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ABSTRACT
Multivariate public key cryptosystems are being focused on
as candidates for post-quantum cryptography. Rainbow is
one of the most efficient signature schemes in multivariate
public key cryptosystems. The main drawback of Rainbow
is that their key size is much larger than that of RSA and
ECC. In this paper, we propose an efficient variant of Rain-
bow that has a shorter secret key (and thus generates sig-
natures faster) than the corresponding original Rainbow. In
our scheme, we divide each layer of Rainbow into smaller
blocks by using diagonal matrix representations. The size
of the smaller blocks can be flexibly selected, and this en-
ables us to carefully choose secure parameters so that our
proposed scheme is secure against known attacks such as
rank attacks, direct attacks, and UOV attack. We estimate
that the secret key size of our proposed scheme with 100-bit
security is smaller by about 40% than that of the original
Rainbow. In addition, an implementation of our scheme in
the C language is seen to generate signature faster by 40%.

Categories and Subject Descriptors
E.3 [DATA ENCRYPTION]: Public key cryptosystems

General Terms
Theory

Keywords
Post-quantum cryptography, Multivariate public key cryp-
tosystems, Rainbow.

1. INTRODUCTION
Multivariate Public Key Cryptosystems (MPKC) are can-

didates of post-quantum cryptography. Their security de-
pends on the difficulty of solving a system of quadratic equa-
tions of multivariables. Rainbow [4] is a signature scheme
in MPKC, whose signatures can be efficiently generated and
verified. In general, an MPKC scheme needs a huge public
key for security. In addition, Rainbow also have huge se-
cret keys. In fact, Rainbow with 80-bit security level has
secret and public keys that are more than 150 times as large
as those of 1024-bit RSA [10]. Therefore an important re-
search goal is to find a way to reduce the sizes of the secret
and public keys of Rainbow.

In fact, many papers reducing the key sizes have been
published. Some methods have been summarized by Wolf
et al. [14]. Secret keys of MPKC can be reduced by using
sparse polynomials for the central map. TTS [16] is a typ-
ical example of doing so. Yasuda et al. reduced the size
of secret key of Rainbow by using a compact regular repre-
sentation with non-commutative rings [17]. CyclicRainbow
is a variant of UOV whose public key size can be reduced
by repeated usage of a sequence of coefficients in polynomi-
als in the public key [11]. By an application of technique
of CyclicRainbow, a scheme in which many coefficients of
public key are 0 or 1 was proposed [12].

In this paper, we propose an extension of Rainbow, called
matrix-based Rainbow. The proposed scheme provides a
new way to reduce secret the key size of Rainbow. The
initial inspiration behind them comes from “Rainbow us-
ing non-commutative rings” in [17]. The main idea of our
scheme is compressing systems of linear equations appearing
in the signature generation. The original Rainbow generates
signatures by solving large systems of linear equations with
respect to oil variables. In our scheme, on the other hand,
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requires one to solve a much smaller the systems of linear
equations. Accordingly, it reduces the size of the secret key
and speed up the signature generation in comparison with
the corresponding original Rainbow. We analyse the secu-
rity of our scheme against known attacks against the orig-
inal Rainbow, including rank attacks, direct attacks, UOV
attack, and so on. We then discuss that security is not
weakened against these attacks. In the case of matrix-based
Rainbow with 100-bit security, the size of the secret key is
reduced by about 40% and the signature generation is sped
up by about the same amount. We implemented the pro-
posed matrix-based Rainbow in C on a Core i5, and the ex-
periment shows that its signature generation is about 34%
faster than that of the corresponding Rainbow of 100-bit
security.

2. RAINBOW
In this section, we give a short overview of a signature

scheme, Rainbow. Ding and Schmidt [4] proposed the orig-
inal Rainbow signature scheme to which invertible multi-
variate quadratic systems used in UOV signature scheme is
applied. Let v1, o1, . . . , ot be t + 1 positive integers. We
write vi = v1 +

∑
j<i oj for i = 2, . . . , t. The number of

equations and variables in the multivariate quadratic sys-
tem used in the Rainbow described here is m =

∑t
i=1 oi

and n = m+v1, respectively. Let G = (g(v1+1), . . . , g(n)) be

a map from Kn to Km where each g(h) (v1 + 1 ≤ h ≤ n) is
a quadratic polynomial of the form

g(h)(x) = xTA(h)x+B(h)x+ C(h), (x = (x1, . . . , xn)
T ).

