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Abstract. In 2017 Kyung-Ah Shim et al. proposed a multivariate sig-
nature scheme called Himq-3 which is a submission to National Institute
of Standards and Technology (NIST) standardization process of post-
quantum cryptosystems. The Himq-3 signature scheme can be classified
into the oil vinegar signature scheme family. Similar to the rainbow sig-
nature scheme, the Himq-3 signature scheme uses a multilayer structure
to shorten the signature size. Moreover the signing process is very fast
due to a special system called L-inveritble cycle system that is used to
invert the central map. In this paper, we provide a complete cryptanal-
ysis to the Himq-3 signature scheme. We describe a new attack method
called the singularity attack. This attack is based on the observation that
the variables in the L-invertible cycle system are not allowed to be zero
in a valid signature. For the completeness, we show step by step how
variables and layers can be separated so that signature forgery can be
performed. We claim that the complexity of our attack is much lower
than the proposed security level.

Keywords: Post-quantum cryptography · Multivariate public key
cryptography · Cryptanalysis · Oil vinegar signature scheme

1 Introduction

1.1 Background

The ability to authenticate digital messages has always been an important build-
ing block for any free, secure, and digital society. In 1976, Whitfield Diffie and
Martin Hellman did a major contribution to construct a mathematical frame-
work, known as digital signature scheme, in this direction. The digital signature
algorithm (DSA), the RSA digital signature algorithm, and the elliptic curve dig-
ital signature algorithm were the only signature schemes that were allowed under
the guidelines of the National Institute of Standards and Technology (NIST)’s
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up to 2013. However, in 1999 Peter Shor showed that these number theory based
signature schemes are weak to sufficiently powerful quantum computers [18].
This indicates a significant need to prepare the current communication system
for a post-quantum world. Due to the rapid development of quantum computers,
NIST believes that it is prudent to begin developing standards for post-quantum
cryptography. The call for proposals started in December 2016. NIST expects to
perform multiple rounds of evaluation over a period of three to five years.

1.2 Multivariate Public Key Cryptography

Multivariate Public Key Cryptography (MPKC) is one of the candidates that
are believed to have the potential to resist quantum attacks [4]. The security of
MPKC depends on the difficulty of solving a system of multivariate quadratic
polynomials over a finite field. A breakthrough in MPKC was proposed by Mat-
sumoto and Imai in 1988 [14]. Instead of working over the vector space kn for
a finite field k, they looked to a degree n extension of k in which an invert-
ible map can be constructed. Unfortunately, this scheme was broken by Patarin
using the linearization equation attack [15]. However, inspired by this attack,
Patarin proposed the oil vinegar signature scheme [16]. The oil vinegar signa-
ture scheme can be classified into three groups: Balanced oil vinegar [16] (Patarin
1997), Unbalanced oil vinegar (UOV) [12] (Kipnis et al. 1999) and Rainbow [7],
a multilayer signature scheme with unbalanced oil vinegar in each layer (Ding
and Schmidt 2005). The balanced oil vinegar scheme was broken by Kipnis and
Shamir [13] using the idea of invariant subspaces. The unbalanced oil vinegar
scheme remains unbroken since its publication nearly 20 years ago. However,
the main drawback of UOV is its large key size and signature size. Rainbow is
considered to be one of the most promised post-quantum cryptography signa-
ture schemes. Its multilayer structure, in which oil variables from previous layer
are reused as vinegar variables in next layer, reduces the key size and signature
size. Detailed security analysis of rainbow signature scheme is presented in [5].
There are several other signature schemes that are closely related to rainbow
such as TRMC, TTS, etc. More about those schemes and their security analysis
can be found in [5]. The lifted unbalanced oil vinegar proposed by Ward et al. is
another modification of UOV [2] which achieves small key size by restricting all
the coefficients of public keys to be binary. In 2019, Ding et al. designed a new
attack, the subfield differential attack on LUOV, which drops the complexity
of solving LUOV blew the NIST security strength for non-prime extension case
[9]. Both rainbow and LUOV have passed into the second round for the NIST
post-quantum standardization project. There are also new secure multivariate
encryption schemes [6,19].

1.3 The Himq-3 Scheme and the Singularity Attack

The Himq-3 signature scheme proposed by Kyung-Ah Shim et al. in 2017 is a
round 1 candidate of NIST post quantum standardization. It can be viewed as a
variant of multilayer UOV. Himq-3 attempts to be more efficient than rainbow.
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A crucial component of the central map of Himq-3 is a system called L-invertible
cycle system [8]. The function of this L-invertible cycle system is to make the cen-
tral map invertible. Moreover it appears that this system works very efficiently.
The authors claim that it is more efficient to solve the L-invertible cycle system
than a system of linear equations by a Gaussian elimination [17]. However, the
L-invertible cycle system also restricts the values to certain variables. The idea
of our singularity attack is based on such restriction. We claim that if enough
signatures can be collected, we can construct a system of linear equations of
monomials in which the solutions will leak partial information about the private
key.

