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Preface

For the last three decades, public-key cryptography has completely changed the
landscape of our modern communication systems and become an indispensable
part of the foundation of our communication networks. In this modern age of
global commerce, social networking, remote marketplaces, and cyber-espionage,
information security is of critical importance. In addition to the problems of
phishing, network intrusion, denial of service attacks, duplicitous crypto, hacking,
and plain classical cryptanalysis, there is an additional threat looming just over the
horizon: quantum computers.

The Internet and other communication systems rely principally on the Diffie–
Hellman key exchange and RSA encryption to provide confidentiality and digital
signatures such as DSA or related algorithms to protect the authenticity and integrity
of users’ information. The security of these techniques is derived from number-
theoretic problems such as integer factorization or the discrete logarithm problem.
In 1994, Dr. Peter Shor showed that quantum computers can efficiently solve
both of these problems, thus rendering all public-key cryptosystems based on such
assumptions insecure. If a sufficiently powerful quantum computer can be built, it
will put all modern communication systems into peril, when they use key exchanges
or encryption or digital authentication.

In the years since Shor’s discovery, we have seen steady progress in quantum
computing technologies. In 2001, Dr. I. Chuang led an effort at IBM that imple-
mented Shor’s algorithm on a 7-qubit quantum computer to factor 15 = 3 ∗ 5. This
demonstrated that Shor’s algorithm actually works. In a very recent presentation,
M. Mosca, deputy director of the Institute for Quantum Computing, estimated a 1/7
chance that quantum computers will break RSA-2048 (one of the most secure of
the encryption and authentication algorithms currently in use) by 2026. A large
international community has emerged to address this issue in the hope that our
public-key infrastructure may remain intact by utilizing new quantum-resistant
primitives. In the academic world, this new science is denoted as “Post-Quantum
Cryptography” (PQC).

Many cryptographers around the world, both in academia and beyond, have
devoted themselves to the search for these alternative public-key systems. In May of
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vi Preface

2006, the first International Workshop on Post-Quantum Cryptography (PQCrypto)
was organized by the European Network of Excellence for Cryptology (ECRYPT).
This major conference has been held regularly.

The need for quantum-resistant public-key cryptosystems has also received
attention within the standardization and policy spectrum. The National Institute of
Standards and Technology (NIST) has held workshops on post-quantum cryptog-
raphy and the European Telecommunications Standards Institute (ETSI) has held
“Quantum-Safe Cryptography” workshops.

Even intelligence organizations have broken the silence on post-quantum cryp-
tography. In the UK, the Government Communications Headquarters (GCHQ) has
publicly acknowledged and published work on quantum-resistant cryptography.
In the USA, in August 2015, the National Security Agency (NSA) published a
webpage stating

Currently, Suite B cryptographic algorithms are specified by the National Institute of Stan-
dards and Technology (NIST) and are used by NSA’s Information Assurance Directorate
in solutions approved for protecting classified and unclassified National Security Systems
(NSS). Below, we announce preliminary plans for transitioning to quantum-resistant algo-
rithms. (https://web.archive.org/web/20160101091229/; https://www.nsa.gov/ia/programs/
suiteb_cryptography)

In February 2016, at the 7th PQCrypto Workshop in Japan, NIST announced a call
for proposals for quantum-resistant algorithms and in July of 2016 published the first
draft of a call for quantum-resistant standards. NIST made a very strong justification
for the timeliness of the PQC project.

While in the past it was less clear that large quantum computers are a physical possibility,
many scientists now believe it to be merely a significant engineering challenge. Some
engineers even predict that within the next 20 or so years, sufficiently large quantum
computers will be built to break essentially all public-key schemes currently in use.
Historically, it has taken almost two decades to deploy our modern public-key cryptography
infrastructure. Therefore, regardless of whether we can estimate the exact time of the
arrival of the quantum computing era, we must begin now to prepare our information
security systems to be able to resist quantum computing. (https://csrc.nist.gov/projects/post-
quantum-cryptography/)

Historically, NIST standards have often been endorsed by other standard-setting
organizations around the world, and so the development of a post-quantum standard
at NIST will set the stage for the maintenance of our e-society in the next generation.
Considering all of these facts, it is not surprising that the effort to develop quantum-
resistant technologies has become an increasingly central research topic in the area
of information security.

Just as current public-key cryptosystems such as the Diffie–Hellman key
exchange and RSA encryption relied heavily on number-theoretic advances,
new post-quantum cryptosystems rely on a solid understanding of the underlying
mathematical hard problems and the related mathematical structures and theories.
Nonetheless, this is a relatively new field of study that has brought many new
challenging mathematical problems, which are important both theoretically
and practically. Research towards developing a new quantum-resistant NIST

https://web.archive.org/web/20160101091229/
https://www.nsa.gov/ia/programs/suiteb_cryptography
https://www.nsa.gov/ia/programs/suiteb_cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/
https://csrc.nist.gov/projects/post-quantum-cryptography/


Preface vii

cryptographic standard brings a great and unique opportunity and even greater
challenges for the mathematical community.

This relatively young nature of post-quantum cryptography presents a particu-
larly alarming situation for NIST, an organization which has based its asymmetric
recommendations noticeably on the longevity of public-key cryptosystems. This
strategy is less applicable in the quantum-resistant milieu in which most of the
longest-lived schemes suffer horrendous parameters to achieve practical security
and would require a dramatic overhaul of the public-key infrastructure.

Multivariate public-key cryptography, or MPKC for short, is one of the main
families of post-quantum cryptosystems and has increasingly been seen as a possible
alternative to classical public-key schemes such as RSA and DSA.

A result from complexity theory states that solving a set of randomly chosen
nonlinear multivariate polynomial equations over a finite field is NP-hard. So far,
quantum computers have not yet been shown to be able to solve a set of multivariate
polynomial equations efficiently, and the consensus is that quantum computers are
unlikely to provide an advantage for this type of problem.

In general, a multivariate public-key cryptosystem (MPKC) is a public-key cryp-
tosystem in which the public key is a set of multivariate polynomials p(1), . . . , p(m)

in F[x1, . . . , xn], where F is a finite field. If Alice wants to send the message
(x′1, . . . , x′n) ∈ F

n to Bob, she looks up Bob’s public key, computes y′i =
p(i)(x′1, . . . , x′n) for i = 1, . . . , m, and sends the encrypted message (y′1, . . . , y′m)

to Bob. Bob’s secret key will be some information about the construction of
the polynomials p(i) which enables him to solve the system p(1)(x1, . . . , xn) =
y′1, . . . , p(m)(x1, . . . , xn) = y′m for x1, . . . , xn. Of course, since Bob, with the help
of his secret key, must be able to recover Alice’s message efficiently, the polynomial
system p(1), . . . , p(m) must contain some structure. Therefore, the NP-hardness
of the multivariate polynomial equation solving problem does not necessarily
guarantee the security of practical schemes, though intuitively it does suggest that
the more we can make the system p(1), . . . , p(m) appear to be “random,” the more
secure the scheme is likely to be.

Research on MPKCs has undergone rapid development in the last two decades,
providing many interesting results in designing and attacking the MPKCs. In
addition, the study of MPKCs has also resulted in new ideas in solving systems of
multivariate polynomial equations over a finite field, a purely mathematical problem
that lies in the area of algebraic geometry. This has also attracted a lot of attention.

There are several multivariate schemes submitted to compete in the NIST post-
quantum standardization competition. Due to the relatively long history of study
and the solid theoretical and experimental support, we believe that some of these
schemes are very strong candidates. One example is the Rainbow signature scheme,
which is very simple, very efficient, and has very small signatures, although it has
relatively large public keys. Rainbow was invented more than 15 years ago by two
of the authors of this book and has sustained attacks for all these years without any
change of the basic design. Rainbow is now one of the nine signature schemes in
the second round of the NIST Post-Quantum standardization process.
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Here we would like to point out that developing a new MPKC is a very delicate
task. LUOV, a NIST second-round candidate, was broken by the first author and his
students by a new subfield differential-algebraic attack.

This book is intended to systematically present the subject matter to a broad
audience, including information security experts in industry, computer scientists,
and mathematicians. We hope that this book can be used in the following ways:
by industry experts as a guide for understanding the basic mathematical structures
needed to implement these cryptosystems for practical applications, as a starting
point for researchers in both computer science and mathematics looking to explore
this exciting new field, or as a textbook for a course in MPKC suitable for
beginning graduate students in mathematics or computer science. Due to the above
considerations, this book has been written more from the computational perspective,
though we have tried to provide the necessary mathematical background.

It should be noted that there are usually several improvements on the schemes
that we present, in particular in terms of the efficiency of the computation in both
implementation and attacks. However, to keep the size of this book reasonable
and to keep the book more focused, we have chosen not to cover some of these
details. Instead, we have tried to present the essential ideas, methods, and examples
so that a reader will not be distracted by technical details that can be found in
the references provided. Nevertheless, for those readers interested in the practical
side of the MPKCs, we highly recommend reading through the details in order to
discover improvements. Improving the performance of a cryptosystem by even a
small factor may not be significant from a mathematical perspective, but can be
very important in practice.

Due to the fast development in MPKC, though this book bears the same title as
our previous book, we have totally rewritten this book with much more new ideas
and research results.

The materials in the book can be used as a text for a year-long course in
advanced topics in cryptography or applied algebra, or as a supplementary text for
a first course in cryptography. Students with some previous exposure to abstract
algebra (groups, rings, fields, and ideals) will be more than well-prepared to read
and understand the various topics. For those with a programming background,
our relevant software is available for public use at https://scholar.uc.edu/show/
b5644s654.

The same website can also be reached via the more permanent URL http://dx.
doi.org/10.7945/5sqr-g734.

This will provide interested readers a starting point to further develop their
understanding and computational intuition by experimenting with the software.
Those readers new to the field of MPKC will be best served by first reading the
introductory chapter (Chap. 2), after which the chapters are written so as to be
essentially self-contained. Readers with previous exposure to MPKC may use the
text to learn more about a given scheme and as a guide to related articles.

Although it was our intention to include all related references, we apologize to
those we have missed. Also, the amount of space devoted to a given topic is not
necessarily related to how important we consider it. Rather it is likely due to space

https://scholar.uc.edu/show/b5644s654
https://scholar.uc.edu/show/b5644s654
http://dx.doi.org/10.7945/5sqr-g734
http://dx.doi.org/10.7945/5sqr-g734
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constraints or to maintain the consistency and convenience of the structure and flow
of the book.

We plan to maintain at the website given above a PDF-file with the name
Corrections where we will list corrections to the book. Readers are encouraged
to submit their findings to any (or all) authors.

We would like to thank many people who supported our book project, and the
list is too long to be added here. Many thanks go to the Taft foundation and to
the Department of Mathematical Sciences at the University of Cincinnati for their
support. Finally, we would like to thank our families for their constant support and
encouragement.



Changes to the Previous Edition

Although this book can be viewed as the second edition of the book with the same
title, we fundamentally rewrote it in accordance with the new research and new
perspective, which were developed after the publication of the previous book. So, in
comparison to the first edition, this book contains several new sections/chapters:

• in Chap. 4 (Hidden Field Equations), a section about the ZHFE encryption
scheme and a section about the signature scheme Gui;

• in Chap. 5 (Oil and Vinegar), new techniques to reduce the key sizes of UOV
and Rainbow, including the signature scheme LUOV, as well as a section on the
efficient key generation of these schemes;

• a new Chap. 6 on the MQ-based identification scheme and the MQDSS signature
scheme;

• a new Chap. 7 on the simple matrix encryption scheme and its variants;
• in Chap. 8 (Solving Polynomial Systems), new sections about solving univariate

polynomials of high degree (important for the implementation of HFE and
variants) and on the solution of over- and underdetermined multivariate systems,
which is important, e.g. for the security analysis for UOV. Furthermore, this
chapter contains a section about recent work on estimating the degree of
regularity of HFE like systems.

On the other hand, we have removed the chapter on Triangular Systems, since we
do not think that these schemes will be of great relevance for both practice and future
research. Due to the rapidly developing field, we apologize that not all references
are included.

Jintai Ding Cincinnati, OH, USA

Albrecht Petzoldt Nürnberg, Germany

Dieter S. Schmidt Springboro, OH, USA
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Notations

Throughout this book, we use the following notation:

F = Fq Finite field with q elements

F
n Vector space of dimension n over F

F[X] Univariate polynomial ring over F

F[x1, . . . , xn] Multivariate polynomial ring in n variables over F

E = Fqn Degree n extension field of F

Φ : Fn → E Isomorphism between the vector space F
n

and the extension field E

F Central map of a multivariate cryptosystem

L,S, T Linear or affine transformations

P Public key of a multivariate cryptosystem

w = (w1, . . . , wm) Ciphertext/message (hash value) to be signed

z = (z1, . . . , zn) Plaintext/signature

Gi Symmetric matrix representing the homogeneous quadratic

part of the i-th component of the central map

Hi Symmetric matrix representing the homogeneous quadratic

part of the i-th component of the public key

DP Differential/polar form of a system P of multivariate

quadratic system P

Moreover, small Latin or Greek letters represent integers or elements of the base
field, small bold letters stand for vectors, and capital letters represent matrices or
elements of an extension field.
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Chapter 1
Introduction

Abstract This chapter gives a short introduction into the field of cryptography.
After defining the protection goals of cryptography, we briefly describe the main
cryptographic primitives used to achieve these goals. We describe why the currently
used public key cryptosystems become insecure in the presence of quantum
computers and thereby motivate the field of post-quantum cryptography. We discuss
current research activities in this field and introduce the main families of post-
quantum cryptosystems.

1.1 Cryptography

Cryptography is widely seen as the science (or sometimes art) to encrypt messages.
While, in the past, this was mainly important for politicians and the military,
nowadays cryptography has become an essential part of everyday communication.
Besides encrypting messages, cryptographic techniques are used for access control
on websites (e.g. email providers, online banking) as well as the authentication and
integrity of data sent over the Internet (e.g. software updates).

Using these application scenarios, we can identify the following protection goals
of cryptography

• Confidentiality: An illegitimate user should not get any information about secret
messages.

• Entity authentication: Corroboration of an entity’s identity.
• Data authentication: Corroboration of the origin of data.
• Data integrity: Ensuring that information has not been changed by unauthorized

entities.

Another important cryptographic protection goal is Non Repudiation, which pre-
vents the signer of a digital document or contract from denying his authorship. An
important technique to achieve these protection goals are public key cryptosystems.

© Springer Science+Business Media, LLC, part of Springer Nature 2020
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2 1 Introduction

1.2 Public Key Cryptography

Until the 1970s, the only way to reach the cryptographic goals discussed in the
previous section was by means of symmetric cryptography. In a symmetric
cryptosystem, the two users Alice and Bob exchange a secret key k using a secure
channel. In order to send a secret message m to Alice, Bob encrypts his message
using the previously shared secret key (thus obtaining a ciphertext c = Ek(m)) and
sends the ciphertext c to Alice. Alice uses the secret key k to decrypt the ciphertext
c and therefore can read the plain message m. On the other hand, the non-legitimate
user Eve can eavesdrop only the encrypted message which will give her (in the case
of a secure encryption scheme) no information about the content of the message
itself (see Fig. 1.1).
The main problem of symmetric cryptosystems is the exchange of the secret key,
which must be performed over a secure channel. Public Key Cryptography solves
this problem by making use of two types of keys, which are denoted as the private
and the public key. These two keys are related via a hard mathematical problem
such as integer factorization or the discrete logarithm problem. In fact, computing
the public key from the private key is easy, while the inversion of this step should
be infeasible.

In order to use a public key cryptosystem, Alice first chooses her private key
and computes from it the corresponding public key, which can be published e.g.

Fig. 1.1 Workflow of
symmetric cryptography

Alice Bob

Eve

Key Generation
k

secure channel
k

Encryption
message m

ciphertext
c = Ek(m)

open channelDecryption
ciphertext c

message
m = Dk(c)
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Fig. 1.2 Workflow of public
key cryptography
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via the Internet. In order to send an encrypted message to Alice, Bob encrypts his
message using Alice’s public key and sends the encrypted message to Alice via an
open channel. Alice, with the help of her private key, can decrypt the message, while
the illegitimate eavesdropper Eve has only access to the encrypted message and the
public key (see Fig. 1.2). However, since it is infeasible to compute the private out
of the public key, the knowledge of the public key does not help Eve to recover the
message.

Additionally to encrypting messages, public key cryptography also enables
another very interesting primitive, namely digital signatures. In a digital signature
scheme, Alice computes a hash value of her message and creates a signature by
encrypting this hash value using her private key. After that, she publishes message
and signature together. By using Alice’s public key, anybody can check if the
decrypted signature is really the hash value of the message. By creating a digital
signature for a document d, Alice can therefore prove that she is the author of the
document d.

Currently, the most used public key cryptosystems are the factoring based RSA
scheme [7] (for encryption and digital signatures) as well as the discrete logarithm
based Digital Signature Algorithm (DSA) [5] and its elliptic curve analogue
ECDSA.



4 1 Introduction

1.3 Post-Quantum Cryptography

In 1994, Peter Shor proposed an algorithm which solves number theoretic problems
such as the integer factorization problem and the discrete logarithm problem in
polynomial time on a quantum computer [8]. This algorithm has therefore the
potential to solve the mathematical problems underlying RSA and DSA efficiently.
As soon as sufficiently large quantum computers are built, the currently used public
key cryptosystems will become insecure.

In the last years much research has been done on quantum computing and much
progress in building a large scale quantum computer has been achieved. Besides
academic institutions, many large companies such as Google and IBM work on
this topic and have already created prototypes of quantum computers with up to 50
qubits [2]. In fact, many researchers believe that building a large quantum computer
is nowadays mainly an engineering problem, which might be solved within the next
10–15 years.

It is therefore necessary to develop alternatives to the classical cryptographic
schemes RSA and DSA, which are not affected by quantum computer attacks
and therefore can replace these schemes in a post-quantum era. These are the so-
called post-quantum cryptosystems [1]. The importance of research in the area
of post-quantum cryptography has been realized by national and international
organizations. This includes the EU, which is financing research programs such as
PQCRYPTO [4] and SAFEcrypto, and the Japanese Society for the Promotion of
Science (JSPS), which is supporting the program CryptoMathCREST [3]. Also the
American National Institute for Standards and Technology is preparing to develop
standards for post-quantum public key cryptosystems [6]. The main families of post-
quantum cryptosystems are:

• lattice-based cryptosystems,
• code-based cryptosystems,
• hash-based signatures,
• isogeny-based key exchange schemes and
• multivariate cryptography, which is the topic of this book.
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Chapter 2
Multivariate Cryptography

Abstract This chapter gives an overview of the basic concepts of multivariate
cryptography. After recalling the basic definitions on (systems of) multivariate
polynomials, we present the main construction methods of multivariate public key
cryptosystems. We discuss the mathematical problems underlying the security of
multivariate cryptography and give an overview of the main attacks against these
schemes. Finally, we discuss the advantages and disadvantages of multivariate
schemes compared to other (post-quantum) cryptosystems.

In this chapter we give an overview of the basic concepts of multivariate cryp-
tography needed in the following chapters of this book. After recalling the basic
definitions of multivariate polynomials in Sect. 2.1, Sect. 2.2 describes the basic
construction techniques of multivariate public key cryptosystems. Section 2.3
introduces the mathematical problems on which the security of multivariate cryp-
tosystems is based, whereas Sect. 2.4 gives an overview on the main attacks against
multivariate schemes. Finally, Sect. 2.5 discusses the advantages and disadvantages
of multivariate schemes compared to other public key cryptosystems.

2.1 Multivariate Polynomials

In this section we recall the basic definitions and introduce notations about
multivariate polynomials needed in the later parts of this book.

Definition 2.1 Let F = Fq be a finite field with q elements. We define the ring of
multivariate polynomials in n variables over F as

F[x1, . . . , xn] =
{

s∑
i=1

ci tai
|s ∈ N, ai = (ai,1, . . . , ai,n) ∈ N

n
0

}
. (2.1)
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8 2 Multivariate Cryptography

We call ci ∈ F a coefficient and tai
= x

ai,1
1 x

ai,2
2 · · · xai,n

n a monomial. The product
ci tai

is called a term. The set of all monomials in F[x1, . . . , xn] is denoted by T n.

Definition 2.2 For a polynomial p = ∑s
i=1 ci tai

∈ F[x1, . . . , xn], we define the
support of p as the set of all monomials appearing in p, i.e.

Supp(p) = {tai
|ci �= 0}.

For a system P = (p(1), . . . , p(m)), the support of P is defined as

Supp(P) =
m⋃

i=1

Supp(p(i)).

Definition 2.3 The degree of a monomial ta = x
a1
1 x

a2
2 · · · xan

n ∈ F[x1, . . . , xn] is
defined as

deg(ta) = |a| =
n∑

j=1

aj . (2.2)

The degree of a polynomial p =∑s
i=1 ci tai

is defined as

deg(p) = max
i∈{1,...,s} deg(tai

) = max
i∈{1,...,s} |ai |. (2.3)

Theorem 2.4 Let F be a finite field with q elements and d < q. Then there exist

(
n+ d − 1

d

)

monomials of degree d in F[x1, . . . , xn]. The number of monomials of degree ≤ d

in F[x1, . . . , xn] is given by

(
n+ d

d

)
.

Proof

(1) Number of monomials of degree d: Choose d out of the n elements x1, . . . , xn,
with possible repetition.

(2) Number of polynomials of degree≤ d: Now we choose d elements from the set
{x1, . . . , xn, 1}, again with possible repetition.

	

For d ≥ q the number of monomials gets smaller, since we have x

q
i = xi for

i = 1, . . . , n. In the important case of q = 2 we get
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Theorem 2.5 The number of monomials of degree d in GF(2)[x1, . . . , xn] is given
by

(
n

d

)
.

The number of monomials of degree ≤ d in GF(2)[x1, . . . , xn] is given by

d∑
i=0

(
n

i

)
.

Proof Same as in the proof of Theorem 2.4, only without repetition. 	

As Theorem 2.4 shows, the number of monomials in F[x1, . . . , xn] increases

rapidly with higher d. For efficiency reasons, multivariate public key cryptosystems
therefore restrict (in most cases) to polynomials of degree 2. In this case we get

Corollary 2.6 The number of monomials of degree ≤ 2 in F[x1, . . . , xn] is given
by

{
(n+1)(n+2)

2 if q > 2
n(n+1)

2 + 1 if q = 2
.

Proof Set d = 2 in Theorems 2.4 and 2.5. 	

Corollary 2.6 plays an important role when computing the public key size of a

multivariate public key cryptosystem.

Definition 2.7 For a monomial ta = x
a1
1 x

a2
2 · · · xan

n ∈ F[x1, . . . , xn] we define

log(ta) = (a1, a2, . . . , an) ∈ N
n
0 . (2.4)

Definition 2.8 An order of monomials is a complete relationship σ ⊂ T n × T n

on T n. Instead of (t1, t2) ∈ σ we write t1 >σ t2. An order of monomials is called
admissible, if for all t1, t2, t3 ∈ T n we have

(1) t1 >σ 1,
(2) t1 >σ t2 ⇒ t1t3 >σ t2t3.

Often used examples for (admissible) orders of monomials are the pure lexi-
cographical order (lex), the graded lexicographical order (glex) and the graded
reverse lexicographical order (grevlex).

• In the pure lexicographical order we have

t1 >lex t2 ⇔ the first non zero component of log(t1)− log(t2) is greater than 0.
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• In the graded lexicographical order we have

t1 >glex t2 ⇔ deg(t1) > deg(t2) or deg(t1) = deg(t2) ∧ t1 >lex t2.

• In the graded reverse lexicographical order we have

t1 >grevlex t2 ⇔ deg(t1) > deg(t2)

or deg(t1) = deg(t2) and the last non zero component of log(t1)− log(t2) is
negative.

After having fixed an order of monomials σ , we can give the following
definitions:

Definition 2.9 For a multivariate polynomial

p(x1, . . . , xn) =
s∑

i=1

ci tai
∈ F[x1, . . . , xn],

with ta1 >σ ta2 >σ . . . >σ tas we define the coefficient vector Π(p) by

Π(p) = (c1, . . . , cs) ∈ F
s . (2.5)

Definition 2.10 For a system P of m multivariate polynomials1

p(1)(x1, . . . , xn) =
s∑

i=1

c
(1)
i tai

p(2)(x1, . . . , xn) =
s∑

i=1

c
(2)
i tai

...

p(m)(x1, . . . , xn) =
s∑

i=1

c
(m)
i tai

with ta1 >σ ta2 >σ . . . >σ tas , we define the Macaulay matrix of P by

1Without loss of generality we assume that each of the polynomials of P contains the same
monomials.
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MP = (Π(p(1)), . . . ,Π(p(m)))T =

⎛
⎜⎜⎜⎜⎝

c
(1)
1 c

(1)
2 . . . c

(1)
s

c
(2)
1 c

(2)
2 . . . c

(2)
s

...
...

c
(m)
1 c

(m)
2 . . . c

(m)
s

⎞
⎟⎟⎟⎟⎠ . (2.6)

We get

P(x1, . . . , xn) = MP · (ta1, . . . , tas )
T .

In the context of multivariate cryptography, we mostly deal with systems of
multivariate quadratic polynomials. The number of equations in the system will be
denote by m and the number of variables by n. Equation (2.7) shows such a system
P = (p(1), . . . , p(m)) of multivariate quadratic polynomials.

p(1)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(1)
ij xixj +

n∑
i=1

p
(1)
i xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(2)
ij xixj +

n∑
i=1

p
(2)
i xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(m)
ij xixj +

n∑
i=1

p
(m)
i xi + p

(m)
0 (2.7)

If m = n, we call P a determined system. For m < n, P is called underdetermined
and for m > n, we speak of an overdetermined system.

For the system P of (2.7) and the graded lexicographical order of monomials,
the Macaulay matrix (see Definition 2.10) has the form

MP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p
(1)
11 p

(1)
12 . . . p

(1)
nn p

(1)
1 . . . p

(1)
n p

(1)
0

p
(2)
11 p

(2)
12 . . . p

(2)
nn p

(2)
1 . . . p

(2)
n p

(2)
0

...
...

p
(m)
11 p

(m)
12 . . . p

(m)
nn p

(m)
1 . . . p

(m)
n p

(m)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.8)

We get
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⎛
⎜⎜⎜⎝

p(1)

p(2)

...

p(m)

⎞
⎟⎟⎟⎠ (x1, . . . , xn) = MP · (x2

1 , x1x2, . . . , x
2
n, x1, . . . , xn, 1)T . (2.9)

2.1.1 Matrix Representation

For a multivariate quadratic system P , as shown in (2.7), we can write each
component p(k) (k = 1, . . . , m) as a matrix-vector product using an upper triangular
(n+ 1)× (n+ 1) matrix MP (k) of the form

MP (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.10)

We get

p(k)(x1, . . . , xn) = (x1, . . . , xn, 1) ·MP (k) · (x1, . . . , xn, 1)T (k = 1, . . . , m).

(2.11)

Definition 2.11 We call a quadratic system P homogeneous quadratic if it has no
linear and constant terms. This means that all coefficients p

(k)
i (i = 0, . . . , n, k =

1, . . . , m) in (2.7) are zero.

We can write a homogeneous quadratic system P as

p(k)(x1, . . . , xn) = (x1, . . . , xn) ·MP (k) · (x1, . . . , xn)
T (2.12)

with matrices MP (k) (k = 1, . . . , m) of the form



2.1 Multivariate Polynomials 13

MP (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n

0 0 p
(k)
33 p

(k)
3n

...
. . .

...

0 0 . . . 0 p
(k)
nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ F

n×n. (2.13)

2.1.2 Symmetric Matrices Corresponding to a Multivariate
Quadratic Polynomial

For some attacks against multivariate public key cryptosystems, we consider the
symmetric matrices associated to (the homogeneous part of) the polynomials of the
private or public key. These matrices are defined slightly different depending on the
characteristic of the underlying field.

For an underlying field of odd characteristic, the symmetric matrix corresponding
to a multivariate quadratic polynomial p ∈ F[x1, . . . , xn] is the n × n matrix Q =
(qij ), whose elements are given by

qij =
{

MonomialCoefficient(p, x2
i ) i = j

MonomialCoefficient(p, xixj )/2 otherwise.

In the case of an underlying field of even characteristic, we can not define the matrix
Q as above, since the division by two is not defined. Here, we define first an upper
triangular matrix P = (pij ) by

pij =
{

MonomialCoefficient(p, xixj ) i ≤ j

0 otherwise

and set

Q = P + P T .

Note that the matrix Q is a symmetric matrix with zeros on the main diagonal.

Definition 2.12 For a multivariate quadratic system P , we define the differential
or polar form as

DP(x, y) = P(x+ y)− P(x)− P(y)+ P(0).
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Note that the differential of a multivariate quadratic system is symmetric and
bilinear in x and y. In the case of a homogeneous quadratic system, the differential
is given as

DP(x, y) = P(x+ y)− P(x)− P(y),

since P(0) = 0 holds.

2.2 Construction Methods for MPKC’s

In this section we present the basic methods for constructing multivariate public key
cryptosystems (MPKC’s). Basically, there are two different methods

• the standard (bipolar) construction and
• the mixed systems construction.

Additionally, there exist two methods to obtain public key identification schemes
on the basis of multivariate polynomials: the IP based identification scheme and
the MQ based identification scheme. Here, IP and MQ denote the mathematical
problems underlying the security of the schemes, which are the Isomorphism of
Polynomials Problem and the MQ Problem of solving a system of multivariate
quadratic polynomials. A formal definition of these problems can be found in the
next section.

2.2.1 The Bipolar Construction

The basic idea behind the standard construction of multivariate public key cryp-
tosystems is to choose a system F : F

n → F
m of m multivariate quadratic

polynomials in n variables which can be easily inverted (central map). After that,
one chooses two affine (or linear) invertible maps S : Fm → F

m and T : Fn → F
n

to hide the structure of the central map F in the public key. The public key of the
cryptosystem is the composed quadratic map P = S ◦ F ◦ T : Fn → F

m which
is supposed to be hardly distinguishable from a random system and therefore to be
difficult to invert. The private key consists of S , F and T and therefore allows to
invert the public key.

The standard process for encryption and decryption or for signature generation
and verification works as shown in Fig. 2.1.
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Fig. 2.1 General workflow
of bipolar schemes

2.2.1.1 Encryption Schemes (m ≥ n)

Encryption To encrypt a message z ∈ F
n, one simply computes w = P(z). The

ciphertext of the message z is w ∈ F
m.

Decryption To decrypt the ciphertext w ∈ F
m, one computes recursively x =

S−1(w), y = F−1(x) and z = T −1(y). z ∈ F
n is the plaintext corresponding to

the ciphertext w. Since m ≥ n holds, the pre-image of x under F and therefore the
resulting plaintext is unique.

2.2.1.2 Signature Schemes (m ≤ n)

Signature Generation To sign a document d, we use a hash function H :
{0, 1}� → F

m to compute the value w = H(d) ∈ F
m. Then we compute

x = S−1(w), y = F−1(x) and z = T −1(y). The signature of the document d is
z ∈ F

n.
Here, F−1(x) means finding one (of the possibly many) pre-image of x under the

central map F . Since we have n ≥ m, we can be sure that such a pre-image exists.
Therefore every message has a signature.

Signature Verification To verify the authenticity of a document, one simply
computes w′ = P(z) and the hash value w = H(d) of the document. If w′ = w
holds, the signature is accepted, otherwise it is rejected.

The security of bipolar schemes is based on two different problems. In particular,
these are the MQ Problem and some version of the IP Problem. If the central map
F is publicly known (as for the Matsumoto-Imai cryptosystem (see Chap. 3)), this
is the IP2S Problem. If F is a part of the private key (as for UOV and Rainbow
(see Chap. 5)), it is the EIP Problem. More information regarding these underlying
problems can be found in Sect. 2.3.
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2.2.2 Mixed Systems

To build a multivariate scheme of the mixed systems type, one starts with a quadratic
map F : Fm+n → F

m of the form

F(y1, . . . , yn, x1, . . . , xm) = (h1, . . . , hm). (2.14)

F has to fulfill the following two conditions:

(C1) For each fixed element (ȳ1, . . . , ȳn) ∈ F
n the map

F(ȳ1, . . . , ȳn, x1, . . . , xm) : Fm → F
m

becomes linear.
(C2) For each fixed element (x̄1, . . . , x̄m) ∈ F

m the map

F(y1, . . . , yn, x̄1, . . . , x̄m) : Fn → F
m

is an efficiently invertible system of multivariate quadratic equations.

The public key of the scheme is defined as P = L ◦ F ◦ (S × T ), where S :
F

n → F
n and T : Fm → F

m are invertible affine and L : Fm → F
m is an invertible

linear map. Therefore, P is a quadratic map from F
m+n to F

m. But, for any fixed
(z̄1, . . . , z̄n) ∈ F

n, the system

P(z̄1, . . . , z̄n, w1, . . . , wm)

becomes a linear map from F
m to itself (due to condition (C1)).

The private key consists of the maps L,F ,S and T . Though L is in general not
necessary to decrypt ciphertexts or sign messages, it should be kept secret.

2.2.2.1 Encryption Schemes (m ≥ n)

Encryption To encrypt a message z = (z1, . . . , zn) ∈ F
n, one solves the linear

system

P(z1, . . . , zn, w1, . . . , wm) = (0, . . . , 0)

for w1, . . . , wm. w = (w1, . . . , wm) ∈ F
m is the ciphertext of the message z.