Here, A(h) is a square matrix over K with size n expressed
by

A(vi+j) =

(
A

(vi+j)
0 0
0 0

)
(i = 1, . . . , t, j = 1, . . . , oi),

where A
(vi+j)
0 (j = 1, . . . , oi) are square matrices with size

vi+1 of the form

A
(vi+j)
0 =

(
A

(vi+j)
00 A

(vi+j)
01

0 0

)
where A

(vi+j)
00 is a randomly chosen upper triangular square

matrix with size vi and A
(vi+j)
01 is a randomly chosen vi×oi -

matrix. B(h) is a vector in Kn expressed in the form,

B(vi+j) = (B
(vi+j)
0 ,

n−vi+1︷ ︸︸ ︷
0, . . . , 0) (i = 1, . . . , t, j = 1, 2, . . . , oi),

where B
(vi+j)
0 is a randomly chosen vector in Kvi+1 . C(h)

is a randomly chosen element in K. The inverse of map G
can be efficiently computed. In fact, for any vector w =
(w1, . . . , wm)T ∈ Km, an element G−1(w) in the inverse
image of w is obtained as follows:

Step 1 Randomly choose s′1, . . . , s
′
v1 ∈ K.

Step 2 For i = 1, . . . , t, do the following operation:
A system g(vi+1), . . . , g(vi+oi) can be regarded as an
invertible multivariate quadratic system with variables
x1, . . . , xvi+oi . Substituting (x1, . . . , xvi)
= (s′1, . . . , s

′
vi), set up a system of linear equations of

oi variables. Solve the system and obtain a solution
(xvi+1, . . . , xvi+oi) = (s′v+1, . . . , s

′
n). (If the system is

not regular, go back to Step 1.)

Result G−1(w) = (s′1, . . . , s
′
n).

Using the invertible map G, the key generation, signature
generation, and verification of Rainbow are described as fol-
lows:

• Key generation

Secret key The secret key consists of the map G : Kn →
Km, and two randomly chosen affine transformations
L : Km → Km and R : Kn → Kn.

Public key The public key consists of the composite map
F = L ◦G ◦R : Kn → Km.

• Signature generation Let M ∈ Km be a message.
To generate a signature S from M, first compute M′ =
L−1(M), next compute an element S′ = G−1(M′) in the in-
verse image of M′, and then finally compute S = R−1(S′).
The computation algorithm for G−1(M′) has already been
explained. Since L andR are affine transformations, L−1(M)
and R−1(S′) can be easily computed.
• Verification If F (S) = M, the signature is accepted.
Otherwise, it is rejected.

This scheme is denoted by Rainbow(K; v1, o1, . . . , ot) and we
call v1, o1, . . . , ot a parameter of Rainbow, and t the number
of layer of Rainbow.

3. MATRIX-BASED RAINBOW
In this section, we present our variant of Rainbow, called

matrix-based Rainbow. Our scheme uses a special secret key
of Rainbow to improve Rainbow’s signature generation algo-
rithm. We will start by explaining the basic idea underlying
our scheme in the context of Rainbow with 1 layer.

3.1 Basic Underlying Idea
The key idea underlying our scheme is a modification of

linear equations appearing in Step 2 of the Rainbow signa-
ture generation process. We assume that the Rainbow has
1 layer and is described by Rainbow(K; v, o). In Step 2 of
the Rainbow signature generation process, we need to solve
a system of linear equations described as

L.X = V (1)

where L is a o×o-matrix, V is a column vector of size o and
X is a column vector of variables of size o. First, we change
vector V on the right hand side of the equation. Assume that
o is factored as o = do′. V can be divided into d partitions
consisting of o′ elements in a natural way. Therefore, the
o dimensional vector V corresponds to a matrix V ′ of size
o′ × d by the following correspondence:

V =


η1
η2
..
.
ηo

 7→ V ′ =


η11 η12 · · · η1d
η21 η22 · · · η2d
..
.

..

.
. . .

..

.
ηo′1 ηo′2 · · · ηo′d

.

Similarly, we can change the vector X = (xv+1, . . . , xv+o)
T

of o variables in (1), i.e. a matrix X ′ with variables of size
o′ × d is assigned to the o dimensional vector X by

X =


xv+1

xv+2

..

