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Abstract. In this paper, we propose an improved version of the Sim-
ple Matrix encryption scheme of PQCrypto2013. The main goal of our
construction is to build a system with even stronger security claims. By
using square matrices with random quadratic polynomials, we can claim
that breaking the system using algebraic attacks is at least as hard as
solving a set of random quadratic equations. Furthermore, due to the
use of random polynomials in the matrix A, Rank attacks against our
scheme are not feasible.
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1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [20], DSA and ECC. However, schemes like these will be-
come insecure as soon as large enough quantum computers arrive. The reason
for this is Shor’s algorithm [21], which solves number theoretic problems such as
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on mathematical problems not affected by quantum computer
attacks.

Besides lattice, code and hash based cryptosystems, multivariate cryptogra-
phy is one of the main candidates for this [1]. Multivariate schemes are very fast
and require only modest computational resources, which makes them attractive
for the use on low cost devices like smart cards and RFID chips [2,4]. How-
ever, while there exist many practical multivariate signature schemes [9,13,18],
the number of efficient and secure multivariate encryption schemes is somewhat
limited.

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 76–87, 2014.
c© Springer International Publishing Switzerland 2014



The Cubic Simple Matrix Encryption Scheme 77

At PQCrypto 2013, Tao et al. proposed a new MPKC for encryption called
Simple Matrix (or ABC) encryption scheme, which resists all known attacks
against multivariate schemes. However, decryption errors occur with non negli-
gible probability.

In this paper, we propose an improved version of the ABC scheme. The main
goal of our approach is to increase the security of the scheme even further. We
achieve this by using square matrices with random quadratic polynomials, by
which we obtain a cubic map as the public key. We claim that an algebraic attack
on our scheme is at least as hard as solving a random quadratic system of the
same size. Furthermore, due to the use of random polynomials in the matrix A,
the matrices associated to the central map are of high rank, which prevents the
use of Rank attacks against our scheme.

The rest of this paper is organized as follows. In Section 2 we describe the
basic ABC encryption scheme as proposed in [22]. Section 3 introduces our cubic
version of the ABC scheme. In Section 4 we discuss the security of our scheme,
whereas Section 5 proposes concrete parameter sets for the cubic ABC encryption
scheme. In Section 6 we describe shortly a technique to decrease the probability
of decryption failures. Finally, Section 7 concludes the paper.

2 The Basic ABC Encryption Scheme

In this section we introduce the ABC encryption scheme as proposed by Tao et
al. in [22]. Before we come to the description of the scheme itself, we start with
a short overview of the main concepts of multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials (see equation (1)).
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The security of multivariate schemes is based on the

Problem MQ:Givenmmultivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
as shown in equation (1), find a vector x̄ = (x̄1, . . . , x̄n) such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.
The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic poly-
nomials over the field GF(2) [12].

To build a public key cryptosystem based on the MQ problem, one starts with
an easily invertible quadratic map F : Fn → F

m (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps L1 : Fn → F

n and L2 : Fm → F
m.

The public key is therefore given by F̄ = L2 ◦ F ◦ L1.
The private key consists of L1, F and L2 and therefore allows to invert the public
key.

In this paper we concentrate on multivariate encryption schemes. The stan-
dard encryption/decryption process works as shown in Figure 1.

Encryption

d ∈ F
n �F̄

c ∈ F
m

�

L−1
1

y ∈ F
n z ∈ F

m� F−1 �

L−1
2

Decryption

Fig. 1. General workflow of multivariate encryption schemes

Encryption: To encrypt a message d ∈ F
n, one simply computes c = F̄(d). The

ciphertext of the message d is c ∈ F
m.

Decryption: To decrypt the ciphertext c ∈ F
m, one computes recursively z =

L−1
2 (c), y = F−1(z) and d = L−1

1 (y). d ∈ F
n is the plaintext corresponding to

the ciphertext c.

Since, for multivariate encryption schemes, we have m ≥ n, the preimage of
the vector z under the central map F and therefore the decrypted plaintext is
unique.

An overview of existing multivariate schemes can be found in [8].
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2.2 The ABC Encryption Scheme of [22]

The original Simple Matrix encryption scheme as proposed by Tao et al. can be
described as follows.