Decryption To decrypt a ciphertext w ∈ F
m, one first computes

x = (x1, . . . , xm) = T (w). Then one solves

F(y1, . . . , yn, x1, . . . , xm) = (0, . . . , 0) (2.15)
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for y = y1, . . . , yn. Note that (2.15) is, due to condition (C2), efficiently invertible.
Finally, one computes the plaintext z = S−1(y). Since we have m ≥ n, the resulting
plaintext is unique.

2.2.2.2 Signature Schemes (m ≤ n)

Signature Generation To generate a signature for a document d, one uses a hash
function H : {0, 1}� → F

m to compute a hash value w = H(d) = (w1, . . . , wm) ∈
F

m. Then one computes x = (x1, . . . , xm) = T (w) and solves

F(y1, . . . , yn, x1, . . . , xm) = (0, . . . , 0). (2.16)

for y = y1, . . . , yn. Again, (2.16) is a system of multivariate quadratic equations
which, due to condition (C2), is efficiently invertible. The signature of the message
d is z = S−1(y) ∈ F

n. Since we have n ≥ m, we can be sure that every message
has a signature.

Signature Verification To verify the authenticity of a signature z = (z1, . . . , zn) ∈
F

n, one computes the hash value w = H(d) = (w1, . . . , wm) and evaluates
P(z1, . . . , zn, w1, . . . , wm). If the result is (0, . . . , 0) ∈ F

m, the signature is
accepted, otherwise it is rejected.

There exist only very few schemes of the mixed systems type. Examples for
such schemes are the Dragon cryptosystems of Patarin [4]. We do not handle these
schemes in this book.

As for bipolar schemes, the security of schemes of the mixed systems type is
based on the MQ Problem and some type of the IP Problem (see Sect. 2.3).

Additionally to these constructions for multivariate public key encryption and
signature schemes, there exist two different constructions for multivariate public
key identification schemes.

In an identification scheme, a prover P wants to prove his identity to a verifier V .
This is done using a zero knowledge proof in which the prover shows his knowledge
of a secret s. The central property of such a proof is that the verifier does not get any
information about the secret s, which prevents him from impersonating P . In this
book, we describe two different constructions of such a proof based on multivariate
quadratic polynomials.

2.2.3 IP Based Identification

The IP based identification scheme of Patarin [5] can be described as follows:

Key Generation The prover P randomly chooses a system A : Fn → F
m of

multivariate quadratic polynomials and two affine maps S : Fm → F
m and T :
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Fig. 2.2 The IP based identification scheme

F
n → F

n. He computes B = S ◦ A ◦ T . The public key consists of A and B, the
private key of S and T .

To prove his identity to a verifier, P now performs one or more rounds of the
identification protocol. Figure 2.2 shows one round of the protocol.

The scheme is a zero knowledge argument of knowledge that P knows two affine
maps S and T such that B = S ◦ A ◦ T . The cheating probability per round is 1

2 .
Therefore, one needs 30 rounds to reduce the impersonation probability to 2−30.

Using the Fiat Shamir transformation (see Sect. 6.2), the IP based identification
scheme can be extended to a signature scheme. The security of the scheme is based
on the IP2S Problem (see Sect. 2.3).

One major disadvantage of the IP based identification scheme is the large
communication cost. In every round of the protocol, the prover has to send a
multivariate quadratic system C of m equations in n variables (as well as two linear
systems) to the verifier, which, especially for higher levels of security, leads to an
immense communication cost. This problem is solved by the MQ identification
scheme.
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2.2.4 MQ Based Identification

In [7], Sakumoto et al. proposed an identification scheme, whose security is solely
based on the MQ Problem of solving a system of multivariate quadratic equations.
This scheme is the basis of the MQDSS signature scheme which is described in
Chap. 6. The MQ based identification scheme of [7] is described in Sect. 6.1.

2.3 Underlying Problems

In this section we describe the mathematical problems underlying the security of
multivariate cryptosystems.

2.3.1 The MQ Problem

Solving multivariate nonlinear polynomial systems is the central problem for the
security of all multivariate cryptosystems.

Definition 2.13 (Problem of Solving Polynomial Systems (PoSSo)) Given a
system P = (p(1), . . . , p(m)) of m nonlinear polynomial equations in the variables
x1, . . . , xn, find values x̄1, . . . , x̄n such that

p(1)(x̄1, . . . , x̄n) = . . . = p(m)(x̄1, . . . , x̄n) = 0.

Solving multivariate polynomial systems is proven to be NP-complete even for
the simplest case of quadratic polynomials over GF(2) [3] (in its decisional variant).
More precisely, it can be shown to be equivalent to the 3SAT problem.

For efficiency reasons, most multivariate schemes use only quadratic poly-
nomials. For this special case when all polynomials p(1), . . . , p(m) have degree
two, the polynomial solving-problem is called the MQ Problem (for Multivariate
Quadratic).

Since nearly all cryptographic schemes can be written as systems of nonlinear
polynomial equations, this problem is important to all of them. Especially for the
cryptanalysis of symmetric ciphers like block and stream ciphers this so called
algebraic cryptanalysis plays a major role [6].

In Chap. 8 we present known algorithms to solve the MQ Problem. In contrast
to the case of integer factorization, all of these algorithms have exponential running
time (for m ∼ n).
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2.3.2 The IP Problem

Due to their construction, the security of most multivariate schemes is not solely
based on the MQ Problem, but also on (some variant of) the IP (Isomorphism of
Polynomials) Problem. In particular, there exist three versions of this problem.

Definition 2.14 (Problem IP1S (Isomorphism of Polynomials with One Secret))
Given nonlinear multivariate systems A and B such that B = A ◦ T for a linear or
affine map T , find a map T ′ such that B = A ◦ T ′.
Definition 2.15 (Problem IP2S (Isomorphism of Polynomials with Two
Secrets)) Given nonlinear multivariate systems A and B such that B = S ◦A ◦ T
for some linear or affine maps S and T , find two maps S ′ and T ′ such that
B = S ′ ◦A ◦ T ′.
Definition 2.16 (Problem EIP (Extended Isomorphism of Polynomials)) Given
a special class C of nonlinear multivariate systems and a nonlinear multivariate
system P which can be written as P = S ◦ F ◦ T with affine maps S and T
and F ∈ C, find a decomposition of P of the form P = S ′ ◦ F ′ ◦ T ′ with affine
maps S ′ and T ′ and F ′ ∈ C.

The IP2S Problem is used for the construction of multivariate schemes where the
central map is publicly known (e.g. for Matsumoto-Imai (see Chap. 3)) as well as
the IP based identification scheme of Sect. 2.2.

When the central map of the scheme is part of the private key, the security of the
scheme is based on the EIP Problem. This is the case for most SingleField schemes
such as UOV and Rainbow (see Chap. 5).

In contrast to the MQ Problem, there is not much known about the hardness
of the IP Problem. In fact, for some multivariate schemes (e.g. the balanced Oil
and Vinegar signature scheme) the decomposition of the public key P turned out
to be very easy (see Sect. 5.2). This fact prevented researchers to give security
proofs for multivariate public key schemes. In fact, the only existing provably secure
multivariate public key cryptosystems are based on the MQ based identification
scheme of Sect. 6.1.

2.4 Security and Standard Attacks

For most multivariate public key cryptosystems, there exists no security proof which
reduces the security of the scheme to the hardness of a well known mathematical
problem (e.g. the MQ Problem). In fact, the only provable secure multivariate public
key schemes are the MQ based identification scheme of Sect. 6.1 and the related
signature scheme MQDSS (see Chap. 6).

Since there are no security proofs for multivariate public key cryptosystems, the
security of these schemes is estimated by the complexities of the relevant attacks



2.4 Security and Standard Attacks 21

against the schemes. Note that this is also done for most schemes with a security
proof, e.g. lattice based schemes. Since the reductions are rarely tight, deriving the
parameters from the security proof would lead to an inefficient scheme. So, despite
of having a security proof for the scheme, it is not used for the practical parameter
choice.

The standard attacks against multivariate public key schemes can be divided into
two groups.

• Direct attacks: In a direct attack, one considers the public equation P(z) = w
as an instance of the MQ Problem. In Chap. 8, we describe the most important
algorithms to solve this problem.
Direct attacks can be used to attack any multivariate public key cryptosystem.
However, they appeared to be most efficient against systems with a huge
algebraic structure such as HFE and its variants (see Chap. 4) and SimpleMatrix
(see Chap. 7).
Besides of their use to attack multivariate schemes, the algorithms used in direct
attacks can also be used in different applications, for example the algebraic
cryptanalysis of symmetric ciphers.

• Structural attacks: Structural attacks try to use the structure of the central map
of a multivariate public key cryptosystem to find the composition P = S ◦ F ◦
T of the public key. The most important examples of structural attacks against
multivariate schemes are

– Linearization equations attack: The most popular application of this attack is
the linearization equations attack against the Matsumoto Imai cryptosystem
(see Sect. 3.2).

– Rank attacks: Rank attacks come in two flavors: The MinRank and the
HighRank attack. The MinRank attack plays an important role in the security
analysis of the HFE cryptosystem and its variants (see Chap. 4). For the
parameter choice of Rainbow (see Sect. 5.5), both types of Rank attacks have
to be taken into account.

– Differential attacks: Differential attacks look for invariants or symmetries in
the differential of the public key of an MPKC to find some information about
the central map. This type of attack is used in the cryptanalysis of SFLASH

(see Sect. 3.4) and PMI (see Sect. 3.3).
– UOV related attacks: These attacks use some properties of the central map

of UOV and related schemes to get information about the private key. As the
name indicates, these attacks have to be considered in the security analysis of
UOV and Rainbow (see Chap. 5).

2.4.1 Security Categories

When proposing concrete parameter sets for a multivariate public key cryptosystem,
we consider three different security categories. Since our schemes are supposed to
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Table 2.1 Security categories

Security Considered Breaking the scheme Scheme provides
category attacks is as hard as breaking security for

I Classical AES-128 Today and near future

II and quantum AES-192 Medium future

III attacks AES -256 Foreseeable future

Ia Only SHA-256 Today and near future

IIa classical SHA-384 Medium futurea

IIIa attacks SHA-512 Foreseeable futurea

aAs long as no quantum computers exist

be resistant against quantum computer attacks, the security categories are chosen
according to this fact. Note that our security categories are defined in the same way
as those of the NIST standardization process.

The instances in the first category I are supposed to provide as much security as
AES-128, breaking those in the second security category II is as hard as breaking
AES-192 and those in category III provide as much security as AES-256.

Additionally to these basic security categories, we give (in some cases) also
parameter sets which are secure only against attacks on classical computers. We
denote these security categories by Ia, IIa and IIIa. Breaking the schemes in security
category Ia requires as much computational effort as finding a collision of SHA-256,
schemes in category IIa are as secure as SHA-384 and schemes in security category
IIIa are (supposedly) as hard to break as SHA-512. Table 2.1 gives an overview of
the security categories considered in this book.

2.5 Advantages and Disadvantages

Multivariate cryptosystems offer, besides their (believed) resistance against quan-
tum computer attacks, a number of advantages:

• Modest computational requirements: First, the computations required by
multivariate schemes are mainly simple arithmetic operations over relatively
small finite fields. Therefore, running a multivariate public key cryptosystem
requires much less computational power than for example performing RSA,
which makes multivariate schemes attractive for the use on low cost devices such
as smart cards and RFID chips.

• Many practical signature schemes: In the area of digital signatures, there exist
multivariate schemes which offer signature sizes of little more than 100 bit (e.g.
Gui; see Sect. 4.4). Other multivariate signature schemes produce signatures of
length a few hundred bits. Therefore, the signatures of multivariate schemes are
much shorter than those of classical schemes such as RSA and those of other post
quantum signature schemes.
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• Efficient implementations: Multivariate schemes can be implemented very
efficiently. Indeed, there are many hints that multivariate schemes can be much
faster than classical schemes such as RSA and ECC [1, 2].

• Underlying hard problem: The MQ Problem underlying the security of mul-
tivariate schemes is one of the fundamental problems of cryptography. Every
(symmetric or asymmetric) cryptosystem can be written as a system of nonlinear
polynomial equations. Therefore, if somebody finds an efficient algorithm for
the MQ Problem, all of the other cryptographic schemes will be broken, too.
Following this argumentation, the MQ Problem is one of the strongest problems
of all.

However, multivariate schemes have a number of disadvantages, too:

• Lack of security proofs: There exist no security proofs for multivariate public
key schemes and some schemes believed to be secure have been broken. On
the other hand, the behavior of attacks against multivariate schemes is well
understood and the theoretical complexity of these attacks matches very well
with computer experiments.

• Large public and private keys: The key sizes of multivariate schemes are
relatively large. In fact, the public key of a multivariate scheme is a system of
m quadratic equations in n variables. Therefore, the public key size is cubic in n,
leading to public key sizes which are much larger than those of classical schemes
such as RSA.
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Chapter 3
The Matsumoto-Imai Cryptosystem

Abstract This chapter describes the Matsumoto-Imai cryptosystem, which is one
of the oldest multivariate public key cryptosystems. After introducing the plain
scheme, we discuss its cryptanalysis by the linearization equations attack of Patarin.
We then consider variants of the basic scheme which are immune against this attack.
In the area of encryption schemes, these are the PMI and PMI+ schemes, which are
obtained by a concept named internal perturbation and the plus modifier. In the area
of signature schemes based on MI, we present the MI-Minus or SFLASH scheme
and its extension PFLASH.

The Matsumoto-Imai cryptosystem (short MI or C�) as proposed by Tsutomo Mat-
sumoto and Hideki Imai in 1988 [8], was one of the first multivariate cryptosystems
and has attracted a lot of attention. The MI scheme is also the first example of
a multivariate scheme from the BigField family. Instead of looking for an easily
invertible quadratic map over the vector space F

n, a multivariate BigField scheme
uses an easily invertible map F of Hamming weight degree 2 over a degree n

extension field E of F as well as an isomorphism φ : Fn → E to transform this map
F into a quadratic map F̄ = φ−1 ◦ F ◦ φ over the vector space F

n (see Fig. 3.1).
By using this strategy, Matsumoto and Imai were able to develop a very efficient

cryptosystem. Since the public key of the Matsumoto-Imai scheme is a bijective
map, the scheme can be used both for encryption and digital signatures.

Although the basic MI scheme was broken by the linearization equations attack
of Patarin [9], the scheme had a great influence on the research in the area of
multivariate cryptography. Many variants of MI, which are immune against Patarin’s
attack, have been proposed. The best known example for such a scheme is the MI-
Minus or SFLASH [1] signature scheme, which provides short signatures and is
very efficient. Indeed, one version of the SFLASH scheme (SFLASHv2 ) was selected
by the NESSIE project (New European Schemes for Signatures, Identification and
Encryption) [10] as a standard for digital signatures on low cost devices. However,
the SFLASH scheme was broken by a differential attack of Dubois et al. [5]. To
prevent this attack, it was recommended by Ding et al. to project the public key of
the scheme to a subspace of Fn (PFLASH [4]).

© Springer Science+Business Media, LLC, part of Springer Nature 2020
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Security 80, https://doi.org/10.1007/978-1-0716-0987-3_3
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Fig. 3.1 Construction of a
multivariate BigField scheme
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In the area of encryption schemes, Ding et al. proposed in [2] a technique called
internal perturbation (PMI). After this scheme was broken by a differential attack
by Fouque [7], another variation called PMI+ was proposed to fix this problem [3].

However, the Matsumoto-Imai scheme influenced the research in the area of
multivariate cryptography in a much wider sense, and many of the techniques
presented in this book are inspired by the MI scheme. Examples for this are the HFE
cryptosystem (see Chap. 4) and the Oil and Vinegar signature scheme (see Chap. 5).

This chapter is organized as follows: After introducing the basic Matsumoto-
Imai scheme in Sect. 3.1, Sect. 3.2 describes the linearization equations attack of
Patarin. In Sect. 3.3, we give an overview of encryption schemes on the basis of MI.
After introducing Ding’s technique of internal perturbation, we describe Fouques
differential attack against the PMI scheme and how this attack can be prevented
by the plus method. In the last section of this chapter (Sect. 3.4), we finally deal
with signature schemes on the basis of the MI scheme. In particular, this section
introduces the SFLASH signature scheme (MI-Minus), describes the differential
attack of Dubois et al. to break this scheme and finally the last section presents
the projecting technique of Ding et al. to prevent this attack.

3.1 The Basic Matsumoto-Imai Cryptosystem

The basic Matsumoto-Imai (short MI or C�) cryptpsystem as proposed in [8] can be
described as follows.

Let F be a finite field of characteristic 2 with q elements and let g(X) ∈ F[X] be
an irreducible polynomial of degree n over F.1 Therefore, the field E = F[X]/g(X)

is a degree n extension field of F. Let φ : Fn → E be the standard isomorphism
between the vector space F

n and the extension field E, i.e.

φ(x1, . . . , xn) =
n∑

i=1

xiX
i−1.

1For the functionality of the MI scheme, the condition of char(F) = 2 is not necessarily required.
However, one has to make some changes to the scheme to guarantee the bijectivity of the central
map.
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Fig. 3.2 Construction of the
Matsumoto-Imai
cryptosystem

The central map F : E→ E of the C� scheme is a bijective map over the extension
field E, which is defined as

F(Y ) = Yqθ+1 (3.1)

with 0 < θ < n and gcd(qn − 1, qθ + 1) = 1.2

In order to invert the central map F , we use the extended Euclidean algorithm to
compute an integer h with h(qθ + 1) = 1 mod (qn − 1). Therefore, we get

F−1(X) = Xh = Yh(qθ+1) = Y k(qn−1)+1 = Y.

The public key of the scheme is the composed map P = S ◦ F̄ ◦T = S ◦φ−1 ◦F ◦
φ ◦ T : Fn → F

n with two invertible linear maps S : Fn → F
n and T : Fn → F

n,
the private key consists of S , h and T . However, we can also assume that h is public
since θ is in a very small range.

Figure 3.2 shows a graphical illustration of the Matsumoto-Imai scheme. Due
to the bijectivity of the central map F , the basic MI scheme can be used both for
en/decryption and digital signatures.

3.1.1 MI as an Encryption Scheme

Encryption To encrypt a plaintext z = (z1, . . . , zn) ∈ F
n, one simply computes

w = P(z) ∈ F
n.

Decryption To decrypt a ciphertext w ∈ F
n, one computes recursively x =

S−1(w) ∈ F
n, X = φ(x) ∈ E, Y = F−1(X) ∈ E, y = φ−1(Y ) ∈ F

n and
z = T −1(y). The plaintext corresponding to the ciphertext w is given by z ∈ F

n.

2Together with char(F) = 2, the condition on θ guarantees that the central map F is bijective.
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3.1.2 MI as a Signature Scheme

Signature Generation To generate a signature for a document d, one uses a hash
function H : {0, 1}� → F

n to compute the hash value w = H(d) ∈ F
n. After

that, one computes x = S−1(w) ∈ F
n, X = φ(x) ∈ E, Y = F−1(X) ∈ E,

y = φ−1(Y ) ∈ F
n and z = T −1(y). The signature of the document d is given by

z ∈ F
n.

Signature Verification To check, if z = (z1, . . . , zn) ∈ F
n is indeed a valid

signature for the document d, one computes w = H(d) ∈ F
n and w′ = P(z) ∈ F

n.
If w′ = w holds, the signature is accepted, otherwise rejected.

3.1.3 Degree of the Public Key Components

The central equation F(Y ) = Yqθ+1 of the Matsumoto-Imai scheme can be written
as a product F(Y ) = F1(Y ) · F2(Y ) with F1(Y ) = Yqθ

and F2(Y ) = Y = Yq0
.

Note that both F1 and F2 are so called Frobenius maps. In fact, these maps are
elements of the Galois group G = Gal(E/F), and therefore are F-linear maps on E.
From this it is easy to see that both φ−1 ◦F1 ◦φ and φ−1 ◦F2 ◦φ are F-linear maps
over Fn. Hence, each component of φ−1◦F◦φ has total degree two in F[x1, . . . , xn].

In order to better see the relationship between the degree of a map G(X) ∈ E[X]
and the degree of the components of φ−1 ◦ G ◦ φ in F[x1, . . . , xn], we introduce
the notion of the q-Hamming weight degree. The q-Hamming weight degree of a
monomial Xe (0 ≤ e < qn) is defined as the sum of the coefficients in the base-q
expansion of e. The q-Hamming weight degree of a function G(X) ∈ E[X] is the
largest q-Hamming weight degree of all monomials of G(X).

Example Let q = 4 and G(X) = X25 + X12 + X5. We write the exponents of
X in base q and compute the 4-Hamming weight degree of each term separately,
obtaining

Exponent In base q q -Hamming weight degree

25 1 ∗ 42 + 2 ∗ 41 + 1 ∗ 40 1+ 2+ 1 = 4

12 3 ∗ 41 3

5 1 ∗ 41 + 1 ∗ 40 1+ 1 = 2

Therefore, we get

q-Hamming weight degree (G(X)) = q-Hamming weight degree (X25) = 4.

Now suppose that we have a function G(X) ∈ E[X] of q-Hamming weight
degree d. Then the components of φ−1 ◦ G ◦ φ will be of total degree d. In
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particular, since in the case of the MI scheme, the q-Hamming weight degree of
F̄ = φ−1 ◦ F ◦ φ is two, it follows that the total degree of each of the components
f̄ (1), . . . , f̄ (n) is two. Since S and T are invertible affine transformations, the same
also holds for the components p(1), . . . , p(n) of the public key.

3.1.4 Key Sizes and Efficiency

The public key of the Matsumoto-Imai scheme consists of n multivariate quadratic
polynomials in n variables. Each of these polynomials has therefore n(n + 1)/2 +
n+1 = (n+1)(n+2)/2 terms and therefore the same number of coefficients which
have to be stored in the public key. Therefore, the size of the whole public key is

sizepk MI = n · (n+ 1)(n+ 2)

2
field elements. (3.2)

If we have F = GF(2), this number is a bit smaller, since we have the field equations
x2
i = xi . We get

sizepk MI, GF(2) = n · n
2 + n+ 2

2
field elements. (3.3)

The private key consists of the two affine maps S and T : Fn → F
n and the

parameter h. It therefore has a size of

sizesk MI = 2n(n+ 1) field elements+ Log2(h) bit. (3.4)

For the parameters proposed by Matsumoto and Imai (q = 28, n = 32), this leads
to a public key size of 17.5 kB, which is much larger than the key size of e.g. RSA.

This problem of large key sizes is one of the major problems in multivariate
cryptography. On the other hand, the MI scheme can be implemented much more
efficiently than RSA. If the cardinality q of the ground field F is reasonably small,
we can store the multiplication table of F in cache memory. This allows much faster
arithmetic operations than in the case of RSA, where we have to deal with large
integers.

The most costly step during the decryption process of the Matsumoto-Imai
scheme is the exponentiation of the polynomial X̃ to its h-th power. In our
implementation, we performed this step using the well known square-and-multiply
method. To be even more efficient, one looks for exponents θ for which the binary
representation of the inverse h has a simple structure.
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Fig. 3.3 Addition and
multiplication table of
GF(22)

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

* 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

3.1.5 Toy Example

In this section we illustrate the workflow of the Matsumoto-Imai cryptosystem using
a toy example with small parameters.

Let F = GF(22) be the finite field with q = 22 = 4 elements. The multiplicative
group for the nonzero elements of this field can be generated by the field element
α which satisfies the relation α2 + α + 1 = 0. The field elements of F can be
represented as {0, 1, α, α2} and the addition and multiplication tables are given in
Fig. 3.3.

Next, we choose n = 3 and g(X) = X3 + α as the irreducible polynomial in
F[X]. Set E = F[X]/(X3 + α). There are only two possible choices for the MI
exponent θ ; namely θ = 1 or θ = 2. We will use θ = 2. Thus, the map F and its
inverse are given by

F(Y ) = Y 1+42
and F−1(X) = X26.

Let S and T be given by

S

⎛
⎝x1

x2

x3

⎞
⎠ =
⎛
⎝ α α α2

0 0 α

α2 α 1

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+
⎛
⎝ 0

α2

α

⎞
⎠

and

T

⎛
⎝x1

x2

x3

⎞
⎠ =
⎛
⎝1 1 1

α α2 1
α 0 0

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+
⎛
⎝ 1

α2

α2

⎞
⎠ .

To obtain the public key polynomials in terms of the plaintext variables x1, x2, x3,
we begin by computing φ ◦ T (x1, x2, x3)

T , which we find to be

(αx1 + α2)X2 + (αx1 + α2x2 + x3 + α2)X + x1 + x2 + x3 + 1.

If we denote this by X̃, then we can compute F(X̃) = X̃1+42 = X̃ · X̃16. Thus,
F(X̃) is given by

(α2x2
1 + x1x2 + x1x3 + α2x1 + x2

2 + αx2 + α2x2
3 + αx3 + α2)X2
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+ (x2
1 + αx1x2 + x1x3 + αx1 + x2

2 + α2x2x3 + αx2
3 + α2x3)X

+ αx1x2 + α2x1x3 + x2
2 + α2x2 + x2

3 + x3 + α.

Finally, we compute S ◦ φ−1(F(X̃)) to get the public key polynomials

p(1)(x1, x2, x3) = α2x1x2 + x1 + α2x2
2 + x2x3 + α2x2

3 + αx3 + 1,

p(2)(x1, x2, x3) = x2
1 + αx1x2 + αx1x3 + x1 + αx2

2 + α2x2 + x2
3 + α2x3 + α,

p(3)(x1, x2, x3) = x2
1 + α2x1x2 + x1x3 + x2x3 + α2x2

3 .

We want to encrypt the plaintext z = (z1, z2, z3) = (0, α, α2). To do this, we
compute

w1 = p(1)(0, α, α2) = α,

w2 = p(2)(0, α, α2) = α,

w3 = p(3)(0, α, α2) = 0

to get the ciphertext w = (α, α, 0).
In order to decrypt this ciphertext, we need the private key which consists of the

two maps S and T , and the parameter h. First we compute

⎛
⎝x1

x2

x3

⎞
⎠ = S−1

⎛
⎝w1

w2

w3

⎞
⎠ =
⎛
⎝1 1 1

α 0 1
0 α2 0

⎞
⎠
⎛
⎝ w1 − 0

w2 − α2

w3 − α

⎞
⎠ =
⎛
⎝ 1

1
α2

⎞
⎠

and lift x ∈ F
3 to the extension field E, obtaining X̃ = α2X2 + X + 1. In the next

step, we invert the central map F by raising X̃ to the (h = 26)-th power. We obtain

Ỹ = F−1(X̃) = X̃26 = α2X2 +X.

We move Ỹ back to the vector space (obtaining y = (0, 1, α2)) and compute the
plaintext by

z =
⎛
⎝z1

z2

z3

⎞
⎠ = T −1

⎛
⎝y1

y2

y3

⎞
⎠ =
⎛
⎝ 0 0 α2

α2 α2 1
α α2 α

⎞
⎠
⎛
⎝ y1 − 1

y2 − α2

y3 − α2

⎞
⎠ =
⎛
⎝ 0

α

α2

⎞
⎠ .
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3.2 The Linearization Equations Attack

Definition 3.1 Let P = (p1, . . . , pm) be the public key of a multivariate pub-
lic key cryptosystem. A linearization equation is a polynomial equation in
F[w1, . . . , wm, z1, . . . , zn] of the form

m∑
i=1

n∑
j=1

αijwizj +
m∑

i=1

βiwi +
n∑

j=1

γj zj + δ, (3.5)

which, when substituting a valid plaintext/ciphertext pair (z/w), evaluates to 0. Note
that, when substituting a ciphertext (w1, . . . , wm) into the linearization equation, we
obtain a linear equation in the plaintext variables z1, . . . , zn.

Remark 3.2 In order to be used in cryptanalysis, (3.5) does not have to be bilinear
in the elements of z and w. In fact, we can define higher order linearization
equations of the form

n∑
i=1

gi(w1, . . . , wm)zj + g(w1, . . . , wm). (3.6)

The degree of the HOLE is given by

d = deg(HOLE) = max(deg(g1, . . . , gn, g)).

However, for degree d > 2, finding a higher order linearization equation gets
very difficult, since the number of coefficients in the polynomials gi increases
exponentially.

So, how do we use linearization equations in the cryptanalysis of a multivariate
public key cryptosystem?

Suppose that we have an MPKC with public key P and we know that the
(plaintext/ciphertext) pairs (z/w) fulfill some linearization equations of the form

m∑
i=1

n∑
j=1

αijwizj +
m∑

i=1

βiwi +
n∑

j=1

γj zj + δ = 0.

By computing a large number (approximately (m + 1) · (n + 1)) of (plaintext/
ciphertext) pairs3 and substituting them into the linearization equation, we get a
system of linear equations in the coefficients αij , βi , γj and δ which can be solved
by Gaussian elimination. By doing so, we get a system L of bilinear equations in
the plaintext/ciphertext elements z1, . . . , zn, w1, . . . , wm.

3Note that, for a public key encryption scheme, this can be performed easily.
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Now, let us assume that we are given a ciphertext w� = (w�
1, . . . , w

�
m) that we

want to decrypt. By substituting the ciphertext elements into the bilinear equations
computed in the previous step we get linear equations in the plaintext variables
z�

1, . . . , z
�
n. In some cases, we get enough linear equations to recover the whole

plaintext. However, even if this is not the case, the linear equations can be used to
speed up e.g. direct attacks against the cryptosystem.

3.2.1 Linearization Equations Attack on Matsumoto-Imai

In [9], Patarin proposed a linearization equations attack against the Matsumoto-Imai
cryptosystem. Recall that, for the standard Matsumoto-Imai scheme, we have m = n

and

X = F(Y ) = Yqθ+1.

Then we have

Xqθ−1 = (Y qθ+1)q
θ−1

= Y (qθ+1)(qθ−1)

= Yq2θ−1.

By multiplying both sides by XY we get

YXqθ = Yq2θ

X

or

YXqθ − Yq2θ

X = 0.

Finally, we define

R̃ : E2 → E, R̃(X, Y ) = YXqθ − Yq2θ

X = 0.

and

R : F2n→F
n, R(x1, . . . , xn, y1, . . . , yn)=φ−1◦R̃◦(φ×φ)(x1, . . . , xn, y1, . . . , yn).

Note that, due to the Frobenius isomorphism, the map R is a bilinear map
in x1, . . . , xn and y1, . . . , yn which evaluates to 0 when substituting a (plain-
text/ciphertext) pair. Therefore, R yields a set L of linearization equations for the
central map F of the Matsumoto-Imai scheme. In fact, since L is closed under
addition and scalar multiplication, it is a vector space.
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In the following we consider the question how many linear independent linear
equations arise from R by substituting a ciphertext ŷ into R.

Lemma 3.3 For a fixed Ŷ ∈ E, there exist at most qgcd(θ,n) different values of
X ∈ E such that

R̃(X, Ŷ ) = 0.

Proof We have

XŶ qθ = Xq2θ

Ŷ (3.7)

or, if Ŷ �= 0,

Xq2θ−1 = Ŷ qθ−1
,

which has at most gcd(q2θ − 1, qn − 1) different solutions for X. Furthermore, due
to the condition gcd(qθ + 1, qn − 1) = 1 we have

gcd(q2θ − 1, qn − 1) = gcd(qθ − 1, qn − 1).

Hence, (3.7) has at most gcd(qθ − 1, qn − 1) + 1 solutions, including the trivial
solution. Since we further have

gcd(qθ − 1, qn − 1) = qgcd(θ,n) − 1,

the maximal number of solutions of (3.7) is given by qgcd(θ,n). 	

As the Lemma shows, the linear system we obtain by substituting a fixed ciphertext
ŷ ∈ F

n into R has at most qgcd(n,θ) solutions, which form a linear space of
dimension ≤ gcd(n, θ). Therefore, the linear system arising from R contains at
least n− gcd(θ, n) linearly independent equations.

However, for cryptanalytic purposes, it is more important how many linearly
independent equations in the plaintext variables we get after substituting the
challenge ciphertext into the linearization equations obtained from the public key.
This question is answered by Theorem 3.4.

Theorem 3.4 Let P be a Matsumoto-Imai public key. Then, after substituting the
challenge ciphertext w� ∈ F

n \ {0} in the linearization equations obtained from P ,
we get at least

n- gcd(n, θ) ≥ 2n

3

linearly independent linear equations in the plaintext variables z1, . . . , zn. In
particular, if gcd(n, θ) = 1 holds, there remain only q plaintext candidates.
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Proof For the proof, we introduce the following notation:

• L is the space of linearization equations obtained from the Matsumoto-Imai
central map F .

• L̄ is the space of linearization equations obtained from the Matsumoto-Imai
public key P .

• LX� is the space of linear equations in the plaintext variables we obtain after
substituting a ciphertext X� into the linearization equations from L.

• L̄w� is the space of linear equations in the plaintext variables we obtain after
substituting a ciphertext w� into the linearization equations of L̄.

With this notation, the linearization equations obtained from R are contained
in the space L. Lemma 3.3 states that the space LX� , obtained by substituting
the ciphertext X� into the linearization equations of L, has dimension at least
n− gcd(θ, n). We have to show that

dim(L̄w� ) = n- gcd(n, θ) ≥ 2n

3

holds. The proof is provided by Lemmas 3.5–3.7. 	

