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Abstract. In this paper, we try to clarify some of the questions related
to a key concept in multivariate polynomial solving algorithm over a finite
field: the degree of regularity. By the degree of regularity, here we refer
to a concept first presented by Dubois and Gama, namely the lowest de-
gree at which certain nontrivial degree drop of a polynomial system occurs.
Currently, it is somehow commonly accepted that we can use this degree
to estimate the complexity of solving a polynomial system, even though
we do not have systematic empirical data or a theory to support such a
claim. In this paper, we would like to clarify the situation with the help of
experiments. We first define a concept of solving degree for a polynomial
system. The key question we then need to clarify is the connection of solv-
ing degree and the degree of regularity with focus on quadratic systems.
To exclude the cases that do not represent the general situation, we need
to define when a system is degenerate and when it is irreducible. With ex-
tensive computer experiments, we show that the two concepts, the degree
of regularity and the solving degree, are related for irreducible systems in
the sense that the difference between the two degrees is indeed small, less
than 3. But due to the limitation of our experiments, we speculate that
this may not be the case for high degree cases.

Keywords: Solving degree, degree of regularity, HFE, HFEv, random
polynomial system, non-degenerate system.

1 Introduction

1.1 Motivations

One way of attacking a symmetric or asymmetric cryptosystem is by solving
a set of multivariate polynomial equations over a finite field. This is a rapidly
developing area in cryptography. The security analysis of many cryptosystems is
very much affected by the complexity to solve the related polynomial systems.
Such an attack is studied most intensively in the context of multivariate public
key cryptography, since here the public key is a set of multivariate polynomials.
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The security of such a system depends directly on the complexity of solving the
given polynomial equations. Therefore, understanding the complexity to solve
multivariate polynomial systems is a critical problem in cryptography. In addi-
tion, since polynomial solving is used in many other places, the answer to this
question has broad impact on other areas in theory and applications.

Since higher order polynomial equations can be transformed into a set of
quadratic polynomial equations, the later can be considered to have the most
general form in some sense. We thus focus on the quadratic polynomials

p1(T1, . &) = = pm(T1,...,2n) =0,

over a finite field F; of order g. We will concentrate on the cases with m = n,
since these are the hard cases, which occur most frequently in applications.

To solve a multivariate polynomial system, the key method is the Grobner
basis algorithm. In general, solving a set of generic multivariate polynomial
equations is a very hard problem. For instance, we know that to solve a set
of randomly selected quadratic equations over a finite field with n equations and
n variables is NP-complete. It is also known that the complexity of the Grébner
basis algorithms for a generic system is doubly exponential in the number of
variables for a field of characteristic zero, as was shown in [15].

In the last two decades, polynomial solving algorithms have undergone a fast
development. People realized that computationally (not in terms of storage or
memory), the original Grobner basis algorithm — Buchberger’s algorithm — is
very inefficient due to the need to perform multivariate polynomial reduction
independently on each new S-pairs. The new trend is to improve the algorithm
with a far better computational complexity but usually with a much larger stor-
age or memory usage, namely a trade-off between computation cost and storage
cost. This is achieved by transforming the polynomial solving process into sev-
eral steps of solving linear systems. Here the linear systems are derived from the
polynomial themselves directly by rewriting each polynomial as a row of a ma-
trix. The reduction of the polynomials is then achieved by Gaussian elimination.
The origin of the idea can be traced back to the original XL algorithm (later
rediscovered as the XL Method) and was proposed by Lazard [2,14]. The XL
algorithm can be described in simplified terms as follows

1. multiply the equations with monomials to form a collection of relations up
to some degree d;

2. linearize (i.e., treat each individual monomial as a variable), and use ma-
trix algorithms (for example Gaussian elimination) over F, on the resulting
matrix (the extended Macaulay matriz).

In this paper, we assume that the Macauley matrix is in the form that rows rep-
resent monomials and columns represent polynomials, while the usual Macauley
matrix is the other way around.