1.4 Our Contributions

The main result of this paper is a complete attack on a NIST round 1 candidate:
the Himq-3 signature scheme. This new attack method is called the singularity
attack. This attack is simple and straightforward. It does not involve polynomial
solving algorithms such as F4/F5 or XL algorithm. Neither do we need the rank
attacks (Minrank/Highrank attacks). The most complicated algorithm in our
attack is just Gaussian elimination. We will show that it is impossible for the
Himq-3 signature scheme and its variant Himq-3F to fulfill the proposed security
level under the singularity attack. We notice that the variables which play a
very important role in inverting the central map cannot be equal to zero in
honest signing process. Hence, the public key of the scheme cannot be treated
as a random multivariate quadratic system. There are some structures in the
public key that we can explore. We will first show that if enough signatures are
obtained, we can figure out how those variables are transformed by the private
key. Next, we will undo the effect of the private keys by separating the variables
and extracting the layers so that the public key can be turned in to the form
where forgeries can be made. We will discuss the complexity of our attack for
each proposed set of parameters, and the experimental results will be provided.
Moreover, we will give a toy example in the appendix to clarify the first step of
our attack.

2 HIMQ-3 Signature Scheme

2.1 Preliminary

General Construction of Bipolar MPKC Signature Scheme. We first
describe the general construction of a Bipolar MPKC signature scheme. Let
Fq be a finite field of order q. The main idea for the construction of MPKC
signature schemes is to construct a polynomial map F : Fn

q → F
m
q , called the

central map, defined by F = (F (1), · · · ,F (m)) of m equations in n variables
such that it is easy to find pre-images for a given vector. To hide the ability to
find pre-images and thus construct a public key from F , one uses two invertible
affine maps S : Fm

q → F
m
q , and T : Fn

q → F
n
q . The public key is the composition
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P = S ◦ F ◦ T . The private keys are the invertible affine maps S, T and the
central map F individually. The signing process for a document is as follows:

F
m
q

S−1

−−−→ F
m
q

F−1

−−−→ F
n
q

T −1

−−−→ F
n
q .

To verify the signature, one goes through the other direction by the public key
P:

F
m
q

P←− F
n
q .

L-Invertible Cycle System. The Himq-3 scheme contains a system of
quadratic equations called L-invertible cycle system. This system makes it pos-
sible for the Himq-3 scheme to invert its central map.

Let Fq be a finite field with 2k elements and l be an odd positive integer.
The L-invertible cycle product system Q over Fq is defined by:

Q : α1x1x2 = β1, α2x2x3 = β2, · · · , αlxlx1 = βl,

where αi and βi are nonzero elements in Fq. We can rewrite the system Q in the
form:

x1x2 = γ1, · · · , xlx1 = γl,

where γi = βi/αi.

Remark 1. Given an L-invertible cycle system Q as above, the solution of the
system can be found as follows:

Let A = γ1γ2 · · · γl and B = γ2γ4 · · · γl−1. We see that x1 =
√

A
B , and xi =

γi−1/xi−1 for i = 2, · · · , l − 1, and xl = γl/x1.

Remark 2. We call the variables in the L-invertible cycle system the cycle vari-
ables and a quadratic product of cycle variables are called cycle product. An
important observation is that in any solution, the value of the cycle variables
must be nonzero.

2.2 Description of the Himq-3 Scheme

The Himq-3 signature scheme can be classified as a new variant of UOV scheme,
which shares the layer structure with the rainbow signature scheme [7]. Namely,
one solves oil variables in previous layer, and plug in the solutions to next layer
to solve new oil variables. We will now describe the particulars of the Himq-3
central map.

Let us denote the finite field by Fq of order q = 2k. Let v, o1, o2, o3 be positive
integers where o1 and o2 are odd, we need the conditions that v ≥ o1 + 1 and
o1 ≥ o2 ≥ o3. Further, let the number of equations m = o1 + o2 + o3 and the
number of variables n = v + m. The Himq-3 central map contains n variables in
the following four types.
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Variables Name

x1, · · · , xv v variables

xv+1, · · · , xv+o1 o1 variables

xv+o1+1, · · · , xv+o1+o2 o2 variables

xv+o1+o2+1, · · · , xv+o1+o2+o3 o3 variables

Define x = (x1, · · · , xn). The central map F = (F (1), · · · ,F (m)) of the Himq-
3 signature scheme is defined by three layers:

First Layer. The first layer contains polynomials

F (i)(X) = Φi(X) + δixv+ixv+i+1

for i = 1, · · · , o1 − 1 and

F (o1)(X) = Φo1(X) + δo1xv+o1xv+1

in which δi is a nonzero constant in Fq. The term Φi(X) is a quadratic polynomial
in v variables (x1, · · · , xv) defined by

Φi(X) =
v∑

j=1

αi,jxjx1+(i+j−1)(mod v)

where αi,j is a nonzero element in Fq. Each polynomial of the first layer consists
of a quadratic polynomial Φi only in v variable in the front and a cycle product
in o1 variables in the end. To invert the first layer, one randomly assigns values
to v variables, which in turn makes the first layer into a L-invertible cycle system
in o1 variables. If the constant terms are nonzero, the system can be easily solved
by Remark 1. Otherwise, randomly assign values to v variables again and repeat
the process.