First, in Lemma 3.5, we show that the affine transformations S and T do not have
any effect on the dimension of the space of the linearization equations.

Lemma 3.5 With the notation of Theorem 3.4, we have

dimL = dim L̄.

Proof First, we assume that T is the identity map, so that P = S ◦ F or

p(i)(x1, . . . , xn) =
n∑

j=1

sij f
(j)(x1, . . . , xn)+ si0.

Let

r =
n∑

i,j=1

aij xiyj +
n∑

i=1

bixi +
n∑

j=1

cj yj + d

be a linearization equation for the public polynomials. Therefore, when substituting
a (plaintext/ciphertext) pair (x̂,P(x̂)) into it, r evaluates to 0. We get

0 =
n∑

i,j=1

aij x̂ip
(j)(x̂)+

n∑
i=1

bi x̂i +
n∑

j=1

cjp
(j)(x̂)+ d

=
n∑

i,j=1

aij x̂i

(
n∑

k=1

sjkf
(k)(x̂)+ sj0

)
+

n∑
i=1

bi x̂i
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+
n∑

j=1

cj

(
n∑

k=1

sjkf
(k)(x̂)+ sj0

)
+ d

=
n∑

i,j=1

a′ij x̂if
(j)(x̂)+

n∑
i=1

b′i x̂i +
n∑

j=1

c′j f (j)(x̂)+ d ′,

which is a linearization equation for the central map. Similarly, by looking at F =
S−1 ◦ P and starting with a linearization equation for the central polynomials, we
can get a linearization equation for the polynomials of S ◦ F .

We therefore have an isomorphism between the space of linearization equations
of F and those of S ◦ F , which implies that both spaces have the same dimension.

Now, let us suppose that the first affine map S is the identity map. Let

x̄i = T (x)i =
n∑

j=1

tij xj + ti0, (3.8)

so that

p(i)(x1, . . . , xn) = f (i)(x̄1, . . . , x̄n).

Let r be a linearization equation for the central polynomials, i.e.

0 = r(x,F(x)) =
n∑

i,j=1

aij xif
(j)(x)+

n∑
i=1

bixi +
n∑

j=1

cjf
(j)(x)+ d

which, since the invertible change of variables (3.8) amounts to a perturbation of
F

n, yields

0 =
n∑

i,j=1

aij x̄if
(j)(x̄)+

n∑
i=1

bi x̄i +
n∑

j=1

cjf
(j)(x̄)+ d.

But then, we have

0 =
n∑

i,j=1

aij x̄ip
(j)(x)+

n∑
i=1

bi x̄i +
n∑

j=1

cjp
(j)(x)+ d,

which, using (3.8), can be rewritten as

0 =
n∑

i,j=1

a′ij xip
(j)(x)+

n∑
i=1

bixi +
n∑

j=1

cjp
(j)(x)+ d,

a linearization equation for the public polynomials.



3.2 The Linearization Equations Attack 37

Similarly, by looking at F = P ◦ T −1 and starting with a linearization equation
for the public polynomials, we can derive a linearization equation for the central
map.

We therefore have an isomorphism between the space of linearization equations
of F and the space of linearization equations of F ◦ T , which implies that both
spaces have the same dimension.

We can combine these two isomorphism to an isomorphism between the two
spaces L and L̄. From this we derive

dimL = dim L̄.

	

Lemma 3.6 shows that the same holds after substituting the ciphertext into the
linearization equations.

Lemma 3.6 Using the notation of Theorem 3.4, we have

dimLX� = dim L̄w� .

Proof Lemma 3.5 provides a bijection between the two spaces L and L̄. This
implies a bijection also between LX� and L̄w� . 	


From Lemma 3.3 we know that dimLX� = n − gcd(θ, n) holds. According to
Lemma 3.6, this is also the dimension of the space L̄w� obtained by substituting the
ciphertext w� ∈ F

n into the linearization equations obtained from the public key.
Finally, Lemma 3.7 provides a lower bound for this dimension.

Lemma 3.7 In the case of Matsumoto-Imai we have

n- gcd(n, θ) ≥ 2n

3
.

Proof The three largest values of gcd(n, θ) are n, n
2 (if n is even) and n

3 (if n is
divisible by three). So, if we can show that the first two cases are impossible, we are
done.

The first case (θ = n) is impossible, because θ was explicitly chosen to be in the
set {1, . . . , n − 1}. Second, if gcd(n, θ) = n/2, θ must be n/2 itself. But then we
have

gcd(qn−1, qθ+1) = gcd(q(n/2−1)(n/2+1), qn/2+1) = qn/2+1 > 1,

which contradicts the choice of θ in Sect. 3.1.
We therefore have gcd(n, θ) ≤ n

3 , which, together with Lemmas 3.3, 3.5 and 3.6,
proves Theorem 3.4. 	
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Algorithm 3.1 summarizes the steps of the linearization equations attack.

Algorithm 3.1 Linearization equations attack
Input: (Matsumoto-Imai) public key P : Fn → F

m, challenge ciphertext w� ∈ F
m

Output: linear equations in the plaintext elements z�
1, . . . , z

�
n

1: Compute (m+1) ·(n+1) (plaintext/ciphertext) pairs (z1, w1), . . . , (z(m+1)(n+1), w(m+1)(n+1))

and substitute them into the linearization equation (3.5).
2: Use Gaussian elimination to solve the resulting linear system for the coefficients αij , βi ,

γj and δ. The result is a set of bilinear equations b1, . . . , bk in the variables z1, . . . , zn and
w1, . . . , wm.

3: Substitute the challenge ciphertext w� into the equations b1, . . . , bk to obtain a set l1, . . . , l

of linear equations in the plaintext variables z�

1, . . . , z
�
n.

4: return l1, . . . , l
.

Complexity of the Attack

• Evaluating a multivariate quadratic system of m = O(n) equations in n variables
takes time O(n2). Therefore, computing the (m+1)·(n+1) (plaintext/ciphertext)
pairs in step 1 of the algorithm takes time O(n4).

• Solving the linear system of (m + 1) · (n + 1) equations in the same number of
variables takes time O(n6).

• The remaining steps of the attack have a significantly lower complexity.
Therefore, the cost of the whole attack is O(n6).

3.2.2 Toy Example

We now illustrate Patarin’s linearization equations attack against the Matsumoto-
Imai cryptosystem using a toy example. Let us assume that we have F =GF(4),
n = 5 and we are given a Matsumoto-Imai public key of the form

p(1) = αx1x2 + α2x1x3 + x1x4 + αx1x5 + αx2x3 + α2x2x4 + α2x2x5 + x2

= α2x2
3 + x3x5 + x4x5 + α2x4 + x2

5 + x5 + α,

p(2) = αx1x2 + x1x3 + α2x1x4 + x1x5 + αx2
2 + x2x3

+ x2x5 + αx2 + αx2
3 + αx3x4 + x3 + α2x2

4 + x4x5 + α2x2
5 + α2,

p(3) = α2x2
1 + x1x2 + α2x1x3 + α2x1x4 + α2x1x5 + αx1 + α2x2x3 + α2x2x4

+ x2x5 + αx2 + α2x2
3 + αx3x5 + α2x3 + x4x5 + αx2

5 + α2x5 + α2,

p(4) = x2
1 + α2x1x2 + αx1x5 + αx1 + α2x2x3 + αx2x4 + αx2 + αx3x4

+ αx3x5 + x3 + αx2
4 + α2x2

5 + α2x5 + α,

p(5) = αx2
1 + x1x4 + αx1 + αx2x3 + αx2x4 + x2x5 + αx2 + αx2

3 + α2x3x4

+ x3 + α2x2
4 + x4x5 + α2x4 + α2x2

5 + αx5 + α.
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First we compute (n+ 1)2 = 36 plaintext/ciphertext pairs

z w = P(z)
(1, 0, 0, 0, α) (0, α2, α2, 1, α2)

(α, 1, α2, α2, 0) (α, α2, 1, 1, 1)

(α, 1, 0, α, α) (1, 0, α, 1, 1)

(α, α2, α, 1, α2) (α, α, α, α, α2)

(α2, 0, α2, 0, α2) (α, α, α, 1, 0)

(α, 1, 0, 1, 0) (α, α, 0, 1, α)

(1, α, 0, 1, α) (α, α2, 1, α, α2)

(α2, α2, α2, α, 0) (α, 1, α2, α, 1)

(α2, 0, α2, 0, 0) (α, 1, 1, α, 0)

(α2, α2, α, 1, α2) (α, 1, 0, α, α)

(α, 0, 0, α2, 0) (1, 1, 1, 1, α)

(α2, 0, α, α2, 1) (α2, 0, 1, 0, α2)

(0, 1, α2, α, 1) (1, 0, α, 0, 0)

(α, α2, 1, α2, α) (α, α2, α, α2, 1)

(α, α2, α, 1, 1) (0, 0, α, 1, 1)

(α2, α, α, 1, α) (α2, α, α2, α2, 0)

(α2, 0, 1, α2, α2) (0, α2, α2, α2, α)

(0, 0, 1, 0, 1) (0, α2, 0, 1, 0)

(α, α, α2, 1, 1) (1, 1, α2, 1, 0)

(0, 1, α, 0, 0) (α, α, α2, α2, 0)

(α, α2, 0, 0, α2) (1, 1, α, 1, α2)

(0, 1, α, 0, 0) (α, α, α2, α2, 0)

(0, α, 1, 0, α2) (1, 0, 0, α2, 0)

(1, 0, 1, α, α2) (α2, α, α2, 1, 0)

(α2, 1, α, 1, 0) (α2, 0, α, 1, α)

(1, 0, 1, 1, 1) (α, 0, α2, 0, α2)

(0, α2, α2, α, α) (1, α2, α2, 1, 1)

(α2, α, α2, α, 1) (α2, α2, α2, α2, 0)

(α2, 0, α, α, 0) (α2, 1, 0, α2, α2)

(1, 0, 0, α2, α2) (1, 0, 1, 0, 0)

(0, α2, 1, 1, 0) (α, 0, α, 1, α2)

(1, 0, α2, 1, α2) (α, 0, α2, 0, α)

(α, 1, α, 1, α) (1, α, α2, α, α)

(α, α, α, 1, α) (α2, α, α2, α, 1)

(1, 0, α2, 0, α) (α, 0, 0, 0, α2)

(α2, 1, 1, α, 0) (0, 1, 1, α, α2)
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and substitute them into the linearization equation

5∑
i=1

5∑
j=1

aij ziwj +
5∑

i=1

bizi +
5∑

j=1

cjwj + d

By solving the resulting linear system for the 36 variables aij , bi, cj , d we find five
linearly independent linearization equations

L1 = z1w1 + z1 + z2w3 + αz2w4 + αz2w5 + α2z2 + z3w1 + α2z3w2

+ z3w3 + z3w4 + α2z3w5 + z3 + z4w1 + αz4w2 + α2z4w3 + αz4w5

+ z4 + z5w1 + αz5w2 + α2z5w4 + α2z5w5 + α2z5 + w1

+ w2 + w3 + α2w4 + α2,

L2 = z1w2 + αz2w3 + αz2w5 + αz2 + z3w1 + z3w2 + α2z3w5 + α2z3

+ z4w1 + z4w2 + αz4w3 + αz4w4 + αz4 + z5w1 + α2z5w4 + z5w5

+ αz5 + α2w1 + α2w3 + w5 + 1,

L3 = z1w3 + αz1w5 + α2z1 + α2z2w3 + z2w4 + z2w5 + αz2 + αz3w1

+ αz3w2 + z3w3 + z3w4 + α2z3w5 + αz3 + z4w2 + z4w3 + z4w5

+ z4 + αz5w1 + z5w2 + α2z5w3 + αz5w4 + αz5w5 + αz5 + αw1

+ α2w2 + α2w3 + αw4 + α2w5 + 1,

L4 = z1w4 + α2z1w5 + αz1 + α2z2w3 + z2w4 + z2 + z3w1 + α2z3w2

+ αz3w3 + αz3w4 + αz3w5 + α2z3 + z4w1 + z4w3 + α2z4w4 + αz4w5

+ αz4 + z5w1 + αz5w2 + α2z5w4 + α2z5w5 + α2z5 + α2w1 + αw2

+ αw3 + w5 + α2,

L5 = z2w1 + α2z2w4 + αz2w5 + z3w1 + αz3w2 + αz3w3 + α2z3w5

+ α2z4w2 + αz4w3 + α2z4w5 + z4 + α2z5w1 + α2z5w2 + z5w4

+ α2z5w5 + z5 + α2w1 + αw2 + α2w3 + w4 + αw5 + α2

Until now, the computations have been completely independent of the challenge
ciphertext w�. So, if we want to find the plaintexts corresponding to multiple
challenge ciphertexts w�

1, . . . , w�

, we have to perform this step only once.

Let us assume that we want to find the plaintext corresponding to the ciphertext
w� = (α2, α2, α, α2, α2).

By substituting the ciphertext w� into these linearization equations, we obtain 4
linear equations in the plaintext variables z1, . . . , z5
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z1 + z5 + α2 = 0,

z2 + αz5 + α = 0,

z3 + α2z5 + α2 = 0,

z4 + z5 + α2 = 0.

We therefore find the four possible plaintexts

z w = P(z)
(0, α2, 1, 0, α2) (0, α, α, α, α2)

(1, 1, α, 1, α) (α, 1, α, 1, α2)

(α, 0, 0, α, 1) (1, 0, α, 0, α2)

(α2, α, α2, α2, 0) (α2, α2, α, α2, α2)

The plaintext corresponding to the ciphertext w� = (α2, α2, α, α2, α2) is therefore
z� = (α2, α, α2, α2, 0).

3.3 Encryption Schemes Based on MI

After the basic Matsumoto-Imai scheme had been broken by Patarin’s lineariza-
tion equations attack (see Sect. 3.2), several variants of the scheme have been
suggested which prevent this attack. In this section we concentrate on variants of
the Matsumoto-Imai scheme used for encryption. The main design goal of these
schemes was to prevent Patarin’s linearization equations attack against the basic MI
scheme. However, as we will see, the modifications used to do so make the schemes
much slower than the original MI scheme.

In this section we first introduce the Internal Perturbation technique of Ding to
prevent the linearization equations attack, leading to the PMI scheme. Then, we
describe a differential attack of Fouque et al. to break this scheme and finally present
the PMI+ scheme which prevents Fouque’s attack.

3.3.1 Internal Perturbation

The basic idea of internal perturbation can be described as follows. To hide the
structure of the central map F of a multivariate BigField scheme, we add to F a
perturbation map F̂ , consisting of n randomly chosen quadratic polynomials in a
small number of variables.

In the following we show how to apply this idea to the Matsumoto-Imai
cryptosystem.
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Key Generation Let ((S,F , T ),P) be a key pair of the standard Matsumoto-Imai
cryptosystem (see Sect. 3.1). For a small integer r , we randomly choose an affine
map Z : Fn → F

r , i.e.

Z(x1, . . . , xn) =

⎛
⎜⎜⎜⎝

z11 z12 . . . z1n

z21 z22 . . . z2n

...
. . .

...

zr1 zr2 . . . zrn

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Z

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠+
⎛
⎜⎜⎜⎝

z1

z2
...

zr

⎞
⎟⎟⎟⎠

with a full rank r × n matrix Z. Additionally, we choose randomly a multivariate
quadratic map F̄ : Fr → F

n, and define the perturbation map F̂ as

F̂ = F̄ ◦ Z : Fn → F
n.

Furthermore, the owner of the private key computes a set

P = {(λ, μ) | F̄(λ) = μ, λ ∈ F
r}.

The set P has qr elements (λ, μ).

Remark 3.8 The reason for the special construction of the perturbation map F̂ is
that, during the decryption process, we have to iterate over all possible output values
of F̂ . Due to the use of the linear transformation Z : Fn → F

r , the number of these
values is limited to qr for a small integer r .

With this notation, we can describe the PMI scheme as follows:

Public Key P = S ◦ (F + F̂) ◦ T : Fn → F
n.

Private Key The private key of the PMI scheme consists of

• the three maps S , F and T
• the linear map Z : Fn → F

r

• the set of points

P = {(λ, μ) | F̄(λ) = μ)}.

Figure 3.4 illustrates this key generation process.

Encryption To encrypt a message z ∈ F
n using the PMI scheme, one simply

computes w = P(z) ∈ F
n.

Decryption To decrypt a ciphertext w ∈ F
n, the owner of the private key performs

the following two steps:
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Fig. 3.4 Key generation of PMI

1. Invert the first affine map S by computing x = S−1(w).
2. Compute for each pair (λ, μ) ∈ P , yλ = φ−1 ◦ F−1 ◦ φ(x + μλ) and check, if

Z(yλ) = λ holds.

• If this is not the case, discard yλ.
• Otherwise, compute the plaintext candidate zλ by zλ = T −1(yλ).

It might happen that the decryption process of PMI produces several possible
plaintexts zλ. In this case, one has to use special techniques (e.g. hash functions,
redundancy in the plaintext) to make the decryption unique.

Due to the guessing process in the decryption step (there are approximately
qr possible choices of λ), the decryption process of the PMI scheme is not very
efficient.

3.3.2 Differential Attack on PMI

In [7], Fouque proposed an attack against the PMI encryption scheme. The basic
idea of this attack is to test which plaintexts produce noise and which do not. This
allows to remove the noise from the scheme, which can then be broken by the
linearization equations attack (see Sect. 3.2).

Recall that the differential G of a multivariate quadratic system P is defined as

G(x, y) = P(x+ y)− P(x)− P(y)+ P(0)

and is bilinear in x and y. When we fix y to some random value ȳ ∈ F
n, the map

Gȳ(x) = G(x, ȳ) is a linear map in x.

Definition 3.9 We define the noise kernel K to be the kernel of the linear part of
the transformation Z ◦ T , i.e.

K = {x ∈ F
n : Z ◦ T (x) = 0 ∈ F

r }.
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The term “noise kernel” is inspired by the fact that, for a plaintext z ∈ K, the
internal perturbation generates no“noise”. Therefore, for such plaintexts, the PMI
scheme just works as the standard Matsumoto-Imai encryption scheme.

With the definition of the noise kernel, we can prove

Proposition 3.10 Let x ∈ K. Then

dim(ker(Gx)) =
{

gcd(n, θ) if x �= 0
n if x = 0

Proof Since v ∈ K, we can assume that the central map F̂ of PMI is just the
standard Matsumoto-Imai central map. Furthermore, since S and T are invertible
affine transformations, they do not have any effect on the dimension of the kernel of
the differential. So, in order to prove the proposition, we have to count the number
of solutions V ∈ E of the equation

F(X + V )− F(X)− F(V ) = 0,

where F(Y ) = Yqθ+1 is the standard Matsumoto-Imai central map and X is a fixed
element of E (note that F(0) = 0).
We have

0 = F(X + V )− F(X)− F(V )

= (X + V )q
θ+1 −Xqθ+1 − V qθ+1

= Xqθ

V +XV qθ

.

or

Xqθ

V = XV qθ

(3.9)

Here, we made use of the fact that q = 0 holds in E.
For X = 0, clearly any element V ∈ E fulfills (3.9) and we have dim(ker(GX)) =

n.
For X �= 0, we divide both sides of (3.9) by XV and obtain

Xqθ−1 = V qθ−1

It can be shown that this equation has exactly qgcd(n,θ) − 1 different non-zero
solutions. Adding the trivial solution V = 0, the total number of solutions is exactly
qgcd(n,θ), which implies dim(ker(GX)) = gcd(n, θ). 	

Based on this proposition, we can formulate the following test to check the
membership of a plaintext z ∈ F

n in the noise kernel: For each z ∈ F
n, define

the function T̃ by



3.3 Encryption Schemes Based on MI 45

T̃ (z) =
{

1 if dim(ker(Gz)) �= gcd(n, θ)

0 otherwise.

For an element z of the noise kernel, we have dim(ker(Gz)) = gcd(n, θ), and
therefore T̃ (z) = 0. For an element z �∈ K, the value of dim(ker(Gz)) is, due to
the randomness of the noise, a random number, and therefore T̃ (z) = 1 with high
probability.

We can therefore use this test to identify the elements of the noise kernel and to
find a basis of K.

After having found a basis of the noise kernel K, we can perform Patarin’s
linearization equations attack for each affine subspace A of the form A = a + K
separately.

3.3.3 Preventing the Differential Attack and PMI+

Surprisingly, preventing Fouque’s differential attack on PMI has been proven to
be very simple. The only thing we have to do is to add some random quadratic
equations to the private key of the PMI scheme (plus modification). If we add
s of these random equations,then the public key of the cryptosystem becomes a
multivariate quadratic map from F

n to F
n+s .

The resulting encryption scheme, PMI+ , can be described as follows. As in the
case of the standard Matsumoto-Imai scheme, we use a finite field F with q elements
and a degree n extension field E of F. We have an isomorphism φ : Fn → E between
the vector space F

n and the extension field E.
Furthermore, we use two integers r and s denoting the dimension of the permu-

tation space (see above) and the number of added random equations respectively.

Key Generation In order to generate a key pair for PMI+, Alice chooses

• an MI central map F : Fn → F
n,

• a linear map Z : Fn → F
r ,

• a perturbation map F̄ : Fr → F
n,

• a random quadratic map Q : Fn → F
s ,

• two invertible affine maps S : Fn+s → F
n+s and T : Fn → F

n.

As in the case of the PMI scheme, Alice defines F̂ = F̄ ◦ Z : F
n → F

n.
Furthermore, she sets F̃ = F + F̂ .

Public Key P = S ◦ (F̃ ||Q) ◦ T : Fn → F
n+s

Private Key The private key of PMI+ consists of

• the three maps S , F and T
• the linear map Z
• the set of points P = {(λ, μ)|F̄(λ) = μ}.
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• the random quadratic map Q : Fn → F
s (to distinguish between false and correct

plaintext candidates)

Encryption In order to encrypt a plaintext z ∈ F
n, the sender computes w =

P(z) ∈ F
n+s and sends it to the receiver.

Decryption In order to decrypt a ciphertext w ∈ F
n+s , the receiver performs the

following steps.

1. Compute x′ = S−1(w) ∈ F
n+s . Define x ∈ F

n to be the vector containing the
first n elements of x′.

2. Compute for each pair (λ,μ) ∈ P , yλ = φ−1 ◦ F−1 ◦ φ(x + μλ) and check, if
Z(yλ) = λ holds.

• If this is not the case, discard yλ.
• Otherwise, compute the plaintext candidate zλ by zλ = T −1(yλ).

In the case of PMI+, we can use the added polynomials of Q to decide which of
the plaintext candidates zλ is the correct one. We just evaluate the map Q ◦ T for
each of the plaintext candidates zλ. For the correct plaintext, the value Q ◦ T (zλ)

must be equal to the last s components of the vector x′. Therefore, for increasing s,
the probability of getting several possible plaintexts gets negligible.

As in the case of PMI, the decryption process of PMI+ contains a guessing step.
Therefore, the scheme is not very efficient and hardly used in practice.

3.3.4 Toy Example

In the following we illustrate the workflow of the PMI encryption scheme using
a toy example. We use F =GF(4) as the underlying field and the PMI parameters
(n, r) = (5, 1). To generate the extension field E, we use the irreducible polynomial
f (X) = X5 + X + α. We use θ = 2 as the MI-exponent to encrypt a message.
Correspondingly, the exponent used during decryption is h = 662.
The private key of the scheme consists of the two affine maps S : F5 → F

5,

S(x1, . . . , x5) =

⎛
⎜⎜⎜⎜⎜⎝

α2 0 1 0 0
α2 1 α 1 α2

α α 0 0 α

1 α 0 α2 α

α2 0 1 1 α

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠ =
⎛
⎜⎜⎜⎜⎜⎝

0
0
1
α

α

⎞
⎟⎟⎟⎟⎟⎠

and T : F5 → F
5,
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T

⎛
⎜⎜⎜⎜⎜⎝

1 α 0 α α2

α α2 α2 α2 α2

1 1 0 α2 1
1 α α2 0 α

α 1 α2 α α2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎜⎜⎜⎜⎜⎝

α

0
0
α2

0

⎞
⎟⎟⎟⎟⎟⎠ ,

as well as the perturbation maps Z : F5 → F
1,

Z(x1, . . . , x5) = α2x1 + αx4 + αx5

and F̄ : F1 → F
5,

F̄(y1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α2

α2y2
1

α2y2
1 + αy1 + α2

y2
1 + αy1 + α2

αy2
1 + α2y1 + α

.

Using F̄ , we compute the set P = {(λ, μ)|F̄(λ) = μ}. We get

λ μλ = F̄(λ)

1 (α2, α2, α, 0, α2)

α (α2, α, α, α2, α)

α2 (α2, 1, α2, 0, α2)

0 (α2, 0, α2, α2, α)

In order to compute the public key, we first lift T (x1, . . . , x5) to the extension field,
obtaining

A = (αx1 + x2 + α2x3 + αx4 + α2x5)X
4

+ (x1 + αx2 + α2x3 + αx5 + α2)X3

+ (x1 + x2 + α2x4 + x5)X
2

+ (αx1 + α2x2 + α2x3 + α2x4 + α2x5)X

+ x1 + αx2 + αx4 + α2x5 + α

and compute B = Aq2+1 = A17 mod f (X), obtaining

B = (α2x2
1 + x1x2 + x1x3 + α2x1x4 + x2

2 + αx2x4 + x2x5 + α2x2 + αx2
3 + x3x4

+ α2x3x5 + x3 + α2x4 + α2x2
5 + x5)X

4
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+ (x1x3 + α2x1x4 + α2x1x5 + α2x2
2 + αx2x4 + α2x2x5 + αx2 + αx2

3 + x3x4

+ x3x5 + αx3 + α2x2
4 + x4x5 + x4 + αx2

5 + 1)X3

+ (x2
1 + x1x3 + α2x1x4 + α2x1x5 + αx2x3 + αx2x4 + α2x2 + αx2

3 + αx3x4

+ x3x5 + x3 + x2
4 + x4x5 + x4 + x2

5 + α2x5 + α2)X2

+ (x2
1 + x1x2 + x1x3 + αx1x5 + αx1 + αx2

2 + αx2x3 + αx2x4 + α2x2x5 + αx2
3

+ x3x4 + αx3 + α2x2
4 + αx4x5 + x4 + αx2

5 + α2x5 + α)X

+ αx2
1 + α2x1x2 + α2x1x3 + α2x1x4 + αx1 + α2x2

2 + x2x3 + αx2x4 + αx2x5

+ x2 + α2x2
3 + α2x3x4 + x3 + x4x5 + x4 + x2

5 + 1.

After that, we move B down to the vector space F
5 and add the permutation map

F̂ = F̄ ◦ Z . We get

c(1) = αx2
1 + α2x1x2 + α2x1x3 + α2x1x4 + αx1 + α2x2

2 + x2x3 + αx2x4

+ αx2x5 + x2 + α2x2
3 + α2x3x4 + x3 + x4x5 + x4 + x2

5 + α,

c(2) = x1x2 + x1x3 + αx1x5 + αx1 + αx2
2 + αx2x3 + αx2x4 + α2x2x5 + αx2

3

+ x3x4 + αx3 + x2
4 + αx4x5 + x4 + α2x5 + α,

c(3) = x1x3 + α2x1x4 + α2x1x5 + x1 + αx2x3 + αx2x4 + α2x2 + αx2
3 + αx3x4

+ x3x5 + x3 + α2x2
4 + x4x5 + αx4 + α2x2

5 ,

c(4) = αx2
1 + x1x3 + α2x1x4 + α2x1x5 + x1 + α2x2

2 + αx2x4 + α2x2x5

+ αx2 + αx2
3 + x3x4 + x3x5 + αx3 + x4x5 + αx4 + x2

5 + α2x5 + α,

c(5) = x1x2 + x1x3 + α2x1x4 + αx1 + x2
2 + αx2x4 + x2x5 + α2x2 + αx2

3

+ x3x4 + α2x3x5 + x3 + x2
4 + αx4 + αx2

5 + α.

Finally, we apply the second affine map S and obtain the public key P =
(p(1), . . . , p(5)) : F5 → F

5 as

p(1) = x2
1 + αx1x2 + α2x1x3 + x1x4 + α2x1x5 + αx2

2 + x2x3 + α2x2x4

+ x2x5 + x3x5 + αx3 + α2x2
4 + αx4x5 + x4 + 1,

p(2) = α2x2
1 + α2x1x3 + αx1x4 + x1 + αx2x3 + α2x2x4 + αx2x5 + αx2

+ αx3x4 + x3x5 + αx3 + α2x2
4 + αx4x5 + αx4 + αx2

5 ,

p(3) = α2x2
1 + x1x2 + x1x3 + α2x1x5 + α2x1 + x2x3 + α2x2x4 + α2x2 + x2

3

+ x3x4 + x3x5 + α2x3 + x4x5 + α2x4 + x2
5 + x5 + α,
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p(4) = α2x2
1 + α2x1x2 + x1x5 + x1 + αx2x3 + α2x2x4 + α2x2x5 + x2 + αx2

3

+ αx3x5 + x3 + x4x5 + x4 + x2
5 + α2x5 + 1,

p(5) = α2x2
1 + α2x1x4 + αx1 + α2x2

2 + x2x3 + αx2x4 + α2x2 + x2
3 + α2x3x4

+ x3x5 + αx3 + x2
4 + α2x4x5 + αx2

5 + α2x5 + α.

In order to encrypt a message z = (α, 0, 1, 0, α2) ∈ F
5, we simply evaluate the

public key to get the ciphertext

w = P(z) = (1, α2, 0, α, α).

In order to decrypt the ciphertext w = (1, α2, 0, α, α) ∈ F
5, we first compute

x = S−1(w) = (1, α2, α, α2, 1).

In order to invert the central map F , we compute for every possible value of λ the
vector yλ = F−1(x+ μλ), obtaining

λ μλ yλ = F−1(x+ μλ) Z(yλ)

1 (α2, α2, α, 0, α2) (α, 0, 0, 1, α2) α

α (α2, α, α, α2, α) (0, 1, 1, 0, 1) 1

α2 (α2, 1, α2, 0, α2) (1, α2, α, 1, α2) α

0 (α2, 0, α2, α2, α) (α, α, 1, α2, α) 0

Since λ = 0 is the only value for which Z(yλ) = λ holds, we get the correct
plaintext by

z0 = T −1(y0) = (α, 0, 1, 0, α2).

As mentioned above, the public key of the internally perturbed Matsumoto-Imai
scheme is no longer bijective. Therefore, it might happen that one ciphertext
corresponds to several possible plaintexts. In other words, the decryption process
might not lead to a unique plaintext.

In order to study this phenomenon in the setting of our toy example, we encrypted
all possible qn = 1024 plaintexts with the public key shown above. By doing so, we
got 704 different ciphertexts. Of these 704 ciphertexts, 439 decrypted to a unique
plaintext, for 215 we found 2 possible plaintexts. 45 of the ciphertexts corresponded
to 3 different plaintexts, and 5 decrypted to 4 possible plaintexts.
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3.4 Signature Schemes Based on MI

While, in the last section, we looked at variants of the Matsumoto-Imai cryptosys-
tem used for encryption, this section gives an overview of Matsumoto-Imai variants
for digital signatures. The main design goal of these constructions is to prevent
the linearization equations attack of Patarin (see Sect. 3.2). However, as we will
see, creating a secure MI variant for digital signatures slows down the signature
generation process significantly.

In this section, we first introduce the minus modification, leading to schemes such
as MI-Minus or SFLASH. After that, we describe the differential attack of Dubois
et al. on SFLASH and present Ding’s projection technique to prevent this attack.

3.4.1 The Minus Variation and SFLASH

A very simple idea to prevent Patarin’s linearization equations attack is provided by
the minus modification. The idea of this variation is to remove a small number a of
equations from the public key. The resulting public key P is therefore a multivariate
quadratic map from F

n to F
n−a . Therefore, P is no longer injective as in the case

of the basic Matsumoto-Imai cryptosystem, which restricts the resulting scheme to
digital signatures.

The MI-Minus cryptosystem (also known as SFLASH) can be described as
follows.

Just as in the case of the standard Matsumoto-Imai scheme, we have a finite field
F with q elements and a degree n extension field E. We define an isomorphism
φ : Fn → E between the vector space F

n and the extension field E. Additionally,
we choose for SFLASH a small integer a (number of minus equations).

Key Generation The private key of SFLASH is nearly the same as the private key
of the standard Matsumoto-Imai cryptosystem. We have

• central map: The central map of SFLASH is just a MI central map: for a parameter
θ with gcd(qθ + 1, qn − 1) = 1, we define a univariate map

F : E→ E,F(Y ) = Yqθ+1.

We use the extended Euclidean algorithm to compute the signing exponent h with

h(1+ qθ ) = 1 mod qn−1.

• affine transformations: The affine map T : Fn → F
n is, just as in the case of

MI, a randomly chosen invertible affine transformation over the vector space Fn.
For the map S , the minus transformation comes into play. So, S is no longer
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an invertible affine transformation, but a randomly chosen map of the form S :
F

n → F
n−a of maximal rank.

Private Key The private key consists of the two maps S and T , the signing exponent
h and possibly the isomorphism φ : Fn → E.4

Public Key The public key P is the composed map S◦φ−1◦F◦φ◦T : Fn → F
n−a .

So, the public key of SFLASH consists of (n − a) multivariate quadratic equations
in n variables.