The newly developed algorithms include Fy, XL algorithm and Mutant XL
algorithms [2L[5L[T2,[16,[17]. For these algorithms it is clear that the computa-
tional complexity is dominated by the step, where performing the linear algebra
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computation (Gaussian elimination) takes the longest time. On the other hand,
if one is more concerned with memory complexity then the step dealing with
the largest matrix will determine the space complexity. We call such a step the
solving step.

The complexity of the solving step is determined by the form of the multivari-
ate polynomials. The number of monomials determine the size of the rows of the
corresponding Macauley matrix and the number of polynomials determines the
number of columns of the matrix. The number of monomials is determined by
the degree of the polynomial. The corresponding matrices we need to deal with
for the solving step are in general almost square. Therefore, the complexity of
the solving step is determined by the highest degree of the polynomials involved.
We call this degree the solving degree.

The complexity analysis problem now becomes a problem of finding such a
degree. It is clear that the concept of solving degree is very vague, and what we
try to do is to find something more mathematically tangible. This leads us to
the degree of regularity introduced by Dubois and Gama [11].

We first define the graded ring B := Fy[x1,...,x,]/ (z{,...,22) and By its
degree-d subspace. By B}', we mean the vector space of direct product of m
copies of By.

Definition 1. For homogeneous quadratic polynomials (A1,..., Am) € By, let
Ya : B]' = Bgayo be the map defined as

Y(bi, .o bm) =D biki.
i=1

Then
Ra(A1, ..., Am) :=kerey

defines the subspace of relations

m

> b =0.
=1

Further let Tg(A1,...,\n) be the subspace of trivial relations generated by the
elements
{b()\iej — )\jei) | 1<i<j<m, be Bd_g},

and
{b()\g_l)ei | 1< <m, be Bd72(q71)}-

Here e; means the i-th unit vector consisting of all zeros except 1 at the i-th
position.
e; =(0,...,0,1,0,...,0).

The degree of reqularity of a homogeneous quadratic set is then

Dieg(A1y .- Am) = min{d | Rg—2(A1, ..., Am)/Ta—2(A1, ..., Am) # {0} }.
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For a generic polynomial (non-homogeneous) system py = -+ = py, = 0,

Dreg(pla cee apm) = D?"eg((pl)hv cees (pm)h)a
where (p;)" is the highest degree homogeneous component of p;.

Clearly the degree of regularity is the lowest degree at which we have a linear
combination of multiples of p; that has a nontrivial cancellation of all of the
highest degree components, and therefore a nontrivial degree-drop.

In this definition, we can see that the subspace T} of trivial syzygies represents
a “known-to-be-useless” degree drop in the following sense:

Let
pi =D 4 Zb(% n Zauka
k<e

Let (p)" represent the homogeneous highest degree part of the polynomial p.
Clearly (p;)"(pi)" — (pi)"(p;)" = 0 is a trivial syzygy, which is equivalent to the

combination of degree-4 rows (Zke a,(j@) (xkxgpj)) - (Zke a,(gz (xkxgpi)) being of

degree-3 (or fewer). Equally clearly this “degree-drop” will not give us anything
useful since

(c(i) () + Y05 (wkpy) + Y afy (x’“x’v’pj)>
k k£
( @) +Zb(]) (zkpi) +Za(]) (zraepi ) ;

given that both give (p;p;). Thus we just “found” a linear combination of poly-
nomials we already have at degree 3. So a trivial or principal syzygy between
the top-degree parts (p;)" leads to a trivial degree drop useless for generating
new equations. We must verify that a degree-drop is nontrivial before we can
claim that we have reached the degree of regularity.

This concept is very mathematical (not computational) in the sense that the
degree of regularity is invariant under invertible linear transformations in terms
of either the variables and the polynomials.

