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In this paper, we prove that the degree of regularity of square
systems, a subfamily of the HFE systems, over a prime finite
field of odd characteristic q is exactly q and, therefore, prove
that inverting square systems algebraically using Gröbner basis
algorithm is exponential, when q = Ω(n), where n is the number
of variables of the system.
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1. Introduction

In 1994 Peter Shor [16] showed that quantum computers could break all public key cryptosys-
tems based on hard number-theoretic problems like the integer prime factorization problem and the
discrete logarithm problem. Recently significant efforts have been put into the search for alternative
post-quantum cryptosystems which would remain secure in an era of quantum computers. Multivari-
ate public key cryptosystems (MPKCs) are one of the main families of cryptosystems that have the
potential to resist future quantum computer attacks.

Research on MPKCs started in the 1980s with the works of Diffie, Fell, Tsujii, and Shamir. The
real breakthrough came in 1988 with the cryptosystems proposed by Matsumoto and Imai [14]. The
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schemes were broken by Patarin, who later developed Hidden Field Equation (HFE) cryptosystems
based on the same fundamental idea of quadratic functions derived from special functions on large
extension fields [15].

Fixing a finite field F of characteristic 2 and cardinality q, Patarin suggested using an almost bijec-
tive map P defined over K, an extension field of degree n over F. By identifying K with Fn , P induces
a multivariate polynomial map P ′ :Fn −→ Fn . One then “hides” this map by composing with invertible
affine maps. The resulting map, P̄ : Fn −→ Fn defined by

P̄ (x1, . . . , xn) = L1 ◦ P ′ ◦ L2(x1, . . . , xn) = (y1, . . . , yn),

where the Li : Fn −→ Fn are the invertible affine maps, is the public key of the encryption scheme.
For a Hidden Field Equation system (HFE) [15], P is given as a univariate polynomial in the form:

P (X) =
∑

qi+q j�D

aij Xqi+q j +
∑

qi�D

bi Xqi + c,

where the coefficients are randomly chosen. Here the total degree D of P should not be too large since
the decryption process involves solving the single variable polynomial equation given by P (X) = Y ′
for a given Y ′ using the Berlekamp–Massey algorithm.

Faugère and Joux [10] showed that these systems can be broken rather easily in the case when
q = 2 and D is small using the Gröbner basis algorithm F4. A good measure of how quickly and
efficiently these algorithms run is the degree at which they terminate; that is, the highest degree of
polynomials that are generated during the algorithm involved in non-trivial computations. (At this
degree, the step to compute the reduction of polynomials becomes a process of Gaussian elimination,
and this step of computation involves matrices of the largest size and consumes the largest number
of computations.) In [10], the experimental results suggested that such algorithms will finish at the
degree of order logq(D), meaning the highest degree polynomials that the algorithm will generate

have degree of order logq(D). Therefore they claim that the complexity of the algorithm is O (nlogq(D)).
A key concept in the complexity analysis of these algorithms is that of degree of regularity. Bardet,

Faugère and Salvy (BFS) defined the degree of regularity for semi-regular systems (like random or
generic systems) and gave an asymptotic estimate formula for this degree, which is based on counting
of dimensions of spaces with linear independence assumptions [2,17]. Experiments show that this is
the degree at which the algorithm will terminate and therefore determines the complexity. However,
since the systems arising from HFE polynomials are far from generic, the BFS bound does not yield
useful information about the complexity of solving HFE systems algebraically.

Granboulan, Joux and Stern outlined a new way to bound the degree of regularity in the case q = 2.
Their approach was to lift the problem back up to the extension field K, an idea that originated in
the work of Kipnis and Shamir [12] and Faugère and Joux [10]. They sketched how one can connect
the degree of regularity of the HFE system to the degree of regularity of a lifted system over the
big field. Assuming this assertion, the semi-regularity of a subsystem of the lifted system, and that
the degree of regularity of a subsystem is greater than that of the original system, and using some
asymptotic analysis of the degree of regularity of random systems found in [2], they derived heuristic
asymptotic bounds for the case q = 2. These bounds suggest that if D is chosen to be O (nα) for α � 1,
then the complexity of Gröbner basis attacks is quasi-polynomial. While the results derived from this
method match well with experimental results, the asymptotic bound formula has not yet been proven
rigorously. It relies on a formula that holds for a class of over-determined generic systems but it is not
yet clear how to prove that HFE systems belong to this class. Therefore, to derive definitive general
bounds on the degree of regularity, for general q and n, or on the asymptotic behavior of the degree
of regularity remained an open problem.

A breakthrough in case of general q came in the recent work of Dubois and Gama [9]. They for-
mulate a different definition of the degree of regularity. The degree of regularity of a polynomial
system:
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p1(x1, . . . , xn) = 0,

...

pn(x1, . . . , xn) = 0

is the lowest degree at which non-trivial polynomial relations between the polynomial pi occur. They
refined and gave a rigorous mathematical foundation for the arguments in [11]. They derived a new
method to compute the degree of regularity over any field similar to that in [2]. This leads to an
algorithm that can be used to calculate a bound for the degree of regularity for any choice of q, n
and D . However it is not clear how to derive a closed form for their bounds from their algorithm.

