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Abstract. In this paper, we attack the recent NIST submission Giophantus,
a public key encryption scheme. We find that the complicated structure of

Giophantus’s ciphertexts leaks information via a correspondence from a low

dimensional lattice. This allows us to distinguish encrypted data from random
data by the LLL algorithm. This is a more efficient attack than previous

proposed attacks.

1. Introduction

In November, 2017 Koichiro Akiyama et al proposed Giophantus, a “new” public-
key encryption scheme based on non-linear indeterminate equations. In the proposal
Akiyama et al made what they called the Indeterminate Equations Learning with
Errors (IE-LWE) assumption which is an extension of the Ring Learning with Errors
assumption [1] which is in turn based on the shortest vector problem of a lattice. IE-
LWE loosely states that, given a fixed public key of Giophantus, it is “impossible”
to distinguish encrypted data from uniform random data. The authors showed that
under IE-LWE Giophantus is provably secure in the sense of indistinguishability
under chosen plaintext attack (IND-CPA) [1]. That is, if an adversary chooses two
messages of equal length, and Giophantus randomly encrypts one, the adversary
can not achieve better than fifty percent probability to correctly guess which of the
messages was encrypted.

However, attacks against Giophantus were discovered showing IE-LWE is false,
though these attacks ignore Giophantus’s lattice structure causing inefficiency. On
January 11th, 2018 on the NIST Comments Section, Wouter Castryck and Frederik
Vercauteren falsely claimed they could break Giophantus’s IND-CPA security [4].
On April 12th, 2018, Akiyama disputed Castryck’s and Vercauteren’s attack [2].
Most recently, on June 11th, 2018, Ward Beullens et al revised the January 11th
attack and claimed that there exists a non-negligible distinguishing advantage [4],
where the distinguishing advantage is defined to be twice the probability of a correct
guess minus one. Beullen’s attack uses statistical analysis on the ciphertext to
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achieve such an advantage. Further, we confirmed by private communication with
Akiyama that, using the same statistical analysis on the ciphertext, an attack was
developed so that if given around ten million samples one can distinguish whether
they are encrypted data or random data.

The intuition from the work of Ding [5] and Fluhrer [6] gives us a strong hint
that the design of this system leaks information due to its complicated structure.
This lead us to a new attack on ciphertexts that uses a lattice reduction instead of
statistical analysis that provides a stronger result. Namely, given one sample, we
are able to distinguish whether it is encrypted data or random data. We will first
recall the Giophantus encryption scheme then introduce our attack on Giophantus.

2. Giophantus

We begin by recalling the parameters of Giophantus. The primary parameters
are two prime numbers n and q. Specifically, Akiyama gives n and q, where q is
the next prime after 324n2 + 72n + 15, for the following NIST security categories
(Category, n) : (I, 1201), (III, 1733), and (V, 2267) [2].

We start with a field Fq of size q. Next we construct the quotient ring Rq =
Fq[t]/(tn − 1) and R4, a subset of Rq, whose polynomials coefficients are in the
range of {0, 1, 2, 3}. The public key X(x, y) is an irreducible bivariate polynomial
over Rq where X(x, y) = 0 has a solution ux(t), uy(t) ∈ R4. The secret key is the
solution ux(t), uy(t). In practice the degree of X(x, y) is 1. To encrypt a message
m(t) ∈ R4 we generate random polynomials r(x, y) over Rq and e(x, y) over R4. In
practice the degree of r(x, y) is 1, while the degree of e(x, y) is 2. Then we calculate
the ciphertext c(x, y) = X(x, y)r(x, y) + 4e(x, y) + m(t). To decrypt, first we plug
ux(t), uy(t) into c(x, y) and find c(ux(t), uy(t)) = m(t) + 4e(ux(t), uy(t)). Finally, q
was chosen large enough to ensure that each coefficient of c(ux(t), uy(t)) is smaller
than q. So, we recover m(t) by modding each coefficient of c(ux(t), uy(t)) by 4.

For the rest of the paper we write X(x, y), r(x, y), e(x, y) as:

• X(x, y) = a10(t)x+ a01(t)y + a00(t)
• r(x, y) = r10(t)x+ r01(t)y + r00(t)
• e(x, y) = e20(t)x2 + e11(t)xy + e02(t)y2 + e10(t)x+ e01(t)y + e00(t)

where ai,j(t), ri,j(t) ∈ Rq and ei,j ∈ R4 (the index of the coefficient corresponds to
degree of x and y, respectively).