Key Generation: Let F be a finite field with q elements. For a parameter s ∈ N

we set n = s2 and m = 2 · n and define three matrices A, B and C of the form

A =

( x1 ... xs

...
...

x(s−1)·s+1 ... xn

)
, B =

(
b1 ... bs
...

...
b(s−1)·s+1 ... bn

)
, C =

( c1 ... cs
...

...
c(s−1)·s+1 ... cn

)
.

Here, x1, . . . , xn are the linear monomials of the multivariate polynomial ring
F[x1, . . . , xn], whereas b1, . . . , bn and c1, . . . , cn are randomly chosen linear com-
binations of x1, . . . , xn.

One computes E1 = A ·B and E2 = A · C. The central map F of the scheme
consists of the m components of E1 and E2.

The public key of the scheme is the composed map F̄ = L2 ◦F ◦L1 : Fn → F
m

with two randomly chosen invertible linear maps L2 : Fm → F
m and L1 : Fn →

F
n, the private key consists of the matrices B and C and the linear maps L1

and L2.

Encryption: To encrypt a message d ∈ F
n, one simply computes c = F̄(d) ∈ F

m.

Decryption: To decrypt a ciphertext c ∈ F
m, one has to perform the follow-

ing three steps.

1. Compute z = L−1
2 (c). The elements of the vector z ∈ F

m are written into
matrices Ē1 and Ē2 as follows.

Ē1 =

( z1 ... zs
...

...
z(s−1)·s+1 ... zn

)
, Ē2 =

( zn+1 ... zn+s

...
...

zn+(s−1)·s+1 ... zm

)
.

2. In the second step one has to find a vector y = (y1, . . . , yn) such that F(y) =
z. To do this, one has to distinguish four cases:
• If Ē1 is invertible, one considers the equation B · Ē−1

1 · Ē2 − C = 0.
Therefore one gets n linear equations in the n variables y1, . . . , yn.

• If Ē1 is not invertible, but Ē2 is invertible, one considers the equation
C · Ē−1

2 · Ē1 −B = 0. One gets n linear equations in the n variables.
• If none of Ē1 and Ē2 is invertible, but Ā = A(y) is invertible, one
considers the relations Ā−1 · Ē1 − B = 0 and Ā−1 · Ē2 − C = 0. One
interprets the elements of Ā−1 as new variables w1, . . . , wn and therefore
gets m linear equations in the m variables w1, . . . , wn, y1, . . . , yn.

• If none of Ē1, Ē2 and Ā is invertible, there occurs a decryption failure.
3. Finally, one computes the plaintext by d = L−1

1 (y1, . . . , yn).
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The probability of a decryption failure occurring in the second step is about 1
q .

It might happen that the linear systems in the second step of the decryption
process have multiple solutions y(1), . . . ,y(�) . In this case one has to perform
the third step for each of these solutions to get a set of possible plaintexts
d(1), . . . ,d(�). By encrypting these plaintexts one can test which of them corre-
sponds to the given ciphertext c.

3 The New Cubic Encryption Scheme

The new cubic Simple Matrix encryption scheme can be described as follows.

Key Generation: Let F be a finite field with q elements. For a parameter s ∈ N

we set n = s2 and m = 2 · n and define three matrices A, B and C of the form

A =

( p1 ... ps

...
...

p(s−1)·s+1 ... pn

)
, B =

(
b1 ... bs
...

...
b(s−1)·s+1 ... bn

)
, C =

( c1 ... cs
...

...
c(s−1)·s+1 ... cn

)
.

Here, p1, . . . , pn are random quadratic polynomials, whereas b1, . . . , bs and c1, . . . ,
cn are randomly chosen linear combinations of x1, . . . , xn.

One computes E1 = A ·B and E2 = A · C. The central map F of the scheme
consists of the m components of E1 and E2.

The public key of the scheme is the composed map F̄ = L2 ◦F ◦L1 : Fn → F
m

with two randomly chosen invertible linear maps L2 : Fm → F
m and L1 : Fn →

F
n, the private key consists of the matrices B and C and the linear maps L1

and L2.