.
xv+o

 7→ X ′ =


xv+1 xv+o′+1 · · · xv+o′(d−1)+1

xv+2 xv+o′+2 · · · xv+o′(d−1)+2

.

..
.
..

. . .
.
..

xv+o′ xv+2o′ · · · xv+o′d

.
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In addition, we want to change matrix L of size o× o in (1)
into a matrix L′ = (γij) of size o′ × o′ such that equation
(1) becomes equivalent to the following equation:

L′.X ′ = V ′. (2)

Generally, this change is impossible. However, if L is ex-
pressed as

L =


A 0 · · · 0
0 A · · · 0
.
..

.

..
. . .

.

..
0 0 · · · A

 (3)

for some matrix A of size o′ × o′, where each block size is
o′ × o′, equation (1) becomes equivalent to equation (2) for
L′ = A.
We call equations in the form of (2) equations of matrix

type of size o′ × d. Our scheme uses equations of the matrix
type in stead of equations (1). System of equations of the
matrix type can be solved simultaneously with respect to
the columns of variables in X ′. If Gaussian elimination is
used to solve a system of linear equations, the occurrences
of field multiplications and additions are estimated to be
O(o′

3
). In general, a system of equations of the matrix type

of size o′ × d can be solved more efficiently than a system
of equations of the usual type with o variables because the
complexity of solving a system of the usual type is O(o3),
and o′ < o. Therefore, a scheme based on the above idea
is more efficient at signature generation than the original
Rainbow.

3.2 Special Secret Key of Rainbow
We propose a variant of Rainbow based on the idea out-

lined in the last subsection. Our scheme requires special
secret key of Rainbow, and let us explain how our scheme’s
secret key is generated.
Let v1, o1, . . . , ot be t+ 1 positive integers, as in § 2. We

write vi = v1 +
∑

j<i oj for i = 2, . . . , t. The scheme which

we will describe from now on is a variant of Rainbow(K; v1, o1, . . . , ot),
which was described in § 2. The number of variables and
equations in the multivariate quadratic system used in the
scheme is m =

∑t
i=1 oi and n = m+ v1, respectively.

Assume that for all i = 1, . . . , t, oi can be factored as
oi = dio

′
i for some positive number o′i, di. We first randomly

generate the following matrices and vectors over K: For all
i = 1, . . . , t,

1. a
(i)
j : vi × o′i -matrix over K (j = 1, . . . , o′i),

2. b
(i)
j ∈ Ko′i (j = 1, . . . , o′i).

We define a quadratic map G : Kn → Km as a special
form of the quadratic map G defined in § 2 for the original

Rainbow. In our scheme, the description of A
(h)
01 and B

(h)
0 of

G for the original Rainbow are specified. More specifically,
a quadratic map G : Kn → Km for our scheme is described
as follows: G = (g(v1+1), . . . , g(n)) is composed of quadratic

polynomials g(h) of the form

g(h)(x)=xTA(h)x+B(h)x+C(h), (x=(x1, . . . , xn)
T ). (4)

Here, A(h) is a square matrix over K with size n expressed
by

A(vi+j) =

(
A

(vi+j)
0 0
0 0

)
(i = 1, . . . , t, j = 1, . . . , oi),

where A
(vi+j)
0 (j = 1, . . . , oi) are square matrices with size

vi+1 of the form

A
(vi+j)
0 =

(
A

(vi+j)
00 A

(vi+j)
01

0 0

)
where A

(vi+j)
00 is a randomly chosen upper triangular square

matrix with size vi and A
(vi+j)
01 is a vi × oi -matrix defined

by

A
(vi+ho′i+r)
01 = (

ho′i︷ ︸︸ ︷
0, . . . ,0,a(i)

r ,

(di−h−1)o′i︷ ︸︸ ︷
0, . . . ,0 ) (0≤h<di, 0<r≤o′i).

(0 represents a column vector.) B(h) is a vector in Kn ex-
pressed in the form,

B(vi+j) = (B
(vi+j)
0 ,

n−vi+1︷ ︸︸ ︷
0, . . . , 0) (i = 1, . . . , t, j = 1, 2, . . . , oi).