Signature Generation To generate an SFLASH signature for a document d ∈
{0, 1}�, the owner of the private key uses a hash function H : {0, 1}� → F

n−a

to compute the hash value w = H(d) and performs the following three steps.

1. Find a pre-image x ∈ F
n of the hash value w ∈ F

n−a under the affine
transformation S and lift it to the extension field E, i.e. compute X = φ(x).

2. Compute Y = Xh.
3. Move Y down to the vector space Fn, i.e. compute y = φ−1(Y ) and compute the

signature z ∈ F
n by

z = T −1(y).

Signature Verification To check the authenticity of a signature z ∈ F
n, the verifier

computes w = H(d) ∈ F
n−a and w′ = P(z) ∈ F

n−a . If w′ = w holds, the signature
is accepted, otherwise it is rejected.

SFLASH appeared to be a very promising candidate for a post-quantum digital
signature scheme and was selected as a standard by the NESSIE project (New
European Schemes for Signatures, Identification and Encryption). However, it was
eventually broken by a differential attack of Dubois et al. (see Sect. 3.4.3).

3.4.2 Toy Example

In the following, we illustrate the workflow of the SFLASH signature scheme using
a toy example. We choose F = GF(4) as the underlying field and (n, a) = (5, 2).
To generate the extension field E = GF(45), we use the irreducible polynomial
f (X) = X5+X+α. Furthermore, we use θ = 2 as the Matsumoto-Imai parameter
for the verification. The corresponding signing exponent is h = 662.

The private key of the scheme consists of two affine maps S : F5 → F
3,

4Similar to the case of the MI scheme, the isomorphism φ can be a public parameter or part of the
private key.
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S(x1, . . . , x5) =
⎛
⎝ 1 α2 0 α 1

1 1 0 1 α2

α 0 α 0 1

⎞
⎠ ·
⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎝ 0

α

1

⎞
⎠

and T : F5 → F
5,

T (x1, . . . , x5) =

⎛
⎜⎜⎜⎜⎜⎝

α2 α2 α2 α 1
1 1 α 0 α2

0 0 α2 1 α

0 α2 α2 α α

0 1 1 α2 1

⎞
⎟⎟⎟⎟⎟⎠ ·
⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎜⎜⎜⎜⎜⎝

α

1
α2

1
0

⎞
⎟⎟⎟⎟⎟⎠ .

In order to compute the public key, we first lift the map T to the extension field,
obtaining

A = (α2x1 + α2x2 + α2x3 + αx4 + x5 + α)X4

+ (x1 + x2 + αx3 + α2x5 + 1)X3

+ (α2x3 + x4 + αx5 + α2)X2

+ (α2x2 + α2x3 + αx4 + αx5 + 1)X

+ x2 + x3 + α2x4 + x5

and compute B = Aqθ+1 = A17 mod f (X). We obtain

B = (x2
1 + x1x2 + α2x1x3 + x1x4 + α2x1 + αx2

2 + αx2x3 + x2x5 + x2

+ α2x3x4 + x3x5 + x3 + α2x2
4 + x4x5 + x4 + x2

5 + α2x5)X
4

+ (α2x2
1 + x1x2 + αx1x3 + x1x4 + α2x1x5 + x2x3 + x2x4 + x2 + x2

3

+ α2x3x4 + αx3x5 + α2x3 + αx4x5 + αx5)X
3

+ (α2x2
1 + α2x1x2 + x1x3 + αx1x4 + x1x5 + αx1 + α2x2x4 + αx2x5

+ x2 + α2x2
3 + αx3x4 + αx3x5 + αx2

4 + x4x5 + αx2
5 + αx5 + α2)X2

+ (α2x2
1 + αx1x2 + αx1x3 + α2x1x5 + x2

2 + αx2x3 + α2x2x4 + x2x5

+ αx2 + x2
3 + α2x3x5 + α2x2

4 + x4x5 + α2x5 + α)X

+ x2
1 + αx1x3 + α2x1x5 + α2x1 + x2

2 + αx2x4 + x2x5 + α2x2 + α2x2
3

+ x3x5 + x3 + αx2
4 + x4x5 + αx4 + x2

5 + α2x5.
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Finally, we move B down to the vector space F5 and apply the affine transformation
S to get the public key P = (p(1), p(2), p(3)) : F5 → F

3,

p(1) = α2x2
1 + αx1x2 + α2x1x3 + α2x1x4 + x2x3 + αx2x4 + α2x2x5 + x2

+ αx2
3 + αx3x4 + x3x5 + x3 + α2x2

4 + α2x4 + x5 + 1,

p(2) = αx2
1 + αx1x4 + α2x1x5 + x1 + x2

2 + αx2x3 + α2x2x5 + α2x2

+ α2x2
3 + x3x4 + α2x3x5 + x3 + α2x2

4 + x4x5 + x4 + αx2
5 ,

p(3) = αx2
1 + αx1x3 + αx1x4 + α2x1x5 + x1 + αx2x3 + αx2x4 + αx2

+ α2x3 + α2x2
4 + x4x5 + αx4 + x5.

In order to generate a signature for the message (or hash value) w = (1, 0, 0) ∈
F

3, we first compute a pre-image x ∈ F
5 of w under the affine map S , e.g. x =

(α2, α2, α2, 0, α2) and lift it to the extension field. We get

B = α2X4 + αX2 + α2X + α2.

Next, we invert the Matsumoto-Imai central map by computing A = Bh =
B662 mod f (X), obtaining

A = X4 + α.

By moving A down to the vector space F
5 and inverting the affine map T , we get

the signature

z = (α2, α2, α, α2, α2) ∈ F
5.

To check the authenticity of the signature z ∈ F
5, we just compute

w′ = P(z) = (1, 0, 0).

Since the result is equal to the message w, the signature is accepted.

3.4.3 Differential Attack on SFLASH

In [5, 6] Dubois et al. proposed two attacks against the SFLASH signature scheme.
Both attacks use symmetries in the differential of the SFLASH public key to recover
the missing equations. After that one can use Patarin’s linearization equations attack
(see Sect. 3.2) to forge signatures.
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The first attack [6] uses so called skew symmetric maps and works in the case
of gcd(θ, n) > 1. The second attack [5] uses the multiplicative symmetry of the
differential and works for all values of n and θ .

Recall from Chap. 2 that the differential of a multivariate quadratic system P is
given as

DP(x, y) = P(x+ y)− P(x)− P(y)+ P(0).

The differential of a multivariate quadratic system is homogeneous quadratic,
bilinear and symmetric in x and y.

3.4.3.1 Skew Symmetric Maps

The first attack [6] looks for so called skew symmetric maps of the differential DP
of the public key of SFLASH. These are linear maps M : Fn → F

n such that

DP(M(x), y)+DP(x,M(y)) = 0.

For a generic system P , this equation is only fulfilled for trivial matrices M , namely
M = a · 1n where a ∈ F and 1n being the n × n identity matrix. However, for the
case of SFLASH, there are more solutions. To see this, wee look at the MI central
map F(X) = Xqθ+1. The differential DF has the form

DF(X, Y ) = Xqθ

Y +XYqθ

. (3.10)

We see that, for F̄ = φ−1 ◦ F ◦ φ, the equation

DF̄(M(x), y)+DF̄(x,M(y)) = 0

holds for every matrix Mζ which can be viewed as a multiplication by ζ ∈ E with

ζ qθ + ζ = 0. (3.11)

In [6] it was shown that these are the only solutions for M . Obviously, the
matrices Mζ form a linear space T . To determine the dimension of T , we look
at the number of possible values for ζ in (3.11). ζ is a (qθ − 1)-th root of unity
and the number of these elements is given by gcd(qθ − 1, qn − 1) = qgcd(θ,n) − 1.
The dimension of the linear space T is therefore d = gcd(θ, n). In the following we
assume that d > 1 holds.

It can be shown that, even after composing F with the affine transformations S
and T and after removing some of the public equations, the skew symmetry of the
differential still holds. In other words, there exist non trivial matrices Nζ such that



3.4 Signature Schemes Based on MI 55

DP(Nζ (x), y)+DP(x, Nζ (y)) = 0 (3.12)

holds. By substituting a large number of pairs (x, y) into (3.12), it is possible to
recover the linear space spanned by the matrices Nζ .

Now, Dubois et al. showed that, besides of P , also P ◦Nζ forms a valid SFLASH

public key (for the same private key). By adding a of the polynomials of P◦Nζ to P ,
it is therefore possible to extend the SFLASH public key P to a full Matsumoto-Imai
public key. We can then use Patarin’s linearization equations attack (see Sect. 3.2)
to forge signatures.

3.4.3.2 The Multiplicative Symmetry

In the second attack [5], Dubois et al. looked at the so called multiplicative
symmetry of the differential. In particular, they looked at elements ζ ∈ E for which

DF(ζX, Y )+DF(X, ζY ) = (ζ qθ + ζ )DF(X, Y )

holds. For the special form of the differential of the Matsumoto-Imai central map
(3.10), it is easy to see that this equation holds for all ζ ∈ E.

It can be shown that this symmetry still holds after composing F with linear
maps S and T and removing some of the public equations. In particular, we have
for the differential of the SFLASH public key PΠ

DPΠ(Nζ (x), y)+DPΠ(x, Nζ (y)) = SΠ ◦ML(ζ) ◦ S−1︸ ︷︷ ︸
Δ(L(ζ ))

DP(x, y) (3.13)

for some unknown matrices Nζ = T −1 ◦ Mζ ◦ T and ML(ζ) being the matrix

representing the multiplication by (ζ qθ + ζ ). Note that the right hand side of this
equation is a linear combination of the components of DP , which are partially
known to the attacker. The goal of the attack is now to identify matrices Nζ for
which the right hand side of (3.13) is a linear combination of the known first (n−a)

components of DP .
For this, Dubois et al. defined the vector spaces V , generated by the n compo-

nents of DP , and VΠ which is generated by the (n−a) known components of DPΠ .
It is clear that VΠ is an (n−a) dimensional subspace of the n dimensional space V .
We now consider the equation

SM(x, y) = DPΠ(M(x), y)+DP(x,M(y)),

where SM is a tuple of (n − a) symmetric bilinear forms. For most choices of M

(those, who do not correspond to a multiplication with some ζ ∈ E), the equation
will not have a solution. However, if M is one of the matrices Nζ , the components
of SM are elements of the space V . It is very unlikely that they are elements of VΠ ,
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but, for some choices of ζ , at least the first k components of SNζ will be elements of
VΠ .

It can be shown that, for k ≥ 3, these matrices Nζ form a linear space of
dimension n − ka. By testing a large number of matrices M and checking if the
first 3 coordinates of the corresponding matrices SM are contained in VΠ , we can
therefore find non trivial matrices Nζ with the desired property.

The last step of the attack consists of recovering the missing a polynomials to
get a full Matsumoto-Imai public key. For this, we compose the SFLASH public key
PΠ with one of the previously found transformations Nζ . We get

P ′Π(x) = PΠ ◦Nζ (x) = SΠ ◦M
ζqθ+1 ◦ F ◦ T (x).

So, PΠ and P ′Π contain together 2 · (n − a) linear combinations of the quadratic
polynomials F ◦ T . With high probability, we can construct from this a full rank
Matsumoto-Imai public key. By applying Patarin’s linearization equations attack
(see Sect. 3.2) on this key, we can therefore forge signatures.

3.4.4 Preventing the Differential Attack and PFLASH

In [4] Ding et al. proposed a technique to prevent the differential attack against
SFLASH: Projection. The idea of the PFLASH (Projected FLASH) signature scheme
is to project the SFLASH public key to a subspace. In particular, one fixes a small
number (say s) of the public key variables to 0, which makes the public key P to be
a multivariate quadratic map from F

n−s to F
n−a . The scheme can be described as

follows.
Just as in the case of the standard Matsumoto-Imai scheme we have a finite

field F with q elements, a degree n extension field E of F and an isomorphism
φ : Fn → E between the vector space Fn and the extension field E. Additionally we
use two integers a and s denoting the number of minus equations and the number of
projected variables respectively.

Key Generation The components of a PFLASH private key are chosen as fol-
lows.

• central map: central MI map F : E → E : Y �→ Yqθ+1 for an MI exponent θ

with gcd(qn−1, qθ+1) = 1.
• signing exponent: Use the extended Euclidean algorithm to compute h ∈
{2, . . . , n− 1} such that
h(1+ qθ ) = 1 mod (qn − 1).

• affine transformations: S : Fn → F
n−a , T : Fn → F

n.

Private Key The private key consists of the two maps S and T , the signing exponent
h and possibly the isomorphism φ.
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Public Key The public key is the composed map P = Πn−s ◦S ◦φ−1 ◦F ◦φ ◦T :
F

n−s → F
n−a , where Πn−s is the projection to the first n− s components.

Signature Generation In order to generate a signature for a document d ∈ {0, 1}�,
the signer uses a hash function H : {0, 1}� → F

n−a to compute the hash value
w = H(d) ∈ F

n−a and performs the following steps

1. Compute a pre-image x ∈ F
n of w under the affine transformation S and lift it to

the extension field E, i.e. compute X = φ(x).
2. Compute Y = Xh.
3. Move Y down to the vector space F

n, obtaining y, and compute z = T −1(y) ∈
F

n. If the last s coordinates of z = (z1, . . . , zn) are zero, output the signature
σ = (z1, . . . , zn−s) ∈ F

n−s . Otherwise, one has to choose another pre-image of
w under S and try again.

Signature Verification To check the authenticity of a signature σ ∈ F
n−s , the

verifier computes w = H(d) ∈ F
n−a and w′ = P(σ ). If w′ = w holds, the signature

is accepted, otherwise rejected.
Step 3 of the signature generation process contains a guessing step: If the last s

components of the SFLASH signature are not equal to zero, we have to compute a
new signature. This means that we have to perform this step about qs times, which
leads to a slow down of the signature generation process by a factor of qs .

In [4] it is shown by computer experiments that, even for small values of s,
the projection efficiently breaks both the skew-symmetric and the multiplicative
symmetry of the differential of the Matsumoto-Imai public key. Therefore, the
differential attacks described in Sect. 3.4.3 can not be used against PFLASH.

3.4.5 Toy Example

We continue the SFLASH toy example from Sect. 3.4.1. We had F =GF(4), θ = 2,
h = 662 and (n, a) = (5, 2). The extension field E was GF(45) using the irreducible
polynomial g(X) = X5+X+ α. Furthermore, we set the projection parameter s to
1. The affine maps S and T were given as

S(x1, . . . , x5) =
⎛
⎝ 1 α2 0 α 1

1 1 0 1 α2

α 0 α 0 1

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎝ 0

α

1

⎞
⎠

and
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T (x1, . . . , x5) =

⎛
⎜⎜⎜⎜⎜⎝

α2 α2 α2 α 1
1 1 α 0 α2

0 0 α2 1 α

0 α2 α2 α α

0 1 1 α2 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎜⎜⎜⎜⎜⎝

α

1
α2

1
0

⎞
⎟⎟⎟⎟⎟⎠ .

This lead to the SFLASH public key P̄ = (p̄(1), p̄(2), p̄(3)) with

p̄(1) = α2x2
1 + αx1x2 + α2x1x3 + α2x1x4 + x2x3 + αx2x4 + α2x2x5 + x2

+ αx2
3 + αx3x4 + x3x5 + x3 + α2x2

4 + α2x4 + x5 + 1,

p̄(2) = αx2
1 + αx1x4 + α2x1x5 + x1 + x2

2 + αx2x3 + α2x2x5 + α2x2

+ α2x2
3 + x3x4 + α2x3x5 + x3 + α2x2

4 + x4x5 + x4 + αx2
5 ,

p̄(3) = αx2
1 + αx1x3 + αx1x4 + α2x1x5 + x1 + αx2x3 + αx2x4 + αx2

+ α2x3 + α2x2
4 + x4x5 + αx4 + x5.

To get the corresponding PFLASH public key, we set the last variable x5 to 0.
Therefore we get the public key P = (p(1), p(2), p(3)) with

p(1) = α2x2
1 + αx1x2 + α2x1x3 + α2x1x4 + x2x3 + αx2x4 + x2

+ αx2
3 + αx3x4x3 + α2x2

4 + α2x4 + 1,

p(2) = αx2
1 + αx1x4 + x1 + x2

2 + αx2x3 + α2x2 + α2x2
3 + x3x4

+ x3 + α2x2
4 + x4,

p(3) = αx2
1 + αx1x3 + αx1x4 + x1 + αx2x3 + αx2x4 + αx2

+ α2x3 + α2x2
4 + αx4.

We want to compute a PFLASH signature for the message/hash value w =
(0, α2, α2) ∈ F

3.
For this, we compute a pre-image x of w under the affine map S . We get

x1 = (0, α, α2, 1, α2) ∈ F
5.

Lifting x1 to the extension field E and inverting the central map F yields

Y1 = X4 + α2X3 + αX2 + 1.

Moving Y1 down to the vector space F5 and inverting the second affine map T yields

z1 = (1, α, 0, α, α) ∈ F
5.
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Since the last coordinate of z1 is different from 0, we have to choose another pre-
image of w and try again.
This time we get

x2 = S−1(w) = (0, α, α, 0, 1).

Lifting x2 to the extension field and inverting F yields

Y2 = α2X3 + α2X2 + α2X + α2.

Moving Y2 down to the vector space F
5 and inverting T yields

z2 = (0, 0, 1, α2, 0) ∈ F
5.

This time, the last coordinate of z2 is zero. So, we can discard it and obtain the
PFLASH signature

σ = (0, 0, 1, α2) ∈ F
4.

During verification, we find

P(σ ) = (0, α2, α2) = w

and therefore accept the signature.
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Chapter 4
Hidden Field Equations

Abstract This chapter deals with the Hidden Field Equations (HFE) cryptosystem
and its variants. We start by an introduction of the basic HFE cryptosystem and study
its security against direct and rank attacks. Furthermore, we give an overview of the
various HFE variants for encryption and digital signatures. In the area of encryption
schemes we study here the IPHFE+ and the ZHFE schemes, while, in the area of
signature schemes, we analyze the HFEv- signature scheme and its extension Gui,
which produces the shortest signatures of all currently existing schemes.

After the Matsumoto–Imai cryptosystem had been broken by his linearization equa-
tions attack, Patarin had the idea of the Hidden Field Equations (HFE) cryptosystem
[10]. The basic idea of HFE is to add additional terms to the Matsumoto–Imai
central map while ensuring that

1. the resulting public key stays quadratic and
2. the central map is still efficiently invertible.

This idea uses the Frobenius automorphism, which ensures that, over a finite field
of characteristic q, every polynomial f (X) = Xqi

(i ∈ N0) is linear. Therefore, a
univariate polynomial map F : E→ E over a degree n extension field E of F of the
form

F(X) =
∑
i,j

Xqi+qj

leads to a quadratic map F̄ = φ−1 ◦ F ◦ φ over the base field F. By adding these
terms to the MI central map, Patarin not only defended the scheme against the
Linearization Equations attacks, but also increased its security against direct and
rank attacks. However, as we will show in this chapter, the basic HFE scheme is still
vulnerable against these attacks.

Therefore, the HFE scheme is nowadays mainly used as a basis for constructing
more advanced schemes. Especially in the area of digital signature schemes, the
HFEv- scheme and its extensions Gui [11] and GeMSS [3] are very promising.
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This chapter is organized as follows: In Sect. 4.1 we introduce the basic HFE
cryptosystem and illustrate its workflow using a toy example, while Sect. 4.2 deals
with the main attacks against HFE and the security of the scheme. Section 4.3
describes encryption schemes based on HFE and, in Sect. 4.4, we present signature
schemes based on HFE.

4.1 The Basic HFE Cryptosystem

In this section we describe the basic HFE cryptosystem as proposed by Patarin in
[10]. As the Matsumoto–Imai scheme of the previous chapter, the scheme belongs
to the BigField family of multivariate schemes, which means that it uses a degree n

extension field E of F as well as an isomorphism φ : Fn → E. In its basic form, the
HFE cryptosystem can be used both as an encryption and signature scheme.

The central map of the HFE cryptosystem is a univariate polynomial map F :
E→ E of the form

F(X) =
qi+qj≤D∑

i,j=0

αijX
qi+qj +

qi≤D∑
i=0

βiX
qi + γ (4.1)

with coefficients αij , βi and γ randomly chosen from E. Due to the special form of
F , the map F̄ = φ−1 ◦ F ◦ φ is a quadratic map over the vector space F

n. In order
to hide the structure of F in the public key, F̄ is composed with two affine maps S
and T : Fn → F

n. Therefore, the public key P of the scheme is given as

P = S ◦ F̄ ◦ T

and is a quadratic map from F
n to F

n.

Remark 4.1 The parameter D in (4.1) is introduced to ensure the efficient inversion
of the map F . During the decryption or signature generation process (see below),
we have to invert F , which corresponds to the solution of a univariate polynomial
of degree D. The complexity of this step highly depends on D, due to which D can
not be chosen too large.

The private key of the scheme consists of the three maps S,F and T (and
possibly the isomorphism φ).

The public key is the multivariate quadratic map P : Fn → F
n.

The scheme can be used both as an encryption and a digital signature scheme.



4.1 The Basic HFE Cryptosystem 63

4.1.1 HFE as an Encryption Scheme

Encryption To encrypt a message z ∈ F
n, one simply evaluates the public key P

to get the ciphertext

w = P(z) ∈ F
n.

Decryption To decrypt a ciphertext w ∈ F
n, one has to perform the following three

steps.

1. Invert the first affine map S , i.e. compute

x = S−1(w) ∈ F
n

and lift the result to the extension field E, i.e. compute

X = φ(x).

2. Find all the solutions Y1, . . . , Yk of F(Y ) = X, i.e. compute the set

Y = {Y ∈ E : F(Y ) = X}.
For this step, one uses e.g Berlekamp’s algorithm or the Cantor–Zassenhaus
algorithm (see Sect. 8.2).

3. For each i ∈ {1, . . . , k}, send Yi down to the vector space F
n, i.e. compute

yi = φ−1(Yi)

and compute the plaintext candidate zi ∈ F
n by zi = T −1(yi ).

Since the HFE central map is not bijective, the equation F(Y ) = X in step 2
of the decryption process may have several solutions (this case is also shown in the
toy example below). However, for each ciphertext, there is at least one solution,
which corresponds to the correct plaintext. To distinguish between correct and
false plaintext candidates, one can use several techniques (e.g. hash functions or
redundancy in the plaintext).

4.1.2 HFE as a Signature Scheme

Since the HFE central map is not bijective, not every hash value w ∈ F
n necessarily

has a signature. To overcome this problem, one can use for example a counter
r = 0, 1, . . . during the signature generation process. Instead of generating an HFE
signature z for the hash value w = H(d), one generates an HFE signature for the
hash value w = H(d||r). If w does not lead to a signature, one increases the counter
r and tries again. The final signature σ sent to the verifier has the form σ = (z, r).
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Signature Generation To generate a signature for a document d, one starts with
r = 0, computes the hash value w = H(d||r)) and performs the following three
steps.

1. Invert the first affine map S , i.e. compute

x = S−1(w) ∈ F
n

and lift the result to the extension field E, i.e. compute

X = φ(x).

2. Find a solution Y ∈ E of the univariate polynomial equation F(Y ) = X for
example via Berlekamp’s algorithm or the Cantor–Zassenhaus algorithm (see
Sect. 8.2). If the equation does not have a solution, increment the counter r ,
compute the new hash value w = H(d||r) and start again with step 1.

3. Move the result Y down to the vector space F
n, i.e compute

y = φ−1(Y )

and compute the HFE signature z ∈ F
n by z = T −1(y). Send (z, r) to the verifier.

Signature Verification To check the authenticity of a signature (z, r), the verifier
computes the hash value w = H(d||r) and w′ = P(z). If w′ = w holds, the
signature is accepted, otherwise rejected.

4.1.3 Key Sizes and Efficiency

The public key size of HFE is

sizepk HFE = n
(n+ 1)(n+ 2)

2

F-elements. The size of the private key is

sizesk HFE = (n+ 1)2︸ ︷︷ ︸
S

+ (n+ 1)2︸ ︷︷ ︸
T

+ kn︸︷︷︸
F

F-elements. The number of coefficients of the HFE polynomial is k, which is
bounded from above by

k ≤ �logq(D)� · (�logq(D)� + 1)

2
+ logq(D)+ 1.
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The most costly step during the decryption/signature generation process of
HFE is the inversion of the univariate HFE polynomial, which is performed by
Berlekamp’s or the Cantor–Zassenhaus algorithm (see Sect. 8.2). The complexity
of both algorithms is cubic in the parameter D.

4.1.4 Toy Example

For our toy example we use F = GF(4) as the underlying field and choose the
HFE parameters (n,D) = (3, 17). The irreducible polynomial used to generate the
extension field E = F43 is f (X) = X3 + α.

We choose the affine maps S and T : F3 → F
3 as

S(x1, . . . , x3) =
⎛
⎝α α2 α2

0 α2 1
α 1 1

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+
⎛
⎝α

α

α

⎞
⎠

and

T (x1, x2, x3) =
⎛
⎝α2 1 1

0 α2 α

0 α α

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠+
⎛
⎝α2

0
1

⎞
⎠ .

The HFE central map F : E→ E is given as

F(X̂) = β17X̂
42+40+β8X̂

41+41+β5X̂
41+40+β2X̂

40+40+γ16X̂
42+γ4X̂

41+γ1X̂
40+δ

with

β17 = X2 + αX + 1,

β8 = α2X2 + α2X,

β5 = α2X2 + α,

β2 = α2X2 + αX + α,

γ16 = αX + α,

γ4 = X2 + 1,

γ1 = αX2 +X + α2,

δ = α2X2 + αX + 1.
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Here, the coefficients of the HFE central map are represented by univariate
polynomials of degree ≤ 2 in F[X].

In order to compute the public key of our HFE instance, we first lift the affine
transformation T (x1, . . . , x3) to a univariate polynomial T̃ (X) over the extension
field E. We obtain

T̃ (X) = (αx2 + αx3 + 1)X2 + (α2x2 + αx3)X + α2x1 + x2 + x3 + α2.

Next, we compute B(X) = F(T̃ (X)), obtaining

B(X) = (α2x2
1 + x1x2 + α2x1x3 + αx1 + αx2x3 + x2 + 1)X2

+ (x2
1 + αx1x2 + αx2x3 + α2x2 + α2x2

3 + αx3 + α2)X

+ αx2
1 + αx1x2 + αx1x3 + x1 + α2x2

2 + αx2x3 + αx2 + α2x2
3 + α2x3.

Finally, we move B(X) down to the vector space F
3 and apply the affine transfor-

mation S to obtain the public key P = (p(1), p(2), p(3)) as

p(1) = αx2
1 + x1x2 + x1x3 + α2x1 + x2

2 + α2x2x3 + αx2 + α2x2
3 + α2,

p(2) = α2x1x3 + αx1 + α2x2x3 + α2x2 + αx2
3 + x3 + 1,

p(3) = x2
1 + x2

2 + α2x2x3 + x2 + αx2
3 + α2x3.

We want to encrypt the message z = (α2, α2, α) ∈ F
3. We find

w = P(z) = (α2, 1, 0).

In order to decrypt the ciphertext w = (α2, 1, 0), we first have to invert the affine
map S . We find

S−1 =
⎛
⎝α 0 1

α α2 α

1 α2 1

⎞
⎠

and

x = S−1(w) = (0, α2, 1).

We lift x to the extension field E, obtaining

X̂ = X2 + α2X

and invert the central map F by finding the solutions of F(Ŷ ) − X̂ = 0 using
Berlekamp’s algorithm. By doing so, we get the two solutions
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Ŷ1 = α2X2 +X and Ŷ2 = X2 + α2.

By moving Ŷ1 and Ŷ2 down to the vector space F
3 and inverting the affine map T ,

we obtain the two plaintext candidates

z1 = (α2, α2, α) and z2 = (0, 0, 0).

Note that z1 is the encrypted plaintext. For example by using redundancy in the
plaintexts, we can exclude z2 from the list of possible plaintext candidates.

4.2 Attacks on HFE

The most important attacks against the HFE cryptosystem are

• the direct attack and
• Rank Attacks of the Kipnis–Shamir type [8]

4.2.1 The Direct Attack on HFE

As already mentioned in Sect. 2.4, a direct attack considers the public equation
P(z) = w as an instance of the MQ Problem. The resulting multivariate quadratic
system is then solved using the XL-Algorithm or a Gröbner basis method (see
Chap. 8). Experiments [6, 9] have shown that, in the case of HFE, the resulting
multivariate quadratic systems can be solved significantly faster than random
systems. The reason for this is the low degree of regularity of these systems. For
HFE, the degree of regularity of the multivariate quadratic system is bounded from
above by

dreg ≤
{

(q−1)(r−1)
2 + 2 if q even and r odd

(q−1)r
2 + 2 otherwise,

where r = �logq(D − 1)� + 1. A proof of this formula can be found in Sect. 8.6.

4.2.2 Rank Attacks of the Kipnis–Shamir Type

We define

r = logq�D − 1� + 1.
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The basic idea of the Kipnis–Shamir attack against HFE is to consider the public
key of a multivariate BigField Scheme such as HFE as a univariate polynomial map
over the extension field E. Before we come to the description of the attack itself, we
start by introducing the notion of the (min)-Q-Rank of a multivariate quadratic map,
which is a central notion for the cryptanalysis of multivariate BigField schemes.

4.2.2.1 The Notion of Q-Rank

Via the isomorphism φ, we can lift every multivariate quadratic map
G : Fn → F

n to a univariate polynomial map φ ◦ G ◦ φ−1 over the extension field E

of the form

φ ◦ G ◦ φ−1 =
n−1∑
i,j=0

αijX
qi+qj

.

Via the identification Xi := Xqi
, φ ◦ G ◦ φ−1 becomes a quadratic form in the

multivariate polynomial ring E[X0, . . . , Xn−1].
With this notion, we can define the Q-Rank of the multivariate quadratic map G

as follows.

Definition 4.2 Let E be a degree n extension field of F. The Q-rank of a quadratic
map G(x) : F

n → F
n is the rank of the quadratic form φ ◦ G ◦ φ−1 in

E[X0, . . . , Xn−1] via the identification Xi = φ(x)q
i
.

The Q-rank of a multivariate quadratic map G is therefore the minimum number
of variables required to express the quadratic form φ ◦ G ◦ φ−1 in the multivariate
polynomial ring E[X0, . . . , Xn−1].

The Q-rank of a multivariate quadratic map G is invariant under one-sided
isomorphisms G �→ G◦T , but is not invariant under isomorphisms of polynomials in
general, i.e. transformations of the form G → S◦G◦T , where S and T are invertible
affine transformations. Therefore, when studying the security of multivariate public
key cryptosystems, another quantity which is invariant under isomorphisms of
polynomials is more important.

Definition 4.3 Let E be a degree n extension field of F. The min-Q-rank of a
quadratic map G : Fn → F

m over E is

min-Q-rank(G) = min
S

max
T
{Q-rank (S ◦ G ◦ T )},
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where S : Fm → F
r and T : Fs → F

n are full rank linear transformations.
As above, “Q-rank” computes the rank of its input as a quadratic form over
E[X0, . . . , Xn−1] via the identification Xi = Xqi

.1

It is easy to see that the min-Q-rank of a multivariate quadratic map is invariant
under isomorphisms of polynomials. Therefore, for a multivariate public key
cryptosystem, the min-Q-rank of the central map F (or φ−1 ◦ F ◦ φ) and the min-
Q-rank of the public key P are equal. Therefore, the notion of min-Q-rank plays an
important role in the cryptanalysis of multivariate public key cryptosystems of the
BigField family.

4.2.2.2 The Case of HFE

Let α be a primitive element of the degree n extension field E of F. We define the
isomorphism φ : Fn → E as X = φ(x1, . . . , xn) =∑n

i=1 xiα
i−1. Furthermore, we

define a map ϕ : E → E
n over the extension field E as ϕ(a) = (a, aq, . . . , aqn−1

)

and denote the image of ϕ by A.
Define a map Mn : Fn → A by Mn = ϕ ◦ φ. We can explicitly represent this

map by the matrix

Mn =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

α αq · · · αqn−1

α2 α2q · · · α2qn−1

...
...

. . .
...

αn−1 α(n−1)q · · · α(n−1)qn−1

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ E

n×n,

acting via right multiplication. We can thus pass between the two interesting
representations of elements of E of the form (x1, . . . , xn) ∈ F

n and
(X,Xq, . . . , Xqn−1

) ∈ A simply by right multiplication by Mn or M−1
n .

With the help of this matrix Mn, we can write the public key of HFE in
matrix form. Let F∗i be the matrix representation of the quadratic form over A

corresponding to the map x �→ Xqi
.

Let (F (1), . . . , F (n)) denote the n-dimensional vector of n × n symmetric
matrices associated to the private key. We find

Mn(F
(1), F (2), . . . , F (n)) = (MnF∗0M�n , MnF∗1M�n , . . . , MnF∗(n−1)M�n ).

Here, Mn(F
(1), F (2), . . . , F (n)) denotes the function of applying each coordinate of

the vector (F (1), F (2), . . . , F (n)), followed by the application of the linear map Mn.

1The definition holds also for non square transformations S and T as they are used in variants of
MI and HFE. Therefore we speak here of full rank linear transformations.
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Fig. 4.1 Structure of the
matrix F�0 for HFE

r

r

n

n

The next observation is that, due to the special form of the HFE central map, the
matrix F�0 has the form shown in Fig. 4.1.

