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Multivariate cryptography is one of the main candidates to 
guarantee the security of communication in the presence of 
quantum computers. While there exist a large number of se-
cure and efficient multivariate signature schemes, the number 
of practical multivariate encryption schemes is somewhat lim-
ited. In this paper we present our results on creating a new 
multivariate encryption scheme, which is an extension of the 
original SimpleMatrix encryption scheme of PQCrypto 2013. 
Our scheme allows fast en- and decryption and resists all 
known attacks against multivariate cryptosystems. Further-
more, we present a new idea to solve the decryption failure 
problem of the original SimpleMatrix encryption scheme.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cryptographic techniques are an essential tool to guarantee the security of communica-
tion in the modern society. Today, the security of nearly all of the cryptographic schemes 
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used in practice is based on number theoretic problems such as factoring large integers 
and solving discrete logarithms. The best known schemes in this area are RSA [19], 
DSA [13] and ECC. However, schemes like these will become insecure as soon as large 
enough quantum computers arrive. The reason for this is Shor’s algorithm [20], which 
solves number theoretic problems such as integer factorization and discrete logarithms 
in polynomial time on a quantum computer. Therefore, one needs alternatives to those 
classical public key schemes which are based on mathematical problems not affected by 
quantum computer attacks.

Besides lattice, code and hash based cryptosystems, multivariate cryptography is one 
of the main candidates for this [1]. Multivariate schemes are very fast and require only 
modest computational resources, which makes them attractive for the use on low cost 
devices such as smart cards and RFID chips [2,3]. However, while there exist many 
practical multivariate signature schemes [7,12,16], the number of efficient and secure 
multivariate encryption schemes is somewhat limited.

In this paper we present our results on creating a new multivariate encryption scheme 
called the SimpleMatrix encryption scheme. The scheme allows fast en- and decryption 
and resists all known attacks against multivariate schemes.

After describing the basic SimpleMatrix encryption scheme of PQCrypto 2013 [21], we 
present a new improved version of the scheme. Compared to the original SimpleMatrix 
scheme, our scheme reduces the probability of decryption failures and speeds up the 
decryption process further.

The rest of the paper is organized as follows. In Section 2 we give an introduction 
into the area of multivariate cryptography. Section 3 describes the MinRank attack and 
its application to the HFE cryptosystem which is one of the most famous multivariate 
encryption schemes. Section 4 then introduces the SimpleMatrix scheme in its basic form, 
whereas Section 5 presents our improvements of the original scheme. In Section 6 we give 
a detailed security analysis of the improved SimpleMatrix scheme. Section 7 describes 
the parameter selection and Section 8 deals with the efficiency of our scheme and gives 
a practical implementation. Finally, Section 9 concludes the paper.

2. Multivariate cryptography

Let F = Fq be a finite field with q elements. The basic objects of multivariate cryp-
tography are systems of multivariate quadratic polynomials (see equation (1)).
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Fig. 1. General workflow of multivariate encryption schemes.

In the polynomials p(1), . . . , p(m), all the coefficients p(k)
ij , p(k)

i and variables are elements 
of the field F. The security of multivariate schemes is based on the

Problem MQ. Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x) as shown 
in equation (1), find a vector x̄ = (x̄1, . . . , ̄xn) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic polynomials 
over the field GF(2) [11].

To build a public key cryptosystem on the basis of the MQ problem, one starts with an 
easily invertible quadratic map F : Fn → F

m (central map). To hide the structure of F in 
the public key, one composes it with two invertible affine (or linear) maps S : Fm → F

m

and T : Fn → F
n. The public key is therefore given by P = S ◦ F ◦ T . The private key

consists of S, F and T and therefore allows to invert the public key.
In this paper we concentrate on multivariate encryption schemes. The standard en-

cryption/decryption process works as shown in Fig. 1.

Encryption: To encrypt a message d ∈ F
n, one simply computes c = P(d). The cipher-

text of the message d is c ∈ F
m.

Decryption: To decrypt the ciphertext c ∈ F
m, one computes recursively y = S−1(c), 

x = F−1(y) and d = T −1(x). d ∈ F
n is the plaintext corresponding to the ciphertext c.

Since, for multivariate encryption schemes, we have m ≥ n, the pre-image of the 
vector y under the central map F and therefore the decrypted plaintext is unique.

There are numerous proposals to create the central map F of multivariate cryptosys-
tems. These attempts can be divided into two main groups.