Encryption: To encrypt a message d ∈ F
n, one simply computes c = F̄(d) ∈ F

m.

Decryption: To decrypt a ciphertext c ∈ F
m, one has to perform the follow-

ing three steps.

1. Compute z = L−1
2 (c). The elements of the vector z ∈ F

m are written into
matrices Ē1 and Ē2 as follows.

Ē1 =

( z1 ... zs
...

...
z(s−1)·s+1 ... zn

)
, Ē2 =

( zn+1 ... zn+s

...
...

zn+(s−1)·s+1 ... zm

)
.
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2. In the second step one has to find a vector y = (y1, . . . , yn) such that F(y) =
z. To do this, one has to distinguish four cases:

• If Ē1 is invertible, one considers the equation B · Ē−1
1 · Ē2 − C = 0.

Therefore one gets n linear equations in the n variables y1, . . . , yn.

• If Ē1 is not invertible, but Ē2 is invertible, one considers the equation
C · Ē−1

2 · Ē1 −B = 0. One gets n linear equations in the n variables.

• If none of Ē1 and Ē2 is invertible, but Ā = A(y) is invertible, one
considers the relations Ā−1 · Ē1 − B = 0 and Ā−1 · Ē2 − C = 0. One
interprets the elements of Ā−1 as new variables w1, . . . , wn and therefore
gets m linear equations in the m variables w1, . . . , wn, y1, . . . , yn.

• If none of Ē1, Ē2 and Ā is invertible, there occurs a decryption failure.

3. Finally, one computes the plaintext by d = L−1
1 (y1, . . . , yn).

The probability of a decryption failure occurring in the second step is about 1
q .

It might happen that the linear systems in the second step have multiple so-
lutions y(1), . . . ,y(�) . In this case one has to perform the third step of the
decryption process for each of these solutions to get a set of possible plaintexts
d(1), . . . ,d(�). By encrypting these plaintexts one can test which of them corre-
sponds to the given ciphertext c.

4 Security Analysis

4.1 Rank Attacks

Rank attacks are one of the major threats against multivariate encryption
schemes. There are two different versions of this attack. The first one is called
the MinRank attack or LowRank attack as proposed by Goubin et al. in [11].
The other one is called the HighRank Attack [5].

The goal of the MinRank attack is to find a linear combination of the com-
ponents of the public key of minimal rank r. In the context of e.g. HFE such
a polynomial of low rank corresponds to a central polynomial. By finding those
linear combinations of low rank an attacker can recover the linear map L2 and
therefore the secret key of the scheme.

In the High Rank Attack, the attacker tries to find linear combinations cor-
responding to variables which appear in the central polynomials the smallest
number of times. In a scheme like Rainbow these are the oil variables of the last
layer. By repeating this attack for the other layers, the attacker can recover the
linear map L1 and therefore the secret key of the scheme.

However, in the case of the cubic Simple Matrix encryption scheme, the ele-
ments of the matrix A are randomly chosen multivariate quadratic polynomials.
Therefore, their rank is close to n and all variables appear in each of the cen-
tral polynomials approximately the same number of times. This shows that rank
attacks can not be used to attack the cubic Simple Matrix encryption scheme.
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4.2 Algebraic Attacks

In a direct attack (message recovery attack) the attacker tries to solve the public
system F(d) = c for the plaintext d. To achieve this, the attacker can use either
a Gröbner Basis method such as F4[10] or a system solving algorithm like XL
or one of its variants like mutant XL [6,7,17,16].

When attacking our scheme, the attacker is faced with a system of m = 2n
multivariate cubic polynomials in n variables. As described in the section above,
this system was obtained by multiplying a matrix A containing randomly cho-
sen multivariate quadratic polynomials with matrices B and C containing linear
ones (when neglecting the linear transformations L1 and L2). We make the fol-
lowing claim:

Claim: Solving the cubic public system of our scheme is asymptotically at least
as hard as solving a multivariate quadratic system with randomly chosen coef-
ficients.