Here, B
(vi+j)
0 is a vector in Kvi+1 given by

B
(vi+j)
0 = (B

(vi+j)
00 , B

(vi+j)
01 )

where B
(vi+j)
00 is any vector in Kvi and B

(vi+j)
01 ∈ Koi is

defined by

B
(vi+ho′i+r)
01 = (

ho′i︷ ︸︸ ︷
0, . . . , 0,b(i)

r ,

(di−h−1)o′i︷ ︸︸ ︷
0, . . . , 0 ) (0≤h<di, 0<r≤o′i).

C(h) is a randomly chosen element in K.

3.3 Inverse Computation
Since our G is a special form of the G given in § 2, the

inverse of G can also be computed using the algorithm de-
scribed in § 2. Our special construction of G enables us to
improves the efficiency of the computation. Let us now look
at how the algorithm is modified.

In Step 2, in the algorithm of the inverse of G in § 2,
several systems of linear equations appear. These systems
are described as

L.X = V. (5)

In the case of our G, L can be described using a blockwise
diagonal matrix

L =


A 0 · · · 0
0 A · · · 0
..
.

..

.
. . .

..

.
0 0 · · · A

 , (A =


s′.a

(i)
1
.
..

s′.a
(i)

o′i

+


b
(i)
1
.
..

b
(i)

o′i

)

for s′ = (s′1, . . . , s
′
vi). From the observation in § 3.1, system

(5) can be transformed into a system (2) of linear equations
of the matrix type. This system of the matrix type can be
computed more efficiently than system (5).

3.4 Our Scheme
Using the invertible map G, the key generation, signature

generation and verification of our matrix-based Rainbow are
described as follows:

• Key generation

Secret key The secret key consists of the quadratic map
G, and two randomly chosen affine transformations L :
Km → Km and R : Kn → Kn.
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Public key The public key consists of the composite map
F = L ◦G ◦R : Kn → Km.

• Signature generation Let M ∈ Km be a message.
To generate a signature S from M, first compute M′ =
L−1(M), next compute an element S′ = G−1(M′) in the
inverse image of M′, and finally compute S = R−1(S′).
G−1(M′) is computed using the improved algorithm intro-
duced above. Since L and R are affine transformations,
L−1(M) and R−1(S′) can be easily computed.
• Verification If F (S) = M, the signature is accepted.
Otherwise, it is rejected.

We call this scheme matrix-based Rainbow and it is de-
noted by M-Rainbow(K; v1, d1 ∗ o′1, . . . , dt ∗ o′t). We call
v1, d1, o

′
1, . . . , dt, o

′
t a parameter of matrix-based Rainbow.

M-Rainbow(K; v1, d1 ∗ o′1, . . . , dt ∗ o′t) is not only a vari-
ant of Rainbow(K; v1, d1o

′
1, . . . , dto

′
t), but also a variant of

Rainbow(K; v1,

d1︷ ︸︸ ︷
o′1, . . . , o

′
1, . . . ,

dt︷ ︸︸ ︷
o′t, . . . , o

′
t).

4. SECURITY OF MATRIX-BASED RAIN-
BOW

In this section, we analyze the security of our scheme
with respect to known attacks against Rainbow. Before
discussing the security, let us establish some notations for
our scheme. For the public key F = (f (v1+1), . . . , f (n)) of
M-Rainbow(K;

v1, d1 ∗ o′1, . . . , dt ∗ o′t), each quadratic polynomial f (h) is
expressed by

f (h)(x) = xTA
(h)

x+B
(h)

x+ C
(h)

(h = v1 + 1, . . . , n),

where A
(h)

is a square matrix with size n, B
(k) ∈ Kn

and C
(k) ∈ K. We denote D

(h)
= A

(h)
+ (A

(h)
)T for

any h. Similarly, we denote D(h) = A(h) + (A(h))T where

A(h) is a square matrix appearing in (4). We write R1

for the linear transformation part of the affine transfor-
mation R, and ΩG for the space of linear combinations of

D(v1+1), . . . , D(n). Then, for any h, (RT
1 )

−1D
(h)

R−1
1 is ex-

pressed as a linear combination of D(v1+1), . . . , D(n). We
denote Ot = R−1

1 ({0}n−ot × Kot) as the subspace of Kn

corresponding to the subspace {0}n−ot × Kot in the final
layer.