Inspired by the work of [9], and using a similar idea to that used in [11] – roughly that one
can bound the degree of regularity of a system by finding a bound for certain simpler subsystems,
a new closed formula was found for the degree regularity for all HFE systems for any field in [7].
However, this bound is derived using a very different approach. All previous estimates on the degree
of regularity were based on a dimension counting argument, while the new approach constructively
proves the upper bound of the degree of regularity as an explicit function of q and D . Such explicit
formulas enable them to draw conclusions about the upper bound of the complexity of inverting the
system using Gröbner basis methods, assuming that the polynomial solving algorithm will terminate
at this degree.

It is clear that these two definitions of degree of regularity are not exactly the same. The definition
of degree of regularity of BFS is not general in the sense that it is restricted only to semi-regular cases
and thus does not apply to any system that is not semi-regular, e.g. an HFE system. To simplify our
exposition, we will call the degree of regularity defined by BFS the restricted degree of regularity.

Though we cannot prove that polynomial solving algorithms terminate at the degree of regularity,
we do know:

(1) for semi-regular systems, these two definitions of degree of regularity are identical;
(2) for HFE systems, experiments show that Gröbner basis solvers indeed terminate at the degree of

regularity or one degree above it;
(3) a Gröbner basis solver cannot terminate below the degree of regularity for an HFE system, since

a non-trivial degree fall needs to occur before solvers finish;
(4) if a polynomial system has only one solution, the Gröbner basis solvers will never terminate

below the degree of regularity, since to get the solution requires non-trivial degree fall. Here,
by non-trivial degree fall, we mean the situation that linear combinations of multiples of the
generators of an ideal produce polynomial of lower degree than usually expected. (Mathematical
definition is given in Section 3.)

Therefore the degree of regularity of an HFE system at least tells us a lower bound of the degree
below which Gröbner basis solvers will not terminate. Therefore, it enables us to derive a lower bound
of the complexity of Gröbner basis solvers and related mutant XL solvers [5,6,13].

1.1. The contribution of this paper

In the paper [7], the authors presented a conjecture on the lower bound of the degree of regularity
for the case of q is odd and q is the size of Ω(n), which implies that to invert the related systems
algebraically is actually exponential.

Following the same mathematical approach as in [7], we actually prove in this paper that in the
case of the square system, which was proposed in [3,4], namely, when the HFE system is given by:

P (X) = X2,

the degree of regularity is exactly q for odd prime q.
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This theorem allows us to draw the following conclusions about the complexity of inverting a
square polynomial using a Gröbner basis algorithm.

Inverting square systems algebraically is exponential, when q = Ω(n), where n is the number of variables
of the system.

This proves the conjecture in [7]. Though it does not answer the question about cases other than
square systems, common sense tells us that the conjecture is very likely to be true for all generic HFE
cases, since square systems are the simplest among all.

As far as we know, our work is the first to give a lower bound for degree of regularity for an HFE
system and accordingly a lower bound for the complexity of the related algebraic attacks. Clearly from
the point of view of cryptography, this result could have significant impact in many related areas, in
particular, in understanding the complexity of algebraic attacks and in designing practical parameters
for cryptosystems.

The results of this paper strongly suggest that, as speculated in [8], using odd characteristics of
a reasonable size is a good idea to resist algebraic attacks, and therefore confirms the idea that we
should move to fields of odd characteristic.

We would also like to point out that the square scheme itself is broken [1], but by a totally different method
from the direct algebraic attacks by solving the public equations. Algebraic attacks were considered as the most
powerful tool in attacking the HFE systems before due to their effectiveness in breaking the HFE Challenge 1.
The result of this paper, however, shows that algebraic attacks are not something we should worry too much
about in general for the HFE family once we use odd characteristics q = Ω(n).

This paper is organized as follows. We will first introduce briefly HFE and square cryptosystems
in the section below. In Section 3, we review the definitions and basic properties of the degree of
regularity from [7,9]. In Section 4, we will prove the main theorem that the degree of regularity of
square systems is indeed q and derive that the complexity of the Gröbner basis attacks on square
systems is indeed exponential.

2. Square systems

2.1. HFE systems and square systems

In this paper, we will consider the case that q is an odd prime number, which also implies that
q > 2.

Let F be a finite field of order q and K a degree n extension of F.
We will, in general, use xi to denote variables over F and use Xi as variables over K.
Any map P from K to K can be expressed uniquely as a polynomial function with coefficients in

K and its degree less than qn , namely

P (X) =
qn−1∑
i=0

ai Xi, ai ∈K.