This critical concept, degree of reqularity, is actually the lowest degree where
we find a nontrivial degree drop in terms of linear combinations of multiples of
the original polynomials that define the system. By now, it is commonly accepted
that this degree somehow in general matches the highest degree of polynomials
we need to deal with in a polynomial solving algorithm, or in an abused term,
the degree at which Fy, Mutant XL, and similar algorithms usually terminate.
But we shall see later, this concept of termination degree is not really a good
concept that sometimes it can be misleading. Therefore, we will use the new
term the solving degree.

The mutant XL algorithm is an improved XL algorithm as follows: for a fixed
degree d, multiply each p; with all monomials of degree d — degp; to create
a large collection of relations of degree d, order the monomials and linearize
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these equations to obtain the Macaulay matrix Mac(® (p1,- .-, Pm), then try to
eliminate the highest degree monomials from Mac(® (p1,-.., pm) to create new
relations of degree d — 1 or lower, and once we find such polynomials with degree
drop, we try to use them fully before we move on to the next degree. These
new polynomial created from nontrivial degree drop are called mutants. This
idea allows us to greatly improve the XL algorithm to become one of the most
efficient polynomial solving algorithms.

1.2 Questions about the Terminology

There is some confusion about the term “the degree of regularity”. The rank of
Macaulay matrices at any given degree, which describes the dimension related
to the space of the XL algorithm can be computed with certain generating
functions and the strong assumption that there are no nontrivial syzygies. A
system where this assumption is valid for any degrees is called regular. However
this can not happen in the case of a finite field. To deal with such a problem,
there is a definition of “semi-regular” system [3]. The degree of regularity in such
a setting, is the degree at which the system ceases to behave as if it is regular.
The degree of regularity as described in Definition [l is the degree at which the
first appearance of “nontrivial degree drop” is observed, that is the system ceases
to behave semi-regular.

A heuristic formula for the degree of regularity of most random systems (in-
cluding asymptotics) is given by Bardet et al [I},[I8]. However, this formula is
not at all applicable to most systems with a structure that we are interested in.

Certain simple upper bounds to D, for the multivariate cryptosystems for
HFE, HFE-, HFEv and HFEv- [4l[78[10] were found, and are shown to be good
bounds to find the computational complexity.

1.3 The Contribution of This Paper

The question, we would like to clarify: Is it indeed true that the degree of regu-
larity is a good concept to help us to determine the complexity to solve a given
polynomial system?

We would like to first point out that this is not true for just any system. We
will use an example of a triangular system to demonstrate this first. This leads
to new definitions of degenerate systems and partially degenerate systems, and
irreducible systems, and we would like to find out that if it is indeed true that
the degree of regularity is a good concept to help us to determine the complexity
to solve a given irreducible polynomial system.

We would like to show via experiments that the degree of regularity and the
solving degree are closely related. Since we were not able to perform experiments
on systems with a large number of variables, we are not sure what the relationship
will be. We will also discuss briefly the applicability of the two degrees for higher
degree systems.
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2 A Degenerate System and an Irreducible System

We will first study the concept of degenerate systems.

2.1 An Example of a Degenerate System

We would like to first show an example, where the degree of regularity and
solving degree have a big difference.

The constructions of this example is a type of triangular system. The example
is a polynomial system, which looks like the following:

pi(ze,...,zn) = fi(z1,z2)
p2(z1,...,2n) = fox1,22)

p3(x1, ..y Tn) = fa(z1,...,20)

DTty Tn) = fo(T1,...,2Tn)

The first two equations involves only the first 2 variables, and the rest are
much more complicated polynomials. In this case, what a Grobner basis solver
will actually do is to try to solve the subsystem formed by f1 and f> first, where
a nontrivial degree drop will occur, and then try to solve the rest. Therefore
in this case, the degree of regularity comes from the f; and f; system, but the
solving degree actually comes from fs,..., f,. We can expect a big difference,
or as big a difference as we wish by manipulating the system.