For BigField schemes, the central map F̄ : E → E is defined over a large extension 
field E of F of degree n. One uses an isomorphism φ between E and the vector space Fn

to transform it into a map F̃ = φ ◦ F̄ ◦ φ−1 : Fn → F
n. The public key has the form

P = S ◦ F̃ ◦ T = S ◦ φ ◦ F̄ ◦ φ−1 ◦ T

with two invertible linear (or affine) maps S and T (see Fig. 2).



C. Tao et al. / Finite Fields and Their Applications 35 (2015) 352–368 355
Fig. 2. Construction of BigField schemes.

Algorithm 1 MinRank attack.
Input: matrices P (1), . . . , P (m)

Output: Linear combination P̃ =
∑m

i=1 αi · P (i) of rank ≤ r

1: repeat
2: Choose randomly a vector λ ∈ F

m and compute P =
∑m

i=1 λi · P (i).
3: if Rank (P ) > 1 and Rank(P ) < n then
4: Choose randomly a vector α from Ker(P ).
5: P̃ ←

∑m
i=1 αi · P (i)

6: end if
7: until Rank (P̃ ) ≤ r

8: return P̃

For SingleField schemes, all the computations are performed over a relatively small 
field F. One chooses an easily invertible quadratic map F : Fn → F

m and combines F in 
the public key with two invertible linear (or affine) maps S : Fm → F

m and T : Fn → F
n, 

i.e. P = S ◦ F ◦ T .
So far, all known constructions for multivariate encryption schemes are BigField con-

structions. The best known examples for this are MI [15] and HFE [18]. On the other 
hand, SingleField constructions were only used for multivariate signature schemes such 
as UOV and Rainbow [7].

In this sense, the SimpleMatrix scheme as proposed in Section 4 is the first multivariate 
encryption scheme based on a SingleField construction. This enables us to perform all 
the operations in a relatively small field which makes our scheme much more efficient 
than for example HFE (see also Section 8). More information on existing multivariate 
schemes can be found in [5].

3. The MinRank attack

The MinRank attack [10] is a general attack against multivariate cryptosystems. The 
MinRank problem can be defined as follows.

Problem MinRank. Given m n × n matrices P (1), . . . , P (m), find a linear combination 
P̃ =

∑m
i=1 αiP

(i) of minimal rank r.

This problem can be solved as shown in Algorithm 1, whose complexity can be esti-
mated by [10]
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ComplexityMinRank = O(q�m
n �·r ·m3). (2)

Here, q is the cardinality of the underlying field F.

3.1. The MinRank attack against HFE

3.1.1. The HFE cryptosystem
The HFE cryptosystem as proposed by Patarin in [18] is one of the best known 

multivariate encryption schemes. Let p be a prime number, F = GF(p) and E be a 
degree n extension field of F. Let φ : E → F

n be the canonical isomorphism between the 
field E and the vector space Fn. The central map F̄ of the HFE scheme is a map from 
E to itself of the form

F̄(X) =
r−1∑
i=0

r−1∑
j=0

aijX
qi+qj , (3)

where the coefficients aij are chosen from the field E and r is a small constant (to enable 
efficient decryption).1 Due to the special structure of the map F̄ , the map

F̃ : Fn → F
n, (x1, . . . , xn) 	→ φ ◦ F̄ ◦ φ−1(x1, . . . , xn) (4)

is a homogeneous quadratic map from Fn to itself.
To hide the structure of F̃ in the public key, one combines it with two invertible linear 

maps S and T : Fn → F
n. Therefore, the public key of the HFE scheme has the form

P(x1, . . . , xn) = S ◦ F̃ ◦ T (x1, . . . , xn) = S ◦ φ ◦ F̄ ◦ φ−1 ◦ T (x1, . . . , xn). (5)

3.1.2. The MinRank attack on HFE
In this paragraph we describe the attack of Kipnis and Shamir [14] against the HFE 

cryptosystem. The key idea of their attack is to lift the maps S, T and P to functions 
S�, T � and P� over the extension field E. Since S and T are linear maps, S� and T �

have the form

S�(X) =
n−1∑
i=1

si ·Xqi and T �(X) =
n−1∑
i=1

ti ·Xqi , (6)

with coefficients si and ti ∈ E. The function P� can be expressed as

P�(X) =
n−1∑
i=0

n−1∑
j=0

p�ijX
qi+qj = X · P � ·XT , (7)

1 For the simplicity of our description, we restrict here to a homogeneous map F̄ .
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where P � = [p�ij ] ∈ E
n×n and X = (Xq0

, Xq1
, . . . , Xqn−1). Due to the relation P�(X) =

S� ◦ F̄ ◦ T �(X) we get S� −1 ◦ P�(X) = F̄ ◦ T �(X) and

P̃ =
n−1∑
k=0

sk · P �k = W · F̄ ·WT (8)

with p� k
ij = pq

k

i−k,j−k, wij = sq
i

j−i mod n and F̄ being the n × n matrix representing the 
central map F̄ . Note that, due to the special structure of F̄ , the only nonzero entries in 
the matrix F̄ are located in the upper left r × r submatrix.