Second Layer. The polynomials

F (o1+i)(X) = Ψi(X) + δo1+ixv+o1+ixv+o1+i+1

for i = 1, · · · , o2 − 1, and

F (o1+o2)(X) = Ψo2(X) + δo1+o2xv+o1+o2xv+o1+1

form the second layer in which δi is a nonzero constant in Fq. The term Ψi(X)
is a quadratic polynomial in v and o1 variables (x1, · · · , xv+o1) defined by

Ψi(X) =
v∑

j=1

α′
i,jxjxv+(i+j−1)(mod o1)

where α′
i,j is a nonzero element in Fq. Similar to the first layer, each polynomial

of the second layer is formed by a quadratic polynomial Ψi in v and o1 variables
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in the front and a cycle product in o2 variables in the end. To invert the second
layer, one plugs the values assigned to v variables and the solutions to o1 variables
from previous layer into Ψi, then the second layer becomes a L-invertible cycle
system in which o2 variables can be solved provided that the constant terms are
nonzero.

Third Layer. The third layer is composed of the polynomials

F (o1+o2+i)(X) =
∑

v+1≤l≤j≤v+o1

β
(i)
l,j xlxj + Θi(X) + Θ′

i(X) + εixo1+o2+i

for i = 1, · · · , o3, in which β
(i)
l,j and εi are elements in Fq. The polynomials Θi

and Θ′
i are quadratic polynomials in variables (x1, · · · , xn) defined by

Θi(X) =
v+o1∑

j=1

γi,jxjxv+o1+(i+j−1)(mod o2),

and

Θ′
i(X) =

v+o1+o2∑

j=1

γ′
i,jxjxv+o1+o2+(i+j−1)(mod o3)

where γi,j and γ′
i,j are nonzero elements in Fq. We notice also that the o3 variables

are never multiplied together by themselves like oil variables in a UOV scheme.
In addition they only appear in the polynomials of third layer, which makes
the scheme under the threat of the highrank attack [3]. The third layer can be
turned into a linear system in o3 variables only once the random values assigned
to v variables and solutions to o1 and o2 variables from the first and second
layers respectively are plugged in. Hence, o3 variables can be simply solved by a
Gaussian elimination.

Remark 3. The design rationale of the individual Φi, Ψi, Θi, Θ
′
i is to increase the

rank of the symmetric matrices associate to the polynomials so that they achieve
maximum amount of rank for the variables they involve. The purpose of such
design is to prevent the scheme from the minrank attack [11].

We borrow from the authors of Himq-3 the graphs of symmetric matrices asso-
ciated to the quadratic part of central map polynomials [17].
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2.3 The Proposed Parameters

The authors of Himq-3 proposed the following sets of parameters for three dif-
ferent levels of security.

Security level |Fq| v o1 o2 o3

128-bit 28 36 15 15 15

192-bit 28 56 25 25 25

256-bit 28 84 33 33 32

The Himq-3 signature scheme is claimed to be secure against all known
attacks for these three levels of security according to the security analysis pro-
vided in [17]. We will show that the Himq-3 signature scheme meets none of
these three security levels against our singularity attack. The complexities of
our attack on Himq-3 with the last two sets of parameters are even very far
away from the target level of security.

2.4 Compared to Rainbow Signature Scheme

A significant difference between rainbow and Himq-3 is the way to invert the
central map. Rainbow uses the unbalanced oil vinegar structure, to be more spe-
cific, in each layer one solves new oil variables by Gaussian elimination given the
random values assigned to vinegar variables and the solutions to oil variables
from previous layers as new vinegar variables. Different from the rainbow signa-
ture scheme, the Himq-3 signature scheme uses the L-invertible cycle system to
invert the first and second layers, and Gaussian elimination is only performed in
the last layer. Due to this reason, the authors claim that the times of signing and
verification of Himq-3 are respectively 3.1 times and 1.3 times faster than those
of rainbow at the 128-bit level of security [17]. In addition, the sparse polyno-
mials of the central map make the secrete key relatively small. The authors also
claim that the secrete key size of Himq-3 is only 11.5% of that of rainbow. How-
ever, the L-invertible cycle system does not only speed up the signing process,
but also puts restriction on certain variables. As we metioned in earlier, the cycle
variables in the L-invertible cycle system cannot be equal to zero for any validly
made signatures. One can see that the o1 and o2 variables are the cycle variables
in the central map. Therefore, these nonzero variables give away the randomness
of Himq-3. The comparison of key sizes, signature size and performance between
Himq-3 and rainbow can be found in [17].

2.5 Himq-3 Variant: Himq-3F

Himq-3F is a generalization of Himq-3. Himq-3F fully fills the v × v parts in
the first layer and v × o1 parts in the second layer. In addition, it shares the
third layer with Himq-3. However, the quadratic product of the cycle variables
in the central map of Himq-3F remains unchanged. Hence, the way to invert the
central map of Himq-3F is essentially the same as Himq-3.
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3 The Singularity Attack

3.1 Notations and Definitions

The central map of Himq-3

F = (F (1)(x1, · · · , xn), · · · ,F (m)(x1, · · · , xn))

is defined in the same way as in Sect. 2. Let S : Fm
q → F

m
q and T : Fn

q → F
n
q be

two invertible affine linear maps such that the public key is in the form:

P = S ◦ F ◦ T = (P(1)(x1, · · · , xn), · · · ,P(m)(x1, · · · , xn)).