Below we will give a concrete example for such a system. Before we present the
example, we would like to say a few words about how we present the experimen-
tal results. We used both mutant XL algorithms and Magma implementation of
the Grobner basis algorithms for our experiments, but those mutant XL imple-
mentations are not yet publicly available. Therefore, to enable other researchers
to check on our results, we will use only the data from the Magma implemen-
tation of the Grobner basis algorithms and will not publish the data from the
mutant XL algorithms, which matches well with the data from the Magma im-
plementation of the Grébner basis algorithms. In the Magma implementation,
the algorithm goes through many steps of computations, and the key computa-
tion in each step is the Gaussian elimination which performs a reduction of the
polynomials at a fixed degree. We call this degree the step degree. The degree
of regularity is the first step degree at which the step degree starts to go either
flat or down. We will present a graph, where the horizontal direction is the step
number and the vertical direction is the step degree. Then we will add two ver-
tical line segments to represent the relative metrics of the matrix size (left line)
and the time (right line) to each step. In this way, we can read out easily the
solving degree and the step which dominates the whole computation process.

We will show via computer experiments that the degree of regularity and
solving degree can be far apart. We use an HFE system (whose definition is
given in the section below) and then replace the first two equations by quadratic
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Fig. 1. The degrees at each step. The (relative) size of the matrix is given by the length
of the left vertical line and the size of the line on the right gives the (relative) time for
each step.

a) A HFE system over GF(7) b) A system of same size but first two equations are
replaced by quadratic equations in x1 and x».

equations involving only the first two variables x1,z5. From Figure [[l we see
that the degree of regularity for the HFE system is 7 and occurred in step 6.
Most of the time was spent in this step and the largest matrix was encountered
there, so that the solving degree is 7. When the first two equations were replaced
by quadratic equations in z; and x5 the degrees encountered by the Grobner
basis algorithm looks different. The degree of regularity is now 2 but the solving
degree remains 7 and was encountered in step 8. The reason in the second case
that the degree of regularity is low is exactly because the solver is actually first
working on solving the system made of the first two equations.

We can actually create systems where the difference between the degree of
regularity and the solving degree can be as large as we desire.

Also we know that for linear algebra based Grobner basis algorithms the
change of basis or the mixing of polynomials through invertible linear transfor-
mations does not change the degree of regularity and the solving degree. This
leads to our definition of a degenerate system.

2.2  Definition of a Degenerate System

To simplify the exposition, we would like to deal with quadratic system where
m = n and where the solution space is of zero dimension.
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Let us assume that we are dealing with a set of polynomials:

p1(Z1,. . &p) =+ =pp(x1,...,2,) =0.

We would like to first define a set of degenerate system.

Definition 2. A quadratic system pi(x1,...,Tn) =+ = pu(x1,...,2,) =0 is
degenerate, if we can find m' linearly independent polynomials hi(x1, ..., %Tn),
i=1,....m'" n' <n andm' >n' such that

hi(ey, . ) = (O aij(py)") o Lwy, ... ).

It is clear that the example above is an example of a degenerate system, where
m' =n' =2, while n="1.

Now the question is: Is it true that for all non-degenerate systems the degree
of regularity and the solving degree are close?

For this, we are actually not sure. The reason for this is that we are still not
at all sure what happens for a system that is partially degenerate, namely what
happens if we can find such a m’ polynomials such that m’ < n’. Since such a
case is very complicated, what we would like to do is to concentrate on what we
call an irreducible system.

Definition 3. A quadratic system pi(x1,...,Tn) =+ = pu(x1,...,2,) =0 is
an irreducible system, if we can not find a non-zero polynomial > a;j(p;)", such
that the corresponding quadratic form is not of full rank (for the case, q=2, it
should be full rank-2, when n is even).

Here we would like to remark that for the case when n is odd and g = 2, the
full rank can only be n — 1 not n. Another remark is that we do not know what
happens in the case of the partially degenerate system and we speculate that
the differences between the solving degree and the degree of regularity can be
anything.