Since the rank of the matrix W · F̄ ·WT is less or equal to r, we can determine the 
coefficients sk by solving an instance of the MinRank problem (i.e. by Algorithm 1).

In the context of multivariate public key cryptosystems, the MinRank attack can be 
used to find linear combinations of the public key polynomials of low rank which then 
correspond to central polynomials. The MinRank attack is therefore applicable to all 
multivariate schemes whose central polynomials are of low rank. The key strategy of 
our construction is therefore to develop a multivariate encryption scheme, whose central 
polynomials are of relatively high rank.

4. The basic SimpleMatrix encryption scheme

4.1. Description of the scheme

The basic SimpleMatrix encryption scheme as proposed in [21] can be described as 
follows.

Key generation: Let F be a finite field with q elements. For a parameter s ∈ N we set 
n = s2 and m = 2n and define three s × s matrices A, B and C of the form

A =
( x1 ... xs

...
...

x(s−1)·s+1 ... xn

)
, B =

⎛⎝ b1 ... bs

...
...

b(s−1)·s+1 ... bn

⎞⎠ , C =
( c1 ... cs

...
...

c(s−1)·s+1 ... cn

)
.

Here, x1, . . . , xn are the linear monomials of the multivariate polynomial ring F[x1,

. . . , xn], whereas b1, . . . , bn and c1, . . . , cn are randomly chosen linear combinations of 
x1, . . . , xn.

One computes E1 = A ·B and E2 = A ·C. The central map F of the scheme consists 
of the m components of E1 and E2.

The public key of the scheme is the composed map P = S ◦ F ◦ T : Fn → F
m with 

two randomly chosen invertible linear maps S : Fm → F
m and T : Fn → F

n, the private 
key consists of the matrices B and C and the linear maps S and T .

Encryption: To encrypt a message d ∈ F
n, one simply computes c = P(d) ∈ F

m.
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Decryption: To decrypt a ciphertext c ∈ F
m, one has to perform the following three 

steps.

1. Compute y = S−1(c). The elements of the vector y ∈ F
m are written into matrices 

Ē1 and Ē2 as follows.

Ē1 =
( y1 ... ys

...
...

y(s−1)·s+1 ... yn

)
, Ē2 =

( yn+1 ... yn+s

...
...

yn+(s−1)·s+1 ... ym

)
.

2. In the second step one has to find a vector x = (x1, . . . , xn) such that F(x) = y. To 
do this, one has to distinguish four cases:
• If Ē1 is invertible, one considers the equation B · Ē−1

1 · Ē2 −C = 0. Therefore one 
gets n linear equations in the n variables x1, . . . , xn.

• If Ē1 is not invertible, but Ē2 is invertible, one considers the equation C · Ē−1
2 ·

Ē1 −B = 0. One gets n linear equations in the n variables.
• If none of Ē1 and Ē2 is invertible, but Ā = A(x) is invertible, one considers the 

relations Ā−1 · Ē1 −B = 0 and Ā−1 · Ē2 −C = 0. One interprets the elements of 
Ā−1 as new variables w1, . . . , wn and therefore gets m linear equations in the m
variables w1, . . . , wn, x1, . . . , xn.

• If none of Ē1, Ē2 and Ā is invertible, there occurs a decryption failure.
3. Finally, one computes the plaintext by d = T −1(x1, . . . , xn).

It might happen that the linear systems in the second step have multiple solutions 
x(1), . . . , x(�). In this case one has to perform the third step of the decryption process 
for each of these solutions to get a set of possible plaintexts d(1), . . . , d(�). By encrypting 
these plaintexts one can test which of them corresponds to the given ciphertext c.