As Fig. 4.1 shows, the rank of the matrix F�0 is less than or equal to r = logq�D−
1� + 1. Therefore, we can recover the matrix F�0 by solving an instance of the
MinRank Problem.

Definition 4.4 (MinRank Problem) Given k n × n matrices M1, . . . ,Mk , find a
linear combination

M =
k∑

i=1

λiMi

of minimal rank r .

There exist two techniques to solve the MinRank Problem for HFE: the Kipnis–
Shamir Modeling and the Minors Modeling.

4.2.2.3 Kipnis–Shamir Modeling

Let M1, . . . ,Mk be k n × n matrices. We want to find a linear combination
M = ∑k

i=1 λiMi of rank ≤ r . In the Kipnis–Shamir Modeling [8], we do this
by computing the right kernel of the (unknown) matrix M . Since M has rank r ,
there exist n− r linear independent vectors v1, . . . , vn−r such that M · vi = 0 ∀i =
1, . . . , n−r . If we define V as the n× (n−r) matrix whose columns are the vectors
v1, . . . , vn−r , we can write this as a matrix equation of the form

M · V = 0n×(n−r). (4.2)

We can further assume that V is given in a systematic form, i.e.
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V =
(

In−r

V ′r×(n−r)

)
.

Therefore, Eq. (4.2) yields n(n− r) quadratic equations in the unknowns λ1, . . . , λk

and the r(n − r) entries of the matrix V ′. The Kipnis–Shamir modeling solves the
MinRank Problem by turning it into an overdetermined system of bilinear equations.

4.2.2.4 Minors Modeling

In [1], Courtois et al. proposed another technique to solve the MinRank Problem
for HFE called Minors modeling. This technique has the benefit that it can be
extended more easily to other HFE variants such as HFEv- (see Sect. 4.4). The basic
observation is that, for a matrix of rank r , all r + 1 minors (the determinants of
(r + 1)× (r + 1) submatrices) must be 0.

We consider a general linear combination of the matrices M1, . . . ,Mk and its
r + 1 minors (which are given as polynomial equations of degree r + 1 in the k

unknowns λ1, . . . , λk). We therefore have to solve a system of
(

n
r+1

)2
/2 equations

of degree r + 1 in k variables.2

Courtois et al. now observed that it is sufficient to compute a Gröbner basis of the
system over the base field F, while computing the variety over the extension field E.
Due to this observation, they could speed up the attack drastically. The complexity
of solving the HFE MinRank Problem (k = n) by this technique can be estimated by
O(nrω), where 2 < ω ≤ 3 is the linear algebra constant of solving a linear system.

Remark 4.5 Additionally to the Kipnis–Shamir and the Minors modeling described
above, there exists a third technique to solve the MinRank Problem. Following
this strategy, one chooses random vectors v ∈ F

n and checks if v is contained in
the kernel of the linear combination M . Since M has rank r , this is fulfilled with
probability qr−n (where q is the cardinality of the underlying field F. This technique
is mainly used when applying the MinRank method to SingleField schemes such as
Rainbow (see Sect. 5.4) and SimpleMatrix (see Sect. 7). We describe the technique
in more detail in Sect. 5.5.

4.2.3 Summary of the Security of HFE

As we have seen above, the security of an HFE instance is mainly determined by
the choice of the parameter D (or more precisely r = �logq(D − 1)� + 1). In order
to increase the security of HFE against direct and rank attacks, a higher value of r

is desirable.

2Since we deal with symmetric matrices, each two minors produce the same equation.
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However, the complexity of the decryption and signature generation process is
cubic in D, which forbids a too large value of D. The best way to balance security
and efficiency of the scheme is to choose the parameter q as small as possible. But
even with q = 2 it is very difficult to create an HFE scheme which is both secure
and efficient. Therefore, HFE is mainly used today as a building block for more
advanced schemes. Some of these are described in the next two sections.

4.3 Encryption Schemes Based on HFE

After the basic HFE cryptosystem was shown to be insecure, several HFE variants
for encryption have been proposed. In this section we introduce two of them: the
IPHFE+ and the ZHFE encryption scheme.

4.3.1 The IPHFE+ Encryption Scheme

In order to transform the basic HFE cryptosystem into a more secure encryption
scheme, IPHFE+ uses the same techniques as the PMI+ encryption scheme, namely
internal perturbation and the plus modification. The scheme can be described as
follows.

Let Fq be a finite field of q elements and E be a degree n extension field of F.
Let φ : Fn → E be an isomorphism between the vector space F

n and the extension
field E. Furthermore, we choose three integers D, r and s.

Key Generation Let

F : E→ E,F(X) =
qi+qj≤D∑

i,j=0

αijX
qi+qj +

qi≤D∑
i=0

βiX
qi + γ

be a HFE central map. As in the case of PMI (see Sect. 3.3) we choose randomly a
linear map Z : Fn → F

r and a quadratic map F̄ : Fr → F
n. We compute the set

P = {(λ, μ)|F̄(λ) = μ, λ ∈ F
r }.

The central map F̃ : Fn → F
n of IPFFE+ is given by

F̃ = φ−1 ◦ F ◦ φ + F̄ ◦ Z.

Furthermore, we choose randomly a quadratic map G : Fn → F
s .

To hide the structure of the central map in the public key, we compose it with
two invertible linear maps S : Fn+s → F

n+s and T : Fn → F
n, so that we get
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Public Key P : Fn → F
n+s : P(x1, . . . , xn) = S ◦ (F̃ ||G) ◦ T (x1, . . . , xn).

Private Key linear maps S and T , central map F , linear map Z , set P .

Encryption To encrypt a plaintext z ∈ F
n, the sender of a message computes the

ciphertext w ∈ F
n+s by w = P(z).

Decryption In order to decrypt the ciphertext w ∈ F
n+s the owner of the private

key performs the following three steps.

1. Compute x′ = S−1(w) and set x = (x′1, . . . , x′n).
2. Perform for each pair (λ, μ) ∈ P the following steps

(a) Compute Xλ = (x+ μ) ∈ E.
(b) Use Berlekamp’s algorithm to find Yλ ∈ E such that F(Yλ) = Xμ.
(c) Compute yλ = φ−1(Yλ) ∈ F

n.

3. If Z(y)λ = λ holds, zλ = T −1(yλ) ∈ F
n is a valid plaintext candidate.

Otherwise, we discard the pair (λ, μ) and continue.

By this strategy, we might get several plaintext candidates zμ ∈ F
n. In this case,

we can use the plus polynomials to distinguish between correct and false plaintext
candidates.

4.3.2 Security and Efficiency

The security of IPHFE+ is based on the following observation: the internal pertur-
bation increases the number of terms of the form Xqi+qj

in the central map F and
therefore the rank of the matrix F�0. In fact, it was shown by computer experiments
[5] that the rank of the matrix F�0 is, for IPHFE+, close to r + 1+ logq D.

Therefore, the internal perturbation prevents MinRank attacks of the Kipnis–
Shamir type and also increases the complexity of direct attacks. Similar to the case
of PMI+ (see Sect. 3.3), the plus modification prevents differential attacks to remove
the internal perturbation from the scheme.

Currently, no efficient attack against the IPHFE+ cryptosystem is known and the
scheme is believed to be secure. However, since the decryption process contains a
guessing step, the scheme is not very efficient and hardly used in practice.

4.3.3 The ZHFE Encryption Scheme

The main weakness of the HFE cryptosystem is the low min-Q-rank of the central
map, which is caused by the upper bound on the degree of the univariate HFE
polynomial. To address this fact, Porras et al. proposed in [12] the ZHFE encryption
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scheme. The scheme uses two HFE polynomials F1 and F2 of high degree, which
are connected by a low degree secret polynomial Ψ .

Therefore, the central map F of the scheme has a high min-Q-rank, while we
can use the low min-Q-rank map Ψ during the decryption process. However, it was
discovered in [2] that the ZHFE scheme can still be attacked by some kind of rank
attack (see next section). The ZHFE scheme can be described as follows.

Key Generation We consider two HFE polynomials F (1) and F (2) of high degree,
i.e.

F (1)(X) =
n−1∑

i≥j≥0

α
(1)
ij Xqi+qj +

n−1∑
i≥0

β
(1)
i Xqi + γ (1) and

F (2)(X) =
n−1∑

i≥j≥0

α
(2)
ij Xqi+qj +

n−1∑
i≥0

β
(2)
i Xqi + γ (2). (4.3)

The coefficients α
(k)
ij , β

(k)
i and γ (k) (k = 1, 2) are so far undetermined elements of

the extension field E. Furthermore we define a polynomial Ψ by

Ψ (X) = X

(
n−1∑
i=0

(
ai(F (1)(X))q

i + bi(F (2)(X))q
i
))

+ Xq

(
n−1∑
i=0

(
ci(F (1)(X))q

i + di(F (2)(X))q
i
))

(4.4)

with randomly chosen coefficients ai , bi , ci and di ∈ E.

The coefficients α
(k)
ij , β

(k)
i and γ (k) of F (1) and F (2) are determined in such a

way that all terms of degree > D0 in Ψ vanish (for a small integer D0). This implies
the solution of a large linear system. In [7] it is shown how this can be done in an
efficient way.

The central map F : E → E
2 of the scheme is defined as the concatenation of

the polynomials F (1) and F (2), i.e. F = (F (1)||F (2)).
To hide the structure of F in the public key, we combine it with two invertible

linear (or affine) maps S : F2n → F
2n and T : Fn → F

n.

Public Key The public key of ZHFE is the multivariate quadratic map

P = S ◦ (φ−1 × φ−1) ◦ (F (1),F (2)) ◦ φ ◦ T : Fn → F
2n.

Private Key The private key of ZHFE consists of the two affine maps S : F2n →
F

2n and T : Fn → F
n, the two maps F (1), F (2) : E → E and the coefficients ai ,

bi , ci and di of the map Ψ .
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Encryption To encrypt a plaintext z ∈ F
n, one simply computes

w = P(z) ∈ F
2n.

Decryption To decrypt a ciphertext w ∈ F
2n, the owner of the private key performs

the following four steps.

1. Compute x = S−1(w) ∈ F
n and set X1 = φ(x1, . . . , xn),

X2 = φ(xn+1, . . . , x2n) ∈ E.
2. Define the three maps F̃ (1) = F1 −X1, F̃ (2) = F2 −X2 and

Ψ̃ = X

(
n−1∑
i=0

(
ai(F̃ (1)(X))q

i + bi(F̃ (2)(X))q
i
))

+ Xq

(
n−1∑
i=0

(
ci(F̃ (1)(X))q

i + di(F̃ (2)(X))q
i
))

.

Obviously, the degree of Ψ̃ is bounded by D0.
3. Use Berlekamp’s algorithm to find a solution Y ∈ E of the equation Ψ̃ (Y ) = 0

and set y = φ−1(Y ) ∈ F
n.

4. Compute the plaintext z ∈ F
n by z = T −1(y).

4.3.4 Key Sizes and Efficiency

The public key size of ZHFE is given as

sizepk ZHFE = 2n
(n+ 1)(n+ 2)

2

F-elements, the private key size is

sizesk ZHFE = 2n(2n+ 1)︸ ︷︷ ︸
S

+ n(n+ 1)︸ ︷︷ ︸
T

+2kn

F-elements. Here, k is the number of coefficients in the map F (1), which is bounded
above by n2.

The most costly step in the decryption process is the inversion of the map Ψ̃ ,
which implies the solution of a univariate polynomial of degree D0.
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4.3.5 Cryptanalysis of ZHFE

ZHFE was constructed with the idea in mind that an injective multivariate map from
F

n to F
2n may have more freedom in its structure than a bijective map from F

n to
F

n, and therefore can be more secure. However, the ZHFE construction could not
really achieve this goal.

The ZHFE encryption scheme was shown to be insecure by a practical key
recovery attack of Cabarcas et al. [2] based on the discoveries of a hidden low rank
property of ZHFE. Despite the two central maps of ZHFE having high degree, the
existence of the low rank combination Ψ makes ZHFE vulnerable to the Kipnis–
Shamir(KS) rank attack .

The attack is based on the following observation.

Theorem 4.6 Let P = S◦(φ−1 × φ−1)◦(F (1),F (2))◦φ◦T be a ZHFE public key.
Then, with high probability, there exists a ZHFE private key Π = (S̃, F̃ (1), F̃ (2), T̃ )

with S̃◦(φ−1×φ−1)◦(F̃ (1), F̃ (2))◦φ◦T̃ = P for which the matrices F̃ (1) and F̃ (2)

associated to the maps F̃ (1) and F̃ (2) are of low rank≤ r+1 (r = logq�D−1�+1).

Proof See [2, Sect. 3.1]. 	

In [2] it is shown how to find this equivalent private key by solving a MinRank

Problem with target rank r + 1 in the 2n matrices associated to the public
polynomials.

The complexity of the attack is O(n(r+2)ω), where 2 < ω ≤ 3 is the exponent
in the complexity of solving a linear system. For constant r , the running time of the
attack is therefore polynomial in n.

4.4 Signature Schemes Based on HFE

The most popular signature scheme on the basis of HFE is HFEv-, which is obtained
from the basic HFE scheme by using the minus and the Vinegar modifications.

Definition 4.7 The Vinegar modification perturbs the central map F of a mul-
tivariate public key scheme by making the coefficients of the linear and constant
terms of F dependent on a set of external (vinegar) variables.

In contrast to the internal perturbation (see Sect. 3.3) the Vinegar modification
introduces additional variables into the multivariate quadratic system. The resulting
system thus has more variables than equations, which means that the Vinegar
modification can only be used for signature schemes. In Sect. 4.4.4 we will see how
the Vinegar modification affects known attacks against HFE.

Additional to providing a modification method for multivariate BigField
schemes, the idea of the Vinegar modification can also be used to obtain a
completely new signature scheme. This so called Oil and Vinegar signature scheme
is discussed in Chap. 5.
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Table 4.1 Modifications of BigField schemes

Encryption schemes Plus + Add randomly cho-
sen quadratic equa-
tions to the public
key

+ Prevents differen-
tial attacks (PMI+,
IPHFE+)

Internal perturbation
IP

Add perturbation to
the central map using
internal variables

+ Prevents
Linearization
equations attacks
(PMI)

+ Increases rank
of the central map
(IPHFE)

− slows down
decryption

Signature schemes Minus − Remove equations
from the public key

+ prevents
linearization
equations attacks
(MI-)

+ increases the rank
of the central map
(HFE-)

Projection p Project public key to
a subspace

+ prevents differen-
tial attacks (MI-)

− slows down signa-
ture generation

Vinegar v Add perturbation to
the central map using
external variables

+ increases the rank
of the central map
(HFEv-)

Table 4.1 gives an overview of the various modifications on multivariate BigField
schemes.

4.4.1 The HFEv- Signature Scheme

Similar to the HFE cryptosystem, the HFEv- scheme uses a degree n extension field
E of F and an isomorphism φ : Fn → E. As in HFE, we have an upper bound D

on the degree of the univariate HFE polynomial in use. However, HFEv- uses two
additional parameters:

• a: the number of minus equations and
• v: the number of vinegar variables.

Key Generation The central map F : E × F
v → E of the HFEv- scheme has the

form
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F(X, x1, . . . , xv) =
qi+qj≤D∑

i,j≥0

αi,jX
qi+qj+

qi≤D∑
i≥0

βi(x1, . . . , xv)X
qi+γ (x1, . . . , xv).

Here, the coefficients αi,j are randomly chosen elements from the field E, while
βi : Fv → E and γ : Fv → E are linear and quadratic maps respectively. Due to
the structure of the map F the map

F̄ : φ−1 ◦ F ◦ (φ × idv)

is a quadratic map from F
n+v to F

n. Here, idv is the identity map on F
v .

To hide the structure of the central map F in the public key, one composes F̄ with
two linear or affine maps S : Fn → F

n−a (minus modification) and T : Fn+v →
F

n+v .

Public Key The public key of HFEv- is the multivariate quadratic map

P = S ◦ φ−1 ◦ F ◦ (φ × idv) ◦ T : Fn+v → F
n−a.

Private Key The private key of HFEv- consists of the three maps S,F and T (and
possibly the isomorphism φ).

Since the public key of HFEv- contains more variables than equations, the
scheme can only be used as a signature scheme.

Signature Generation To generate an HFEv- signature for a document d ∈ {0, 1}�,
one uses a hash function H : {0, 1}� → F

n−a to compute the hash value w =
H(d) ∈ F

n−a and performs the following four steps.

1. Find a pre-image x ∈ F
n of the hash value w under the affine map S and lift it to

the extension field E. Denote the result by X.
2. Choose random values for the vinegar variables x1, . . . , xv and substitute them

into the central map F to obtain the parametrized map FV : E→ E.
3. Find a root of the univariate polynomial equation FV (Ŷ ) = X by e.g.

Berlekamp’s algorithm (see Sect. 8.2). Denote the root by Y ∈ E. If there is
no solution, go back to step 2.

4. Compute y′ = φ−1(Y ) ∈ F
n, append the vinegar variables x1, . . . , xv to get

y = (y′||x1|| . . . ||xv) ∈ F
n+v and compute the signature z ∈ F

n+v as

z = T −1(y).

Signature Verification To check the authenticity of a signature z ∈ F
n+v , the

verifier computes the hash value w = H(d) ∈ F
n−a and evaluates the public key at

z to obtain

w′ = P(z) ∈ F
n−a.

If w′ = w holds, the signature z is accepted, otherwise rejected.
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4.4.2 Key Sizes and Efficiency

The public key size of HFEv- is

sizepk HFEv− = (n− a)
(n+ v + 1)(n+ v + 2)

2

F-elements. The size of the private key is

sizesk HFEv− = (n− a)n︸ ︷︷ ︸
S

+ n(n+ v)︸ ︷︷ ︸
T

+ kn︸︷︷︸
F

F-elements. Here, k is the number of coefficients in the HFEv- polynomial with the
upper bound

k ≤ �logq(D)�(�logq(D)� + 1)

2
+ �logq(D)�(v + 1)+ (v + 1)(v + 2)

2
.

Each of these coefficients is stored using n F-elements. As in the case of the plain
HFE scheme, the most costly step in the signature generation of the HFEv- scheme
is the inversion of the univariate HFEv- polynomial, whose complexity is cubic in
the parameter D.

4.4.3 Toy Example

For our toy example of the HFEv- signature scheme, we use the field GF(4) with
4 elements and the HFEv- parameters (n,D, a, v) = (4, 17, 1, 1). The irreducible
polynomial used to generate the extension field E = F44 is f (X) = X4 + X2 +
αX + 1.

We choose the affine maps S : F4 → F
3 and T : F5 → F

5 as

S(x1, . . . , x4) =
⎛
⎝α2 1 1 α

α 1 0 0
α2 1 α2 α

⎞
⎠
⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠+
⎛
⎝ 1

1
α

⎞
⎠

and
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T (x1, . . . , x5) =

⎛
⎜⎜⎜⎜⎜⎝

1 α α 0 α2

1 1 1 1 α

α α 1 0 0
0 α α2 1 α

0 α α2 α 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎜⎜⎜⎜⎜⎝

α

1
0
0
1

⎞
⎟⎟⎟⎟⎟⎠ .

The central HFEv- map F : E× F→ E is given as

F(X̂, x5) = β17X̂
42+40 + β8X̂

41+41 + β5X̂
41+40 + β2X̂

40+40

+ γ16(x5)X̂
42 + γ4(x5)X̂

41 + γ1(x5)X̂
40 + δ(x5)

with

β17 = X3 + αX2 + α2X + α2,

β8 = αX3 + α2X2 + α2X + α2,

β5 = X3 + α2X2 + αX + α,

β2 = αX2 +X,

γ16(x5) = α2X3 + (αx5 + α2)X2 + (αx5 + α)X + αx5,

γ4(x5) = (α2x5 + α2)X3 + (αx5 + α2)X2 + (α2x5 + 1)X + x5,

γ1(x5) = (x5 + α2)X3 + αx5X + αx5 + 1,

δ(x5) = α2X3 + (α2x2
5 + 1)X2 + (α2x5 + 1)X + αx5 + α2.

Here, the elements of the extension field E are represented as univariate polynomials
of degree ≤ 3 in F[X].

In order to compute the public key P , we first lift the affine map T (x1, . . . , x5)

to a univariate polynomial T̃ (X) over the extension field E, obtaining

T̃ (X) = (αx2 + α2x3 + αx4 + x5 + 1)X4

+ (αx2 + α2x3 + x4 + αx5)X
3 + (αx1 + αx2 + x3)X

2

+ (x1 + x2 + x3 + x4 + αx5 + 1)X + x1 + αx2 + αx3 + α2x5 + α.

We substitute T̃ into the HFE central map to obtain B(X) = F(T̃ (X)), getting

B(X) = (α2x1x3 + αx1x4 + x1x5 + α2x1 + α2x2
2 + αx2x3 + αx2

3 + x3x4 + αx3x5

+ α2x2
4 + αx4x5 + α2x5 + α)X3

+ (x2
1 + x1x2 + αx1x3 + αx1x4 + x1x5 + αx1 + α2x2

2 + α2x2x3 + x2x4

+ α2x2x5 + α2x2 + α2x2
3 + α2x3x4 + αx3x5 + αx3 + x2

4 + x4 + x2
5 + α2)X2
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+ (αx2
1 + αx1x2 + α2x1x4 + αx1x5 + α2x1 + αx2

2 + x2x4 + αx2x5 + α2x2
3

+ αx3x4 + x3 + αx2
4 + x4x5 + αx4 + x2

5)X

+ x1x2 + α2x1x3 + αx1x4 + x1x5 + αx2
2 + α2x2x3 + α2x2x4 + αx2x5

+ αx2 + α2x3x4 + α2x3x5 + α2x3 + x2
4 + x4x5 + α2x2

5 + α2x5 + α.

Finally, we move B(X) down to the vector space F
4 and apply the affine transfor-

mation S to obtain the public key P = (p(1), p(2), p(3)) as

p(1) = α2x2
1 + x1x3 + α2x1x4 + αx1x5 + x2

2 + αx2x3 + αx2x4 + αx2 + α2x2
3

+ x3x4 + α2x3x5 + x3 + x2
4 + x4x5 + α2x4 + αx2

5 + α2x5,

p(2) = αx2
1 + x1x3 + α2x1 + x2

2 + x2x3 + x2x5 + α2x2 + α2x2
3 + α2x3x4

+ x3x5 + α2x4x5 + αx4 + x5 + α,

p(3) = x2
1 + αx1x2 + αx1x3 + α2x1 + α2x2x3 + x2x5 + α2x2 + αx2

3 + αx3

+ α2x2
4 + x4x5 + x4 + α2x5 + α.

We want to generate a signature for the hash value w = (0, 0, α2) ∈ F
3. A pre-

image of w under the affine map S is given by

x = (α2, 0, 0, α) ∈ F
4.

Next, we lift x to the extension field E, obtaining

X̂ = αX3 + α2.

In order to invert the central map, we choose the value of the vinegar variable x5
randomly, e.g. x5 = α.

We substitute x5 = α into the coefficients γi and δ of the central map, obtaining

γ16 = α2X3 +X + α2,

γ4 = αX3 + α,

γ1 = X3 + α2X + α,

δ = α2X3 + α2X2,

and try to solve the equation Fα(Y ) = X̂ using Berlekamp’s algorithm.
Since we do not find a solution, we have to choose another value for x5 and try

again.
We choose x5 = 0 and evaluate the coefficients γi and δ to
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γ16 = α2X3 + α2X2 + αX,

γ4 = α2X3 + α2X2 +X,

γ1 = α2X3 + 1,

δ = α2X3 +X2 +X + α2.

Solving the equation F0(Y ) = X̂ yields

Y = αX3 +X2 + αX.

Moving Y down to the vector space F
4, appending the vinegar variable x5 = 0 and

inverting the affine map T yields the signature

z = (α, α2, α2, 1, 0) ∈ F
5.

To check the authenticity of the signature z = (α, α2, α2, 1, 0), we just evaluate the
public key P at z. We get

w = P(z) = (0, 0, α2).

Since the result is equal to the hash value of the message, we accept the signature.

4.4.4 Security of HFEv-

Similar to the case of the standard HFE cryptosystem, the most important attacks
against the HFEv- signature scheme are

• direct attacks and
• rank attacks of the Kipnis–Shamir type [8].

4.4.4.1 Direct Attacks

Similar to the case of HFE, direct attacks against HFEv- are more efficient than
against random system. The reason for this is again the lower degree of regularity,
which, in the case of HFEv-, is upper bounded by

dreg(HFEv-) =
{

(q−1)(r+a+v−1)
2 + 2 for q even and r + a odd

(q−1)(r+a+v)
2 + 2 otherwise,

(4.5)

where r = �logq(D−1)�+1. A derivation of this formula can be found in Sect. 8.6.
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4.4.4.2 The Kipnis–Shamir Attack on HFEv-

In this section we use the same notation as in Sect. 4.2.2. The Kipnis–Shamir attack
against HFEv- works mainly the same as the attack against HFE. We only have two
important differences:

• due to the use of the vinegar variables, the matrices F�i (i = 0, . . . , n − 1) are
no longer n × n, but (n + v) × (n + v) matrices. In the matrix F�i , the top left
n× n submatrix corresponds to the matrix F�i of the HFE case, the bottom right
v × v contains the coefficients of the quadratic map γ and the remaining parts
correspond to the linear maps βi .

• due to the use of the minus modification, the quadratic terms are no longer
restricted to the top left r × r corner. Instead of this, we have a copies of this
r × r matrix which are moved to the bottom right direction.

Therefore, the matrix F�0 corresponding to the central map F of HFEv- has the
form shown in Fig. 4.2. The rank of the matrix F�0 is given by

Rank(F�0) = r + a + v.

The complexity of the Kipnis–Shamir attack (using Minors modelling) is

r

r + a

n

n + v

r r + a n n + v

Fig. 4.2 Structure of the matrix F�0 for HFEv-
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ComplexityKSattack =
(

n

r + a + v

)ω

with 2 < ω ≤ 3 being the linear algebra constant.

4.4.5 The Gui Signature Scheme

When choosing parameters for HFEv-, one has to find a balance between security
and efficiency of the scheme

• Security: the HFEv- central map should contain not too few quadratic terms; that
is, r = �logq(D − 1)� + 1 should not be too small.

• Efficiency: the inversion of the central map should be reasonably fast; that is, the
degree D of the univariate polynomial FV must not be too large.

To find a balance between security and efficiency, the HFEv- signature scheme is
therefore mainly used over the field GF(2).

However, this brings up another problem: To reach a security of k bits against
collision attacks, we need a hash value of length at least 2k bit. This means that the
number of equations n− a of a plain HFEv- scheme must be at least

n− a ≥ 2k

log2(q)
.

For q = 2, this would lead to a very high number of equations in the system and
therefore to a very large public key.

In order to deal with this problem, Petzoldt et al. introduced in [11] a specially
designed signature generation process for HFEv-. Their Gui scheme generates 


HFEv- signatures for different hash values of the message d, and combines them to
a single Gui signature σ of length |σ | = (n − a) + 
(a + v) bit. Analogously, the
signature verification algorithm comprises 
 evaluations of the public key P .

The Gui signature scheme can be described as follows: Just as in the case of
the HFEv- signature scheme, we have a finite field F of q elements and a degree n

extension field E of F. We have an isomorphism φ : Fn → E between the vector
space F

n and the extension field E. As in the case of HFEv- we use two integers
a and v denoting the number of minus equations and vinegar variables. The only
difference to HFEv- is the introduction of a new parameter 
 ∈ N (repetition factor).

Key Generation The key generation process of Gui works exactly as the key
generation process of HFEv-. The only difference is that we choose an additional
parameter 
 (repetition factor), which is appended both at the private and public key.
Therefore, we get

Public Key HFEv- public key P , repetition factor 
.
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message d H ⊕
HFEv-

split zi

into (Si, Xi)
σ = (S�, X�, . . . , X1)

Di zi

Fig. 4.3 Signature generation process of Gui

Private Key HFEv- private key (S,F , T ), repetition factor 
.

Signature Generation To generate a Gui signature for a document d ∈ {0, 1}�, the
signer uses a hash function H : {0, 1}� → F

n−a to compute 
 different hash values
D1, . . . , D
 ∈ F

n−a of the document d. He then sets S0 = 0 ∈ F
n−a and performs

for i = 1, . . . , 
 the following two steps

1. Generate an HFEv- signature σi ∈ F
n+v for the hash value (Di ⊕ Si−1) ∈ F

n−a .
2. Divide σi into two parts, i.e. σi = (Si, Xi) with Si ∈ F

n−a .

The final Gui signature is given by

σ = (S
||X
|| . . . ||X1) ∈ F
(n−a)+
(a+v).

The process of generating a Gui signature is illustrated by Algorithm 4.1 and
Fig. 4.3.

Signature Verification To check the authenticity of a signature σ ∈ F
(n−a)+
(a+v),

we parse σ into S
,X
, . . . , X1 and compute D1, . . . , D
 as shown above. For i =

 − 1 to 0 we compute recursively Si = P(Si+1||Xi+1) − Di+1. The signature is
accepted, if and only if S0 = 0 ∈ F

n−a holds (see Algorithm 4.2).

Algorithm 4.1 Signature generation process of Gui
Input: Gui private key (S, F , T ) message d ∈ {0, 1}, repetition factor 


Output: signature σ ∈ F
(n−a)+
(a+v)

1: D1 = H(d)

2: for i = 2 to 
 do
3: Di = H(Di−1)

4: end for
5: S0 ← 0 ∈ F

n−a

6: for i = 1 to 
 do
7: (Si , Xi)← HFEv−−1(Di + Si−1)

8: end for
9: σ ← (S
|X
|| . . . ||X1)

10: return σ
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Algorithm 4.2 Signature verification process of Gui

Input: : Gui public key P , message d, repetition factor 
, signature σ ∈ F
(n−a)+
·(a+v)

Output: :TRUE or FALSE
1: (S
,X
, . . . , X1)← σ

2: D1 ← H(d)

3: for i = 2 to 
 do
4: Di ← H(Di−1)

5: end for
6: for i = 
− 1 to 0 do do
7: Si ← P(Si+1||Xi+1)−Di+1
8: end for
9: if S0 = 0 then

10: return TRUE
11: else
12: return FALSE
13: end if

4.4.6 Security

The security of Gui can be reduced to the security of the underlying HFEv- scheme.
Therefore, the parameters (n,D, a, v) of Gui have to be chosen in a way such that
direct and rank attacks against the underlying HFEv- scheme are infeasible.

For the choice of the repetition factor 
, we have to take the following theorem
into consideration:

Theorem 4.8 Let G : Fn → F
m. A signature scheme, which generates a signature

by combining k inversions of G (for k hash values of a message d) can be broken in

q
k

k+1 m steps.

Proof See [4], Theorem 3.2.1 	

In the case of Gui, this yields

Corollary 4.9 The repetition factor 
 of Gui has to be chosen in a way such that





+ 1
≥ λ

n− a
,

where λ is the required security level (in bit) of the scheme.

4.4.7 Key Sizes and Efficiency

The key sizes of Gui are exactly those of the HFEv- signature scheme (see
Sect. 4.4.1).
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Table 4.2 Parameters and key sizes of Gui

Security Parameters Public key Private key Signature
category (n,D, a, v, 
) size (kB) size (kB) size (bit)

I (184, 33, 16, 16, 3) 416.3 19.1 264

II (312, 129, 24, 20, 2) 1955.1 59.3 376

III (448, 513, 32, 28, 2) 5789.2 155.9 536

Since, during the signature generation process of Gui, we have to invert the
HFEv- polynomial k times, the signature generation is k times slower than that
of HFEv- and much slower than that of UOV and Rainbow (see Chap. 5). On the
other hand, Gui provides the shortest signatures of all existing signature schemes
(see Table 4.2).
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Chapter 5
Oil and Vinegar

Abstract This chapter deals with multivariate signature schemes following the
concept of Oil and Vinegar. After introducing the basic (balanced) Oil and Vinegar
(OV) signature scheme, we describe its cryptanalysis by the incvariant subspace
attack of Kipnis and Shamir and how this attack is prevented in the unbalanced
Oil and Vinegar scheme (UOV). We then introduce the signature scheme Rainbow,
which can be seen as multi-layer version of UOV and discuss its security and
efficiency. Finally, we present techniques to reduce the public key size of UOV and
Rainbow.

In this chapter we discuss multivariate signature schemes of the so called Oil and
Vinegar type. In contrast to the multivariate schemes presented in the previous
chapters, the schemes discussed here are SingleField schemes, which means that all
the computations are performed over a relatively small finite field, enabling efficient
implementations of the schemes. Furthermore, the public key of all the schemes
discussed in this chapter contains more variables than equations, which restricts the
schemes to being used as signature schemes.1

The basic idea of Oil and Vinegar was inspired by Patarin’s Linearization
Equations attack against the Matsumoto–Imai cryptosystem (see Sect. 3.2). This was
the first time in the history of cryptography that an attack method was transformed
into a cryptographic scheme. After Patarin’s first attempt [11] called Balanced Oil
and Vinegar (OV) was defeated by a linear algebra attack of Kipnis and Shamir [10],
the Unbalanced Oil and Vinegar scheme (UOV) was proposed [9].