3 Solving Degree and Degree of Regularity

What we will do is to systematically perform testing on irreducible systems
to check on the connection of degree of regularity and the solving degree. An
easy way to construct an irreducible system is to use a random systems, whose
coefficient are generated independently and uniformly. But how can we generate
other type of irreducible systems? The trick here is that we will use HFE or
a related cryptosystem from multivariate public key cryptography to construct
irreducible systems that behave differently from random systems.
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3.1 The HFE, HFEv, and IPHFE Cryptosystems

In the standard formulation of a multivariate public-key cryptosystem over a
finite field F, the public-key P : F"* +— F™ = T o (Q o S is a composition of
two invertible affine maps S : F" — F™ and T : F™ +— F™, and a quadratic
map (possibly with some parameters) @ : F" — F™ which is easily invertible
when all parameters are given. The maps S and T are part of the secret key,
and properties of the central map () determines most of the properties of the
cryptosystem.

Let F = F, be a finite field of order ¢ and K a degree-n extension of F, with
a “canonical” isomorphism ¢ identifying K with the vector space F™. That is,

—1
RN K, K ¢ Any function or map F from K to K can be expressed
uniquely as a polynomial function with coefficients in K and degree less than ¢,
namely

q"—1
F(X)= )Y aX' ack
=0

Denote by degg (F') the degree of F(X) for any map F'. Using ¢, we can build a
new map F’ : F"* — F"

P(xlv"'ax7L) = (pl(xlw-'vxn)a "'apn(xlv"'axn)) - ¢_1 0F0¢(.’I/‘1,...,.’If”),

which is essentially F but viewed from the perspective of F”. We will denote F’
also by F unless there is a chance of confusion.

An F-degree-2 or F-quadratic function from K to K can in this framework
be seen to be a polynomial all of whose monomials have exponent ¢* + ¢’
or ¢* or 0 for some i and j. The general form of this F-quadratic function is
QX) = Z:Lj_:lo ai; XU+ + Z?:_Ol b; X7 + c., the extended Dembowski-Ostrom
polynomial map. Such a Q(X) with a fixed low K-degree is used to build the
HFE multivariate public key cryptosystems, as in the following

'+¢’<D  ¢'<D _
iy g i
Q(X) = E ainq +a + E bin +C;
,j=0,j<1 1=0

Note that the coefficients are values in K, and all coefficients a;; = 0 if ¢ = 2,
since those are covered by the b-part of the coefficients.

For an overview of multivariate cryptosystems, including all the common mod-
ifiers such as “minus”, “internal perturbation”, and “vinegar” see [6L9]. It gives
this formulation of HFEv, which uses the vinegar modification [I3], built from
the polynomial:

QX, X) :Z ainquq" +Z bininqj +Z O‘z‘jXqqu +Z b X7 Jrz @XVJ%’ +c
iJ i, i, i i
(1)

where the auxiliary variable X occupies only a subspace of small rank v in
K = F". The function @ is quadratic in the components of X and X, and so is
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P =ToQoS for affine bijections T and S in F” and F**¥. We hope that P is
hard to invert to the adversary, while the legitimate user, with the knowledge of
(S8,T) can compute X by substituting a random X, then solving for X via root-
finding algorithms such as Berlekamp (or Cantor-Zassenhaus, if ¢ # 2). To limit
the effort of Berlekamp, we restrict the maximum degree D of the polynomial.

Another closely related scheme to HFEv is IPHFE (internally perturbed
HFE). Suppose in Eq. [l X is not a free variable, but is instead the image
of £, a map from F” onto F”. So the central map is really Q'(X) := Q(X, ¢(X)).

For our experiments, we will use a more generalized version of HFE, namely
we allow the maximum degree of the quadratic part (the terms in the form of
X®+4") to be different from the linear part (the terms in the form of X'). We
call the highest degree of the quadratic part the quadratic degree and the highest
degree of the linear part the linear degree of the HFE polynomial.

Here we would like to make one remark that we only look at systems with
relative large n, since when n is small, special combinatorial identity could occur.