4.2. Probability of decryption failures

If the matrix Ā occurring in the second step of the decryption process is not invertible, 
there occurs a decryption failure. Since the probability of Ā being singular is given by

1 − (1 − 1
qs

)(1 − 1
qs−1 ) · · · (1 − 1

q
) ≈ 1

q
,

we can estimate the probability of a decryption failure occurring by 1
q .

5. The improved new scheme

The basic SimpleMatrix encryption scheme as described in the previous section has 
two main disadvantages:
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• The probability of a decryption failure is (at least for moderate field sizes) relatively 
large.

• The decryption process is not very efficient.

To overcome these disadvantages, we come up with a new strategy. Instead of using 
square matrices A, B and C as in the basic version of the scheme, we generalize the 
scheme to non-square matrices.

5.1. Description of the scheme

Key generation: Let F be a finite field with q elements and r, s, u, v, m, n ∈ N be integers 
satisfying m = s · (u + v), s ≥ r and (n − r(u + v− s)) · (n − r(u + v− s) + 1) ≤ 2m.2 Set

A =

⎛⎝ a11 a12 ... a1r
a21 a22 ... a2r

...
...

. . .
...

as1 as2 ... asr

⎞⎠ , B =

⎛⎜⎝
b11 b12 ... b1u
b21 b22 ... b2u

...
...

. . .
...

br1 br2 ... bru

⎞⎟⎠ , C =

⎛⎝ c11 c12 ... c1v
c21 c22 ... c2v

...
...

. . .
...

cr1 cr2 ... crv

⎞⎠ ,

where A is an s × r matrix, B is an r × u matrix and C is an r × v matrix. The 
elements aij are randomly chosen from the set {x1, . . . , xn}, while the elements bij and 
cij are randomly chosen linear combinations of x1, . . . , xn. As in Subsection 4.1 we define 
E1 = A ·B and E2 = A · C. The central map F of our improved scheme consists of the 
m = s ·(u +v) components of the matrices E1 and E2. Note that each of these components 
is a homogeneous quadratic polynomial in F[x1, . . . , xn] whose associated quadratic form 
has a rank close or equal to 2r.

Additionally one chooses two invertible linear maps S : Fm → F
m and T : Fn → F

n.

The public key of the scheme is the composed map P = S ◦ F ◦ T , the private key
consists of the linear maps S and T as well as the matrices A, B and C.

Encryption: For a message d = (d1, d2, . . . , dn) ∈ F
n, the corresponding ciphertext c ∈

F
m is given by c = P(d).

Decryption: To decrypt the ciphertext c = (c1, c2, . . . , cm) ∈ F
m, one needs to perform 

the following three steps:

1. Compute y = (y1, y2, . . . , ym) = S−1(c) and set

Ē1 =

⎛⎜⎝
y1 y2 ... yu

yu+1 yu+2 ... y2u

...
...

. . .
...

y(s−1)u+1 y(s−1)u+2 ... ysu

⎞⎟⎠ ∈ F
s×u and

2 The reason why we choose (n − r(u + v − s)) · (n − r(u + v − s) + 1) ≤ 2m lies in the effectiveness of 
the decryption process (see Subsection 5.2).
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Ē2 =

⎛⎜⎝
ysu+1 ysu+2 ... ysu+v

ysu+v+1 ysu+v+2 ... ysu+2v

...
...

. . .
...

ysu+(s−1)v+1 ysu+(s−1)v+2 ... ysu+sv

⎞⎟⎠ ∈ F
s×v.

2. In the second step, we have to find a vector x ∈ F
n such that F(x) = y. Let 

Ā = A(x).
• If the rank of Ā is r, then there exists an r × s matrix W such that W · Ā = I, 

where I is the r × r identity matrix. From Ē1 = Ā · B and Ē2 = Ā · C we get 
W · Ē1 = W · Ā · B, W · Ē2 = W · Ā · C and therefore W · Ē1 = B, W · Ē2 = C. 
We interpret the elements of W as new variables and end up with r(u + v) linear 
equations in sr + n unknowns. Then we eliminate the sr elements of W from 
these equations. We obtain roughly r · (u + v− s) linear equations in the variables 
x1, x2, . . . , xn.
The dimension of the solution space of this system is usually very small. Solving 
this system by Gaussian elimination enables us to eliminate most of the unknowns, 
say Z of them. Then we write these Z variables as linear combinations of the 
remaining unknown variables and substitute these equations into the central poly-
nomials. By doing so, we obtain a new system of m quadratic equations in the 
remaining n −Z unknowns. When the number n −Z is small enough, we can solve 
this system efficiently by the Relinearization algorithm of [12] (see Subsection 5.2).