Later, in order to reduce key sizes and increase the efficiency of the scheme,
Ding and Schmidt [5] proposed the Rainbow signature scheme, which can be seen
as multi-layer version of UOV. Recently, Petzoldt proposed a technique to generate
structured UOV and Rainbow public keys which helps to reduce the key sizes of
these schemes significantly [13, 14]. Another attempt in this direction is the LUOV
signature scheme of Beullens et al. [2]. An algorithm speeding up the key generation
of Rainbow significantly was proposed by Petzoldt in [12].

1An encryption scheme of the SingleField type is presented in Chap. 7.
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This chapter is organized as follows: In the first section of this chapter (Sect. 5.1),
we present the basic Oil and Vinegar signature scheme as proposed by Patarin and
show its workflow using a toy example. In Sect. 5.2 we discuss the attack of Kipnis
and Shamir against the balanced Oil and Vinegar scheme and how this attack is
prevented by the unbalanced Oil and Vinegar (UOV) signature scheme. Section 5.3
considers the security of this scheme and proposes concrete parameter sets. Section
5.4 presents the Rainbow signature scheme both in theory and using a toy example.
In Sect. 5.5 we discuss the security of Rainbow, describe the known attacks against
the scheme and derive from this practical parameter sets. Section 5.6, presents
techniques to reduce the public key size of UOV and Rainbow. Finally, in the last
section of this chapter (Sect. 5.7), we describe a newly developed technique to speed
up the key generation process of Rainbow.

5.1 The Oil and Vinegar Signature Scheme

In this section we present the basic Oil and Vinegar signature scheme as proposed
by Patarin in [11].

Let F = Fq be a finite field with q elements and o, v be integers. In the original
paper of Patarin o was chosen to be equal to v (balanced Oil and Vinegar), but we
do not require this here. The number of equations in the scheme is equal to o, the
number of variables is given by n = o + v. Furthermore, we define the index sets
V = {1, . . . , v} and O = {v + 1, . . . , n}. We denote the variables xi (i ∈ V ) as
vinegar variables, the variables xv+1, . . . , xn as Oil variables.

Key Generation In order to create a key pair for the Oil and Vinegar signature
scheme, Alice chooses an affine map T : F

n → F
n with randomly chosen

coefficients and an OV central map F = (f (1), . . . , f (o)) : F
n → F

o. The
polynomials f (1), . . . , f (o) are of the form

f (i) =
∑

j,k∈V
α

(i)
j,kxj xk +

∑
j∈V,k∈O

β
(i)
j,kxj xk +

∑
j∈V∪O

γ
(i)
j xj + δ(i) (i = 1, . . . , o)

with coefficients α
(i)
j,k , β

(i)
j,k , γ

(i)
j and δ(i) randomly chosen from the field F. These

polynomials are denoted as Oil and Vinegar polynomials. The name is derived from
the fact that, in the polynomials f (1), . . . , f (o), the variables x1, . . . , xn are not fully
mixed, just like oil and vinegar in a salad dressing.

Private Key The private key of the Oil and Vinegar signature scheme consists of
the two maps F : Fn → F

o and T : Fn → F
n.

Public Key The public key P of the Oil and Vinegar signature scheme is the
composed map P = F ◦ T and consists of o quadratic polynomials in n variables.
Note that, in contrast to the standard construction of multivariate cryptography (see
Chap. 2), we do not use a second affine map S in the construction of the public key of
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the Oil and Vinegar scheme. The reason for this is, that any linear combination of the
Oil and Vinegar polynomials f (1), . . . , f (o) is again an Oil and Vinegar polynomial
of the same structure. Therefore, the use of S does not increase the security of the
scheme and we can omit it.

5.1.1 Properties of the Central Map

As already explained in Chap. 2, the homogeneous quadratic part of the polynomials
f (1), . . . , f (o) can be written as quadratic forms, i.e. f̂ (i)(x) = xT · F (i) · x (i =
1, . . . , o). Here, f̂ (i) denotes the homogeneous quadratic part of the polynomial
f (i). Due to the special structure of the Oil and Vinegar polynomials f (i), the
matrices F (i) ∈ F

n×n have the form

F (i) =
(

�v×v �v×o

�o×v 0o×o

)
. (5.1)

A key pair of the Oil and Vinegar signature scheme can be described as follows.

Inverting the Central Map The special structure of the Oil and Vinegar polyno-
mials enables us to invert the central map F efficiently. Remember that F is an
underdetermined map with o equations in o + v variables. Therefore, even after
fixing v of the variables, the resulting determined system will be solvable with high
probability. Due to the special structure of the polynomials f (i) we can, by fixing
the vinegar variables x1, . . . , xv , transform the quadratic map F into a system of
o linear equations in the o Oil variables xv+1, . . . , xn. This system can easily be
solved by Gaussian elimination.

Note that this process to invert the central map F is very similar to the second step
of the Linearization Equations attack (see Sect. 3.2), where the given ciphertext is
substituted into the linearization equations to obtain a linear system in the plaintext
variables.

With the knowledge of how to invert the central map, we can proceed in the
description of the scheme.

Signature Generation To generate a signature z ∈ F
n for a document d, one uses

a hash function H : {0, 1} → F
o to compute the hash value w = H(d) ∈ F

o and
performs the following 2 steps.

1. Find a pre-image y ∈ F
n of w under the central map F .

• Choose random values for the vinegar variables y1, . . . , yv and substitute
them into the polynomials f (1), . . . , f (o).
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• Solve the resulting linear system of o equations in the o Oil variables
yv+1, . . . , yn by Gaussian elimination. If the system does not have a solution,
choose other values for the vinegar variables x1, . . . , xv and try again.2

2. Compute the signature z ∈ F
n by z = T −1(y).

Signature Verification To check, if z ∈ F
n is indeed a valid signature for the

document d, one uses the hash function H to compute w = H(d) ∈ F
o and

computes w′ = P(z) ∈ F
o. If w′ = w holds, the signature z is accepted, otherwise

rejected.

5.1.2 Key Sizes and Efficiency

The size of the UOV public key is

sizepk UOV = o
(n+ 1)(n+ 2)

2

field elements, the size of the private key

sizesk UOV = n(n+ 1)︸ ︷︷ ︸
map T

+ o

(
v(v + 1)

2
+ ov + n+ 1

)
︸ ︷︷ ︸

map F

field elements. In contrast to the HFEv- scheme (see Sect. 4.4), the signature
generation process of UOV only requires the solution of a linear system, which can
be efficiently done by Gaussian elimination. Therefore, the UOV signature scheme
can be implemented much easier and much more efficient than HFEv-.

5.1.3 Toy Example

In the following we present the general workflow of the Oil and Vinegar signature
scheme using a toy example. We choose F = GF(4) as the base field and (o, v) = 3,
leading to a public key of 3 quadratic equations in 6 variables.

The private key of our scheme consists of the affine map T : F6 → F
6,

2The probability that the linear system of o equations in o variables does not have a solution is
about 1/q, where q is the size of the underlying field. Therefore, for reasonably large q (e.g.
q ∈ {31, 256}), we usually find a solution at the first try.
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T (x1, . . . , x6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α α α 0 1 α2

α2 1 1 α 1 α

α2 0 0 α α2 α

α α 0 α α2 α

1 0 1 α2 0 0
α2 α 1 α2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
α2

α2

α

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the OV central map F : F6 → F
3 given by the polynomials

f (1) = x2
1 + x1x2 + α2x1x3 + αx1x4 + x1x5 + α2x1x6 + x2

2 + x2x3 + αx2x4

+ x2x6 + x2 + α2x3x4 + αx3x6 + x3 + α2x4 + α2x5 + α2,

f (2) = x2
1 + x1x3 + αx1x4 + x1x5 + αx1x6 + x1 + α2x2

2 + α2x2x3 + x2x4

+ x2x5 + αx2x6 + αx2
3 + αx3x4 + x3x6 + x3 + α2x4 + αx5 + αx6 + α2,

f (3) = αx2
1 + α2x1x2 + α2x1x4 + αx1x5 + αx1x6 + αx1 + α2x2x5

+ αx2x6 + αx2 + x2
3 + αx3x5 + α2x3 + x4 + x5 + α2x6 + α2

We compute the public key P = (p(1), p(2), p(3)) : F6 → F
3 by P = F ◦ T ,

obtaining

p(1) = x2
1 + αx1x2 + αx1x3 + αx1x4 + αx1x5 + αx1x6 + x1 + αx2

2

+ x2x4 + αx2x5 + αx2x6 + αx2 + αx2
3 + x3x4 + αx3x5

+ αx3x6 + αx4x5 + αx4 + αx2
5 + α2x5 + x2

6 + x6 + α,

p(2) = x2
1 + αx1x4 + αx1x5 + αx1x6 + αx1 + x2

2 + α2x2x3 + x2x5

+ x2x6 + αx2
3 + α2x3x4 + x3 + x2

4 + α2x4x5 + α2x4 + αx2
5

+ x5x6 + αx5 + αx2
6 + 1,

p(3) = α2x2
1 + αx1x2 + x1x3 + x1x4 + α2x1x5 + α2x1 + x2x3 + αx2x4

+ x2x5 + αx2x6 + x2
3 + αx3x4 + α2x3x6 + αx3 + α2x4x5

+ α2x4x6 + x4 + x2
5 + x5x6 + α2x5 + x6 + 1.

In order to generate a OV signature for the message w = (1, α, α), we first
need to compute y = F−1(w). To do this, we choose random values for the
vinegar variables x1, x2, x3, e.g. (x1, x2, x3) = (α, 1, 1) and substitute them into
the polynomials f (1), f (2) and f (3). By doing so, we obtain a linear system in the
Oil variables x4, x5 and x6 of the form
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f̄ (1) = x4 + x5 + αx6 = α

f̄ (2) = α2x4 + x5 + αx6 = 1

f̄ (3) = α2x5 + αx6 = α.

This system has the solution (x4, x5, x6) = (α, 1, α2). Attaching the vinegar
variables yields

y = F−1(w) = (α, 1, 1, α, 1, α2).

Finally, we compute

z = T −1(y) = (0, α, 0, 1, α2, 1)

to obtain a signature z ∈ F
6 for the message w.

In order to check if z is indeed a valid signature for the message w, we compute

w′ = P(z) = (1, α, α).

Since w′ = w holds, the signature is accepted.

5.2 The Kipnis–Shamir Attack on Balanced Oil and Vinegar
and UOV

In [10], Kipnis and Shamir proposed a powerful attack against the balanced Oil
and Vinegar signature scheme (n = 2v), which finds an equivalent private key in
polynomial time. This key can then be used to generate signatures for arbitrary
messages. To simplify our description, we assume that the components of the UOV
central map F are homogeneous quadratic polynomials and that the transformation
T is linear. Note that, in this case, the UOV public key P = F ◦ T will be a
homogeneous quadratic map, too.

Let f (x) be a central polynomial. Using the above simplification, we can write
f (x) as a quadratic form f (x) = xT · F · x with an n× n matrix F of the form

F =
(

F1 F2

F3 0v×v

)
(5.2)

with all F1, F2, F3 and 0v×v being v × v matrices with entries in F.
The matrix P representing the quadratic form of the corresponding public

polynomial p(x) is given as

P = T T · F · T ,
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where T is the matrix representing the linear transformation T .
For the description of the attack we need the following definition.

Definition 5.1 We define the Oil subspace of Fn as

O = {x = (x1, . . . , xn)
T ∈ F

n : x1 = · · · = xv = 0}.

The Vinegar subspace is the set

V = {x = (x1, . . . , xn)
T ∈ F

n : xv+1 = · · · = xn = 0}.

Note that we have n = 2v.

Then we have

Lemma 5.2

1. For any u1, u2 ∈ O we have

uT
1 · F · u2 = 0.

2. For any v1, v2 ∈ T −1(O) we have

vT
1 · P · v2 = 0.

Proof

1. Since u1, u2 ∈ O, we can write u1 = (0, u′1)T and u2 = (0, u′2)T . Therefore we
get

uT
1 · F · u2 = (0, u′1) ·

(
F1 F2

F3 0v

)
·
(

0
u′2

)

= (0, u′1) ·
(

F2 · u′2
0

)
= 0.

2. Let v′1, v′2 ∈ O such that v1 = T −1(v′1) and v2 = T −1(v′2). Thus we get

vT
1 · P · v2 = (T −1 · v′1)T · P · (T −1 · v′2)

= v′T1 · (T T )−1 · T T · F · T · T −1 · v2

= v′T1 · F · v′2 = 0.

The last “=” holds because of 1. 	
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The goal of the attack of Kipnis and Shamir is to find the pre-image of the Oil
subspace under the map T .

Let E : Fn → F
n be a linear transformation of the form (5.2). Then we have

Lemma 5.3

1. E(O) ⊂ V .
2. If E is invertible, we have E(O) = V and E−1(V) = O.

Proof

1. Let o = (0, o′) ∈ O. Then we have

(
E1 E2

E3 0v×v

)
·
(

0
o′
)
=
(

E2 · o′
0

)
∈ V .

2. If E is invertible, the image space of E(O) has dimension dim(O) = v, and
therefore we have E(O) = V and E−1(V) = O. 	


For the following we denote the matrix associated with the i-th component of the
central map by F (i). Note that F (i) is of the form of (5.2). Analogously, we set P (i)

to be the matrix associated to the i-th component of the public key. Note that we
have P (i) = T T · F (i) · T for every i ∈ {1, . . . , o}.

Let H1 and H2 be linear combinations of the matrices F (i). Note that H1 and H2
are of the form of (5.2). In addition to this assume that the matrix H1 is invertible.
We obtain

Corollary 5.4 The oil subspace O is a common invariant subspace of all matrices
H = H−1

1 ·H2.

Proof This follows directly from Lemma 5.3. 	

Let W1 and W2 be linear combinations of the matrices P (i) (i = 1, . . . , o) and

assume that W1 is invertible. Note that W1 and W2 can be written as

W1 = T T · F̂1 · T and W2 = T T · F̂2 · T

for some matrices F̂1 and F̂2 of the form (5.2). We find

Theorem 5.5 The space T −1(O) is a common invariant subspace of all the
matrices W = W−1

1 ·W2.

Proof

W−1
1 ·W2(T −1(O)) = (T T · F̂1 · T )−1 · T T · F̂2 · T · T −1(O)

= T −1 · F̂−1
1 · (T T )−1 · T T · F̂2 · T · T −1(O)

= T −1 · F̂−1
1 · F̂2(O)
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= T −1(O).

Here, the last “=” holds due to the fact that O is an invariant subspace of F̂−1
1 · F̂2

(Corollary 5.4). 	

The problem of finding this subspace can be solved by standard linear algebra

techniques. After having found T −1(O), we know the relevant part of the trans-
formation T , which then can be used to compute an equivalent private key (F̃ , T̃ )

which again can be used to generate signatures for arbitrary messages.
We present now two probabilistic polynomial time algorithms for finding the

space T −1(O) (one for fields of odd characteristic the other for even characteristic).
The algorithms take a random linear combination W2 of the matrices P (i) associated
to the public key polynomials and multiply it by an invertible matrix W1 =∑o

i=1 λiP
(i) to obtain a matrix W of the form W = W−1

1 ·W2.

The algorithms then compute the so called minimal invariant subspaces (an
invariant subspace which contains no non-trivial invariant subspaces) of this
matrix. These subspaces correspond to the irreducible factors of the characteristic
polynomial of W , and can be found in probabilistic polynomial time using standard
linear algebra techniques. Each minimal invariant subspace of W may or may not
be a subspace of T −1(O).

However, by Lemma 5.2 (2.), we can distinguish between “correct” and “false”
subspaces. We continue this process until having found o linear independent basis
vectors of T −1(O).

5.2.1 The Case of q Odd

In the case of an underlying field of odd characteristic we can write the homoge-
neous quadratic part of the public polynomials p(1)(x), . . . , p(o)(x) as quadratic
forms

xT · Q̄(1) · x, . . . , xT · Q̄(o) · x

with symmetric matrices Q̄(i) (i = 1, . . . , o) (see Sect. 2.1). Hereby, the entries q
(i)
jk

of the matrix Q̄(i) are given as

q
(i)
jk =
{

MonomialCoefficient(p(i), x2
j ) j = k,

MonomialCoefficient(p(i), xj xk)/2 j �= k.

We define Ω = span(Q̄(1), . . . , Q̄(o)). Let W1 and W2 be elements of Ω (W1 must
be invertible) and set W = W−1

1 · W2. As Theorem 5.5 states, the desired space
T −1(O) will be an invariant subspace of W .
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In the following, we compute the minimal invariant subspaces of the matrix W

(i.e. the invariant subspaces not containing a non-trivial invariant subspace). Each
of these minimal invariant subspaces might or might not be a subspace of T −1(O).
This can be checked using the test provided in part 2 of Lemma 5.2.

Algorithm 5.1 Attack on balanced oil and vinegar (q odd)

Input: OV public key P = (p(1), . . . , p(o))

Output: equivalent private key (F̃, T̃ )

1: Compute the symmetric matrices Q̄(i) associated to the components of the public key. Denote
the span of these matrices by Ω .

2: Set B = ∅.
3: repeat
4: Choose randomly two matrices W1 and W2 ∈ Ω and test if W1

is invertible. If so, set W = W−1
1 ·W2.

5: Compute the characteristic polynomial C(λ) of the matrix W and
check if it has only quadratic factors. If so, set C1(λ) = √C(λ)

and compute C1(W). Otherwise, go back to step 4.
6: Find a basis v1, . . . , vk of the image space of C1(W).
7: For i = 1, . . . , k, use Lemma 5.2 (2.) to check whether the vector vi

lies in the desired space T −1(O). If yes, add vi to B.
8: until dim(B) = o.
9: Extend B to a basis of the whole space F

n and insert the basis vectors into the columns of the
matrix T̃ −1.

10: Compute, for i = 1, . . . , o, F̃ (i) = (T̃ −1)T ◦ P (i) ◦ T̃ −1.
11: Set F̃ = (F̃ (1), F̃ (2), . . . , F̃ (o)).
12: return (F̃, T̃ )

In order to find the minimal invariant supspaces of the matrix W , we compute
the characteristic polynomial C(λ) of this matrix. If C(λ) contains only quadratic
factors, we set C(λ) = C1(λ)2.

The desired basis vectors of the invariant subspaces are now located in the image
space of C1(W). If C1(W) = {0}. We can not find such a basis vector and we have
to choose other linear combinations W1 and W2. Otherwise, let v1, . . . , vk be a basis
of the image space of C1(W). Check, for i = 1, . . . , k, if the vector vi is an element
T −1(O). If not, discard it. Denote the remaining basis vectors by v1, . . . , v
. If

 = o holds, we have found a basis of T −1(O) and we are ready.

Otherwise, we have to use other linear combinations W1 and W2 to find additional
vectors v
+1, . . . , vo to extend v1, . . . , v
 to a basis of T −1(O). In the last step of
the attack, we extend the basis v1, . . . , vo to a basis of the whole space F

n. These
basis vectors build the columns of an equivalent matrix T̃ −1. Finally, we compute
the matrices F̃ (i) representing the components of the equivalent central map F̃ by

F̃ (i) = (T̃ −1)T · P (i) · T̃ −1 (i = 1, . . . , o).

The map F̃ and the matrix T̃ can now be used to generate signatures for arbitrary
messages. Algorithm 5.1 shows the single steps of the attack in a compact form.
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5.2.2 Toy Example

In our toy example we choose q = 7 and o = v = 3. The public key of our balanced
OV instance has the form P = (p(1), p(2), p(3)) with

p(1)(x1, . . . , x6) = x1x2 + 6x1x4 + x1x5 + 2x1x6 + 5x2x3 + 3x2x4 + 3x2x5

+ 5x2x6 + 5x2
3 + 2x3x4 + 4x3x5 + 3x3x6 + 5x2

4 + 4x4x5

+ 4x4x6 + 4x2
5 + 2x2

6 ,

p(2)(x1, . . . , x6) = 5x2
1 + 3x1x2 + 3x1x3 + 5x1x4 + x1x6 + 6x2

2 + 5x2x3 + 5x2x4

+ 3x2x5 + x2x6 + 6x2
3 + 3x3x4 + 2x3x5 + x3x6 + 3x4x5

+ 3x4x6 + x5x6 + 3x2
6 ,

p(3)(x1, . . . , x6) = 6x2
1 + 2x1x2 + 2x1x3 + 5x1x5 + 5x2

2 + 3x2x3 + 6x2x4 + 4x2x5

+ x2x6 + 6x2
3 + 2x3x4 + 4x2

4 + 3x4x5 + 4x4x6 + 2x2
5 + 3x2

6 .

Therefore, the symmetric matrices Q̄1, Q̄2, Q̄3 representing the public polynomials
are given by

Q̄(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 4 0 3 4 1
4 0 6 5 5 6
0 6 5 1 2 5
3 5 1 5 2 2
4 5 2 2 4 0
1 6 5 2 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Q̄(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5 5 5 6 0 3
5 6 6 6 5 4
5 6 6 5 1 4
6 6 5 0 5 5
0 5 1 5 0 4
3 4 4 5 4 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Q̄(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

6 1 1 0 6 0
1 5 5 3 2 4
1 5 6 1 0 0
0 3 1 4 5 5
6 2 0 5 2 0
0 4 0 5 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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We define the matrices W1 and W2 by

W1 = 4Q̄(1) + 3Q̄(2) + 4Q̄(3)

W2 = 3Q̄(1) + 4Q̄(2) + Q̄(3)

and obtain

W = W−1
1 ·W2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 6 5 5 1 0
6 0 3 6 6 2
3 0 2 4 4 0
3 6 5 3 5 3
3 0 3 0 6 0
4 3 6 6 4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial of the matrix W is given by

C(X) = X6 + 3X5 + 4X4 +X3 + 5X2 + 2 = (X3 + 5X2 + 4)2.

Therefore we get C1(X) = √C(X) = X3 + 5X2 + 4 and

C1(W) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 4 2 4 2 2
2 5 5 3 0 1
2 0 1 1 4 1
6 2 2 3 5 2
4 2 3 1 3 5
2 3 2 5 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The kernel of this matrix has dimension o = 3. A basis of the kernel is given by

v1 = (1, 0, 0, 4, 2, 0)T ,

v2 = (0, 1, 0, 0, 3, 2)T ,

v3 = (0, 0, 1, 1, 5, 6)T .

By using Lemma 5.2, we find that all the vectors v1, v2 and v3 lie in the desired
space T −1(O).

We extend this basis to a basis of GF(7)6 and obtain an equivalent linear
transformation T̃ −1 by



5.2 The Kipnis–Shamir Attack on Balanced Oil and Vinegar and UOV 101

T̃ −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 1 0 4
0 1 0 5 3 2
1 0 0 6 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we compute the equivalent central map F̃ by

F̃ (1) = (T̃ −1)T · P (1) · T̃ −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2 5 3 2
0 4 2 3 3 6
2 2 5 0 1 6
5 3 0 0 0 0
3 3 1 0 0 0
2 6 6 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

F̃ (2) = (T̃ −1)T · P (2) · T̃ −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 4 5 5 1 3
4 0 5 2 6 6
5 5 0 4 3 2
5 2 4 0 0 0
1 6 3 0 0 0
3 6 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

F̃ (3) = (T̃ −1)T · P (3) · T̃ −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 0 5 2 3 6
0 2 5 1 1 2
5 5 4 4 0 5
2 1 4 0 0 0
3 1 0 0 0 0
6 2 5 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that bottom right o× o submatrices of F̃ (1), F̃ (2) and F̃ (3) contain only zeros.
Therefore, we can use these matrices together with T̃ to generate valid signatures
for arbitrary messages.

5.2.3 The Case of q Even

For even characteristic we can not write the public polynomials as quadratic forms
xT ·P (i) ·x with symmetric matrices P (i). The reason for this is that, for a symmetric
matrix A = (aij ) over a field of even characteristic, always aij + aji = 0 holds,
which would correspond to a zero coefficient of xixj . We therefore define for each
public polynomial p(i)(x) the matrix P (i) = (pjk)

(i) to be the upper triangular n×n

matrix with
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p
(i)
jk =
{

MonomialCoefficient(p(i), xj xk) j ≤ k,

0 otherwise.

and set

Q̄(i) = P (i) + (P (i))T (i = 1, . . . , o).

Note that the Q̄(i)’s are symmetric matrices with zeros on the main diagonal.
As in the case of odd characteristic, we define two matrices W1 and W2 as random

linear combinations of the matrices Q̄(i) (i = 1, . . . , o). Hereby, we have to ensure
that the matrix W1 is invertible. We compute W = W−1

1 · W2 and C(λ) to be the
characteristic polynomial of the matrix W. As above, let C1(λ) to be the square root
of C(λ) (provided that C(λ) is a real square). However, unlike in the case of an odd
q, C1(W) will be zero in any case. We therefore have to modify the above algorithm.

We factor C1(λ) into irreducible factors and look for a distinctive linear factor
(λ − λ1) of multiplicativity 1. Such a factor should exist with reasonably high
probability. The eigenspace of the matrix W according to the eigenvalue λ1 has
dimension exactly two, and one of the eigenvectors must be in the space T −1(O).

If we denote the two basis vectors of the eigenspace by v1 and v2, we therefore
know that one of the q + 1 vectors v1 + kv2 (k ∈ F) or v2 must be in the desired
invariant space. Note that all other vectors in the eigenspace are multiples of these
vectors and therefore will span the same image space.

To check which of these q + 1 vectors is the correct one, we compute for each
vector the space spanned by the vector and its images under linear maps of the form
W−1

1 · W2. If this space has dimension > o, then it can not be the space T −1(O),
which means that we have chosen the wrong vector, so we discard it and try the next
one. This process is illustrated by Algorithm 5.2.

Note that the map F̃ delivered by Algorithm 5.2 is not really a UOV central map.
In fact, it might contain oil × oil terms of the form x2

i (i ∈ O). To cover this fact,
we have to adapt the inversion of the central map slightly.

After choosing random values for the vinegar variables and substituting them

into the components of the map F̃ , the system (now denoted as ˜̃F) looks like

˜̃
f (1) :

∑
i∈O

α
(1)
i x2

i +
∑
i∈O

β
(1)
i xi + γ (1) = 0

˜̃
f (2) :

∑
i∈O

α
(2)
i x2

i +
∑
i∈O

β
(2)
i xi + γ (2) = 0

...

˜̃
f (o) :

∑
i∈O

α
(o)
i x2

i +
∑
i∈O

β
(o)
i xi + γ (o) = 0
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Algorithm 5.2 Attack on balanced oil and vinegar (q even)

Input: OV public key P = (p(1), . . . , p(o))

Output: Equivalent private key (F̃ , T̃ )

1: Define the upper triangular matrices P (i) representing the homogeneous quadratic part of the
public key.

2: Set, for i = 1, . . . , o, Q̄(i) = P (i) + (P (i))T .
3: Define two matrices W1 and W2 as random linear combinations of the matrices Q̄(i). W1 must

be invertible.
4: Compute W = W−1

1 ·W2.
5: Compute the characteristic polynomial C(λ) of W . If it is a real square, set C1(λ) = √C(λ).
6: Factor C1(λ) and if it has a linear factor (λ − λ1) of multiplicativity 1, go to the next step.

Otherwise, choose other matrices W1 and W2.
7: Find a basis (v1, v2) of the eigenspace of the matrix C1(W) to the eigenvalue λ1. The set of

possible eigenvectors is

S = {v1 + kv2 : k ∈ F} ∪ {v2}.

8: for each s ∈ S do
9: Denote by Vs the linear space spanned by the eigenvector s. Set i = 0.

10: repeat
11: Choose new matrices W1,W2 and compute W = W−1

1 ·W2.
12: Compute the image of the space Vs under the action of W .
13: Compute a basis of Vs ∪W(Vs). Denote the new space

again by Vs .
14: until i = 2o− 1 or dim(Vs) > v.
15: end for
16: If, for some s ∈ S, dim(Vs) = o holds, go to the next step; otherwise, choose new matrices

W1 and W2 and try again.
17: Extend the basis of Vs to a basis of Fn to find an equivalent linear transformation T̃ −1.
18: Compute, for i = 1, . . . , o, the matrix F̃ (i) representing the i-th component of the equivalent

central map by

F̃ (i) = (T̃ −1)T · P (i) · T̃ −1.

Set F̃ = (F̃ (1), . . . , F̃ (o)).
19: return (F̃, T̃ )

To solve this system of equations, we interpret the coefficients α
(j)
i , β

(j)
i and γ (j)

(j = 1, . . . , o, i = v + 1, . . . , n) as well as the variables xi (which are defined over
the field Fq = F2e ) as degree e − 1 polynomials over GF(2), e.g.

xi = xi,0 + xi,1X + xi,2X
2 + · · · + xi,e−1X

e−1. (5.3)

We compute x2
i = xixi mod p as a product of polynomials and substitute the

polynomial representations of xi and x2
i into the components of ˜̃F . Here, p is the

irreducible polynomial used to generate the field F as an extension field of GF(2).

By doing so, we get a system of oe linear equations (one for each equation ˜̃f (i) and
every monomial Xj ) in the oe variables xi,j (i ∈ O, j = 0, . . . , e − 1), which can
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be solved by Gaussian elimination. By solving this system, we get the values of the
variables xv+1,0, xv+1,1, . . . , xv+1,e−1, xv+2,0, . . . , xn,e−1. In order to translate this
solution over GF(2) into a solution over F, we compute for every i = v + 1, . . . , n

xi = xi,0 + xi,1X + xi,2X
2 + · · · + xi,e−1X

e−1. (5.4)

The solution x of F(x) = w is given by x = (x1, . . . , xn). Algorithm 5.3 shows this
inversion process in algorithmic form.

Algorithm 5.3 Inversion of the map F̃
Input: set P = (p(1), . . . , p(o)) of polynomials ∈ F2e [x1, . . . , xn] of the form F̃ (i.e no oil × oil

terms of the form xixj (i �= j ))
Output: vector x = (x1, . . . , xn) with P(x) = 0
1: Choose random values in F for the vinegar variables x1, . . . , xv and substitute them into the

polynomials p(1), . . . , p(o).
2: Interpret all coefficients and variables of the resulting quadratic system as degree e − 1

polynomials over GF(2) as shown by (5.3).
3: Solve the resulting linear system of oe equations in oe variables over GF(2) by Gaussian

elimination.
4: Translate the solution over GF(2) into a solution (xv+1, . . . , xn) over F as shown by (5.4).
5: return x = (x1, . . . , xn).

5.2.4 Toy Example

For our toy example we choose q = 4 and o = v = 3. The irreducible polynomial
used to generate the extension field GF(4)=GF(22) is X2 +X + 1.

Let the public key of our balanced OV instance be given by P = (p(1), p(2), p(3))

with

p(1)(x1, . . . , x6) = α2x1x4 + x1x5 + α2x1x6 + x2
2 + α2x2x5 + x2x6 + α2x3x4

+ x3x6 + x2
4 + x4x5 + x4x6 + α2x2

5 + α2x5x6 + αx2
6 ,

p(2)(x1, . . . , x6) = αx1x2 + α2x1x5 + αx1x6 + α2x2x3 + αx2x4 + x2x5

+ α2x2x6 + α2x2
3 + x4x6 + α2x2

5 + α2x5x6,

p(3)(x1, . . . , x6) = x1x2 + x1x4 + x2
2 + x2x3 + αx2x5 + x2x6 + α2x2

3 + x3x4

+ x3x6 + x2
4 + x4x5 + αx4x6 + x2

5 + αx5x6 + x2
6 .
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5.2.4.1 Recovering an Equivalent Private Key

First we have to compute the symmetric matrices Q̄(1), . . . , Q̄(o) representing the
homogeneous quadratic part of the public key. For fields of even characteristic, these
matrices are given by

Q̄(i) = P (i) + (P (i))T ,

where P (i) is the upper triangular matrix containing the coefficients of the i-th
component of the public key. We get

Q̄(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 α2 1 α2

0 0 0 0 α2 1
0 0 0 α2 0 1
α2 0 α2 0 1 1
1 α2 0 1 0 α2

α2 1 1 1 α2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Q̄(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 α 0 0 α2 α

α 0 α2 α 1 α2

0 α2 0 0 0 0
0 α 0 0 0 1
α2 1 0 0 0 α2

α α2 0 1 α2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Q̄(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0
1 0 1 0 α 1
0 1 0 1 0 1
1 0 1 0 1 α

0 α 0 1 0 α

0 1 1 α α 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We get a matrix W = W−1
1 · W2 suitable for our purposes by choosing W1 =

Q̄(1) + Q̄(3), W2 = α2Q̄(2) + α2Q̄(3). We obtain

W = W−1
1 ·W2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α α2 0 α2 α2 0
0 1 α2 1 1 1
0 0 α2 1 α α

0 0 α 1 α2 1
0 α2 α α2 α2 α2

0 0 α2 1 α α

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial of the matrix W is

C(X) = X6 +X4 +X2 = X2 − (X + α)2(X + α2)2,

Its square root is

C1(X) = √C(X) = X3 +X2 +X.



106 5 Oil and Vinegar

The eigenvectors of the Matrix C1(W) for the eigenvalue 0 are

v1 = (0, 1, 0, 0, α, 0) and v2 = (0, 0, 1, 0, 0, 1).