3.2 The Experimental Results

We will first present a few graphs of systems from many experiments we have
done to give the reader a basic idea of what happens in the solving process. All
computations were performed on a PC with the 64 bit version of Magma for
Unix. The first example (Fig. 2) is an example, where the differences between
the corresponding two degrees, the degree of regularity and the solving degree,
are the same and occur at the same step.

n=17, q=5, maxlin=52, maxquad=2*5°, cputime= 19.800

T T
= 0 - Degree
matrix size [
time

Fig. 2. This is an example of HFE with q=5, n=17, the quadratic degree is 2 and the
linear degree 25. This is a case where both degrees are 5 and both occur at the step 4.
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n=17, q=5, maxlin=54, maxquad=2"50, cputime= 138.110

= O - Degree
matrix size
m time I
6l i
5F p (m] 1
N ’ '
’ A ’ 1
4r a o-o-a-o \ 4 J
’ \ 1
’ \ '
3r [} v a b
’ v
’ v,/
2- O o *
1 . . . . . .
0 2 4 6 8 10 12 14

Fig. 3. This is an example of HFE with q=5, n=17, the quadratic degree is 2 and the
linear degree to be 625. This is a case where the two degrees have the same value 5
but they occur at different steps.

But the degree of regularity and the solving degree can occur at very different
steps despite the fact that they have the same values. Fig. [Blis such an example.

The degree of regularity and the solving degree can occur at very different
steps and the difference now is 1. Fig. @ is an example.

We have seen cases where the degree of regularity and the solving degree
differ by 2, but we could not reproduce it for this paper. We are not sure if it
was caused by the choice of the coefficients, which are selected at random, or by
a programming or another error from our side.

Below are some of the tables from many we made for the degree of regularity
and the solving degree. In the tables ‘deg-reg’ stands for the degree of regularity,
‘deg-size’ is the solving degree where the largest matrix size was encountered,
and ‘deg-time’ the solving degree where the longest time was spent. The entry
‘at step’ gives the step where each occurred. In all cases displayed the difference
is at most 1.

Table [I] was created by an HFE system with different values of n. The degree
of regularity and the solving degree are always the same, but sometimes the
largest matrix is encountered at a different step.

In Tables 2 and [3] the degree of the quadratic terms is fixed, but the degree
of the linear terms are allowed to increase. Whereas the degree of regularity
remains the same, the solving degree increases by 1 when the linear degree
reaches a certain threshold. Table ] shows that internal perturbation of an HFE
system has no effect on the difference of the degrees.

For a quadratic system with the coefficients selected at random there will be
some difference between the degrees as seen in Table [ and it also occurs for
other finite fields.
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n=17, q=5, maxlin=57, maxquad=2*5", cputime=48630.950

= - Degree
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—time
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J
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45

Fig. 4. This is an example of HFE with q=5, n=17 the quadratic degree is degree 10
and the linear degree is 78125. This is a case where the two degrees differ by 1 and are

6 and 7 respectively.

Table 1. HFE systems over GF(3) with quadratic degree 6 and linear degree 9 for

different values of n

n 1011 12 13 14 1516 17 18 19 20 21 22
deg-reg 4 4 4 4 4 4 4 4 44 4 44
atstep 3 3 3 3 333333333
degsize 4 4 4 4 4 4 4 4 4 4 4 4 4
atstep 3 3 3 3 3 3 37 388 338
deg-time 4 4 4 4 4 4 4 4 4 4 4 4 4
atstep 3 3 3 3 333333333

Table 2. HFE systems of size n
linear degree 5"

17 over GF(5)

1 01234567
deg-reg 5 5 5 5 5 5 5 5
atstep 4 4 4 4 4 4 4 4
deg-size 5 5 5 5 5 5 5 5
atstep 4 11 4 4 12 4 4 4
deg-time 5 5 5 5 5 5 5 5
atstep 4 4 4 4 9 8 8 9
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Table 3. HFE systems of size n = 17 over GF(3) with quadratic degree 6 and the
linear degree 3"