• In the case of Rank(Ā) < r, decryption remains an open problem.
3. Compute the plaintext d ∈ F

n by d = (d1, d2, . . . , dn) = T −1(x).

5.2. Solving the quadratic systems

During the second step of the decryption process we have to solve a system of quadratic 
equations. This system consists of m equations in about n − r · (u + v − s) variables. If 
the condition

(n− r · (u + v − s)) · (n− r · (u + v − s) + 1) ≤ 2m (9)

is fulfilled, we can solve this system easily by the Relinearization technique [12]

1. Interpret each quadratic monomial xixj as a new variable xij .
2. Solve the resulting linear system by Gaussian elimination.

If the condition (9) is fulfilled, the linear system will have exactly one solution which coin-
cides with the solution of the quadratic system.3 The Relinearization technique therefore 
enables us to find the solution of highly overdetermined systems in polynomial time.

3 As we find, the quadratic systems occurring during the decryption process of our scheme have often 
less than n − r · (u + v − s) variables. This enables us to use the Relinearization technique even for some 
parameter sets in which the condition (9) is not fulfilled. We will use this fact when selecting parameters 
for our scheme over GF(216) and GF(28) (see Section 7).
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5.3. Variant of the scheme

We can make the matrix A more general by choosing its entries as random linear 
combinations of the monomials x1, . . . , xn. In this case, we can omit the linear transfor-
mation T . The other parameters are chosen as above. As in Subsection 5.1 we define 
E1 = A · B and E2 = A · C. The central map F of the scheme consists of the m
components of E1 and E2.

The public key of the scheme is therefore the composed map P = S ◦ F with an 
invertible linear transformation S : Fm → F

m, the private key consists of the invertible 
linear transformation S and the matrices A, B and C.

The encryption and decryption processes work as shown in Subsection 5.1. However, 
we can omit step 3 of the decryption process.

5.4. Probability of decryption failures

In the case of the improved SimpleMatrix encryption scheme, a decryption failure 
occurs if and only if the rank of the matrix Ā is less than r. The probability of this can 
be computed by

1 − (1 − 1
qs

)(1 − 1
qs−1 ) · · · (1 − 1

qs−r+1 ) ≈ 1
qs−r+1 .

Therefore, the probability of a decryption failure occurring can be estimated by 1
qs−r+1 . 

By choosing the parameters s and r of our scheme in an appropriate way, we can therefore 
reduce the probability of decryption failures to a negligible value.

6. Security analysis

We analyzed the security of the improved SimpleMatrix encryption scheme against 
all known attacks against multivariate schemes, including

• (High order) linearization equation attacks
• Rank attacks and
• direct/algebraic attacks.

6.1. (High order) linearization equation attack

The linearization equation attack was first discussed in [17] to attack the C� scheme 
of Matsumoto and Imai [15]. Later, the high order linearization equation attack was 
proposed to attack the MFE cryptosystem [6]. We use this method to attack our scheme.

The relations E1 = A ·B and E2 = A · C yield the existence of a polynomial g1 with 
deg(g1) ≤ r, such that B · g1(Ē1) · Ē2 = C · det(Ē1). Therefore, the plaintext and the 
ciphertext satisfy the equation:
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n∑
i0=1

∑
1≤i1≤...≤ir≤m

μi0,i1,...,irdi0ci1 . . . cis +

+
n∑

i0=1

∑
1≤i1≤...ir−1≤m

νi0,i1,...,ir−1di0ci1 . . . cir−1 + . . .

+
n∑

i0=1
γi0di0 +

m∑
i1=1

ξi1ci1 + θ = 0, (10)

which means that we can derive linearization equations of order n + 1. The coefficients 
μi0,i1,...,ir , νi0,i1,···,ir−1 , . . . , γi0 , ξi1 , θ hereby are (so far unknown) elements of the field F. 
The number of these coefficients is

n
r∑

j=0

(
m

j

)
+ m + 1 = n

(
m + r

r

)
+ m + 1.

Using the public key we can generate many plaintext/ciphertext pairs. By substituting 
these plaintext/ciphertext pairs into equation (10), we get n

(
m+r
r

)
+m +1 linear equations 

in n
(
m+r
r

)
+m +1 variables. However, the computation complexity of solving this system 

is 
(
n
(
m+r
r

)
+ m + 1

)ω

, where ω = 3 in the usual Gaussian elimination algorithm and 
ω = 2.3766 in improved algorithms. This shows that, for reasonably chosen parameters, 
high order linearization attacks against the improved SimpleMatrix encryption scheme 
are completely impractical.