The degree of P (X) is the highest degree of the monomial above with non-zero coefficients.
There is a standard map φ, which identifies K as Fn:

Fn φ−→ K,

K
φ−1

−→ Fn.

Then we can build a new map

P ′(x0, . . . , xn−1) = (
p0(x0, . . . , xn−1), . . . , pn−1(x0, . . . , xn−1)

) = φ−1 ◦ P ◦ φ(x0, . . . , xn−1),

which is essentially P but viewed as a function over Fn .
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In this case, again each component pi(x0, . . . , xn−1) can be expressed uniquely as polynomials of
the variables xi such that the highest power of xi (i = 0, . . . ,n − 1) is not more than q, which is due
to the fact that xq

i = xi over F. Then the degree of the map P ′ is the highest degree of all the p′
i

components.
We can say that these are two different ways of defining the degree for P , the degree over K and

the degree over F. The degree over K is the degree of P (X). The degree of P over F is the degree
of P ′ . For example, the functions Xqi

are linear over F. Thus, the degree of Xqi
over K is qi while

the degree of this map over F is 1. The degree of any monomial Xd over F is the sum of the digits
in the base q expansion of d (i.e. the q-Hamming weight of d). In general, the degree of P (X) over F

is the maximum of the q-Hamming weights associated to the monomial terms of P (X).
A map from K to K has F-degree 2 if all of its monomial terms have exponents of the form qi +q j

or qi for some i and j. The general form of such an F-quadratic function is

P (X) =
n−1∑

i, j=0

aij Xqi+q j +
n−1∑
i=0

bi Xqi + c.

The function P (X) with a fixed low degree over F is used to build the HFE multivariate public key
cryptosystems and originally the q is selected as 2, which is very different from what we consider
here, namely q is an odd prime.

The simplest form of a quadratic function over F is

P (X) = X2,

which is what we will study in this paper. Clearly if q = 2, this map is of actually degree one over F

as explained above.
In a square system, just like any HFE system, we build the public key P̄ from an F-quadratic

map P , where the nature of P is further hidden by pre- and post-composition with invertible affine
linear maps L1, L2 :Fn → Fn:

P̄ = L1 ◦ P ′ ◦ L2.

2.2. Algebraic solvers – Gröbner basis attacks

The question we will address here is how difficult it is to find directly the solution of a system of
quadratic multivariate equations

p̄1 = b1, . . . , p̄n = bn,

where

P̄ (x1, . . . , xn) = (
p̄1(x1, . . . , xn), . . . , p̄n(x1, . . . , xn)

)
.

The most successful attacks on HFE systems use the improved Gröbner basis algorithms F4 and F5
to solve the polynomial system p̄1 = b1, . . . , p̄n = bn .

Since L1 performs a transformation of deriving a set of new polynomials from linear combination
of the old ones, and L2 performs a change of basis of the variables of the polynomials, and neither
transformation changes the degree of regularity, without loss of generality we only need to consider
the case p1 = 0, . . . , pn = 0 where the pi are the component functions of P ′ = φ ◦ P ◦ φ−1.

Implementation of the Gröbner basis algorithm implicitly involves searching through combinations
of multiples of the pi by polynomials of a fixed degree for polynomials of smaller degree than ex-
pected. If the combination

∑
i gi pi has degree which is smaller than the maximum (deg gi + deg pi),
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then the corresponding combination of highest degree terms
∑

i gh
i ph

i is zero, where f h stands for the
highest degree homogeneous component of a function f (we will also call f h the leading component
of f ). The key moment in the calculation is when non-trivial combinations of this type occur. These
non-trivial relations will very likely generate what is called mutant [5,6,13], which is instrumental in
solving the system. Obviously the combinations

ph
i ph

j − ph
j ph

i

are tautologically zero and the equation

((
ph

i

)q−1 − 1
)

pi = 0

is a result of the identity aq = a in F. A non-trivial relation is one that does not follow from these
trivial identities. As discussed earlier, the degree at which the first non-trivial relation occurs is called
the degree of regularity. Extensive experiments have shown that the algorithm will terminate at or
shortly after the degree of regularity for the case of HFE systems. The algorithm does not finish before
dealing with polynomials at the degree of regularity. Thus the calculation of the degree of regularity
is crucial in understanding the complexity of the algorithm.

3. Degree of regularity

We will present the definition of degree of regularity as defined in [9] and the main results in
[7,9].

Let

A(n) = F[x1, . . . , xn] = F[x1, . . . , xn]/
〈
xq

1 − x1, . . . , xq
n − xn

〉
.

This is the algebra of functions over Fn . Let p1, . . . , pn be a set of quadratic polynomials in A(n) .
Denote by A(n)

l the subspace of A(n) consisting of functions representable by a polynomial of degree
less than or equal to l.