Let Qi be the symmetric matrix associated to the quadratic part of F (i) for
i = 1, · · · ,m. The matrix Pi denotes the symmetric matrix associate to the
quadratic part of public key polynomials P(i) for i = 1, · · · ,m. Let S and T be
the matrix representations of S and T respectively. Next, We define Q′

i = TtQiT
for 1 ≤ i ≤ m, and F ′

i = XtQ′
iX for 1 ≤ i ≤ m.

We further define some subspaces of Fn
q as follows:

V = {X ∈ F
n
q : xv+1 = · · · = xn = 0},

O1 = {X ∈ F
n
q : x1 = · · · = xv = xv+o1+1 = · · · = xn = 0},

O2 = {X ∈ F
n
q : x1 = · · · = xv+o1 = xv+o1+o2+1 = · · · = xn = 0},

O3 = {X ∈ F
n
q : x1 = x2 = · · · = xv+o1+o2 = 0},

V O1O2 = {X ∈ F
n
q : xv+o1+o2+1 = · · · = xn = 0}, and

V O1 = {X ∈ F
n
q : xv+o1+1 = · · · = xn = 0}.

3.2 General Idea of the Attack

The key observation is that the cycle variables cannot be equal to zero when eval-
uated at a honestly generated signature. In addition, this fact does not change
under the change of basis T . In other words, even if T is applied to mix the
variables, the positions in the L-invertible cycle system part in the polynomials
F (i) for 1 ≤ i ≤ o1 + o2 still cannot be equal to zero no matter what linear
combinations of variables are plugged in. Since the scheme is constructed over a
finite field with 2k elements, it is a basic knowledge that if we raise any nonzero
element a in the field to the power of 2k − 1, then a2k−1 = 1. For this reason, if
we evaluate the transformed cycle variables at the signatures under the effect of
T , and then raise their powers to 2k − 1, we will obtain some equations in vari-
ables of T . Thus, if we have access to enough signatures, we will obtain enough
equations. If the system of equations can be solved, we will get partial informa-
tion about the private key T which immediately gives us the transformed cycles
variables. The next step is to use those transformed cycle variables to further
separate the layers and other variables. This can be accomplished easily by basic
linear algebra. The Himq-3F keeps the L-invertible cycle system in the first and
second layer of its central map. The same restriction applies to these variables
in the L-invertible cycle system in Himq-3F. Hence, the singularity attack works
for the Himq-3F as well.
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3.3 Finding the Cycle Variables

Suppose that the private key (F , T ,S) has been generated with its corresponding
public key P = S ◦ F ◦ T . The private key T can be expressed as an invertible
matrix (aij)1≤i,j≤n and a vector b = (b1, · · · , bn) so that for any (x1, · · · , xn) ∈
F

n
q , we have that

T ((x1, · · · , xn)) =

⎡

⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

...
xn

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

b1
b2
...

bn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

∑n
i=1 a1ixi + b1∑n
i=1 a2ixi + b2

...∑n
i=1 anixi + bn

⎤

⎥⎥⎥⎦ .

Our goal is to find how the private key T transforms the cycle variables used
in the L-invertible cycle system (up to a multiplication by a non-zero constant).
Namely, we want to find the transformed cycle variables in the form of linear
combinations of γj (

∑n
i=1 ajixi + bj) for v + 1 ≤ j ≤ v + o1 + o2, and for some

nonzero constant γj ∈ Fq. Let us denote a signature by σ = (σ1, · · · , σn), then
for v + 1 ≤ j ≤ v + o1 + o2 we have that

∑n
i=1 ajiσi + bj �= 0 because a cycle

variable cannot be zero when evaluated at a signature by the signing process
as described above. Since Fq is a finite field with q = 2k elements, the nonzero
elements of Fq form a multiplicative group F

∗
q . So for any γj ∈ F

∗
q and for any

signature σ, we obtain that

1 =

(
n∑

i=1

γjajiσi + γjbj

)2k−1

=
k∏

h=1

(
n∑

i=1

γjajiσi + γjbj

)2k−h

As we are working in characteristic two we have that

k∏

h=1

(
n∑

i=1

γjajiσi + γjbj

)2k−h

=
k∏

h=1

(
n∑

i=1

(γjajiσi)2
k−h

+ (γjbj)2
k−h

)
.

Since the vector b is randomly chosen, we first consider the main case when
bj �= 0. The case in which bj = 0 can be solved analogously. Now we can set
γj = b−1

j to obtain

k∏

h=1

(
n∑

i=1

(b−1
j ajiσi)2

k−h

+ 1

)
= 1.

Let ãji = b−1
j aij and perform the above product, we get

ã2k−1
j1 σ2k−1

1 + ã2k−2
j1 ãj2σ

2k−2
1 σ2 + · · · + ãjnσn + 1 = 1.

If we treat the individual monomials of the ãij ’s as individual variables, we
obtain a homogeneous linear equation with (n + 1)k − 1 terms. We get another
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homogeneous linear equation if we use a different signature. Hence by collecting
around (n + 1)k − 1 signatures we can build a linear system.