6.2. Rank attacks

There are two different methods of using the rank attack. The first one is called the 
MinRank attack or LowRank attack as proposed by Goubin et al. in [10]. The other one 
is called the HighRank attack [4]. In this subsection we analyze the complexity of these 
two attacks against our scheme.

In the case of the SimpleMatrix scheme, the components of the central map F and 
the public key P are homogeneous quadratic polynomials in F[x1, . . . , xn]. Let Qi and Q̄i

(i = 1, . . . , m) be the symmetric matrices associated with the i-th component of F and 
P respectively. Note that, for underlying fields of characteristic 2, the diagonal elements 
of these matrices are 0. In the case of the SimpleMatrix scheme, the rank of the matrices 
Qi is obviously bounded by 2r.

The goal of the MinRank attack is to find a vector t = (t1, t2, . . . , tm) ∈ F
m such 

that the rank of the matrix Q̃ =
∑m

i=1 ti · Q̄i is less or equal to 2r. Such a matrix Q̃
corresponds to a central polynomial. By finding m of these matrices of low rank the 
attacker can therefore recover the affine map S and therefore the private key of the 
scheme.

In order to find such a matrix Q̃ of low rank, the attacker can proceed as shown in 
Algorithm 1.
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The complexity of the MinRank attack against the improved SimpleMatrix scheme 
can be estimated by

O(q�m
n �·2rm3) = O(q4r · r6). (11)

For the HighRank attack, we form an arbitrary linear combination Q̃ =
∑m

i=1 αi · Q̄i and 
find V = Ker(Q̃). If Q̃ has a nontrivial kernel, we set (

∑m
i=1 λi · Q̄i) · V = 0 and check if 

the solution set V̂ for the λi has dimension n − 2r. If this is true, V is, with a certain 
probability, a subspace of T −1(O) where O = {x = (x1, . . . , xn) : x1 = . . . = xn−2r = 0}.

We can therefore use the HighRank attack to recover the secret linear transformation 
T and therefore the private key of our scheme. The complexity of the HighRank attack 
against the improved SimpleMatrix encryption scheme can be estimated by

O(n6 · q2r) = O(r12 · q2r). (12)

As equations (11) and (12) show, Rank attacks against the improved SimpleMatrix 
scheme are completely impractical.

6.3. Direct attacks

The most straightforward way to attack a multivariate encryption scheme is by trying 
to solve the public system P(d) = c for c (plaintext recovery attack). To do this, an 
attacker can use an algorithm like XL or a Gröbner basis method such as F4 or F5 [9].

To analyze the security of the improved SimpleMatrix encryption scheme against 
direct attacks, we performed a number of experiments with MAGMA v.18-9, which con-
tains an efficient implementation of Faugères F4 algorithm. In particular, we considered 
the public keys of instances of the improved SimpleMatrix scheme over GF(28), GF(216)
and GF(232) whose parameters fulfilled the relations

• (r, s, u, v, m, n) = (r, r + 1, r, r, 2 · r · (r + 1), r · (r + 1)) for F = GF(232),
• (r, s, u, v, m, n) = (r, r + 2, r + 2, r + 2, 2 · (r + 2)2, (r + 2)2) for F = GF(216) and
• (r, s, u, v, m, n) = (r, r + 3, r + 4, r + 4, 2(r + 3)(r + 4), r(r + 8)) for F = GF(28).4

The experiments where performed on a server with 128 GB RAM and 16 AMD Opteron 
CPUs with 2.8 GHz (using a single core for each experiment). The results of the exper-
iments are shown in Table 1.

As the table shows, the public systems of the improved SimpleMatrix encryption 
scheme can be solved significantly faster than random systems (especially for the case of 
GF(216) and GF(28)). We therefore made an extrapolation to estimate the complexity 

4 The reason, why we made our experiments for these two parameter sets, can be found in the next section 
(Section 7).
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Table 1
Running time of the direct attack against our improved ABC scheme.