4.1 HighRank Attack
In a HighRank attack [7, 5, 11], one must find a linear

combination ofD
(1)

, . . . , D
(o)

, whose rank is not full, by con-
ducting an exhaustive search. To estimate the complexity
of HighRank attack, we compute the probability of finding
such a matrix. It has the same probability as that of finding
an element of ΩG whose rank is not full. If we write

(RT
1 )

−1D
(h)

R−1
1 =

(
E H

HT 0

)
, (6)

where E and H are matrices of size vt × vt and vt × ot,
respectively, H can be expressed as

H=

 ∑o′t
j=1 λ1ja

(t)
j . . .

∑o′t
j=1 λdja

(t)
j

 . (7)

where the λij ’s are determined by the coefficients of the
affine transformation L and we have assumed that the λij ’s
are uniformly distributed.

We can assume that the probability of finding an element
of ΩG whose rank is not full is equal to the probability that

H is not full rank because the upper-triangular matrix A
(h)
00

of size vt×vt located at the upper left in A(h) are randomly
chosen for any h = vt + 1, . . . , n. To ensure that H is full
rank (= ot), it is necessary that o′t ≥ dt (⇔ o′t

2 ≥ ot = o′tdt)
because of the following lemma.

Lemma 4.1. H has at most rank o′t
2
.

Proof. Since each block in (7) is spanned by a
(t)
1 , . . . ,a

(t)

o′t
,

if we fix j = 1, . . . , o′t then the matrix formed from the con-
catenation of all the (lo′t + j)-th columns for l = 1, . . . , o′t is
at most rank o′t. Since the number of js is o′t, the rank of H
is less than or equal to o′t

2
.

In what follows, we assume that o′t ≥ dt. We define a matrix
∆ of size vt × o′t

2
by

∆ =

(
a
(t)
1 a

(t)
2

. . . a
(t)

o′t

)
.

We suppose that a
(t)
1 , . . . ,a

(t)

o′t
are chosen such that ∆ is full

rank. When we set Λ = (λij), which is a matrix with size
dt × o′t, H can be expressed as H = ∆ ◦ (Λ⊗ 1o′t

) where

Λ⊗ 1o′t
=


λ111o′t

λ211o′t
· · · λdt11o′t

λ121o′t
λ221o′t

· · · λdt21o′t
...

...
. . .

...
λ1o′t

1o′t
λ2o′t

1o′t
· · · λdto

′
t
1o′t

 . (8)

Proposition 4.1. The probability that H is not full rank

is less than (qdt−o′t + qot−vt)/(q − 1).

Proof. If H does not have full rank, from (8), either
Ker∆ ∩ Im(Λ ⊗ 1o′t

) ̸= {0} or Rank(Λ ⊗ 1o′t
) < ot must

hold. Let w1 be an element in Im(Λ⊗1o′t
). The probability

that w1 does not belong to Ker∆ is roughly equal to 1−
qo

′
t
2−vt/qo

′
t
2

= 1−q−vt because it is supposed that ∆ is full
rank. Next, let w2 be another element in Im(Λ⊗ 1o′t

). The
probability that w2 does not belong to the subspace spanned
by Ker∆ and w1 is roughly equal to 1−q−vt+1 if w1 does not
belong to Ker∆. Continuing this argument, we find that the
probability that Ker∆ ∩ Im(Λ⊗ 1o′t

)={0} is roughly equal
to

(1− q−vt)(1− q−vt+1) · · · (1− q−vt+ot−1)

(> 1−
∑ot−1

i=0 q−vt+i > 1− q−vt+ot/(q − 1)).

Therefore, the probability that Ker∆ ∩ ImΛ ⊗ 1o′t
̸= {0}

is less than q−vt+ot/(q − 1). Rank(Λ ⊗ 1o′t
) < ot = o′tdt is

equivalent to Rank(Λ) < dt. Similarly, the probability that

Rank(Λ) < dt is less than qdt−o′t/(q−1). Therefore we have
thus proved the proposition.

Corollary 4.1. If q > 2 and v > ot + o′t − dt then the

probability that H is not full rank is less than 2qdt−o′t−1.

Proposition 4.2. If q > 2 and vt > ot + o′t − dt then the
complexity of HighRank attack against matrix-based Rainbow

is qo
′
t−dt+1 · n3/12 m.
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Here, m denotes the field multiplication. From the above
proposition, the complexity of the HighRank attack depends
on the parameters o′t, dt of the last layer (and n).