We find that v2 is the eigenvector suitable for our purposes. A basis of the image
space of v2 under matrices of the form W−1

1 ·W2 is given by

b1 = v2 = (0, 0, 1, 0, 0, 1), b2 = (0, 1, 0, α, α2, 0), b3 = (1, 0, 0, 0, α2, 1).

By extending this basis to a basis of the whole space Fn, we get an equivalent linear
transformation

T̃ −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 α 0
0 1 0 0 α2 α2

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Using this matrix T̃ −1, we can compute the matrices F̃ (1), F̃ (2), F̃ (3) representing
the components of an equivalent central map by

F̃ (i) = (T̃ −1)T · P (i) · T̃ −1.

We get

F̃ (1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α 0 0 α 0 α

α2 α2 0 α2 α 1
1 1 1 1 1 α

α2 0 α2 α2 1 α2

1 α2 α 1 0 α2

α2 α2 α2 α2 α2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, F̃ (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
α2 α2 0 α2 α 1
1 0 0 1 0 1
0 0 0 α2 0 0
α2 α2 α 0 1 1
0 1 0 0 1 α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

F̃ (3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1
α 1 0 α α2 1
α 1 1 α 1 1
0 0 1 α2 α 0
α2 α2 α α 0 1
0 α2 1 0 1 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The polynomials of the central map are given by
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f̃ (1)(x1, . . . , x6) = αx2
1 + α2x1x2 + x1x3 + x1x4 + x1x5 + x1x6 + α2x2

2

+ x2x3 + α2x2x4 + x2x5 + αx2x6 + x2
3 + αx3x4

+ α2x3x5 + x3x6 + α2x2
4 + x2

6 ,

f̃ (2)(x1, . . . , x6) = α2x1x2 + x1x3 + α2x1x5 + α2x2
2 + α2x2x4 + x2x5

+ x3x4 + αx3x5 + x3x6 + α2x2
4 + x2

5 + α2x2
6 ,

f̃ (3)(x1, . . . , x6) = x2
1 + αx1x2 + αx1x3 + x1x4 + α2x1x5 + x1x6 + x2

2

+ x2x3 + αx2x4 + αx2x6 + x2
3 + α2x3x4 + α2x3x5 + α2x2

4 + αx2
6 .

Note that the polynomials f̃ (1), . . . , f̃ (3), contain, besides the terms usually appear-
ing in an OV central map, also terms of the form x2

i in the Oil variables.

5.2.4.2 Forging a Signature

We want to generate a signature for the message w = (1, 1, α) ∈ F
3.

We choose the vinegar variables (x1, x2, x3) = (1, α2, 1) and substitute them
into the polynomials f̃ (1), f̃ (2), f̃ (3). We get

˜̃
f (1)(x4, x5, x6) = α2x2

4 + x4 + x5 + x2
6 + x6 + α,

˜̃
f (2)(x4, x5, x6) = α2x2

4 + α2x4 + x2
5 + αx5 + α2x2

6 + x6 + α,

˜̃
f (3)(x4, x5, x6) = α2x2

4 + α2x4 + αx2
6 + α.

We interpret the variables x4, x5, x6 over GF(4) as degree 1 polynomials over GF(2),
i.e.

x4 = x4,1 + x4,2X,

x5 = x5,1 + x5,2X,

x6 = x6,1 + x6,2X.

and compute x2
i = (xi,1 + xi,2X)2 mod (X2 +X + 1). We get

x2
4 = x4,2X + x4,1 + x4,2,

x2
5 = x5,2X + x5,1 + x5,2,

x2
6 = x6,2X + x6,1 + x6,2.
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Here, we made use of the field equations x2
i,j = xi,j over GF(2). Furthermore, we

interpret all coefficients in the polynomials ˜̃f (i) as degree 1 polynomials over GF(2).
Therefore, we get

f̂ (1) = (x4,1 + x5,2 + 1)X + x5,1 + x6,2,

f̂ (2) = (x4,2 + x5,1 + x6,1 + 1)X + x4,2 + x5,1,

f̂ (3) = (x4,2 + x6,1 + 1)X + x4,2 + x6,2.

We consider the coefficients of X1 and X0 = 1 separately and therefore get a system
F̂ of linear equations over GF(2).

f̂ (1,1) = x5,1 + x6,2, (5.5)

f̂ (1,2) = x4,1 + x5,2 + 1, (5.6)

f̂ (2,1) = x4,2 + x5,1, (5.7)

f̂ (2,2) = x4,2 + x5,1 + x6,1 + 1, (5.8)

f̂ (3,1) = x4,2 + x6,2, (5.9)

f̂ (3,2) = x4,2 + x6,1 + 1. (5.10)

Until here, our computations only depended on the central map F̃ and the choice
of the vinegar variables and not on the message to be signed. So, if we want to forge
signatures for multiple messages, we can precompute the system (5.10) once and
have to perform only the remaining steps for each single message.

Now, we transform the message w = (1, 1, α) ∈ F
3 into a message ŵ =

(1, 0, 1, 0, 0, 1) ∈ GF(2)6 and solve the linear system F̂(ŷ) = ŵ. We get

ŷ = (1, 0, 1, 0, 0, 0),

and transform ŷ back into a vector y′ = (1, 1, 0) ∈ F
3.

We attach the vinegar variables, obtaining y = (1, α2, 1, 1, 1, 0) ∈ F
6 and finally

compute z = T −1(y) to get the signature

z = (0, 1, 1, α2, 0, 0) ∈ F
6.

Using the public key P , we can easily verify that z is a valid signature for the
message (1, 1, α).
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5.2.5 The Unbalanced Oil and Vinegar Signature Scheme
(UOV)

After the balanced Oil and Vinegar signature scheme had been broken by the OV
attack described above, Kipnis, Patarin and Goubin proposed in [9] a modified
scheme called Unbalanced Oil and Vinegar signature scheme (UOV).

The scheme works exactly as the balanced scheme, but chooses v > o. We now
consider the question how this choice affects the complexity of the above attack.

For v
>∼ o, the attack works essentially the same as described above, only the

spaces O and V do not have the same dimension any longer. We therefore have to
modify Lemma 5.3 as follows.

Let E : Fn → F
n be a linear transformation of the form

E =
(

E1 E2

E3 0o×o

)
, (5.11)

where E1 is a v × v matrix, E2 is a v × o matrix and E3 is an o × v matrix with
entries randomly chosen from F. Then we have

Lemma 5.6

1. E(O) is an o-dimensional proper subspace of V .
2. If E is invertible, E−1(V) is a v-dimensional subspace of Fn, in which O is a

proper subspace.

Proof Analogous to the proof of Lemma 5.3. 	

As in the attack on balanced Oil and Vinegar, we look for the space T −1(O),

which we will denote by Ō. To find this space, we will again use the matrices P (i)

corresponding to the components of the public key. Note again that we have

P (i) = T T · F (i) · T ,

where the matrices F (i) are of the form (5.11). We denote by Ω the span of the
matrices W−1

1 ·W2, where W1 (invertible) and W2 are random linear combinations
of the matrices Q̄(i) (i = 1, . . . , o). We are looking for a common invariant subspace
of the elements of Ω . The following lemma states that such a space exists with high
probability.

Lemma 5.7 Let J : Fn −→ F
n be a randomly chosen invertible F-linear map such

that

1. There exist two subspaces A, B in F
n such that the dimension of A is v, and the

dimension of B is o and B ⊂ A;
2. J (B) ⊂ A.
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Then the probability that J has a nontrivial invariant subspace in B is not less than
qo−v .

Proof We restrict to invariant subspaces of dimension 1. Therefore, a vector v ∈ F
n

lies in the invariant subspace, if J maps it to a multiple of itself. The probability that
a nonzero vector v ∈ B is mapped to a nonzero multiple of itself is q−1

qv−1 (since we
know that J (B) ⊂ A). To get the expected number of such vectors, we multiply by
the number of nonzero vectors in B to get (q−1)(qo−1)

qv−1 . Since, if a vector is mapped
to a multiple of itself, then the same is also true for all multiples of this vector,
the probability that there exists an invariant subspace of dimension 1 is roughly
qo−1
qv−1 ≈ qo−v. 	

Theorem 5.8 Let W1 and W2 be randomly chosen linear combinations of the
matrices P (i) (i = 1, . . . , o) and let W1 be invertible. Then the probability that
the matrix W−1

1 ·W2 has a nontrivial invariant subspace (which is also a subspace
of T −1(O)) is roughly qo−v .

Proof This follows directly from the above Lemma. 	

As for the balanced case we can, by computing the minimal invariant subspaces

of the matrices W−1
1 ·W2 and using Lemma 5.6 to check whether they are subspaces

of T −1, recover the essential parts of the UOV linear transformation T . From this,
we can then compute an equivalent UOV private key (F̃, T̃ ) which can be used to
sign messages.

The complexity of the whole process can be estimated by

complexityUOV attack(q, o, v) = qv−o−1o4. (5.12)

Equation (5.12) seems to indicate that a bigger v provides more security.
However, for larger values of v (v > 2o), the scheme can be attacked by direct

attacks more easily (see next section). When choosing v ≈ o2

2 , the complexity of a
direct attack against the scheme even becomes polynomial (see Sect. 8.7).

Another point we have to consider when choosing the parameters of UOV is
the efficiency of the scheme. The public key size of UOV increases quadratically
with the number of vinegar variables, while the signature size increases linearly.
Therefore, for large values of v, the key sizes are very big. A good compromise
between security and efficiency seems to be choosing v = 2o. In such a UOV
instance, the number of variables is three times as large as the number of equations.

A possibility to get an even more efficient signature scheme on the basis of UOV
is provided by the Rainbow signature scheme, which can be seen as a multi-layer
version of UOV (see Sect. 5.4).
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5.3 Other Attacks on UOV

Besides the UOV attack presented in the last section, there exist two additional,
important attacks against the UOV signature scheme. These are

• The direct attack and
• The UOV Reconciliation attack.

5.3.1 The Direct Attack

In a direct attack, the adversary considers the public equation P(z) = w as an
instance of the MQ Problem and tries to solve it using an algorithm like XL or a
Gröbner basis method such as F4 or F5 (see Chap. 8). In the case of UOV, we have
to consider that the UOV public key contains usually three times as many variables
as equations.

We therefore have to consider a technique which allows to solve a multivariate
quadratic system of m equations in νm variables in the same time as a determined
system of m − �ν� + 1 equations (see Sect. 8.7.5). In some cases one can get an
additional speed up by guessing some variables in the modified system (Hybrid
Approach). Though one has to run the algorithm more often (approximately
qk times when guessing k variables over a field with q elements), the overall
complexity of the attack might be smaller.

Experiments have shown that the multivariate quadratic systems given by UOV
public keys behave very much like random systems. In particular, the degree of
regularity of a system derived from UOV is the same as that of a random system of
the same size. It is therefore relatively easy to estimate the complexity of a direct
attack against the UOV signature scheme.

The UOV Reconciliation Attack

For the simplicity of our description, we restrict the maps T and F to be
homogeneous in this section. Note that, in this case, the public key will be a
homogeneous quadratic map, too. The attack can be extended to the general case
in a straightforward way.

We denote the n×n matrix representing the quadratic form of the i-th component
of the central map by F (i) and the matrix representing the linear transformation T
by T . With this notation, we can compute the i-th component of the public key by

P (i) = T T · F (i) · T . (5.13)
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5.3.1.1 Equivalent Keys

Let P be a UOV public key. The goal of the UOV Reconciliation attack is to find a
UOV private key (F , T ) with F ◦ T = P . Hereby, the attack looks for private keys
of a very special form.

Theorem 5.9 Let P be a UOV public key. Then, with overwhelming probability,
there exists a UOV private key (F̃ , T̃ ) with F̃ ◦ T̃ = P , such that T̃ has the form

T̃ =
(

1v×v T ′o×v

0v×o 1o×o

)
(5.14)

Note that T̃ −1 has the same form as T̃ .

In order to prove this theorem, we first need a lemma.

Lemma 5.10 Let F be the n× n matrix representing the quadratic form of a UOV
polynomial, i.e

F =
⎛
⎝F

(1)
v×v F

(2)
v×o

F
(3)
o×v 0o×o

⎞
⎠ ,

and Ω ∈ F
n×n be a matrix of the form

Ω =
⎛
⎝Ω

(1)
v×v 0v×o

Ω
(3)
o×v Ω

(4)
o×o

⎞
⎠ .

Then, F ·Ω has the form of a UOV central polynomial.

Proof We have

F ·Ω =
(

F (1) F (2)

F (3) 0

)
·
(

Ω(1) 0
Ω(3) Ω(4)

)

=
(

F (1) ·Ω(1) + F (2) ·Ω(3) F (2) ·Ω(4)

F (3) ·Ω(1) 0

)
,

which has the form of a UOV central polynomial. 	

Note that Ω−1 has the same form as Ω . Since F ◦Ω ◦Ω−1 ◦ T = P , we can see
that (F ◦Ω, Ω−1 ◦ T ) is another UOV private key for the public key P (a so called
equivalent key).

With this, we can now prove Theorem 5.9.
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Proof Since P is a valid UOV public key, we know that there exists a UOV private
key (F , T ) such that F ◦ T = P . In the following we show that there exists an
equivalent private key (F̃ , T̃ ) such that T̃ is of the form shown in the theorem. To

do this, we compute Ω in such a way that Ω · T̃ = T . Let Ω =
(

Ω̃(1) 0
Ω̃(3) Ω̃(4)

)
and

T =
(

T (1) T (2)

T (3) T (4)

)
. If T (1) is invertible,3 we get

• Ω̃(1) = T (1)

• Ω̃(3) = T (3) and
• Ω̃4 = T (4) − T (3) · (T (1))−1 · T (2).

The matrix T ′ is given as T ′ = (T (1))−1 · T (2). 	

The matrix T̃ can be written as a product of matrices Tv+1 · . . . · Tn with

Ti =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 t ′1i 0
. . .

...
...

...

0 1 0 t ′vi 0
0 . . . 0 1 0 0
...

...
. . .

0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(i = v + 1, . . . , n), (5.15)

i.e. the only non zero elements not on the main diagonal are the first v elements in
the i-th column. The matrices Ti contain the same non zero elements as the matrix
T ′ of (5.14). By inversion we get T̃ −1 = T −1

n · . . . · T −1
v+1. Note that each T −1

i has
the form (5.15) (∀ i = v + 1, . . . , n).

5.3.1.2 The Attack

The UOV-Reconciliation attack [6] is based on the following observation: Let
((F , T ),P) be a UOV key pair such that T has the form (5.14). We write T −1

as a product of matrices Tn · . . . · Tv+1 with matrices Tj having the form of (5.15).
Note that each of these matrices contains, besides the 1’s on the main diagonal, only
v non-zero elements. With this notation, (5.13) yields

3If T (1) is not invertible, we can switch rows and columns of T by renumbering the variables until
we get an invertible matrix.



114 5 Oil and Vinegar

F (k) = T T
v+1 · . . . ·

P
(k)
n−2︷ ︸︸ ︷

T T
n−1 · T T

n · P (k) · Tn︸ ︷︷ ︸
P

(k)
n−1

·Tn−1 . . . · Tv+1

︸ ︷︷ ︸
P

(k)
v

(k = 1, . . . , o) (5.16)

with matrices P
(k)
j of the form, which we claim to be

P
(k)
j =
(

�j×j �j×(n−j)

�(n−j)×j 0(n−j)×(n−j)

)
(j = v, . . . , n− 1, k = 1, . . . , o). (5.17)

The matrices P
(k)
v (k = 1, . . . , o) have the form of a UOV central map.

The goal of the attack is to compute, starting with P
(k)
n = P (k), for each (k =

1, . . . , o) a sequence of matrices P
(k)
j (j = n− 1, . . . , v) of the form (5.17). At the

end of this process, we will get matrices P
(k)
v (k = 1, . . . , o), which, together with

the matrix T −1 = Tn · . . . · Tv+1 can be used as an equivalent private key.
To do this, we have to take a closer look at the question, how we get from P

(k)
j+1

to P
(k)
j (j = n− 1, . . . , v). We have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� . . . � � . . . . . . �

.

.

.
.
.
.

.

.

.
.
.
.

� . . . � � . . . . . . �

� . . . � 0j,j . . . . . . 0j,n

.

.

.
.
.
.

.

.

. 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

� . . . � 0n,j 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P

(k)
j

= T T
j+1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 . . . a1,j−1 a1,j . . . . . . a1n

.

.

.
.
.
.

.

.

.
.
.
.

aj−1,1 . . . aj−1,j−1 aj−1,j . . . . . . aj−1,n

aj,1 . . . aj,j−1 aj,j . . . . . . aj,n

.

.

.
.
.
.

.

.

. 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

an1 . . . an,j−1 an,j 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P

(k)
j+1

·Tj+1.

(5.18)

Since the elements of P
(k)
j+1 are known, the elements of the matrix P

(k)
j are given

as quadratic functions in the unknown elements of the matrix Tj+1. Most of the

elements of the matrix P
(k)
j are unknown, but we know that the elements in the

bottom right corner must be zero. On the other hand the zero elements in the bottom
right (n − j) × (n − j) matrix of P

(k)
j do not help us (they are automatically zero

due to the design of Tj+1).
On the other hand, each of the zero elements in the j -th row/column yields one

quadratic equation in the v unknown elements of Tj+1. Since the equations delivered
by 0k,l and 0l,k are the same, (5.18) yields n− j quadratic equations. Altogether we
get o(n − j) quadratic equations in v variables (for k = 1, . . . , o). By solving this
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system, we can compute the elements of matrix Tj+1 and can use (5.18) to compute

P
(k)
j (k = 1, . . . , o).

By repeating this process we can, starting with the matrices P
(k)
n = P (k), find o

matrices P
(k)
v (k = 1, . . . o) which, together with the matrix T (−1) = Tn · . . . · Tv+1,

can be used as an alternative private key. An attacker can use this equivalent private
key to generate signatures in the same way as a legitimate user.

During the attack we have to solve systems of (n− j)o quadratic equations in v

variables (j = n − 1, . . . , v). The complexity of the attack is mainly given by the
complexity of solving the first system of o quadratic equations in v variables.

Algorithm 5.4 shows the UOV-Reconciliation attack in a compact form.

Algorithm 5.4 UOV-reconciliation attack

Input: matrices P
(k)
n (k = 1, . . . , o) representing the homogeneous quadratic parts of the public

polynomials
Output: private key (represented by matrices F (k) (k = 1, . . . , o) and a matrix T )
1: for j = n− 1 to v do
2: Define a matrix Tj+1 of the form (5.15).

3: Define for k = 1, . . . o matrices P
(k)
j of the form (5.17).

4: Compute for k = 1, . . . , o the matrix U(k) = T T
j+1 · P (k)

j+1 · Tj+1. The

equality of P
(k)
j and U(k) (see Eq. (5.18)) yields, for every

k = 1, . . . , o, n− j quadratic equations in the elements of Tj+1.
Altogether we get therefore a system of o(n− j) equations in v

variables.
5: Solve the quadratic system generated in the previous step by any

method such as XL or F4/F5 and put the solution into the
matrix Tj+1.

6: Compute, for k = 1, . . . , o, the matrices P
(k)
j by

P
(k)
j = T T

j+1 · P (k)
j+1 · Tj+1.

7: end for
8: MT ← Tn · . . . · Tv+1

9: F (k) ← P
(k)
v (k = 1, . . . , o)

10: return F (k) (k = 1, . . . , o), MT

5.3.2 Practical Parameters

Table 5.1 shows parameter recommendations for the UOV signature scheme for our
security categories I, II and III. The given parameters are chosen in a way that the
resulting schemes provide the claimed level of security against the direct and the
UOV Reconciliation attack, as well as the UOV Attack discussed in the previous
section.
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Table 5.1 Parameters and key sizes of UOV

Security Parameters Public key Private key Signature
category (F, v, o) size (kB) size (kB) size (bit)

I (GF(256), 96, 48) 496.2 441.0 1152

II (GF(256), 144, 72) 1663.1 1478.3 1728

III (GF(256),192, 96) 3982.6 3492.1 2304

5.4 The Rainbow Signature Scheme

The Rainbow signature scheme as proposed by Ding and Schmidt in [5] can be seen
as a multilayer version of UOV. By combining several UOV layers into one scheme,
it is possible to reduce key and signature sizes as well as to improve the performance
of the scheme. The Rainbow signature scheme can be described as follows.

Key Generation Let F be a finite field with q elements. Let v1, . . . , vu+1 be
integers such that 0 < v1 < v2 < . . . < vu < vu+1 = n and define the
sets of integers Vi = {1, . . . , vi} for i = 1, . . . , u. We set oi = vi+1 − vi and
Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). The number of elements in Vi is vi and we
have |Oi | = oi .

The central map F of the scheme consists of m = n − v1 polynomials
f (v1+1), . . . , f (n) ∈ F[x1, . . . , xn] of the form

f (k)(x) =
∑

i,j∈V
, i≤j

α
(k)
ij xixj +

∑
i∈O
, j∈V


β
(k)
ij xixj +

∑
i∈V
∪O


γ
(k)
i xi + η(k)

(k = v1 + 1, . . . , n), (5.19)

where 
 is the only integer such that k ∈ O
.
The central map F as defined above consists of u different levels of Oil and

Vinegar. In the 
-th level, the variables xi ∈ V
 are the vinegar variables and xj ∈ O


are the Oil variables. So, the polynomials of the 
-th level form a UOV scheme
with v
 vinegar variables and o
 Oil variables. For u = 1 we get exactly the UOV
signature scheme of Sect. 5.2.5.

The different levels of Oil and Vinegar in the map F are called Rainbow layers.
The special structure of the Rainbow central map F is illustrated by Fig. 5.1. Let

f̂ (i) be the homogeneous quadratic part of the i-th component of the central map
(i = v1 + 1, . . . , n). Then, f̂ (i) can be written as a quadratic form, i.e.

f̂ (i)(x) = xT · F (i) · x.

Figure 5.1 shows the structure of the matrices F (i) (i = 1, . . . , o). The
white parts of the matrices contain only zero values, while the gray parts can
contain arbitrary field elements. As one can see, the matrices F (v1+1), . . . , F (v2),
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First layer: F (v1+1), . . . , F (v2) Second layer: F (v2+1), . . . , F (v3)

(u − 1)-th layer: F (vu−1+1), . . . , F (vu) u-th layer: F (vu+1), . . . , F (n)

v1 v2 v3 . . .vu−1 vu n v1 v2 v3 . . .vu−1 vu n

v1

v2

v3
...

vu−1

vu

n

v1

v2

v3
...

vu−1

vu

n

...

v1 v2 v3 . . .vu−1 vu n v1 v2 v3 . . .vu−1 vu n

Fig. 5.1 Quadratic forms of the rainbow central map

corresponding to the central polynomials of the first Rainbow layer, contain non
zero elements only in a small space in the top left corner, while, for higher layers,
this space increases. Note that, for all i = v1 + 1, . . . n, the bottom right ou × ou

submatrices of F (i) contains zero values. Furthermore, note that all of the matrices
F (i) (i = v1 + 1, . . . , n) have the form of Oil and Vinegar matrices (see (5.1)).

The map F(x) = (f (v1+1)(x), . . . , f (n)(x)) can be inverted as follows. First, we
choose the values of the variables x1, . . . , xv1 at random and substitute them into the
polynomials f (v1+1), . . . , f (n). By doing so, we get a system of o1 linear equations
(given by the polynomials f (k) (k ∈ O1)) in the o1 unknowns xv1+1, . . . , xv2 , which
can be solved by e.g. Gaussian elimination. The so computed values of the variables
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xi (i ∈ O1) are substituted into the polynomials f (k) (k > v2) and a system of
o2 linear equations (given by the polynomials f (k) (k ∈ O2)) in the o2 unknowns
xi (i ∈ O2) is obtained. By repeating this process we can find the values of all the
variables xi (i = 1, . . . , n).4

To hide the structure of the central map F in the public key, one composes it with
two affine invertible maps S : Fm → F

m and T : Fn → F
n.

The public key of the scheme is therefore given as P = S ◦ F ◦ T . The private key
consists of the three maps S , F and T and therefore allows to invert the public key.

The process of signature generation/verification can be described as follows:

Signature Generation In order to sign a document d, we use a hash function H :
{0, 1}� → F

m to compute the hash value w = H(d) ∈ F
m of the document. Then

we compute recursively x = S−1(w), y = F−1(x) and z = T −1(y). The signature
of the document is z ∈ F

n. Here, F−1(x) means finding one (of approximately qv1 )
pre-image of x under the central map F (see above).

Signature Verification To check the authenticity of a signature z ∈ F
n, one simply

computes w′ = P(z) and the hash value w = H(d) of the document. If w′ = w
holds, the signature is accepted, otherwise it is rejected.

5.4.1 Key Sizes and Efficiency

The size of the public key is

sizepk Rainbow = m
(n+ 1)(n+ 2)

2
(5.20)

field elements, the size of the private key is

sizesk Rainbow = m(m+ 1)︸ ︷︷ ︸
map S

+ n(n+ 1)︸ ︷︷ ︸
map T

+
u∑

i=1

ol

(
vl(vl + 1)

2
+ vlol + vl+1 + 1

)
︸ ︷︷ ︸

map F
(5.21)

field elements.
Similar to the case of Oil and Vinegar, the signature generation requires only

the solution of linear systems and therefore can be implemented very efficiently.
Furthermore, the size of the linear systems to be solved during the signature
generation of Rainbow are smaller than in the UOV case, which leads to an
additional speed up though one has to solve several linear systems.

4It may happen, that one of the linear systems does not have a solution. If so, one has to choose
other values of x1, . . . xv1 and try again. However, the probability of this is very small. Therefore,
in most cases, one gets a pre-image x at the first try.
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5.4.2 Toy Example

In the following we demonstrate the workflow of the Rainbow signature scheme
using a toy example. We choose F =GF(4) and the Rainbow parameters
(v1, o1, o2) = (3, 2, 2). We therefore have 4 equations in 7 variables.

The private key consists of the two affine maps S : F4 → F
4,

S(x1, . . . , x4) =

⎛
⎜⎜⎝

1 0 1 α

0 0 α α

α α 1 α

α α 1 1

⎞
⎟⎟⎠ ·
⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠+
⎛
⎜⎜⎝

α

1
0
α

⎞
⎟⎟⎠

and T : F7 → F
7,

T (x1, . . . , x7) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2 1 α α2 0 1 α

α2 1 α α 1 α2 0
0 0 α2 1 0 α2 α2

α 0 α α2 α2 α2 0
0 0 α α2 1 α2 0
α2 α 1 0 α2 0 0
0 1 0 0 0 α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
α2

α

α2

α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

and the central map F : F7 → F4 given by

f (4) = αy2
1 + y1y4 + y1y5 + α2y1 + αy2

2 + y2y3 + α2y2y4 + αy2 + α2y2
3

+ αy3y4 + α2y3y5 + αy3 + αy4 + α2y5 + α2,

f (5) = x2
1 + x1x3 + x1x4 + x2x3 + αx2x4 + αx2x5 + α2x2 + α2x3x4

+ αx3x5 + x3 + αx4,

f (6) = αx2
1 + x1x2 + α2x1x3 + x1x6 + α2x1x7 + x − 1+ αx2x3 + αx2x4

+ α2x2x7 + αx2 + α2x3x4 + x3x5 + αx3x7 + αx3 + x2
4 + αx4x6

+ α2x4x7 + x4 + α2x2
5 + x5x6 + x5x7 + αx5 + α2x6 + αx7,

f (7) = x1x2 + x1x4 + x1x5 + x1x6 + α2x1x7 + α2x1 + αx2
2 + x2x5 + αx2x7

+ α2x2 + αx3x4 + x3x5 + x3x6 + αx3x7 + x3 + x2
4 + αx4x6 + αx4

+ x2
5 + α2x5 + α2x6 + x7 + α2

Next, we compute the public key P of the scheme as P = S ◦ F ◦ T , obtaining

p(1) = α2x2
1 + x1x2 + x1x5 + x1x6 + α2x1x7 + α2x1 + x2

2 + x2x3 + x2x5
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+ α2x2x6 + α2x2x7 + x2 + αx3x4 + x3x7 + α2x3 + αx2
4 + αx4x5

+ x4x7 + x4 + x2
5 + x5x6 + αx5x7 + αx5 + x2

6 + αx6x7 + αx2
7 + α2x7,

p(2) = x2
1 + x1x2 + αx1x3 + αx1x4 + αx1x5 + αx1x6 + αx2

2 + αx2x3

+ x2x4 + α2x2x5 + αx2x6 + x2x7 + αx2 + αx2
3 + α2x3x4 + αx3x5

+ x3x6 + α2x3x7 + α2x2
4 + α2x4x7 + α2x4 + x2

5 + α2x5x6 + α2x5x7

+ x5 + α2x2
6 + x6x7 + x6 + α2x2

7 + α2x7,

p(3) = x1x2 + x1x3 + α2x1x5 + α2x1x6 + x1x7 + α2x1 + α2x2
2 + α2x2x3

+ α2x2x4 + x2x5 + x2x6 + x2x7 + αx3x4 + α2x3x5 + αx3x6 + α2x2
4

+ α2x4x5 + x4x6 + α2x4 + αx5x7 + α2x5 + α2x6x7 + x2
7 + α2x7 + 1,

p(4) = αx2
1 + αx1x3 + α2x1x4 + αx1x5 + α2x1x6 + x1x7 + αx1 + α2x2

2

+ x2x3 + α2x2x4 + αx2x5 + αx2x6 + αx2x7 + α2x2 + αx2
3 + x3x5

+ x3x6 + α2x3x7 + α2x3 + αx4x5 + x4 + αx2
5 + α2x5x7 + α2x5

+ αx2
6 + αx6x7 + α2x6 + x2

7 .

In order to generate a signature for the message (or hash value) w = (1, α, α, α),
we first compute x = S−1(w) = (0, 1, α, 1). We choose random values for the
vinegar variables, setting (x1, x2, x3) = (0, α, 0) and substitute these values into the
central polynomials f (4) and f (5) of the first layer, obtaining

f̄ (4) = x4 + x5 = α,

f̄ (5) = x4 = 0.

We therefore get (x4, x5) = (0, α) and substitute the values of x1, . . . , x5 into the
central polynomials of the second layer, obtaining

f̄ (6) = α2x6 + x7 = α,

f̄ (7) = x6 + α2x7 = α.

We find (x6, x7) = (1, 1) and therefore

T (z) = (0, α, 0, 0, α, 1, 1).

By inverting the second affine map T , we obtain the signature z ∈ F
7 as

z = (α2, 1, α, α, 1, α2, 0).
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In order to check, if z is indeed a valid signature for the message w, we substitute z
into the public key P . Since we get

w′ = P(z) = (1, α, α, α) = w,

the signature z is accepted.

5.5 Attacks on Rainbow

The known attacks against the Rainbow signature scheme can be divided into three
main groups

• Direct attacks,
• Rank attacks and
• Attacks against the underlying UOV structure.

In the following sections, we take a closer look on these attacks. For the
simplicity of description, we assume that all the maps S,F and T are homogeneous
maps. We can therefore write the i-th component of the central map as a quadratic
form f (i)(x) = xT · F (i) · x with an n × n matrix F (i) and the maps S and T as
matrices S and T respectively. We can compute the matrix P (i) representing the
(now also homogeneous) i-th component of the public key as a matrix P (i) with

P (i) =
m∑

j=1

sij · T T · F (j) · T , (5.22)

where sij is the (i, j)-th element of the m×m matrix S.

5.5.1 The Direct Attack

In a direct attack, the adversary considers the public equation P(z) = w as an
instance of the MQ Problem and tries to solve it using an algorithm like XL or a
Gröbner basis method such as F4 or F5 (see Chap. 8). Since the Rainbow public key
is a slightly underdetermined system (m ≤ n ≤ 2m), the best strategy is usually
to choose random values for n − m variables to create a determined system before
applying XL or the Gröbner basis algorithm.

One can expect that the projected system has exactly one solution. In some cases
one gets even better results when guessing some more variables (Hybrid Approach
[1]). Though one has to run the algorithm more often (approximately qk times when
guessing k variables over a field with q elements), the overall complexity of the
attack might be smaller.



122 5 Oil and Vinegar

Experiments have shown that the multivariate quadratic systems given by
Rainbow public keys behave very much like random systems. In particular, the
degree of regularity of a Rainbow public key is the same as that of a random system
of the same size. It is therefore relatively easy to estimate the complexity of a direct
attack against the Rainbow signature scheme.

5.5.2 Rank Attacks

The goal of a Rank attack is to recover (parts of) the affine transformations S and T
by looking at the rank of linear combinations of the public polynomials. For this, one
considers the public polynomials p(i) as quadratic forms (see Sect. 2.1) and looks
at the rank of the corresponding matrices P (i). In the case of the Rainbow signature
scheme, Rank attacks come up in two flavors

• the MinRank attack and
• the HighRank attack.

5.5.3 The MinRank Attack

The goal of the MinRank attack [3, 8] is to find a linear combination of the matrices
P (k) (v1+1 ≤ k ≤ n) of very low rank (in the case of Rainbow, this rank is, as can be
seen from Fig. 5.1, given by v2). Such a matrix corresponds to a linear combination
of the o1 matrices T T · F (k) · T (k ∈ O1) representing the central polynomials of
the first Rainbow layer. Therefore, we have to solve an instance of the

MinRank Problem Given a set of m n × n matrices P1, . . . , Pm, find a linear
combination H =∑m

i=1 λiPi which has rank ≤ r .