For v + 1 ≤ j ≤ v + o1 + o2, we list the monomials of ãij in the order:
ã2k−1

j1 , ã2k−2
j1 ãj2, · · · , ãjn. Moreover, for each signature σi = (σi,1, · · · , σi,n), the

corresponding coefficients are: σ2k−1
i,1 , σ2k−2

i,1 σi,2, · · · , σi,n. A matrix can be simply
constructed by having these corresponding coefficients as a row for each signature
we use. Therefore the size of this matrix is (n + 1)k − 1 by (n + 1)k − 1 if we use
(n + 1)k − 1 signatures. If follows that we obtain a homogeneous linear system:
Ax = 0, where A is the matrix whose rows are (σ2k−1

i,1 , σ2k−2
i,1 σi,2, · · · , σi,n) for

each signature σi, and the vector x = (ã2k−1
j1 , ã2k−2

j1 ãj2, · · · , ãjn)t.

Remark 4. Assume that bj �= 0, for v + 1 ≤ j ≤ v + o1 + o2, the vector ãj =
(ã2k−1

j1 , ã2k−2
j1 ãj2, · · · , ãjn)t is contained in the kernel of A. Moreover, it is obvious

that they are linearly independent. It follows that Rank(A) ≤ (n + 1)k − 1 −
(o1 + o2). In fact, according to our experiments, with overwhelming probability,
Rank(A) = (n + 1)k − 1 − (o1 + o2).

To solve the linear system, we first perform a Gaussian elimination on this matrix
A, and turn the linear system into a reduced echelon form A′x = 0. We start at
the bottom of A′. If A has rank (n+1)k −1− (o1 +o2), then in the last nonzero
row of A′, most entries will equal to zero and the nonzero entries will only appear
in the last o1 + o2 + 1 columns in variables ão1+o2+1

jn , ão1+o2
jn , ão1+o2−1

jn , · · · , ãjn.
Hence, converting this back into a polynomial means we have a univariate poly-
nomial equation which we can thus solve by the Berlekamp’s algorithm. One can
see that if 2k − 1 ≥ o1 + o2 + 1, we will obtain a univariate polynomial. Solving
the univariate polynomial allows us to get our possibilities for ãjn (as the above
equation will be true for any of the ãji’s, v + 1 ≤ j ≤ v + o1 + o2, we will return
all of these values). We then move up the matrix to the first time that ãj(n−1)

appears only with powers of itself and ãjn. As we already know what ãjn can be,
this is also a univariate polynomial equation. For each of our possible solutions
to ãjn, we plug in and get the possible solutions to ãj(n−1). Continue this process
until we collect all the ãji for which bj �= 0. On the other hand, to avoid the
inequality 2k − 1 ≥ o1 + o2 + 1, the size of the field is then forced to be small,
which will reduce the complexity of other attacks such as a direct attack or a
min/high rank attack [17].

Remark 5. The process is essentially the same as for the case bj = 0 except
that we then guess the last available ãji to be non-zero hence enabling us to set
γj = ã−1

ji for that particular ãji. Repeat until all of the ãji are found, which
generally is after the first few guesses. Since there are less variables in this case,
the resulting matrix is of smaller size than the previous matrix. A toy exam is
provided in the Appendix to demonstrate this step.
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The collection of ãji that we found actually tells us the transformed cycle
variables. Let us denote by

x′
j =

{∑n
i=1 ãjixi + 1 if bj �= 0∑n
i=1 ãjixi if bj = 0

for v + 1 ≤ j ≤ v + o1 + o2, the transformed cycle variables under the effect of
T . Next we will use these variables to further separate the layers.

3.4 Extract the Second Layer

Let us recall how the polynomials of the central map are defined in these three
different layers. Each first layer polynomial contains Φi where only v variables
times one of themselves. Moreover, quadratic terms of a v variable multiplied by
an o3 variable appear in every third layer polynomial. In addition, in a second
layer polynomial, every quadratic term contains a cycle variable (either an o1
or an o2 variable) as a factor. Thus, if we set the cycle variables equal to 0,
the quadratic terms in the polynomials of the second layer will vanish but not
those from first and third layers. Since we found the transformed cycle variables
{x′

v+1, · · · , x′
v+o1+o2

}, we will use them to extract the second layer.
Setting the transformed cycle variables equal to zero can be accomplished by

constructing the quotient ring

Fq[x1, · · · , xn]/〈x′
v+1, · · · , x′

v+o1+o2
〉.

Let φ be the natural homomorphism:

φ : Fq[x1, · · · , xn] −→ Fq[x1, · · · , xn]/〈x′
v+1, · · · , x′

v+o1+o2
〉.

Consider the polynomials φ(P(i)) = P̃(i) for i = 1, · · · ,m. The quadratic terms in
the second layer polynomials will vanish in this quotient ring, while the quadratic
terms in the first and third layer polynomials will not. Let us construct a matrix
M1 whose rows are formed by the coefficients of quadratic terms of each P̃(i)

for i = 1, · · · ,m. The matrix M1 cannot be of full rank because the polyno-
mials P̃(1) · · · , P̃(m) do not contain any quadratic terms from the second layer
polynomials, which already vanish in the quotient ring. If we apply a Gaussian
elimination on this matrix M1, the bottom o2 rows will all be zero, and they
represent the quadratic part of the second layer polynomials in the quotient
ring. By applying the same Gaussian elimination over the public keys, we can
get o2 linear combinations of the polynomials of the second layer by themselves,
namely, o2 linear combinations of F ′

i (equivalently o2 linear combinations of Q′
i)

for o1 + 1 ≤ i ≤ o1 + o2 are found. Let F̄i be those o2 linear combinations of
F ′

o1+1, · · · ,F ′
o1+o2

for i = o1+1, · · · , o1+o2. Let us denote by Q̄i the symmetric
matrices associated to the quadratic part of F̄i for i = o1 + 1, · · · , o1 + o2. The
structure of those polynomials is not visible yet since there is a change of basis T
still acting on them. Having the second layer extracted will enable us to further
separate the variables.
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3.5 Distinguish o1 Variables from o2 Variables