For all j we have a natural map ψ j : (A(n)
j )n → A(n)

j+2 given by

ψ j(a1, . . . ,an) =
∑

i

ai pi,

where

(
A(n)

j

)n = A(n)
j × A(n)

j × · · · × A(n)
j .

The key here is the non-trivial “degree falls”; a degree fall occurs when the ai have degree j but∑
i ai pi has degree less than j + 2. Obviously we can have trivial degree falls of the form

p j pi + (−pi)p j = 0

or

(
pq−1

i − 1
)

pi = 0.
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The degree of regularity of the set {p1, . . . , pn} is the first degree at which a non-trivial degree fall
occurs. Obviously we can restrict our attention to the highest degree terms in the ai . Mathematically
this means working in the associated graded ring

B(n) = F[x1, . . . , xn]/
〈
xq

1, . . . , xq
n
〉
.

The degree of regularity of the {p1, . . . , pn} in A(n) will be the first degree at which we find
non-trivial relations among the leading components ph

1, . . . , ph
n (considered as elements of B(n)).

Denote by B(n)

l the subspace of B(n) consisting of homogeneous elements of degree l. Consider an

arbitrary set of homogeneous quadratic elements {λ1, . . . , λn} ∈ B(n)
2 , which are linearly independent.

For all j we have a natural map ψ ′
j : (B(n)

j )n → B(n)
j+2 given by

ψ ′
j(b1, . . . ,bn) =

∑
i

biλi,

where

(
B(n)

j

)n = B(n)
j × B(n)

j × · · · × B(n)
j ,

the direct product of n copies of B(n)
j .

Let R(n)
j (λ1, . . . , λn) = kerψ ′

j , and this comes from the subspace of relations of the form:

∑
i

biλi = 0.

The key here is that

R(n)(λ1, . . . , λn) =
⋃

j

(
R(n)

j (λ1, . . . , λn)
)

is also a module of the ring B(n) , where each element of B(n) acts on the module by multiplying it to
each component of elements:

a(b1, . . . ,bn) = (ab1, . . . ,abn),

where a ∈ B(n) and (b1, . . . ,bn) ∈ R(n) . Inside R(n)
j (λ1, . . . , λn) is the subspace of trivial relations,

Z (n)
j (λ1, . . . , λn), which a submodule generated by elements of the form:

(1) b(0, . . . ,0, λ j, . . . ,0,−λi,0, . . . ,0) for 1 � i < j � n where b ∈ B(n)
j−2; λ j is in the i-th position and

−λi is in the j-th position;
(2) b(0, . . . ,0, λ

q−1
i ,0, . . . ,0) for 1 � i � n and b ∈ B(n)

j−2(q−1)
; where λ

q−1
i is in the i-th position.

The space of non-trivial relations is the quotient space R(n)
j (λ1, . . . , λn)/Z (n)

j (λ1, . . . , λn).

Definition 3.1. The degree of regularity of {λ1, . . . , λn} is defined by

Dreg
({λ1, . . . , λn}) = min

{
j
∣∣ Z (n)

j−2(λ1, . . . , λn) � R(n)
j−2(λ1, . . . , λn)

}
.
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If the λi are linearly independent, the degree of regularity is dependent only on the subspace
generated by the λi . So we can simplify the notation by denoting the space generated by the λi by V
and writing Dreg(V ) for Dreg({λ1, . . . , λn}).

There are two important properties of the degree of regularity observed in [9].

Property 1. Let V ′ be a subspace of V . Then Dreg(V )� Dreg(V ′).

Property 2. Let K be an extension of F. Then Dreg(VK) = Dreg(V ).

Here VK = K ⊗F V . The second property tells us that the degree of regularity is invariant under
field extension.

Let B(n)
K

= K⊗FF[x1, . . . , xn]. VK can be viewed as the K-vector space generated by the λi . We will
look at the situation where P is a quadratic map with component functions p1, . . . , pn ∈ A(n) , which
comes from an associated map P ′ . Let V and V h be the vector spaces generated by p1, . . . , pn and
their leading components, namely the component of all their respective quadratic terms: ph

1, . . . , ph
n .

Our goal is to find a bound for Dreg V h . We begin by extending the base field to K. When we extend
the base field in A(n) , we pass from functions from Fn to F to functions from Fn to K:

Fn pi−→ F
embedding−−−−−−→K.

Then via the linear isomorphism φ−1:K → Fn , we can show that this algebra is isomorphic to the
algebra of functions from K to K which is simply K[X]/〈Xqn − X〉 [7].

From elementary Galois theory [7], we know that the space VK corresponds, under this identifica-
tion, to the space generated by P , P q, . . . , P qn−1

.
Furthermore, if we filter the algebra K[X]/〈Xqn − X〉 by degree of functions over F, then the linear

component is spanned by X, Xq, . . . , Xqn−1
. We then can show easily [7] that the associated graded

ring will then be the algebra

K[X0, . . . , Xn−1]/
〈
Xq

1, . . . , Xq
n
〉

where Xi corresponds to Xqi
. This is naturally isomorphic to the algebra B(n) with coefficients ex-

tended to K: B(n) ⊗F K.
We will denote this new ring as:

B(n) = K[X0, . . . , Xn−1]/
〈
Xq

1, . . . , Xq
n−1

〉
.