1 01 23456 78 910111213141516
deg-reg 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44
atstep 3 3 3 3 3 33333333333
deg-size 4 4 4 4 4 4 455 5 555555
atstep 8 3 7 8 5 6 6 7 6 6 6 6 6 6 6 6
deg-time 4 4 4 4 4 4 4 5 5 5 5 5 55 5 5
atstep 3 3 3 45 5 6 7 6 6 6 6 6 6 6 6

Table 4. IPHFE system of size n = 17 over GF(3) with v internal perturbation
variables. The linear degree is 9 and the quadratic degree is 6.

v 0123456 7389101112
degreg 4 5 6 6 7 7 7 7T T7TT7TT7T7
atstep 3 4 55 6 6 6 6 6 6 6 6 6
deg-size 4 5 6 6 7 7 7 77T 7777
atstep 3 4 55 6 6 6 6 6 6 6 6 6
deg-time 4 5 6 6 7 7 7 7 7T 7777
atstep 3 4 55 6 6 6 6 6 6 6 6 6

Table 5. Random quadratic system of size n over GF(2)

n 56 789 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
deg-rteg 33334 4 4444 455555505566 6666
atstep 22223 3 3333 3444444445555 55
degsize 33334 4 4444 4555555055666 ¢66 6
atstep 22433 3 33 3 3 44444445 4555555
deg-time 33334 4 444 4455555505566 6¢66 6
atstep 22423 3 3 333 3444444445555 55

From all the experiments, we conclude that it seems that it is indeed true
that the differences between the degree of regularity and the solving degree for
irreducible systems are small. But again, we like to emphasize that the exper-
iments we have done is relatively small in terms of number of variables, and
therefore our experiments, though very systematic but are limited by our com-
puting capacity. Some experiments indicate that the situation may not be true
for large n. The reason is due to the experiments listed in Table[Bl and illustrated
in Figure

In the two cases of Figure [l the quadratic parts are exactly the same (there-
fore the degree of regularities remains the same), and only the linear parts are
different. But in the second case, the linear part is more complicated. This shows
that the linear part has a substantial impact. It increases the solving degree by
1 and not just for the case shown in the figure, but in all cases when the lin-
ear part had a degree > 37, see Table Bl Therefore, we believe we need more
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Fig. 5. This is an example of HFE with q=3, n=17, the quadratic degree is at most 6.
On the left the linear terms have only degree 1, whereas on the right they are limited
by 37. This a case where the solving degree can be increased by 1 due to additional
linear terms.

experiments with larger n. It will not be a surprise if we find the differences
to be bigger than 1 when n is large enough. Therefore we speculate the differ-
ences of the two degrees could be dependent on n. For this, we need much more
powerful computers to do the experiments, which are now beyond our reach.

3.3 Higher Degree Cases

We performed some examples with higher degree polynomials, in particular,
degree 3 polynomials with random coefficients in GF(2) or in GF(3). The overall
impression is that in these cases the degree of regularity and the solving degree
are the same and occur at the same step. Modifying the equations we have seen
examples where the difference was greater than 1. For this case, we need more
studies to come to a reasonable conclusion.

4 Conclusion and Discussion

From the experiments, we conclude that indeed for an irreducible quadratic
system the difference between the degree of regularity and the solving degree
is small. But our experiments are preliminary so far and are limited since they
were run on a personal computer with a 64 bit Unix system. The results in Fig.
however force us to suspect that maybe the difference between the two degrees
can become bigger due to the influence of the linear part. The next step would
require to find some way to prove the claim, but for this we need to set up
reasonable additional assumptions. This would be a big breakthrough in terms
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of understanding what really is going on with the complexity to solve polynomial
systems.

Overall, we believe that the speculation about the connection between the
solving degree and the degree of regularity works in the case of degree 2 irre-
ducible polynomial systems with rather limited number of variables, but for high
degree cases, it could be different. Therefore, much more work is still needed to
be done to understand the complexity of polynomial solving algorithms.
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