4.2 MinRank Attack
In a MinRank attack [7, 15], we must conduct an exhaus-

tive search to find a point w ∈ Kn such that w ∈ KerD,

where D is a matrix with the minimal rank in Span{D(h)}.
To estimate the complexity of a MinRank attack, we will
compute the probability of finding such a point. The prob-
ability is the same as that of finding w′ ∈ Kn such that
w′ ∈ KerD, where D is a matrix with the minimal rank in
ΩG. Accordingly, the first v1 components of w′ should be
zero. Thus, we have

Proposition 4.3. The probability that for a w ∈ Kn,

there is a matrix D with the minimal rank in Span{D(h)}
such that w ∈ KerD is less than q−v1 .

Proposition 4.4. The complexity of a MinRank attack
against matrix-based Rainbow is qv1 ·m(n2/2−m2/6) m.

From the above proposition, the complexity of a MinRank
attack depends on the parameters v1 of the first layer (and
m,n).

4.3 Other Attacks
The UOV attack [9, 8, 3], direct attacks [1, 3], UOV-

Reconciliation attack [5, 10] and the Rainbow-Band-Separation
attack [5, 10] are known attacks against the original Rain-
bow. The complexity of a UOV attack against the original
Rainbow scheme was estimated as follows [8].

UOV attack: qn−2ot−1 · o4t m.

The security of other attacks are estimated experimentally
using MAGMA [2] which contains an efficient implementa-
tion of Faugeres F4-algorithm [6] for computing Gröbner
Basis. As a result, there is no evident difference between

Table 1: Results of the experiments with direct at-
tacks over GF (256)

(v1, d1∗o′1, d2∗o′2) (4,1*3,2*2) (5,1*3,2*2) (3,1*4,2*2)
M-Rainbow 5.30 s 11.76 s 13.85 s
Rainbow 5.34 s 11.70 s 13.84 s

random system 5.36 s 11.72 s 13.88 s

Table 2: Results of the experiments with UOV-R
attack over GF (256)
(v1, d1 ∗ o′1, d2 ∗ o′2) (4,4*1,1*5) (5,5*1,2*2) (5,5*1,1*5)

M-Rainbow 5.15 s 9.28 s 14.16 s
Rainbow 5.10 s 9.33 s 14.21 s

Table 3: Results of the experiments with RBS attack
over GF (256)
(v1, d1 ∗ o′1, d2 ∗ o′2) (3,1*3,2*2) (4,1*3,2*2) (5,1*3,2*2)

M-Rainbow 3.56 s 7.89 s 17.50 s
Rainbow 3.57 s 7.87 s 17.46 s

the security of our proposed scheme and that of the original
Rainbow against these attacks.

4.4 Examples and Comparison
We will now give an example of matrix-based Rainbow

and compare it with the original Rainbow in terms of secret
key size and efficiency at the same security level.

Consider examples with two layers (↔ t = 2 in the no-
tation of § 3.2). Petzoldt et al. [10] discussed the security
of the original Rainbow Rainbow(K; v1, o1, o2) with two lay-
ers and the finite field with 256 elements, K = GF (256). In
particular, Rainbow(GF (256); 31, 19, 24) has 100-bit against
direct attacks, UOV-Reconciliation attack, Rainbow-Band-
Separation attack and UOV attack. The example of matrix-
based Rainbow presented here is a variant of the original
Rainbow, and has the same security as the corresponding
Rainbow against not only the above attacks but also Rank
attacks.

We defined the notation M-Rainbow(K; v1, d1 ∗o′1, d2 ∗o′2)
for our proposed scheme in the last paragraph of § 3.4. This
is a variant of the original Rainbow Rainbow(K; v1, o1, o2)
when o1 = d1 ∗ o′1 and o2 = d2 ∗ o′2. Therefore, K and
v1 are determined by the original Rainbow. We will now
determine the values of o′1, d1, o

′
2, d2 for matrix-based Rain-

bow. These values must be determined from the complex-
ities of attacks in § 4, i.e. HighRank, MinRank, direct,
UOV, UOV-Reconciliation (UOV-R), and Rainbow-Band-
Separation (RBS) attacks. In particular, we imposed the
following conditions: (1) v1 ≥ o2, (2) o