The variables {x′
v+1, · · · , x′

v+o1+o2
} we obtained in Sect. 4.3 can either be a trans-

formed o1 variable or a transformed o2 variable under the change of basis of T .
We will use the second layer that we extracted to distinguish which type of cycle
variable they act under the effect of T . Observe that the quadratic terms in a
second layer polynomial in the central map are either a product of an o1 variable
multiplied by an v variable or a product of an o2 variable multiplied by another
o2 variable. Hence, we can set all the variables x′

v+1, · · · , x′
v+o1+o2

equal to zero
except one. If the one left is a transformed o1 variable under the effect of T , then
quadratic part of F ′

i will not vanish for o1+1 ≤ i ≤ o1+o2. If it is a transformed
o2 variable under the effect of change of basis, then the quadratic part of F ′

i will
vanish for o1 + 1 ≤ i ≤ o1 + o2. As we already obtained o2 linear combinations
F̄i of F ′

o1+1, · · · ,F ′
o1+o2

in Sect. 3.4, we can construct the quotient rings one by
one, and check if the quadratic part of F̄i for i = o1 + 1, · · · , o1 + o2 vanishes or
not in the quotient rings. It follows that we will immediately know which x′

j is
a transformed o1 variable and which one is a transformed o2 variable under the
effect of T .

3.6 Getting the Linear Combinations of First and Second Layers

In the central map, o3 variables only appear in the third layer, and they are
multiplied by v, o1 and o2 variables. Hence, we may use o3 variables to get rid
of the third layer. It is obvious that the space O3 is contained in the kernel of
Qi for o1 + 1 ≤ i ≤ o1 + o2. So it follows that T −1(O3) can be found by taking
intersections of ker Q̄i for o1+1 ≤ i ≤ o1+o2. In addition, for i = o1+1, · · · , o1+
o2, the image of Qi is contained in the space V O1O2. Therefore, T −1(V O1O2)
can be obtained by collecting the images of Q̄i for o1+1 ≤ i ≤ o1+o2. Note that
we may not get the full space T −1(V O1O2) in general, we provide an analysis for
the probability of getting the full space in the Appendix. One will see that for the
proposed parameters, the space can be obtained with overwhelming probability.

Having these two spaces allows us to perform a change of basis on the public
key so that the variables will be placed in their own positions. Take the o3 basis
vectors of T −1(O3) and the v+o1+o2 basis vectors of T −1(V O1O2), and perform
a change of basis on Pi for i = 1, · · · ,m. We get new matrices P′

1, · · · ,P′
m. The

quadratic terms of a v, o1 and o2 variable multiplied by an o3 variable will be in
their own submatrix.

The o3 variables do not appear in the polynomials of the first and second
layer at all, hence for a first or second layer polynomial, the submatrix in the
top right/down left corner should vanish. On the other hand, the third layer
polynomials contains quadratic monomials of vo3, o1o3 and o2o3. Hence for a
third layer polynomial, the submatrix in top right/down left corner will not
vanish.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1O2 | O3

∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
− − − − − − −

|

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1O2 | O3

∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
− − − − − − −
∗ ∗ ∗ ∗ ∗ |

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We use a similar method stated in Subsect. 3.4 to get the linear combinations
of polynomials of first and second layer. Let us construct a matrix M2 whose
rows are formed by the entries in the top right (vo1o2 by o3) submatrix of each P′

i

for i = 1, · · · ,m. Then the matrix M2 cannot be full rank since there are o1 +o2
zero rows generated by the first and second layer polynomials which are mixed
by S with other nonzero rows. Apply a Gaussian elimination on the matrix M2,
the bottom o1 + o2 zero rows will represent the linear combinations of first and
second layer polynomials. Apply the same Gaussian elimination over the public
key, one obtains o1 + o2 linear combinations of polynomials F ′

i (equivalently
o1 + o2 linear combinations of Q′

i) for 1 ≤ i ≤ o1 + o2. Due to the change of
basis map T , the structure of those polynomials is not visible. For simplicity, let
Q̃1, · · · , Q̃o1+o2 denote these o1 + o2 linear combinations of matrices Q′

i

3.7 Separate the First Layer Out

Let us consider the symmetric matrices associated to the linear combinations
of polynomials of first and second layers in the central map (these symmetric
matrices can be visualized by overlapping Qi for 1 ≤ i ≤ o1 + o2. See the
pictures of these matrices in Sect. 2). The entries representing the cycle products
of an o2 variable multiplied by one of themselves are in different spots, and the
submatrices of the o2 by o2 part are one off the full rank. Thus, if we take the
images of these symmetric matrices and then take intersections of those image
spaces, we can get rid of images produced by the entries in the o2 by o2 part and
the space V O1 can be obtained. It follows that the space T −1(V O1) can be found
by taking the images of Q̃i for 1 ≤ i ≤ o1 + o2, then taking the intersections.