field GF(232) GF(216)
parameters (r, s, u, v) (3, 4, 3, 3) (4, 5, 4, 4) (5, 6, 5, 5) (2, 4, 4, 4) (3, 5, 5, 5) (4, 6, 6, 6)
(m,n) (24, 12) (40, 20) (60, 30) (32, 16) (50, 25) (72, 36)

our scheme time (s) 0.63 2133 – 0.23 146.9 87,638
dreg 4 5 6 3 4 5
memory (MB) 17.0 621 ooMa 17.8 241 3281

for comparison: 
random system

time (s) 1.4 4151 – 32.9 29,202 –
dreg 4 5 6 5 6 7
memory (MB) 18.2 1157 – 76.7 23,181 –

a ooM = out of memory.

of solving the public systems of the improved ABC scheme for larger parameters. By 
doing so, we obtained the following formulas

Compl(GF(232), r, r + 1, r, r, 2r · (r + 1), r · (r + 1)) ≈ 11.5 · r + 5.5,

Compl(GF(216), r, r + 2, r + 2, r + 2, 2 · (r + 2)2, (r + 2)2) ≈ 9 · r + 13.5,

Compl(GF(28), r, r + 3, r + 4, r + 4, (r + 3)(r + 4), r(r + 8)) ≈ 9 · r + 13.0. (13)

The parameter proposals made in Section 7 are based on this heuristic.

7. Parameter choice

For the fields GF(232) and GF(216) we choose the parameters of the improved Sim-
pleMatrix encryption scheme in such a way that the probability of a decryption failure 
occurring is less than 2−40. We therefore need

• s − r = 1 for F = GF(232) and
• s − r = 2 for F = GF(216).

Furthermore we want for security reasons that m ≤ 2n. With this equation and u = v, 
the condition

(n− r · (2 · u− s)) · (n− r · (2 · u− s) + 1) ≤ 2 ·m (14)

needed for the efficiency of the decryption process yields

• u ≥ r for F = GF(232) and
• u ≥ r + 3 for F = GF(216).

As we found by experiments, the decryption remains still possible when using u = r + 2
over GF(216) (see footnote 3).

To get efficient parameters for the improved SimpleMatrix scheme over GF(28), we 
have to slighten the above conditions a bit.
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Table 2
Proposed parameters and resulting key sizes for the improved SimpleMatrix encryption scheme.

proposed security 
level (bit)

parameters 
F, (r, s, u, v, m, n)

input 
size (bit)

output 
size (bit)

public key 
size (kB)

private key 
size (kB)

probability of 
decryption error

80 GF(232), (7, 8, 7, 7, 112, 56) 1792 3584 698 82.7 2−64

GF(216), (8, 10, 10, 10, 200, 100) 1600 3200 1934 129.0 2−48

GF(28), (8, 11, 12, 12, 264, 128) 1008 2112 2062 84.0 2−32

90 GF(232), (8, 9, 8, 8, 144, 72) 2304 4608 1478 137.3 2−64

GF(216), (9, 11, 11, 11, 242, 121) 1936 3872 3489 189.9 2−48

GF(28), (9, 12, 13, 13, 312, 153) 1200 2496 3451 117.0 2−32

100 GF(232), (9, 10, 9, 9, 180, 90) 2880 5760 2879 215.2 2−64

GF(216), (10, 12, 12, 12, 288, 144) 2304 4608 5873 270.1 2−48

GF(28), (10, 13, 14, 14, 364, 180) 1408 2912 5537 160.0 2−32

In particular, we set

• pr(decryption failure) ≤ 2−32

• m ≤ 2.08 · n and
• u = v.

We therefore obtain the three parameter sets

• (r, s, u, v, m, n) = (r, r + 1, r, r, 2r(r + 1), r(r + 1)) for F = GF(232),
• (r, s, u, v, m, n) = (r, r + 2, r + 2, r + 2, 2(r + 2)2, (r + 2)2) for F = GF(216) and
• (r, s, u, v, m, n) = (r, r + 3, r + 4, r + 4, 2(r + 3)(r + 4), r(r + 8)) for F = GF(28).

Note that these are exactly the parameter sets used for our experiments in Subsection 6.3.
Table 2 shows, for different levels of security and field sizes, the resulting key and 

ciphertext sizes of our scheme. As can be seen from the table, the field GF(232) is most 
suitable for our scheme. When using smaller fields, the size of the public key is very 
large.

7.1. Reducing the private key size

In order to decrease the size of the private key, one may think of choosing the matrices 
B and C in such a way that their entries are randomly selected sparse linear functions 
or even monomials. However, this might lead to a sparse central map F . One therefore 
has to ensure that the central polynomials are not so sparse that they have hidden UOV 
structures. In this case an attacker might use the UOV Reconciliation attack [8] to find 
these structures. It is therefore not a good idea to choose the elements of the matrices 
B and C to be monomials, since such a distinguished feature is in general not desired.

