high probability. Assume that in total N such
differential pairs are collected, among which Ñ are true positives. The number
of filter equations that the correct assignment would evaluate to true, denoted
by N1, should have the following probability mass function.

Pr[N1 = n] =
(

N − Ñ

n − Ñ

)
qn−Ñ (1 − q)N−n, n = Ñ , . . . , N. (7)
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Furthermore, if we denote the rank of the correct assignment in the list by ρ,
then we have

Pr[ρ = k|N1 = n] =
(

M − 1
k − 1

)
a(n)M−k[1 − a(n)]k−1, (8)

where M = 218 and a(n) =
∑n−1

i=0

(
N
i

)
qi(1 − q)N−i is the probability that an

incorrect assignment evaluates less than n filter equations to true. Using Eqs. (7)
and (8), it is straightforward to compute the probability function of the rank of
the correct assignment by

Pr[ρ = k] =
N∑

n=Ñ

Pr[ρ = k|N1 = n]Pr[N1 = n]. (9)

We compute the percentiles of the rank of the correct bit assignments for
various numbers of filter equations and summarize the most useful results in
Table 1. This gives us an estimate of how many pairs would be sufficient to
substantially reduce the expected number of trials we have to perform before
finally solving the system. For example, given 150 filter equations collected, we
are able to solve the system in less than 7 trials with a probability of 99 %.
This is a very good result because in most cases, we just need to repeat the
computation a few times before we can recover the key.

3.5 The Complete Attack

We summarize our attack procedure as follows.

1. Initiate (failing) authentication sessions with the target tag and record in a
database each nT received, vnT

, and four keystream bits s used to encrypt
the returned NACK code.

2. For each (nT ,vnT
, s) received, check whether vnT

⊕0x000080000000, matches
any vn′

T
already recorded. If so go to Step 3, having found a pair of nT ’s

that produce the state difference Δy = 0x000080000000. Otherwise, repeat
Step 1.

3. Guess four δk’s and manipulate {nR} accordingly. Check whether we see
the same four keystream bits. If so, record the four differential relations
(cf. Eq. (5)) thus found.

Table 1. The percentiles of ρ (Ñ/N = 74 %)

Number of filter equations (N) Percentile Rank(ρ)

90 75 11

110 90 8

130 95 4

150 99 6
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4. Repeat Steps 1–3 until we have collected enough differential relations (about
600–1000, or 150 to 250 successful attempts), then we use the method from
Sect. 3.4 to remove the false positives.

5. Feed the differential equations, along with (i) some NACK equations, to a
Gröbner-basis or SAT solver, and (ii) the 18-bit solution to the filter equations
(cf. Sect. 3.4) as hint bits, to the solver and solve for the key. Empirically, we
need about 1 NACK equation for every 4–5 differential equations.

4 Empirical Results and Discussion

We have tried several different solvers including the built-in Gröbner-basis solver
in Maple, as well as PolyBoRi [4]. Empirically, CryptoMiniSat outperforms the
other solvers by a large margin. Hence we only report the timings obtained using
CryptoMiniSat for the rest of the paper. The results also show that the hint
bits are extremely helpful to CryptoMiniSat, usually resulting in a tremendous
speed-up.

We also note that the differential relations, as a system of equations, tend to
be highly redundant and have multiple solutions. It is to avoid ending up with
such a wrong solution, that in step 5 we must add a few equations on keystream
bits in order to obtain a unique solution with high probability.

A submarine patch. We had bought a fair number of EasyCards on the streets
of Taipei between 2009 and 2012 trying to track there were different editions of
EasyCards. Surprisingly, we discovered that EasyCard 2.0 was actually not the
first “patch” attempted by the EasyCard Corporation. There is actually another
different kind of EasyCard, that we shall refer to as EasyCard 1.5, which has
been surreptitiously in circulation since late 2010 or early 2011.

Although to all outward appearances EasyCard 1.5 is identical to
EasyCard 1.0, it has a better RNG which makes nT neither predictable nor
controllable based on timing. This already defeats some (but not all) existing
card-only attacks, even though EasyCard 1.5 performs otherwise identically to
the original. For example, since the parities attack relies on the capability of con-
trolling nT , such an improved RNG already makes the attack time much longer
if still possible at all. We represent this fact using a question mark in Table 3, in
which we summarize the time required to carry out various attacks. It is perhaps
surprising that the EasyCard Corporation managed to resist the temptation of
announcing a security upgrade and kept this modification under wraps for so
long. The differences among the three types of EasyCards are summarized in
Table 2.

From Table 3, it is clear that our attack is the most practical one among the
effective attacks against EasyCard 2.0 in the sense that our attack can be carried
out by an ordinary person in private with an off-the-shelf reader and a PC.

In Table 3, the GPU result is taken from Chih et al. [5], while all other
experiments are all carried out on a PC with 2.3 GHz AMD CPU. The data
collection, on the other hand, is performed on a laptop PC with 2.0 GHz Intel
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Table 2. Types of EasyCards attacked in our experiments

Card type Parities checked nT generation

EasyCard 1.0 Yes Predictable

EasyCard 1.5 Yes Somewhat random

EasyCard 2.0 No (always 0x0) Random

Table 3. Timing comparison of all known attacks

Attack type Online time Compute time 1.0 1.5 2.0

Sniffing attack 2 s < 2 s
√ √ √

GPU brute-force [5] 5 s 14 h
√ √ √

CPU brute-force 5 s 4 years
√ √ √

Parities attack > 3min < 30 s
√

?

Nested authentications 15–75 s 25–125 s
√ √

Our attack 10–20 h 2–15min
√

CPU. For CPU brute-force attack, we obviously have not run it to completion
but extrapolate based on the timing result of a partial run instead. We use open-
source software whenever possible, but we have also implemented and optimized
some of the attacks.

5 Concluding Remarks

In this paper, we have demonstrated a highly practical attack against the Easy-
Card 2.0, which is marketed as having patched the vulnerabilities of previous
implementations of MIFARE Classic. By applying algebraic differential crypt-
analysis techniques, our card-only attack can recover the secret key of EasyCard
2.0 within one day. This includes the time for online data collection and offline
computation, both of which can be carried by a working platform that costs
no more than a few hundreds of US dollars and is affordable even to the least
wealthy attacker. This again shows the weakness of the Crypto-1 cipher, and
highlights the unfortunate the fact that “security” protocols based on unsound
ciphers, such as MIFARE Classic, is not suitable for important transactions such
as electronic payment.
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