′
2 ≥ d2, and (3) v2 ≥

o2+o′2−d2. More details on the values of the parameters are
given in the example. The secret key sizes and the numbers
of multiplications and additions in the signature generation
process were compared for M-Rainbow(K; v1, d1 ∗o′1, d2 ∗o′2)
and Rainbow(K; v1, o1, o2). We also experimented and com-
pared the time taken by these schemes to generate a signa-
ture. The implementation environment consisted of an Intel
Core i5 2.67GHz CPU with 4GB of RAM and a gcc com-
piler. Tables 5 presents the average timing of 1,000 random
instances in our experiment.

4.4.1 Example
This example deals with Rainbow(k; v1, o1, o2) with k =

GF (256), v1 = 31, o1 = 19 and o2 = 24, which has 100-bit
security. We converted Rainbow(GF (256); 31, 19, 24) into
the matrix-based Rainbow: M-Rainbow(k; v1, d1∗o′1, d2∗o′2)
with the same k = GF (256) and v1 = 31 but with d1 =
19, o′1 = 1 and d2 = 2, o′2 = 12. From the above discus-
sion of the matrix-based Rainbow, we estimate the bit se-
curity of 264, 103, 218, 100 against MinRank attack (Min-
Rank), HighRank attack (HighRank), UOV attack (UOV)
and other attacks (Direct, RBS and UOV-R) (See Table 1).
Therefore, the total bit security of M-Rainbow(GF (256); 31,
19 ∗ 1, 2 ∗ 12) had 100-bit security, which is equivalent to
Rainbow(GF (256); 31, 19, 24). Next, we estimated the se-
cret key size, and the number of multiplications and addi-
tions used in M-Rainbow(GF (256);
31, 19∗1, 2∗12): then compared them with those of Rainbow(
GF (256); 31, 19, 24). From the formulas in §4.2 in Table 2 we
estimated that the secret key size for M-Rainbow(GF (256);
31, 19∗1, 2∗12) was 56,674 B, which is about 37.2% shorter
than that of Rainbow(GF (256); 31, 19, 24). The number of
multiplications and additions used in M-Rainbow(GF (256);
31, 19 ∗ 1, 2 ∗ 12) was fewer by about 40% than that of
Rainbow(GF (256); 31, 19, 24). Moreover, our implementa-
tion in C indicated that the signature generation of the pro-
posed matrix-based Rainbow is about 34% faster than the
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Table 4: Comparison of security levels of matrix-
based Rainbow and the original Rainbow

M-Rainbow(GF (256); 31, 19 ∗ 1, 2 ∗ 12)
Attack Security level (bits)

MinRank 264
HighRank 103

UOV 218
Direct & RBS & UOV-R [10] 100

Lowest 100

⇕
Rainbow(GF (256); 31, 19, 24)

Attack Security level (bits)
MinRank 272
HighRank 208

UOV 218
Direct & RBS & UOV-R [10] 100

Lowest 100

original one at the same security level.

Table 5: Comparison of secret key sizes and ef-
ficiency of signature generations of matrix-based
Rainbow and the original Rainbow

Rainbow Original Matrix-based
Secret Key Size (bytes) 90226 56674 (62.8%)

Multiplication 98636 58938 (59.8%)
Addition 96829 57131 (59.0%)

Experiment (µs) 694 455 (65.6%)

5. CONCLUSION
We presented a variant of Rainbow, that reduces the size

of the secret key and speeds up the signature generation
process compared with the original Rainbow. We also an-
alyzed the security of our proposed scheme against previ-
ously known attacks such as MinRank attack, HighRank
attack, and UOV attack. In addition, we presented an ex-
plicit parameter of our proposed matrix-based Rainbow for
100-bit security. Using this explicit parameter, our proposed
scheme reduces the size of the secret key by about 40% and
speeds up the signature generation process by about the
same amount. Our experiment in C using an Intel Core i5
CPU confirmed that the signature generation process of our
proposed matrix-based Rainbow for 100-bit security is about
34% faster than that of the corresponding original Rainbow
at the same security level.
As a part of future work, we plan to examine secure pa-

rameters of our proposed scheme using different base fields
(e.g., other extension degrees or odd characteristics). We
also plan to consider scenarios involving more higher secu-
rity levels.
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