3. Our attack

All attacks against Giophantus use the ring homomorphism between Rq and Fq

given by evaluating f(t) ∈ Rq at t = 1. Throughout the remainder of the paper for
any polynomial f(t) ∈ Rq we denote f(1) as f ′.

We are able to distinguish ciphertexts from degree 2 polynomials sampled uni-
formly from Rq[x, y]. More precisely given a public key X(x, y), if we denote the
set of ciphertexts as C =

{X(x, y)r(x, y)+4e(x, y)+m(t) : r(x, y) ∈ Rq[x, y] , e(x, y) ∈ R4[x, y] , m(t) ∈ R4}

and an oracle uniformly chooses a polynomial g(x, y) from C or Rq[x, y], we are able
to correctly identify whether g(x, y) ∈ R[x, y] \ C or not.

Our attack is to transform a ciphertext into a low-dimensional Learning with
Errors (LWE) problem. Thus, reformulating the problem of distinguishing between
encrypted data from random data into a low-dimensional decision version of LWE.
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We give a brief, informal description of the decision version of LWE. Given that
p is prime, A is a m × n matrix over Zp, and χ is an error distribution on Zp

that strongly favors “small” elements of Zp. The decision version of LWE is to
distinguish between the uniform distribution on Zm×n

p × Zm
p and the distribution

(A, b = As + e) where s is sampled uniformly at random from Zn
p and e ← Zm

p

according to χ. For a more precise definition see [8].
To start we expand the ciphertext c(x, y) = X(x, y)r(x, y) + 4e(x, y) +m(t) and

evaluate each coefficient at t = 1. We obtain, c′(x, y) = f ′20x
2 + f ′11xy + f ′02y

2 +
f ′10x+ f ′01y + f ′00. Where

f ′20 = a′10r
′
10 + 4e′20

f ′11 = a′10r
′
01 + a′01r

′
10 + 4e′11

f ′10 = a′10r
′
00 + a′00r

′
10 + 4e′10

f ′20 = a′01r
′
01 + 4e′02

f ′01 = a′01r
′
00 + a′00r

′
01 + 4e′01

f ′00 = a′00r
′
00 + 4e′00 +m′

Notice we can express the above system as,

(1)


f ′20
f ′11
f ′10
f ′02
f ′01
f ′00

 =


a′10 0 0
a′01 a′10 0
a′00 0 a′10
0 a′01 0
0 a′00 a′01
0 0 a′00


r′10r′01
r′00

+


4e′20
4e′11
4e′10
4e′02
4e′01

4e′00 +m′


In order to view this as a LWE problem, we must reduce the size of the right most
vector. To do this we use Phong Nguyen’s idea of subtracting the expected value,
which he described in the NIST Comments Section [7]. Since n is sufficiently large,
according to the central limit theorem, for any g(t) ∈ R4, g′ will approximately
follow a truncated discrete Gaussian distribution [4]. To calculate the expected
value of g′ we multiply the expected value of a coefficient of f(t) by n. So we find
the expected value of g′ is n · 0+1+2+3

4 = 3n
2 . This shows that the expected value of

4g′ equals 6n. Since m(t) ∈ R4, the closest integer to the expected value of 4g′+m′

equals d 15n2 e. To calculate the variance, we find the variance of a coefficient of g(t)

and multiply by n. So, the variance is n( 0+1+4+9
4 − 9

4 ) = 5n
4 . Hence the variance of

4g(t) is 20n, and the variance of 4g(t) +m(t) is 85n
4 .