Let Pi denote the leading component of P qi
in B(n) . If P is defined as above for the square system,

then

Pi = X2
i .

The space generated by the Pi is exactly V h
K

, which corresponds to the subspace of B(n) ⊗F K gener-
ated by the ph

i , the homogeneous highest degree part of pi . Putting all the above together we get the
following important theorem.

Theorem 3.2. (See [9].) Dreg({p1, . . . , pn}) = Dreg({ph
1, . . . , ph

n}) = Dreg({P0, . . . , Pn−1}).

In [7], inspired by the work [9], for the first time, there is a rigorous proof for the following much
expected important theorem:
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Theorem 3.3. Let P be a quadratic operator of degree D. If Q-Rank(P ) > 1, the degree of regularity of the
associated system is bounded by

(q − 1)(
logq(D − 1)� + 1)

2
+ 2,

where Q-Rank(P ) of a quadratic operator P (X) is the minimal rank of all quadratic forms spanned by V h
K

generated by P0, . . . , Pn−1 . If Q-Rank(P ) = 1, then the degree of regularity is less than or equal to q.

It is clear that this theorem gives an upper bound of the degree of regularity, and with some rea-
sonable assumptions on the termination conditions, this gives us an upper bound of the complexity to
break the related HFE systems algebraically. But, to ensure the security of the systems from algebraic
attacks, what we actually need is a lower bound, which is what we are going to prove in the next
section for square systems.

4. The degree of regularity of square systems

To prove the main theorems, we will first present some basic results on B(n) .
Denote by B(n)

l the subspace of B(n) consisting of homogeneous elements of degree l.

Lemma 4.1. In B(n) = K[X0, . . . , Xn−1]/〈Xq
0, . . . , Xq

n−1〉, the monomials

n−1∏
i=0

Xai
i , ai < q,

n∑
i=0

ai = k,

are linearly independent and form a basis of B(n)

k .

This follows from definition.

Lemma 4.2. There is a natural ring embedding of B(n) into B(n+1) , which we denote as En, where

En(Xi) = Xi,

for i = 0, . . . ,n − 1.

The proof also follows from definition and the lemma above.

Lemma 4.3 (Inductive decomposition lemma). B(n+1) is a direct sum of two subspaces:

B(n+1) = B(n)∗ ⊕ C (n+1),

where

B(n)∗ = En
(

B(n)
)
,

which is the image space of B(n) in B(n+1) under En; and

C (n+1) = {
The space spanned by monomials in B(n+1), which are divisible by Xn

}
.
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This is a very natural decomposition of the ring namely into the sum a space contains monomials
of variable X0, . . . , Xn−1, which is B(n)∗ , and the space of monomials involving Xn , which is C (n+1) .

This lemma can be easily proved by showing that the following ring homomorphism sequence is
exact:

0 → C (n+1) In−→ B(n+1) Prn−→ B(n) → 0,

where In is a ring embedding, Prn is a ring homomorphism such that

Prn(Xi) = Xi, i = 0, . . . ,n − 1; Prn(Xn) = 0,

and

Prn ◦ En = Id,

where Id stands for identity map on B(n) .

Theorem 4.4. Let f i(X0, . . . , Xn−1), i = 0, . . . ,n − 1, be elements in B(n)
j , j < q − 2. Let

Φ j
(

f0(X0, . . . , Xn−1), . . . , fn−1(X0, . . . , Xn−1)
) =

∑
f i(X0, . . . , Xn−1)X2

i .

If

Φ j
(

f0(X0, . . . , Xn−1), . . . , fn−1(X0, . . . , Xn−1)
) = 0

then

F = (
f0(X0, . . . , Xn−1), . . . , fn−1(X0, . . . , Xn−1)

)
belongs to

Z (n)
j

(
X2

0, . . . , X2
n−1

)
,

the subspace of degree j elements in the space of trivial syzygies corresponding to the system: {X2
0, . . . , X2

n−1}.

Here, Z (n)
j (X2

0, . . . , X2
n−1) follows the same definition as that of Z (n)

j (λ1, . . . , λn) in Section 3,
namely, it is a subspace of degree j elements in the module generated by

b
(
0, . . . ,0, X2

j−1, . . . ,0,−X2
i−1,0, . . . ,0

)
for 0 � i < j � n − 1, where b ∈ B(n)

j−2, X2
j−1 is in the i-th position and −X2

i−1 is in the j-th position.
Note here that

(
0, . . . ,0,

(
X2

i

)q−1
,0, . . . ,0

) = (0, . . . ,0).