In this subsection we consider the question how sparse the linear combinations in the 
matrices B and C can be chosen without weakening the security of our scheme. We look 
at this question in the context of our variant of the improved SimpleMatrix scheme (see 
Subsection 5.3). Therefore, the elements of the matrix A are randomly chosen linear 
combinations of the monomials x1, . . . , xn, the central map F of the scheme consists of 
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the two matrices E1 = A · B and E2 = A · C and the public key is given as P = S ◦ F
with an invertible linear transformation S : Fm → F

m. The matrices B and C are chosen 
to be sparse in the following sense: Each monomial xi (i ∈ {1, . . . , n}) appears in the 
linear combinations of every column of B and C exactly once.

Claim. The above choice of the matrices B and C does not weaken the security of the 
improved SimpleMatrix encryption scheme.

It is obvious that for a matrix A containing randomly chosen linear combinations of 
x1, . . . , xn and matrices B and C chosen as above the components of the central map 
will be dense, i.e. there exist no systematic blocks of zeros in the central polynomials. 
Therefore this choice of the matrices B and C does not make our scheme attackable by 
the UOV Reconciliation attack. Furthermore, our experiments show that our choice of B
and C cannot be used by Gröbner basis attacks. However, it remains an open question, 
if there exist dedicated attacks which can use this structure.

By choosing the matrices B and C in the above way, we can reduce the space needed 
to store these matrices from r · (u + v) · n · log2(q) to log2(r) · (u + v) · n · log2(q) bits. 
For the parameters (GF(232), 8, 9, 8, 8, 144, 72) this means a reduction of the private key 
size from 137.25 kB to 114.25 kB by 18%.

8. Efficiency

The most costly step during the decryption process of our scheme is the solution of 
the linear system given by W · Ē1 − B = 0 and W · Ē2 − C = 0. To solve this system 
of r · (u + v) linear equations in s · r + n unknowns by Gaussian elimination we need 
approximately (s · r + n)3 multiplications. Compared to this number, the solution of 
the quadratic system is easy. Since the system is highly overdetermined, we can do this 
by the Relinearization algorithm [12], i.e. by solving a linear system of m equations in 
roughly (n − r · (u + v− s)) · (n − r · (u + v− s) +1)/2 variables. The parameters listed in 
Table 2 are chosen in such a way that the linear system generated by the Relinearization 
algorithm has a unique solution. Therefore we get the solution of the quadratic system 
without further testing.

Compared to that, the decryption process of HFE contains the inversion of the uni-
variate polynomial F̄(X) = Y of large degree D over the extension field E. To do this 
using Berlekamp’s algorithm, one needs about O(D3 + D · log pn) operations, where pn

is the size of the extension field E. This shows that our scheme is much more efficient 
than existing multivariate encryption schemes.

To prove our conclusions about the efficiency of our scheme, we created a straight-
forward C++ implementation of the improved SimpleMatrix encryption scheme. For 
simplicity reasons we restricted to the case of GF(28) as the underlying field. The scheme 
runs on a Lenovo Thinkpad with a single AMD Opteron processor with 2.8 GHz and 
4 GB RAM. Table 3 shows the results.
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Table 3
Running time of our C++ implementation of the improved SimpleMatrix encryption scheme.

parameters 
(F, r, s, u, v, m, n)

key generation encryption decryption proposed security 
level (bit)

probability of 
decryption failure

GF(28), 8, 11, 12, 12, 264, 128 239 msa 19 ms 24 ms 80 2−32
612 · 106 48 · 106 60 · 106

GF(28), 9, 12, 13, 13, 312, 153 484 ms 33 ms 39 ms 90 2−32
1223 · 106 83 · 106 98 · 106

GF(28), 8, 13, 14, 14, 364, 180 794 ms 53 ms 59 ms 100 2−32
2033 · 106 134 · 106 149 · 106

a The first number denotes the running time in ms, the second number the number of CPU cycles.

9. Conclusion

In this paper, we presented our results on creating a new multivariate encryption 
scheme, which is the extension of the original SimpleMatrix encryption scheme. Our 
scheme allows fast en- and decryption and resists all known attacks against multivariate 
cryptosystems. Furthermore, our scheme provides a solution for the decryption failure 
problem of the original SimpleMatrix scheme.
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