To justify this claim, let us assume that an attacker wants to solve the equation
E2(x) = y, where E2 = A · C and y is some matrix in F

s×s. Let us further
assume that an oracle O gives the attacker the values of the elements of C
(without revealing the inner structure of this matrix), i.e. the oracle gives him
a matrix C̄ ∈ F

s×s with C̄ = C(x). So the attacker obtains a system of linear
combinations in the elements of the matrix A. By solving this system by Gaus-
sian elimination, the attacker finally gets a system A(x) = y · C̄−1. But to get
the values of (x1, . . . , xn), the attacker still has to solve a system of multivariate
quadratic equations with randomly chosen coefficients.

A much more interesting heuristic argument goes as follows.
Let us denote the polynomial entries of the matrix A by Aij(x) and similarly

the polynomial entries of E1 and E2 by E1,ij(x) and E2,ij(x). And we denote
the entries of B and C by Bij(x) and Cij(x) respectively. Clearly we have that

E1,ij(x) =

s∑

l=1

Ail(x) ·Blj(x),

E2,ij(x) =

s∑

l=1

Ail(x) · Clj(x).

In the case of quadratic systems, it is a common assumption that the complexity
of solving the system is actually determined by the structure of the ideal gen-
erated by the homogeneous part of highest degree, namely the degree 2 part of
the polynomials.

In our case this means that the complexity of solving the system

Aij(x) = Dij ,
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is actually determined by the structure of the ideal generated by the homoge-
neous polynomials Āij(x), which are the quadratic part of Aij(x). We call this
ideal IA.

Now let us look at the system E1,ij(x) = D1,ij , and E2,ij(x) = D2,ij . In this
case the complexity should be dominated by the structure of the homogeneous
part of degree 3, which is given by

Ē1,ij(x) =

s∑

l=1

Āil(x) · B̄lj(x) and

Ē2,ij(x) =

s∑

l=1

Āil(x) · C̄lj(x),

where B̄ij and C̄ij are the homogeneous linear parts of Bij and Cij respec-
tively. We call this ideal IE . If we now look that the generators of this ideal, we
immediately reach the conclusion that

IE ⊂ IA.

Furthermore, the generators of IE are nothing but elements in the space spanned
by the elements generated in the first step of the XL algorithm if applied to IA,
since B̄ij(x) and C̄ij(x) are nothing but linear functions. From this perspective,
we therefore speculate that in general or precisely asymptotically (when s is too
small it might be different), the complexity of solving the public systems of the
cubic Simple Matrix encryption scheme should be harder or at least as hard as
solving a quadratic system with randomly chosen coefficients of size n× n.

This heuristic analysis is very speculative, however it is very exciting in the
sense that it actually hints that maybe we can derive a certain form of provable
security for our new system, which is something we have never seen before.

Additionally to these theoretical considerations, we carried out a number
of experiments with MAGMA, which contains an efficient implementation of
Faugeres F4 algorithm [10]. For this, we created, for different parameter sets,
the public system of both the cubic Simple Matrix encryption scheme and the
original ABC scheme of [22] and solved these systems using the MAGMA com-
mand Variety. We repeated each of these experiments ten times.
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Table 1. Direct attack against the cubic Simple Matrix encryption scheme

GF(28) GF(216)
(s,m,n) (2, 4, 8) (3, 9, 18) (4, 16, 32) (5, 25, 50) (2, 4, 8) (3, 9, 18) (4, 16, 32) (5, 25, 50)

our scheme

dreg 5 6 7 - 5 6 7 -
time(s) 0.8 15.4 - - 1.2 23.7 - -

memory(MB) 5.2 18.3 ooM 1 - 8.4 27.1 ooM 1 -

ABC dreg - 4 5 6 - 4 5 6
scheme time(s) - 0.02 3.5 17,588 - 0.1 5.7 23,264
of [22] memory(MB) - 3.4 8.1 1,112 - 7.4 23.1 3,214

1) out of memory

As we see from the table, for the same value of s the degree of regularity is at
least higher by two than that of the original Simple Matrix encryption scheme.
Therefore, to obtain the same security level, we can decrease the value of s by 2
(compared to [22]).

Here we would like to point out that, due to the fact that we can only perform
experiments for very small s, we can not really say anything precise about our
speculations.