Note also that this theorem implies that for j < q − 2, Z (n)
j−2 = R(n)

j−2 and thus the degree of regu-
larity must be at least q.
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We prove this by induction on n.

1. The case, when n = 1.
First, it is straightforward that when n = 1, the claim is true, since

X2
0 × f (X0) = 0,

if the degree of f (X0) < q − 2, since this equation implies that

f (X0) = Xq−2
0 F ′(X0),

for some polynomial F ′(X0).

2. Prove the case n + 1 with the assumption that the statement is true for the case n.
Now, let us assume that the statement is true for the case n, we will try to show the case n + 1 is

also true.
Assume that j < q − 2 and

Φ j
(

f0(X0, . . . , Xn−1, Xn), . . . , fn(X0, . . . , Xn)
) =

n∑
0

f i(X0, . . . , Xn)X2
i = 0,

where f i(X0, . . . , Xn) are homogeneous of degree j.
Lemma 4.3, the inductive decomposition lemma, allows us to rewrite for each i < n:

f i(X0, . . . , Xn) = f ∗
i (X0, . . . , Xn−1) + Xn f ′

i (X0, . . . , Xn),

where

f ∗
i (X0, . . . , Xn−1) = En ◦ Prn

(
f i(X0, . . . , Xn)

)
.

Then we have that

n∑
0

f i(X0, . . . , Xn)X2
i

=
n−1∑

0

f ∗
i (X0, . . . , Xn−1)X2

i + Xn

n−1∑
0

X2
i f ′

i (X0, . . . , Xn) + X2
n fn(X0, . . . , Xn) = 0,

where

n−1∑
0

f ∗
i (X0, . . . , Xn−1)X2

i = En ◦ Prn

(
n−1∑

0

f i(X0, . . . , Xn−1)X2
i

)
.

From Lemma 4.3, the inductive decomposition lemma, this leads to

n−1∑
f ∗

i (X0, . . . , Xn−1)X2
i = 0,
0
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and

Xn

n−1∑
0

X2
i f ′

i (X0, . . . , Xn) + X2
n fn(X0, . . . , Xn) = 0.

Due to the induction assumption, we know that

(
f ∗
0 (X0, . . . , Xn−1), . . . , f ∗

n−1(X0, . . . , Xn−1)
) ∈ Z (n)

j

(
X2

0, . . . , X2
n−1

)
and therefore we have:

(
f ∗
0 (X0, . . . , Xn−1), . . . , f ∗

n−1(X0, . . . , Xn−1),0
) ∈ Z (n+1)

j

(
X2

0, . . . , X2
n−1, X2

n

)
. (1)

Using further decomposition according to Lemma 4.3, the inductive decomposition lemma, we
have that

Xn

n−1∑
0

X2
i f ′

i (X0, . . . , Xn) + X2
n fn(X0, . . . , Xn)

= Xn

(
n−1∑

0

(
X2

i f ′ ∗
i (X0, . . . , Xn−1) + Xn f ′′

i (X0, . . . , Xn)
))

+ X2
n fn(X0, . . . , Xn) = 0,

where

f ′ ∗
i (X0, . . . , Xn−1) = En ◦ Prn

(
f ′

i (X0, . . . , Xn)
)
.

Then we have that

Xn

(
n−1∑

0

X2
i f ′ ∗

i (X0, . . . , Xn−1)

)
+ X2

n

(
n−1∑

0

X2
i f ′′

i (X0, . . . , Xn) + fn(X0, . . . , Xn)

)
= 0.

Then, from Lemma 4.1 in this section, we know that

Xn

(
n−1∑

0

X2
i f ′ ∗

i (X0, . . . , Xn−1)

)
= 0 (2)

and

X2
n

(
n−1∑

0

X2
i f ′′

i (X0, . . . , Xn) + fn(X0, . . . , Xn)

)
= 0.

Eq. (2) implies that (
n−1∑

0

X2
i

(
f ′ ∗

i (X0, . . . , Xn−1)
)) = 0,

which is a direct consequence of Lemma 4.1 in this section.
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Since the degree of f ′ ∗
i (X0, . . . , Xn−1) for i < n is j − 1 < q − 2, according to the induction as-

sumption, we have

(
f ′ ∗
0 (X0, . . . , Xn−1), . . . , f ′ ∗

n−1(X0, . . . , Xn−1)
) ∈ Z (n)

j−1

(
X2

0, . . . , X2
n−1

)
and, therefore, we have

(
f ′ ∗
0 (X0, . . . , Xn−1), . . . , f ′ ∗

n−1(X0, . . . , Xn−1),0
) ∈ Z (n+1)

j−1

(
X2

0, . . . , X2
n−1, X2

n

)
, (3)

and therefore we have:

(
Xn f ′ ∗

0 (X0, . . . , Xn−1), . . . , Xn f ′ ∗
n−1(X0, . . . , Xn−1),0

) ∈ Z (n+1)
j

(
X2

0, . . . , X2
n−1, X2

n

)
. (4)

Then again with Lemma 4.1 and the fact that the annihilator of X2
n is generated by Xq−2

n , we have
that

X2
n

(
n−1∑

0

X2
i f ′′

i (X0, . . . , Xn) + fn(X0, . . . , Xn)

)
= 0

implies

n−1∑
0

f ′′
i X2

i (X0, . . . , Xn) + fn(X0, . . . , Xn) = 0.