Now if we subtract
[
6n 6n 6n 6n 6n d 15n2 e

]T
from (1) we obtain

f̃ ′20
f̃ ′11
f̃ ′10
f̃ ′02
f̃ ′01

f̃ ′00


=


a′10 0 0
a′01 a′10 0
a′00 0 a′10
0 a′01 0
0 a′00 a′01
0 0 a′00


r′10r′01
r′00

+


ẽ′20
ẽ′11
ẽ′10
ẽ′02
ẽ′01
α


where for each pair ij excluding 00, f̃ ′ij = f ′ij−6n, f̃ ′00 = f ′00−d 15n2 e, ẽ

′
ij = 4e′ij−6n

and α = 4e′00 + m′ − d 15n2 e. If we denote ~f , A, ~r, ~e accordingly then, ~f = A~r + ~e
is a LWE problem, where ~r is the secret vector and ~e is the noise vector. Further,
the first five components of ~e approximately follow a truncated discrete Gaussian
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distribution over {−6n, . . . , 6n} with σ2 = 20n while the sixth component of ~e
is over {−d 15n2 e, . . . , b

15n
2 c} with σ2 = 85n

4 . Though this slightly deviates from
the LWE definition, experimental evidence indicates that this does not impact the
shortest vector in the lattice.

Next we use a lattice reduction attack to solve the LWE problem that Albrecht
outlined in [3]. Consider the row space of AT , where scalar multiplication is from
Zq. We want a lattice, Λ ⊆ Z6, where every element of the row space of AT also
belongs to Λ when each component is viewed as an integer and every element of Λ
also belongs to the row space of AT when each component is modded by q. To find a
basis for Λ we first compute the row reduce echelon form of AT and view it over the
integers. So, if RREF(AT ) =

[
I3 Ā

]
then we view both I3 ∈ Z3×3 and Ā ∈ Z3×3.

Next, we undo the modular reductions by padding RREF(AT ) with multiplies of q.
More precisely, we stack

[
I3 Ā

]
on top of [03×3 qI3]. We get a basis B of Λ where

B =

[
I3 Ā

03×3 qI3

]
∈ Z6×6.

We say that Λ(Bc′(x,y)) is the lattice that corresponds to c′(x, y). Now that we

have basis for Λ, we look for the closest vector in Λ to ~f T (viewed over the integers).

Since ~r TAT − ~f T = −~e T and the e′ij ’s are small, we suspect the closest vector in

Λ to ~f T is ~s TAT .
We extend our basis B to include our target. Our extended basis, B̄c′(x,y) is

B̄c′(x,y) =

 I3 Ā 0
03×3 qI3 0
~f T 1


Now, we know that [~e T |1] ∈ Λ(B̄) because [−~x|1]B̄c′(x,y) = [~e T |1].

Further, we know there is a high probability that [~e T |1] is the shortest vector
in Λ(B̄c′(x,y)) as the e′ij ’s are small. To recover ~e T we perform a lattice reduction

algorithm such as LLL on B̄c′(x,y). Notice we can recover 4e′00 +m′ as α+ d 15n2 e =
4e′00 +m′. So, if we view 4e′00 +m′ as an integer we can recover m′ mod 4 because
the largest possible value of 4e′00 +m′ is 15n which is significantly less then q.

We can use this to break IND-CPA, by choosing m1 and m2 such that when
viewed as integers, m′1 mod 4 6= m′2 mod 4. Since, for any ciphertext that encrypts
a message m, we can recover m′ mod 4, we will be able to tell whether the Oracle
encrypted m1 or if the Oracle encrypted m2. Notice that our attack obtains a
distinguishing advantage of 1 and works independent of the size of q.

Finally, the fact that the extended lattice corresponding to c′(x, y) has an unusu-
ally short vector is what allows us to distinguish ciphertexts from random degree 2
polynomials sampled uniformly from Rq[x, y] because experimental evidence shows
that if g(x, y) is sampled uniformly from Rq[x, y] then the LLL reduced basis of ex-
tended lattice that corresponds to g′(x, y) will have much larger components. When
we uniformly sampled g(x, y) from Rq[x, y] 1,000 times, 998 times LLL(B̄g′(x,y)) did
not contain a row where the last entry is 1 or−1 implying that g(x, y) is not a cipher-
text because the dimension of the lattice is only 7. Further when the LLL(B̄g′(x,y))
contains a row where the last entry is 1 or −1 the average Euclidean norm of
such a row is much larger than the average Euclidean norm of the shortest row of
LLL(B̄c′(x,y)) i.e. [~e|1]. On one hand, out of 100 sampled ciphertexts the average
Euclidean norm of the the shortest row corresponding to actual an ciphertext is
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about 531.212 ≈ 29.053. While on the other hand, out of 100 sampled LLL(B̄g′(x,y))

the other average Euclidean norm was about 10090.175 ≈ 213.301.
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