Now we use a similar method to extract the first layer as we did in Sub-
sect. 3.6. We can perform a change of basis on the public key to turn the variables
to their own positions since we have the space T −1(V O1), the exact transformed
o2 variables under the effect of T , and the space T −1(O3). After performing a
change of basis on Pi for i = 1, · · · ,m, the o2 and o3 variables will go to their
own positions, but v and o1 variables are still mixed together. We obtain the
new matrices P̄i for i = 1, · · · ,m. Recall that in a first layer polynomial, there
are quadratic terms of a v variable multiplied by a v variable, and an o1 vari-
able multiplied by another o1 variable. Moreover, the second layer polynomials
contain quadratic terms of a v variable multiplied by an o1 variable and cycle
products of an o2 variable by an o2 variable. Hence, for a first layer polynomial,
the submatrix of o2 by o2 part will vanish. While for a second layer polynomial,
the submatrix of o2 by o2 part will not vanish.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1 | O2 O3

∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
− − − − − −

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1 | O2 O3

∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
− − − − − −

∗ ∗
∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us construct a matrix M3 whose rows are formed by the entries of each o2
by o2 submatrix of P̄i for i = 1, · · · ,m. It follows that the matrix M3 cannot be
of full rank because there are o1 zero rows generated by the first layer polynomials
which are mixed by S with other nonzero rows. Perform a Gaussian elimination
on M3, the bottom o1 zero rows represent the first layer polynomials. Let us
apply the same Gaussian elimination on the public key, we can get o1 linear
combinations of first layer polynomials, namely o1 linear combinations of F ′

i

(equivalently o1 linear combinations of Q′
i) for 1 ≤ i ≤ o1. Again, because of the

change of basis map T , no structure can be seen from those polynomials. Let
Q̄1, · · · , Q̄o1 be the o1 linear combinations of Q′

i for i = 1, · · · , o1.

3.8 Getting Transformed V Space

Once the first layer is obtained, it is easy to get the space T −1(V ). In a linear
combination of symmetric matrices Qi for i = 1, · · · , o1, the entries representing
the cycle products of an o1 variable multiplied by another o1 variable are in
different spots, and the submatrix of the o1 by o1 part is one off full rank.
Hence, taking the images of Qi for 1 ≤ i ≤ o1 and then taking the intersections
will yield the space V . It follows that T −1(V ) can be obtained by taking images
of Q̄i for 1 ≤ i ≤ o1 and then taking the intersections.

3.9 Invert Change of Basis

We have extracted the first layer and the second layer from the public key, in
other words, we have undone the work that the private key S does. Additionally,
we now have all the information required to create a change of basis which will
undo T ’s effect of hiding the cycle structure in the public key. We do not need
the exact transformed v and transformed o3 variables as they do not appear
in the L-invertible cycle system. As long as these variables are mapped to a
linear combination of themselves we will have no problem inverting the central
map as done in the original scheme. Hence, having just the spaces of T −1(V )
and T −1(O3) is enough. However, the cycle variables must each be mapped
to another cycle variable. That is, we must know exactly how T changed these
variables, and also its affine part cannot be ignored. Fortunately, we have already
found this up to a scalar multiple when we found x′

v+1, · · · , x′
v+o1+o2

.



436 J. Ding et al.

3.10 Complexity

The most complicated step throughout the entire attack is to do a Gaussian
elimination over the square matrix of size (n+1)k −1. The complexity of solving
such linear system is ((n + 1)k − 1)ω, where ω is called the complexity exponent
of linear algebra [1]. The best published estimates to date gives ω ≈ 2.3727 [10,
20]. The complexity of singularity attack on Himq-3 for all three sets proposed
parameters is stated in the table.

|Fq|, v, o1, o2, o3 Security level # of Signatures Complexity ω = 2.3727, ω = 2

28, 36, 15, 15, 15 128-bit 251 2120, 2102

28, 56, 25, 25, 25 192-bit 256 2134, 2112

28, 84, 33, 33, 32 256-bit 260 2143, 2120

It can be seen that the Himq-3 scheme does not meet the target levels of
security. The complexities of our attack on Himq-3 with last two sets of proposed
parameters are much lower than the target levels of security. It is obvious that
the complexity of our attack is dominated by the size of the field. So we do not
leave too much room for the authors of Himq-3 to save the scheme by choosing
different parameters. The set of proposed parameters of Himq-3F for 128-bit
level of security is |Fq| = 28, v = 36, o1 = 13, o2 = 17, o3 = 15. Thus, the
complexity of the singularity attack on Himq-3F for this set of parameters is
approximately 2121 if we use ω = 2.3727 and 2102 if ω = 2. So Himq-3F does not
meet the claimed level of security.

4 Experimental Results

We ran our attack 100 times with Magma of version V2-24 on three sets of
parameters and record the times it took to obtain part of T including evaluating
the signatures. Our hardware is a workstation of Intel Core i7-9700, 8 Core,
12 MB Cache, 3.0 Ghz.

v, o1, o2, o3 Field Find cycle variables Find T −1(V O1O2) Time in seconds

7, 3, 3, 2 q = 23 100 100 7.651

9, 3, 3, 2 q = 23 100 86 20.770

11, 5, 5, 4 q = 23 100 100 302.843

13, 3, 3, 2 q = 23 100 0 115.252
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5 Conclusion

We presented a complete cryptanalysis of a NIST round 1 submission Himq-3.
This attack method may also be applied to other cryptosystems in which there
are some restrictions on its variables. So our singularity attack is a warning
for cryptographers not to restrict the variables used in design of central map
from being zero. According to our complexity analysis and experimental results,
Himq-3 and its variant Himq-3F can be defeated with overwhelming probability
at much lower costs than the target security levels. However, our attack method
does not apply to the rainbow scheme since there is no restriction on any variables
in the scheme.