Therefore

fn(X0, . . . , Xn) = −
n−1∑

0

X2
i f ′′

i (X0, . . . , Xn).

This means that

(
X2

n f ′′
0 (X0, . . . , Xn), . . . , X2

n f ′′
n−1(X0, . . . , Xn), fn(X0, . . . , Xn)

)
=

(
X2

n f ′′
0 (X0, . . . , Xn), . . . , X2

n f ′′
n−1(X0, . . . , Xn),−

n−1∑
0

X2
i f ′′

i (X0, . . . , Xn)

)

= (
X2

n f ′′
0 (X0, . . . , Xn),0, . . . ,0,−X2

0 f ′′
0 (X0, . . . , Xn)

)
+ (

0, X2
n f ′′

1 (X0, . . . , Xn),0, . . . ,0,−X2
1 f ′′

1 (X0, . . . , Xn)
)

+ · · · + (
0, . . . ,0, X2

n f ′′
n−1(X0, . . . , Xn),−X2

n−1 f ′′
n−1(X0, . . . , Xn)

)
= f ′′

0 (X0, . . . , Xn)
(

X2
n ,0, . . . ,0,−X2

0

)
+ f ′′

1 (X0, . . . , Xn)
(
0, X2

n ,0, . . . ,0 − X2
1

)
+ · · · + f ′′

n−1(X0, . . . , Xn)
(
0, . . . , X2

n ,−X2
n−1

)
.

This gives:
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(
X2

n f ′′
0 (X0, . . . , Xn), . . . , X2

n f ′′
n−1(X0, . . . , Xn), fn(X0, . . . , Xn)

) ∈ Z (n+1)
j

(
X2

0, . . . , X2
n−1, X2

n

)
. (5)

Since

(
f0(X0, . . . , Xn−1, Xn), . . . , fn(X0, . . . , Xn)

)
= (

f ∗
0 (X0, . . . , Xn−1), . . . , f ∗

n−1(X0, . . . , Xn−1),0
)

+ (
Xn f ′ ∗

0 (X0, . . . , Xn−1), . . . , Xn f ′ ∗
n−1(X0, . . . , Xn−1),0

)
+ (

X2
n f ′′

0 (X0, . . . , Xn), . . . , X2
n f ′′

n−1(X0, . . . , Xn), fn(X0, . . . , Xn)
)
,

with (1), (4), (5), we have that

(
f0(X0, . . . , Xn), . . . , fn(X0, . . . , Xn)

) ∈ Z (n+1)
j

(
X2

0, . . . , X2
n−1, X2

n

)
.

This finishes the proof for the theorem.

Lemma 4.5. (Xq−2
0 ,0, . . . ,0) does not belong to Z (n)

q−2(X2
0, . . . , X2

n−1, X2
n ).

This surely follows from the main theorem above from [7].
But, we give a different but direct proof also by induction.
It is obvious that for n = 0 (the base case of one variable), the lemma is true since Z (n)

q−2(X2
0, . . . ,

X2
n−1, X2

n ) contains only the zero element.
Assume our claim is true for the case n, we now proceed to prove the case for n + 1.
Assume that (Xq−2

0 ,0, . . . ,0) does belong to Z (n)
q−2(X2

0, . . . , X2
n−1, X2

n ), since 2(q − 1) > q − 2 then
we have

(
Xq−2

0 ,0, . . . ,0
) =

∑
1�i< j�n

fi j(X0, . . . , Xn)
(
0, . . . , X2

i ,0, . . . ,0,−X2
j ,0, . . . ,0

)

for some f i j ∈ B(n) .
Then we have

En ◦ Prn
(

Xq−2
0 ,0, . . . ,0

) = (
Xq−2

0 ,0, . . . ,0
)

= En ◦ Prn

( ∑
1�i< j�n

fi j(X0, . . . , Xn)
(
0, . . . , X2

j ,0, . . . ,0,−X2
i ,0, . . . ,0

))

=
( ∑

1�i< j�n−1

f ∗
i j(X0, . . . , Xn−1)

(
0, . . . , X2

j ,0, . . . ,0,−X2
i ,0, . . . ,0

))

+
( ∑

1�i< j�n−1

f ∗
i,n(X0, . . . , Xn−1)

(
0, . . . ,0, . . . ,0,0,0, . . . ,−X2

i

))
.