5 Parameter Proposals

Based on our security analysis presented in the previous section, we propose
the following parameters for our cubic version of the Simple Matrix encryption
scheme. For the fields GF(28) and GF(216), to be on the conservative side, we
suggest

• s = 7 for a security level of 80 bit and
• s = 8 for a security level of 100 bit

These parameter proposals are obtained by the following analysis:
As Table 1 shows, the degree of regularity of solving the public system in-

creases linearly with s. We can therefore assume that for s = 7 the degree of
regularity is greater or equal to 10, while for s = 8 it is given by 11. We can
therefore (for s = 7) estimate the number of homogeneous monomials of highest
degree in the solving step of F4 by

T =

(
n+ dreg
dreg

)
≥ 235.8.

The number of non-zero monomials in every polynomial is given by

τ =

(
n+ 3

3

)
≥ 214.4.

Therefore we can estimate the complexity of a direct attack against the cubic
Simple Matrix Encryption scheme by

Complexitydirect attack(s = 7) ≥ 3 · τ · T 2 ≥ 288. (2)



The Cubic Simple Matrix Encryption Scheme 85

For s = 8 we get T ≥ 242.2, τ ≥ 215.5 and therefore

Complexitydirect attack(s = 8) ≥ 3 · τ · T 2 ≥ 2102. (3)

Table 2 shows for our 4 parameter sets key sizes of the cubic Simple Matrix
encryption scheme as well as the probability of a failure occurring during the
decryption process.

Table 2. Parameters and key sizes of the cubic Simple Matrix encryption scheme

security parameters input output public key private key probability of
level (bit) (F, s, n,m) size (bit) size (bit) size (kB) size(kB) decryption failure

80
(GF(28),7,49,98) 392 784 2,115 72.7 2−8

(GF(216,7,49,98) 784 1,568 4,230 145.4 2−16

100
(GF (28),8,64,128) 512 1,024 5,988 154 2−8

(GF(216,8,64,128) 1,024 2,048 11,976 308 2−16

Here, we would like to further speculate actually that even for the case of
s = 5 and s = 6, the scheme might provide a good security level for practical
applications. But this needs much better support evidence, which we still do not
have.

6 Decreasing the Probability of Decryption Failures

As Table 2 shows, the probability of failures occuring during the decryption pro-
cess of our scheme is non negligible. To decrease this probability, we can use the
technique presented in [23]. The basic idea of this is to use non square matrices
for A, B and C. In particular, A is chosen to be an r × s (r < s) matrix con-
taining random quadratic polynomials, while the matrices B and C (containing
linear combinations of x1, . . . , xn) are of size s×u. Decryption remains possible,
as long as the rank of the matrix A is at least r. The probability of this is given
by

Pr(Rank(A) ≥ r) = 1−
(
1− 1

qs

)
·
(
1− 1

qs−1

)
· . . . ·

(
1− 1

qs−r+1

)
≈ 1

qs−r+1
.

By choosing the parameters r and s of the scheme in an appropriate way, it is
possible to decrease the probability of decryption failures arbitrarily.
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In [23] it was shown that by this strategy the security of the scheme against
known attacks is not weakened. However, as it comes to provable security, we
do not exactly know what happens. In this field, there has still much work to be
done.

However, there are other ways to reduce the probability of decryption fail-
ures. For example, we can simply encrypt the message twice. In the second run,
we encode the message with a public invertible affine transformation over the
ring Z256 (integers mod 256) and then encrypt the encoded message with our
scheme. Since an affine transformation over the ring Z256 is algebraically com-
plicated with respect to the Galois field GF(256), we can not join these two
encryptions as a larger low-degree algebraic system. If necessary, one can even
encrypt the message several times. We will demonstrate the ways to reduce de-
cryption failures in our further work.

7 Conclusion and Future Work

In this paper we proposed a cubic version of the Simple Matrix encryption scheme
of PQCrypto 2013 [22]. By using a matrix A whose elements are randomly cho-
sen multivariate quadratic polynomials, we increase the security of the original
Simple Matrix scheme even further. Our construction completely eliminates the
possibility of Rank attacks against our scheme. Furthermore, we speculate that
breaking our scheme using direct attacks is as least as hard as solving a quadratic
system with randomly chosen coefficients. Future work includes decreasing the
probability of decryption failures and a formal proof of our security claim.
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