Acknowledgments. J. Ding, Z. Zhang and J. Deaton would like to thank partial
support of NSF (Grant: #CNS − 1814221). J. Ding would like to thank NIST, and
the TAFT Research Center for many years’ support. Finally, we are grateful for the
comments of the referees helping us improve the quality of this paper.

A Toy Example

We provide a toy example to clarify the step 3.3. In this example, we choose
k = 3, thus our field is the finite field of 23 elements. The finite field will be
represented by {0, 1, w, w2, · · · , w6}, where w is a generator in the multiplicative
group of the finite field. Let n = 2. For the sake of clarity. We use a linear map
instead of a affine map. Our linear map T is randomly chosen to be the matrix

[
w2 w2

w3 w

]
.

Suppose we obtain a set of signatures (x1, x2):

(w, w5), (w5, w), (w2, 1), (w6, w5), (0, w2), (w5, w3), (1, w6), (0, w5),

(0, w2), (1, 0), (w5, w6), (0, w), (w5, w3), (1, w), (w5, 0), (w6, 1), (w6, w3),

(w, w4), (w2, w5), (w3, w), (1, w6), (w, 1), (w2, w), (w2, w), (w4, w), (w4, 1), (w4, w2).

We first construct a generic polynomial g = a1x1 + a2x2. We assume that
this polynomial is never equal to zero. Hence, in this finite field, g2

3−1 =
(a1x1 + a2x2)2

3−1 = 1. We can rewrite this equation as: (a1x1 + a2x2)2
3−1 =

(a1x1 + a2x2)2
3−1

(a1x1 + a2x2)2
3−2

(a1x1 + a2x2)2
3−3

= 1. Since this is a field of
characteristic 2, the equations turns out to be

((a1x1)
23−1

+ (a2x2)
23−1

)((a1x1)
23−2

+ (a2x2)
23−2

)((a1x1)
23−3

+ (a2x2)
23−3

) = 1.

Multiply the product out, we have

a
7
1x

7
1 + a

6
1a2x

6
1x2 + a

5
1a

2
2x

5
1x

2
2 + a

4
1a

3
2x

4
1x

3
2 + a

3
1a

4
2x

3
1x

4
2 + a

2
1a

5
2x

2
1x

5
2 + a1a

6
2x1x

6
2 + a

7
2x

7
2 + 1 = 0.
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We view the products of ai as variables, and xi as coefficients. If we evaluate
these coefficients at the signatures, we get (n + 1)k = 27 vectors which will be
the rows of the matrix. We apply echelon form on this matrix and then remove
the zero rows. The new matrix is:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 w5 0 w4

0 0 1 0 0 0 w2 0 w6

0 0 0 1 0 0 w4 0 w5

0 0 0 0 1 0 w3 0 w
0 0 0 0 0 1 w6 0 w2

0 0 0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Our next goal is to turn this matrix back to polynomials. Recall the order of the
monomials, we get 7 multivariate polynomials:

a7
1 + 1

a6
1a2 + w5a1a

6
2 + w4

a5
1a

2
2 + w2a1a

6
2 + w6

a4
1a

3
2 + w4a1a

6
2 + w5

a3
1a

4
2 + w3a1a

6
2 + w

a2
1a

5
2 + w6a1a

6
2 + w2

a7
2 + 1

The first and last polynomials do not help, they are trivial. Remember that
we are not looking for the original values for ai, we only need solutions for ai

up to unit multiple. Therefore, we can set a1 = 1, and if we pick the second
polynomial, we then get a univariate polynomial w5a6

2 + a2 + w4. The roots are
a2 = 1 and a2 = w5.

Let us check our solution with the linear map T =
[
w2 w2

w3 w

]
. It is clear that

a1 = 1 and a2 = 1 are unit multiples of a1 = w2 and a2 = w2. Now if we check
the second row, The original values are:

a1 = w3

a2 = w

If we multiply the inverse of w3 by w, we get w−2 which is exactly equal to w5

in the finite field of 23 elements.

B Getting Transformed V O1O2 Space

We know that there are o1 column vectors in the v × o1 part of each symmetric
matrix Qi for i = o1 + 1, · · · , o1 + o2. So we have o1o2 such vectors. Assume
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that these o1o2 vectors do not span the entire V space. Let us take v − 1 vectors
and look at the span of these v − 1 vectors. Therefore, the probability of the
next vector being in the span of these v − 1 vector is qv−1−1

qv ≈ 1
q . There are

o1o2− (v−1) vectors to check, so the probability of failing to fill the entire space
is 1/qo1o2−(v−1). Thus we can conclude that if o1o2 is larger enough than v, we
can always get the full space. All the sets of proposed parameters satisfy this
condition, so we do not need to worry about this case at all.
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