Then if we only look at the first n components, we have

(
Xq−2

0 ,0, . . . ,0
) =

∑
1�i< j�n−1

f ∗
i j(X0, . . . , Xn−1)

(
0, . . . , X2

j ,0, . . . ,0,−X2
i ,0, . . . ,0

)
,
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where (Xq−2
0 ,0, . . . ,0) is of size n. This implies that all f ∗

i j are zero follows from induction assump-
tion.

We therefore have that

f i j(X0, . . . , Xn) = Xn f ′
i j(X0, . . . , Xn)

for i < j < n.
Then we have that

(
Xq−2

0 ,0, . . . ,0
)

=
∑

1�i< j�n−1

Xn f ′
i j(X0, . . . , Xn)

(
0, . . . , X2

j ,0, . . . ,0,−X2
i ,0, . . . ,0

)

+
( ∑

1�i< j�n−1

f i,n(X0, . . . , Xn−1)
(
0, . . . , X2

n , . . . ,0,0,0, . . . ,−X2
i

))

=
∑

1�i< j�n−1

Xn f ′
i j(X0, . . . , Xn)

(
0, . . . , X2

j ,0, . . . ,0,−X2
i ,0, . . . ,0

)

+ (
f0,n(X0, . . . , Xn−1)X2

n , . . . ,0, . . . ,0,0,0, . . . ,− f0,n(X0, . . . , Xn−1)X2
i

)
+

( ∑
1�i< j�n−1

f i,n(X0, . . . , Xn−1)
(
0, . . . , X2

n , . . . ,0,0,0, . . . ,−X2
i

))
.

Let us look at the first component, we have

Xq−2
0 = Xn

( ∑
1�i< j�n−1

Xn f ′
0 j(X0, . . . , Xn)X2

j

)
+ X2

n f0,n(X0, . . . , Xn−1),

which is impossible since the LHS can factor out Xn , while the RHS does not.
This proves our lemma.
This lemma implies that

Dreg
({P0, . . . , Pn−1}

)
� q,

while the theorem above implies that

Dreg
({P0, . . . , Pn−1}

)
� q,

therefore, we have

Theorem 4.6. For a square system,

Dreg
({P0, . . . , Pn−1}

) = q.

Theorem 4.7. For a square systems,

Dreg
({p1, . . . , pn}

) = q.
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There is also a possibility to prove this theorem in a more abstract way. This proof can be sketched
as follows:

(1) The first step is to prove that: over the polynomial ring A = K[X0, . . . , Xn−1], the polynomial
system {X2

0, . . . , X2
n−1} does not have any non-trivial syzygies, due to the fact that {X2

0, . . . , X2
n−1} are

algebraically independent over A.
(2) Let Φ be the map: An → B(n) given by

Φ(b0, . . . ,bn) =
n−1∑

0

bi X2
i ,

where

An = A × A × · · · × A,

the direct product of n copies of A, then, the second step is to prove that:

the syzygy module of the polynomial system {X2
1, . . . , X2

n−1} over

B(n) = K[X0, . . . , Xn−1]/
〈
Xq

0, . . . , Xq
n−1

〉
is isomorphic to kernel(Φ)/T n, where T = Ideal〈Xq

0, . . . , Xq
n〉.

(3) The last step is to use a filtration of module argument to show that there is no non-trivial
syzygies before the degree of q − 1 and this proves also our main theorem.

We omit the details of this proof since the proof in this paper is straightforward and easier to
understand.

Theorem 4.8. For a square systems with n variables and q = Ω(n), the complexity to invert the system alge-
braically is exponential.

Since Gröbner basis attacks on a square system will terminate at degree equal to or above the
degree of regularity, the running time of this algorithm will be clearly exponential.

Remark. If one pays close attention, one can reach an easy conclusion that our theorem works also in
the case of any odd characteristic field including composite field, however, the situation of composite
fields is a little subtle in terms of complexity analysis due to the fact that we can work on smaller
field (the prime field) with more variables. This case will be dealt with in a subsequent paper.

5. Conclusion

Following the previous works of [7,9,11], this paper proves that in the case of a square system,
which was proposed in [3], namely, when the system is given by:

P (X) = X2,

the degree of regularity is exactly q.
This theorem proves a conjecture in [7] on the lower bound of the degree of regularity for the case

of q is odd and q is the size of Ω(n), which implies that to invert the related systems algebraically
using Gröbner basis algorithms is actually exponential.

This work is the first to give a lower bound for degree of regularity for an HFE system based
on theoretical proofs, and, therefore, shows a lower bound for the complexity of the related algebraic
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attacks. Clearly from the point view of cryptography, this result could have significant impacts in many
related areas, in particular, in understanding the complexity of algebraic attacks and in designing
practical parameters for various cryptosystems. The results of this paper strongly suggest that, as
speculated in [8], using odd characteristics of a reasonable size for cryptosystems is indeed a good
idea to resist algebraic attacks.
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