In the case of the Rainbow signature scheme, the m matrices of the MinRank
Problem are the matrices P (v1+1), . . . , P (n), while the minimal rank r is given by
v2.

Let P =∑n
i=v1+1 λiP

(i) be a linear combination of the matrices P (i) of rank v2.
Then there exist n− v2 linear independent vectors b1, . . . , bn−v2 such that P · bi =
0 ∀ i = 1, . . . , n− v2. The probability that P · b = 0 holds for a randomly chosen
vector b ∈ F

n is therefore q−v2 . However, as the following result shows, we can, in
the case of Rainbow, find the vectors b1, . . . , bn−v2 much cheaper.

Proposition 5.11 (Billet, Gilbert) Let w ∈ F
n be a vector whose first v1 compo-

nents are zero. Then, with probability at least 1/q, there exists a non trivial linear
combination M of the matrices F (v1+1), . . . , F (v2) such that M · w = 0.

Proof Let w ∈ F
n be a vector whose first v1 components are zero and let

w(i) = F (v1+i) · w (i = 1, . . . , o1). Then, due to the structure of the matrices
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F (v1+1), . . . , F (v2) (see Fig. 5.1), each vector w(i) has at most v2 non zero entries.
Assuming that the vectors w(1), . . . , w(o1) are uniformly distributed, the probability
that they are linearly independent is given by

o1−1∏
i=0

(
1− qi

qo1

)
<

q − 1

q
.

Therefore, the probability that the vector w lies in the kernel of some non trivial
linear combination of the matrices F (v1+1), . . . , F (v2), is greater than 1/q. 	


However, we do not know if, for a given vector b ∈ F
n, the vector w = T (b)

fulfills the condition of Proposition 5.11. The probability that, for a randomly chosen
vector b ∈ F

n, the first v1 components of w = T (b) are zero, is given by q−v1 .
Therefore, the cost of finding a vector b in the kernel of the linear combination P is
about q(v1+1) (plus some linear algebra cost).

Algorithm 5.5 shows how to find a low rank linear combination C of the matrices
P (v1+1), . . . , P (n).

Algorithm 5.5 MinRank attack
Input: matrices P (v1+1), . . . , P (n)

Output: Linear combination C =∑n
i=v1+1 ci · P (i) of rank ≤ v2

1: repeat
2: Choose randomly a vector λ ∈ F

m and compute P =∑n
i=v1+1 λiP

(i).
3: if Rank (P ) > 1 and Rank(P ) < n then
4: Choose randomly a vector γ from ker(P ).
5: C ←∑n

i=v1+1 γiP
(i)

6: end if
7: until Rank (C) ≤ v2
8: return C

By finding o1 linear independent low rank linear combinations of the matrices
P (v1+1), . . . , P (n), we can extract the first Rainbow layer. This step costs approxi-
mately o1q

v1+1 operations, where q is the cardinality of the underlying field.
The remaining Rainbow layers can now be extracted using a similar technique.

However, since the attacker has, from the first step, partial knowledge of the secret
transformation of variables, the complexity of extracting the remaining layers is
much lower than that of the first step and therefore can be neglected.

Having separated all the Rainbow layers, the attacker is able to generate
signatures the same way as a legitimate user. The complexity of the attack is mainly
given by the complexity of extracting the first Rainbow layer. So we have

complexityMinRank = o1q
v1+1
(

m3

3
− m2

6

)
. (5.23)
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5.5.4 The HighRank Attack

Before we come to the description of the attack itself, we introduce some notation.
Recall that, for the description of the Kipnis–Shamir attack on balanced Oil and
Vinegar (see Sect. 5.2), we defined the Oil subspace O as O = {x ∈ F

n|x1 = . . . =
xv = 0}. Analogously to this, we now define the Oil spaces O1, . . . ,Ou as

Oi = {x ∈ F
n|x1 = . . . = xvi

= 0}.

In other words, the Oil space Oi contains only those vectors x ∈ F
n, for which all

the vinegar variables of the i-th Rainbow layer are zero. Note that we have

Ou ⊂ Ou−1 ⊂ . . . ⊂ O2 ⊂ O1 ⊂ F
n.

Further note that, for each matrix F (k) with k ∈ Oi and each vector x ∈ Oi , we have

xT · F (k) · x = 0

Therefore we have

Oi ⊂ ker(F (k)) ∀k ∈ Oi.

With this notation, we now can interpret the MinRank attack in a different way:
As the matrices C found by Algorithm 5.5 are linear combinations of the matrices
T T · F (k) · T (k = v1 + 1, . . . , v2), we have C(x) = 0 for all x ∈ T −1(O1) and
therefore T −1(O1) ⊂ ker(C). Hence the MinRank attack can be seen as an attack
looking for the space T −1(O1) or as an attack that finds a large kernel shared by a
small number of linear combinations C =∑n

k=v1+1 λkP
(k).

The HighRank attack as proposed by Coppersmith et al. in [4] turns this around.
Now we look for a small kernel (T −1(Ou)) shared by a large number of linear
combinations

∑n
k=v1+1 λkP

(k).
The HighRank attack is based on the following observation. The variables

xvu+1, . . . , xn appear only in the quadratic cross terms of the central polyno-
mials f (vu+1), . . . , f (n) of the last Rainbow layer. Therefore we get Ou ⊂
ker
∑vu

k=v1+1 αkF
(k) for arbitrary vectors α ∈ F

m−ou which means that T −1(Ou)

lies in the kernel of certain linear combinations of the matrices P (k) (k = 1, . . . , n).
Algorithm 5.6 shows the functioning of this attack to find the space T −1(Ou).

The complexity of this step can be estimated by qou n3

6 .
By studying the subspaces of T −1(Ou) we can find bigger kernels (which

correspond to T −1(Oi ) (i = u − 1, . . . , 1)). Since the complexity of this step can
be neglected, we get

complexityHighRank = qou
n3

6
. (5.24)
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Algorithm 5.6 HighRank attack

Input: public matrices P (v1+1), . . . , P (n)

Output: T −1(Ou)

1: Form an arbitrary linear combination H =∑n
k=v1+1 λkP

(k). Find V = ker H .

2: If dim V ≥ 1, set
(∑n

k=v1+1 λkP
(k)
)
V = 0. Test, if the solution set has dimension m− ou.

3: With probability q−ou , we have therefore found V ⊂ T −1(Ou). We continue this process,
until we have found the whole space T −1(Ou).

4: return T −1(Ou)

5.5.5 Attacks Using the Underlying UOV Structure

An instance of the Rainbow signature scheme with parameters v1, o1, . . . , ou can
be seen as a (special) instance of a UOV scheme with vu vinegar variables and ou

Oil variables. Therefore, all attacks against UOV handled in Sect. 5.3 work against
Rainbow, too. For the complexities of the attacks we get:

• UOV attack

complexityUOVattack Rainbow(q, vu, ou, n) = qvu−ou−1o4
u = qn−2ou−1 · o4

u,

(5.25)
• The complexity of the UOV Reconciliation attack is mainly determined by the

complexity of solving the first system of m quadratic equations in m variables.
For details see Sect. 8.7.

Furthermore, we can use the additional structure in the Rainbow central map (see
Fig. 5.1) to improve the UOV Reconciliation attack. This approach leads to the so
called Rainbow Band Separation (RBS) attack.

5.5.6 The Rainbow Band Separation Attack

The Rainbow Band Separation (or RBS) attack [6] can be seen as an extension of
the UOV Reconciliation attack (see Sect. 5.3.1.2) to Rainbow and uses the layer
structure of this scheme (i.e. the additional blocks of zeros in the polynomials of the
Rainbow central map). Similar to the UOV Reconciliation attack, the RBS attack
looks for private keys of a special form.

5.5.6.1 Equivalent Keys for Rainbow

Let ((S,F , T ),P) be a key pair of the Rainbow signature scheme. As in Sect. 5.3,
we denote a second Rainbow private key (S ′,F ′, T ′) with S ′◦F ′◦T ′ = S◦F◦T =
P as an equivalent key.
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The following theorem was proven in [16].

Theorem 5.12 Let (S,F , T ) be a Rainbow private key and let Σ : Fm → F
m and

Ω : Fn → F
n be linear maps with

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Σ
(1,1)
o1×o1

0o1×o2 . . . 0o1×ou

Σ
(2,1)
o2×o1

Σ
(2,2)
o2×o2

. . .
...

...
. . . 0ou−1×ou

Σ
(u,1)
ou×o1

Σ
(u,2)
ou×o2

. . . Σ
(u,u)
ou×ou

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ω
(1,1)
v1×v1

0v1×o1 . . . 0v1×ou

Ω
(2,1)
o1×v1

Ω
(2,2)
o1×o1

. . .
...

...
. . . 0ou−1×ou

Ω
(u+1,1)
ou×v1

Ω
(u+1,2)
ou×o1

. . . Ω
(u+1,u+1)
ou×ou

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.26)

Then (S ′,F ′, T ′) with S ′ = S ◦Σ−1, F ′ = Σ ◦ F ◦Ω and T ′ = Ω−1 ◦ T is an
equivalent Rainbow private key.

Note that Σ−1 and Ω−1 have the same form as Σ and Ω respectively.
The next theorem states that for any Rainbow public key P there exists, with

overwhelming probability, a corresponding Rainbow private key of a very special
form.

Theorem 5.13 Let P be a Rainbow public key. Then, with overwhelming probabil-
ity, there exists a Rainbow private key (S̃, F̃ , T̃ ) with S̃ ◦ F̃ ◦ T̃ = P such that

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1o1×o1 S̃
(1,2)
o1×o2

. . . S̃
(1,u)
o1×ou

0o2×o1 1o2×o2

. . .
...

...
. . .

. . . S̃
(u−1,u)
ou−1,ou

0ou,o1 . . . 0ou,ou−1 10u×ou

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1v1×v1 T̃
(1,2)
v1×o1

. . . T̃
(1,u+1)
v1×ou

0o1×v1 1o1×o1

. . .
...

...
. . .

. . . T̃
(u,u+1)
ou−1,ou

0ou,v1 . . . 0ou,ou−1 10u×ou

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.27)
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Proof (sketch) Since P is a Rainbow public key, we can be sure that there exists a
Rainbow private key (S,F , T ) with S ◦ F ◦ T = P . We have to show that there
exist linear maps Σ and Ω of form (5.26) which transform the maps S and T into
linear transformations of the form (5.27). In the following, we restrict to a Rainbow
scheme with two layers. The general case can be shown analogously. Therefore we
have

S̃ =
⎛
⎝1o1×o1 S′o1×o2

0o2×o1 1o2×o2

⎞
⎠ , T̃ =

⎛
⎜⎜⎜⎝

1v1×v1 T
′(1)
v1×o1

T
′(2)
v1×o2

0o1×v1 1o1×o1 T
′(3)
o1×o2

0o2×v1 0o2×o1 1o2×o2

⎞
⎟⎟⎟⎠ . (5.28)

Let

S =
⎛
⎝S

(1)
o1×o1

S
(2)
o1×o2

S
(3)
o2×o1

S
(4)
o2×o2

⎞
⎠ , T =

⎛
⎜⎜⎜⎝

T
(1)
v1×v1

T
(2)
v1×o1

T
(3)
v1×o2

T
(4)
o1×v1

T
(5)
o1×o1

T
(6)
o1×o2

T
(7)
o2×v1

T
(8)
o2×o1

T
(9)
o2×o2

⎞
⎟⎟⎟⎠ .

We have to show that there exist linear maps Σ and Ω of the form

Σ =
⎛
⎝Σ1

o1×o1
0o1×o2

Σ3
o2×o1

Σ4
o2×o2

⎞
⎠ , Ω =

⎛
⎜⎜⎜⎝

Ω
(1)
v1×v1

0v1×o1 0v1×o2

Ω
(3)
o1×v1

Ω
(4)
o1×o1

0o1×o2

Ω
(7)
o2×v1

Ω
(8)
o2×o1

Ω
(9)
o2×o2

⎞
⎟⎟⎟⎠ .

such that S̃ = S ◦ Σ−1 and T̃ = Ω−1 ◦ T have the form of (5.28). If S(4) is
invertible,5 we get from S = S̃ ◦Σ

• Σ(1) = S(1) − S(2) · (S(4))−1 · S(3),
• Σ(3) = S(3) and
• Σ(4) = S(4).

The matrix S′ of (5.28) is given as

S′ = S(2) · (S(4))−1. (5.29)

For the transformation of the variables we get: If T (1) and T (5)−T (4) ·(T (1))−1 ·T (2)

are invertible,6 we get from T = Ω ◦ T̃

5If S(4) is not invertible, we can switch the rows and columns of S by renumbering the equations
of F until we get an invertible matrix.
6Again it is possible to switch rows and columns of T by renumbering the variables.
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• Ω(1) = T (1),
• Ω(4) = T (4),
• Ω(7) = T (7),
• T ′(1) = (T (1))−1 · T (2),
• T ′(2) = (T (1))−1 · T (3),
• Ω(5) = T (5) − T (4) · (T (1))−1 · T (2),
• T ′(3) = (Ω(5))−1 · (T (6) − T (4) · (T (1))−1 · T (3)),
• Ω(8) = T (8) − T (7) · (T (1))−1 · T (2) and
• Ω(9) = T (9) − T (7) · (T (1))−1 · T (3) −Ω(8) · T ′(3).

	

The matrix T̃ of (5.27) can be written as a product of matrices

T̃ = Tv1+1 · . . . · Tn

with

Ti =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 t1,i 0
. . .

...
...

...

0 1 0 tv
,i 0
0 . . . 0 1 0 0
...

...
. . .

0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(i = v1 + 1, . . . , n). (5.30)

Here, 
 is the uniquely determined integer 1 ≤ 
 ≤ u such that i ∈ O
. Note that,
besides the 1’s on the main diagonal, the matrices Ti (i = v1 + 1, . . . , n) contain
exactly v
 non zero elements, which are located at the first v
 positions in the i-th
column of the matrix Ti .

By inversion we get T̃ −1 = T −1
n · . . . · T −1

v1+1. Note that the matrices T −1
i have

the same structure as the matrices Ti (i = v1 + 1, . . . , n).

5.5.6.2 The Attack

The Rainbow Band Separation attack is based on the following observation:
Let P be a Rainbow public key and (S,F , T ) be a corresponding private key such
that S and T are of the form (5.27). We write T −1 as a product of matrices T̃n · . . . ·
T̃v1+1 as shown in (5.30) and get

F (k) =
m∑

l=1

s̃kl

(
T̃ T

v1+1 · . . . · T̃ T
n · P (l) · T̃n · . . . · T̃v1+1

)
(5.31)

(see (5.22)). Here, s̃kl (k, l = 1, . . . , m) denote the elements of the matrix S−1.
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As for the UOV Reconciliation attack (see Sect. 5.3.1.2), the goal of the Rainbow
Band Separation attack is to find, for every k = v1+1, . . . , n, a sequence of matrices
P

(k)
n = P (k), P

(k)
n−1, . . . , P

(k)
v1 , such that P

(k)
v1 has the form of F (k). The matrices

P
(k)
v1 (k = v1 + 1, . . . , n) (together with the matrices T̃i (i = v1 + 1, . . . , n) and the

elements s̃kl) yield therefore an equivalent Rainbow private key which can be used
by the attacker to generate signatures in the same way as a legitimate user.

As in the case of the UOV Reconciliation attack, the block of zeros in the bottom
right corner increases when going from P

(k)
j to P

(k)
j−1. Every additional zero position

in the matrix P
(k)
j−1 yields one non linear polynomial equation in the unknown

elements of the matrix T̃j and s̃k,
.

By considering all matrices P
(k)
j−1, we obtain a system Qj of (n−j+1)(m+n−1)

(mostly quadratic) equations in n variables, which can be solved by XL or a Gröbner
basis method. By doing so, the attacker is able to find the matrix T̃j and the elements

s̃kl and therefore can compute the matrices P
(k)
j−1 (k = v1 + 1, . . . , n).

In contrast to the UOV Reconciliation attack, the equations in the system P are
no longer homogeneous quadratic in the elements of the matrix T̃j , but some of them
are now cubic in the elements of T̃j and s̃k,
. This fact also increases the number of
variables in the system.

On the other hand, we can make use of the additional zero blocks in the Rainbow
central map (see Fig. 5.1) to increase the number of equations in the system. By
balancing out these two facts, we find that the systems produced by the Rainbow
Band Separation attack can be solved more efficiently than those produced by the
UOV Reconciliation attack.

To find the matrices P
(k)
v1 and therefore an equivalent private key, the attacker

has to solve m systems Qj (for j = n, . . . , v1 + 1). However, since the number
of equations in the system Qj increases from step to step, the systems Qj become
easier to solve with decreasing j .

Therefore, the complexity of the Rainbow Band Separation attack is mainly
determined by the complexity of solving the first system Qn which consists of

• one cubic equation
• m− 1 quadratic equations in the variables of T̃n

• n − 1 bilinear equations (linear both in the elements of T̃n and the s̃nk (k =
vu + 1, . . . , n)).

5.5.7 Practical Parameters

By considering the above attacks, we propose in Table 5.2 practical parameters for
the Rainbow signature scheme for the security categories I II and III.
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Table 5.2 Parameters and key sizes of rainbow

Security Parameters Public key Private key Signature
category (F, v1, o1, o2) size (kB) size (kB) size (bit)

I (GF(256), 40, 24, 24) 187.7 140.0 704

II (GF(256), 68, 36, 36) 703.9 525.2 1120

III (GF(256), 92, 48, 48) 1683.3 1244.4 1504

5.6 Reducing the Public Key Size

The main disadvantage of the UOV signature scheme (and, to some degree, also
of Rainbow) is the large size of the public and private keys of the schemes. In this
section we describe techniques to deal with this problem.

Section 5.6.1 describes the SUOV (structured UOV) signature scheme proposed
by Petzoldt et al. in [14]. The scheme allows to choose the public key of UOV as
a structured matrix and therefore makes it possible to reduce the public key size of
the scheme significantly. Furthermore, the additional structure in the public key can
be used to speed up the signature verification process of the scheme [15]. Until now,
no attacks using the special structure of the public key are known.

Section 5.6.2 shows how to extend this technique to the Rainbow signature
scheme.

Finally, in Sect. 5.6.4, we present the LUOV signature scheme of Beulllens et al.,
which can be seen as a special instance of SUOV. LUOV chooses the coefficients
of the public and private key from a small subfield of F, whereas messages and
signatures are defined over the field F itself. To preserve the security of the scheme,
we have to choose larger parameters than in the case of the standard UOV scheme.
However, since major parts of the keys can be stored as small seeds, the technique
still allows one to reduce the key sizes significantly.

5.6.1 StructuredUOV

In [14], Petzoldt et al. developed a technique to reduce the public key size of UOV
by a large factor. The basic idea of their technique is to insert a structured matrix B

into the Macaulay matrix MP of the public key (see Fig. 5.2). The matrix B can be
chosen in cyclic form or can be generated from a small random seed, which reduces
the memory needed to store the public key drastically.

In a sense, the technique turns around the standard key generation process
of a public key cryptosystem. During the standard key generation process, the
public key is computed out of the private key. Instead of this, we compute, for
the StructuredUOV scheme, the central map out of the public key and the linear
transformation T (see Fig. 5.2).
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In this section we describe Petzoldt’s technique to reduce the public key of
the UOV signature scheme, while, in the next section, we show how to extend
the technique to Rainbow. To simplify our description, we restrict ourselves to
homogeneous maps F and T . Note that this leads to a homogeneous quadratic
public key P .

Recall that the public key of the UOV signature scheme is given by

P = F ◦ T , (5.32)

where F is a UOV central map and T is a randomly chosen invertible linear map
(given by an n× n matrix T ).

Let f
(k)
ij and p

(k)
ij be the coefficients of the monomial xixj in the k-th component

of F and P respectively (1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ o). Note that, due to the special
structure of the UOV central map F , some of the coefficients f

(k)
ij are fixed to 0. In

particular, we have

f
(k)
ij = 0 ∀i ∈ O∧ j ∈ O, 1 ≤ k ≤ o⇔ v+1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ o. (5.33)

The key observation of [14] is the following. Equation (5.32) implies

p
(k)
ij =

n∑
r=1

n∑
s=r

αrs
ij f (k)

rs

(5.33)=
v∑

r=1

n∑
s=r

αrs
ij f (k)

rs (1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ o)

(5.34)
with

αrs
ij =
{

tri tsi (i = j)

tri tsj + trj tsi otherwise
. (5.35)

After fixing the elements of the matrix T to some random values of F, (5.34)
becomes a linear relation between the coefficients p

(k)
ij and f

(k)
rs (1 ≤ i ≤ j ≤ n, 1 ≤

r ≤ v, r ≤ s ≤ n, 1 ≤ k ≤ o).
To simplify our notation, we define two integers D and D′ as follows. Let

• D := v(v+1)
2 + ov be the number of non zero quadratic terms in the components

of F and
• D′ := n(n+1)

2 be the number of quadratic terms in the public polynomials.

Let MP and MF be the Macaulay matrices of P and F respectively (w.r.t. the
graded lexicographic ordering of monomials, see Definition 2.10). Note that, due
to the absence of oil × oil terms in the central polynomials, MF is of the form
MF = (Q|0) with a block of zeros on the right and an o×D matrix Q.

Analogously, we divide the matrix MP into two submatrices as MP = (B|C),
where B is an o×D matrix and C is an o× (D′ −D) matrix with elements in F.

Furthermore we define a transformation matrix ÂUOV ∈ F
D×D′ containing the

coefficients αrs
ij of (5.34) by
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ÂUOV =
(
αrs

ij

)
1 ≤ r ≤ v, r ≤ s ≤ n for the rows; 1 ≤ i ≤ j ≤ n for the columns, i.e.

ÂUOV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α11
11 α11

12 . . . α11
nn

α12
11 α12

12 . . . α12
nn

...
...

αvn
11 αvn

12 . . . αvn
nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.36)

For both rows and columns, the elements of ÂUOV are ordered with respect to
the graded lexicographic order.

With this notation, (5.34) yields

MP = Q · ÂUOV (5.37)

Let AUOV be the D × D submatrix obtained by restricting ÂUOV to its first D

columns. With this, (5.37) yields

B = Q · AUOV. (5.38)

or, if AUOV is invertible

Q = B · A−1
UOV. (5.39)

Equation (5.39) allows us to fix the matrix B and, after having assigned random
values to the elements of the matrix T , to derive from it the non zero part of the
UOV central map F . Algorithm 5.7 shows this alternative key generation process
for the UOV signature scheme in algorithmic form.

The algorithm takes as input a matrix B ∈ F
o×D and chooses randomly an

n × n matrix T (representing the secret linear transformation T ). If both T and
the corresponding transformation matrix AUOV are invertible,7 it computes out of
B and T the non zero coefficients of the quadratic monomials in F . Finally, the
algorithm computes the public key P and returns the UOV key pair ((F , T ),P).

By applying Algorithm 5.7 we can insert arbitrary matrices B into the Macaulay
matrix of the public key. For example, we can choose B to be

• a (partially) cyclic matrix (→ cyclicUOV)
• generated by a linear feedback shift register (→ UOVLFRS)

7Experiments have shown that this is the case with high probability. Therefore, in most cases, we
need only one run of the loop in line 1 to 4 of Algorithm 5.7.
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Algorithm 5.7 Key generation of StructuredUOV

Input: parameters (F, o, v), matrix B ∈ F
o×D

Output: UOV key pair ((F, T ),P)

1: repeat
2: Choose randomly a linear map T (represented by an n× n-matrix T ).

If T is not invertible, choose again.
3: Compute for T the corresponding transformation matrix AUOV

(using Eqs. (5.35) and (5.36)).
4: until IsInvertible(AUOV)=TRUE.
5: Compute the matrix Q containing the quadratic coefficients of the central polynomials by

(5.39).
6: Compute the public key as P = F ◦ T .
7: return ((F, T ),P)

Table 5.3 Parameters and key sizes of StructuredUOV

Security Parameters Public key Private key Signature
category (F, v, o) size (kB) size (kB) size (bit)

I (GF(256), 96, 48) 71.0 441.0 1152

II (GF(256), 144, 72) 220.4 1478.3 1728

III (GF(256), 192, 96) 500.0 3492.1 2304

Fig. 5.2 Standard key generation (above) and alternative key generation of the UOV signature
scheme. The light gray parts are chosen by the user, while the dark gray parts are computed during
the key generation process

• generated by a PRNG (→ UOVPRNG)

Until now, no attack is known which uses the additional structure in the public
key of StructuredUOV. Therefore it seems that we can use the same parameters as
for standard UOV (see Table 5.3).

Key Sizes and Efficiency

The public key size of StructuredUOV is given as

sizepk StructuredUOV = o

(
o(o+ 1)

2

)
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field elements plus whatever it takes to store the structured part of the public key.
For cyclicUOV, we need for this v(v+1)

2 + ov + n + 1 field elements, for all other
cases we can store the structured part of the public key as a 256 bit seed. This leads
to a reduction of the public key size of up to 86 % compared to the standard UOV
scheme.

The size of the private key is the same as for the standard UOV scheme, i.e.

sizesk StructuredUOV = n2︸︷︷︸
T
+ o

(
v(v + 1)

2
+ ov

)
︸ ︷︷ ︸

F

(Note for this formula that we are dealing with homogeneous maps T and F).
The efficiency of the key generation algorithm is, using the technique described

in the next section, basically the same as for the standard scheme. The same holds
for the signature generation process. For the signature verification process, we can,
in the case of cyclicUOV or UOVLFSR, use the technique described in [15] to get
a speed up of up to 50%.

5.6.2 The Case of Rainbow

For simplicity, we again assume that all the maps S,F , T and P are homogeneous
maps. When trying to extend the technique described in the previous section to the
Rainbow signature scheme, we have to take into account the second linear map S
used in Rainbow. To cover this, we introduce a new map Q = F ◦ T and apply the
technique presented in the previous section for each Rainbow layer separately.

By doing so, we can, for every component p(i) of the public key, fix vi (vi+1)
2 +

oivi of the quadratic coefficients. Note that this is exactly the number of non zero
coefficients in the i-th component of the central map. This leads to the “staircase”
structure as seen in Figs. 5.3 and 5.4.

In order to describe the algorithm in detail, we need some additional notations.
First, we introduce integers D1, . . . , Du where Di = vi (vi+1)

2 + oivi denotes the
number of non zero quadratic terms in the central polynomials of the i-th Rainbow
layer (i = 1, . . . , u). Additionally, we set D0 = 0 and denote by Du+1 = n(n+1)

2
the number of quadratic terms in the public key.

Secondly, we introduce a special “blockwise” ordering of monomials. Each block
Bi (i = 1, . . . , u) contains exactly the quadratic monomials appearing in the central
polynomials of the i-th, but not the (i−1)-th Rainbow layer. Note that each block Bi

contains exactly Di−Di−1 monomials. Inside the blocks we use the lexicographical
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MP

n

v1

v2

v3...
vu−1

vu

B1

C1

B2

C2

B3

C1

C2

Bu−1
Bu

Cu−1

Cu

. . .

. . .

. . .

. . .

MQ

n

v1

vu

v2...
...

...
...

...
...

...

Q1,1 Q1,2 Q1,3 . . . Q1,
u−1

Q1,u

Qu,1 Qu,2 Qu,3 . . . Qu,
u−1

Qu,u

Q1,
u+1

Qu,
u+1

MF

n

v1

vu

vu−1

...
v3

v2
F1 0 0 . . . 0 0

F2 0 . . . 0 0
...

... 0 0

Fu−1 0

Fu 0

0

D1 D2 D3 Du−2 Du−1 Du Du+1

Fig. 5.3 Layout of the matrices MP , MQ and MF

Fig. 5.4 Standard key generation (above) and alternative key generation of the rainbow signature
scheme. The light gray parts are chosen by the user, the dark gray parts are computed during the
key generation process
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ordering. The elements of the transformation matrix ARb ∈ F
Du×Du+1 for cyclic

Rainbow are defined as shown in (5.35). However we sort them according to the
monomial ordering defined above. Finally we divide the matrix ARb into blocks

ARb =

⎛
⎜⎜⎜⎜⎝

A1,1 A1,2 . . . A1,u A1,u+1

A2,1
... . . .

... A2,n+1
...

...

Au,1 Au,2 . . . Au,u Au,u+1

⎞
⎟⎟⎟⎟⎠ .

Here, Ak,l is a (Dk −Dk−1)× (Dl −Dl−1) matrix.
Similarly to this, we divide the m×m-matrix S into u2 submatrices.

S =
⎛
⎜⎝

S1,1 . . . S1,u

...
...

Su,1 . . . Su,u

⎞
⎟⎠

Here, Sk,l is a ok × ol matrix. While, for StructuredUOV, we required only AUOV

to be invertible, we need here some additional conditions.

• (C1) Every submatrix

⎛
⎜⎝

Si,i . . . Si,u

...
...

Su,i . . . Su,u

⎞
⎟⎠ (i = 1, . . . , u) of S must be invertible.

• (C2) Every submatrix

⎛
⎜⎝

A1,1 . . . A1,i

...
...

Ai,1 . . . Ai,i

⎞
⎟⎠ (i = 1, . . . , u) of A must be invertible.

Finally, we divide the m×Du+1 Macaulay matrices MF , MQ and MP in submatrices
as shown in Fig. 5.3. Algorithm 5.8 shows, how to create a structured public key for
the Rainbow signature scheme.

At the beginning, the algorithm assigns values to the entries of the matrices
B1, . . . , Bu (marked gray in Fig. 5.3). Then it assigns random values to the elements
of the matrices S and T representing the linear transformations S and T . It
computes the transformation matrix ARb and checks, if the conditions (C1) and
(C2) are fulfilled.8 If this is the case, it computes recursively the matrices Qi,j

(i = 1, . . . , u, j = 1, . . . , u+ 1) and F1, . . . , Fu of Fig. 5.3. Finally, the algorithm
composes the central map F from the matrices F1, . . . , Fu and the public key P
from the matrices B1, . . . , Bu and C1, . . . , Cu and returns the Rainbow key pair
((S,F , T ),P).

8Experiments have shown that, for randomly chosen matrices S and T , the conditions are fulfilled
with high probability. Therefore, in most cases, we need only one run of the loop in line 1 to 5 of
Algorithm 5.8.
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Altogether, the technique allows us to fix

u∑
i=1

oi

(
vi(vi + 1)

2
+ vioi

)

coefficients of the public key, which leads to a reduction of the Rainbow public key
by up to 60%. Similar to the case of UOV, we can choose these coefficients to be

• partially cyclic (→ cyclicRainbow)
• generated by a linear feedback shift register (→ RainbowLFSR)
• generated by a PRNG (→ RainbowPRNG)

Similar to the case of StructuredUOV, there exists no known attack which uses the
additional structure in the public key of cyclicRainbow and its variants. Therefore,
it seems that we can use the same values of o and v as for the standard Rainbow
scheme.

5.6.3 Key Sizes and Efficiency

The public key size of StructuredRainbow is given as

size pk StructuredRainbow = m
ou(ou + 1)

2

field elements plus whatever it takes to store the structured part of the public key.
For cyclic Rainbow this is Du, for all other cases we can store the structured part of
the public key as a small seed. All in all, the above technique allows us to reduce
the public key size of Rainbow by up to 63%.

The size of the StructuredRainbow private key is the same as the private key size
of the standard Rainbow scheme, i.e.

sizesk StructuredRainbow = m2︸︷︷︸
S
+ n2︸︷︷︸

T
+

u∑
i=1

oi

(
vi(vi + 1)

2
+ vioi

)
︸ ︷︷ ︸

F

field elements. Note again that, in this section, we restricted to homogeneous maps
S , F , T and P .

Using the technique described in the next section, the key generation time
of Structured Rainbow nearly equals the key generation time of the standard
Rainbow scheme. Regarding signature generation, both schemes are identical. In
the signature verification process, we can make use of the additional structure in the
cyclicRainbow or RainbowLFRS public keys to speed up signature verification by
up to 50%. (see [15] for details).
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Algorithm 5.8 Key generation of StructuredRainbow
Input: Matrices B1, . . . , Bu

Output: Rainbow key pair ((S,F, T ),P)
1: repeat
2: Choose randomly invertible linear transformations S and T

(represented by matrices S ∈ F
m×m and T ∈ F

n×n.
3: Build the transformation matrix A as shown by Eq. (5.36) and divide it into

submatrices Ai,j (i = 1, . . . , u, j = 1, . . . , u+ 1) as shown above
4: Divide S into submatrices Si,j (i, j = 1, . . . , u).
5: until all the conditions of (C1) and (C2) are fulfilled
6: for i = 1 to u do

7: Compute

⎛
⎜⎜⎝

Qi,i

.

.

.

Qu,i

⎞
⎟⎟⎠ =
⎛
⎜⎜⎝

Si,i . . . Si,u

.

.

.
.
.
.

Su,i . . . Su,u

⎞
⎟⎟⎠
−1

·

⎛
⎜⎜⎝B1 −∑i−1

j=1

⎛
⎜⎜⎝

Si,j

.

.

.

Su,j

⎞
⎟⎟⎠ ·Qji

⎞
⎟⎟⎠.

8: Compute Fi = (Qi,1|| . . . ||Qi,i ) ·

⎛
⎜⎜⎝

A11 . . . A1,i

.

.

.
.
.
.

Ai,1 . . . Ai,i

⎞
⎟⎟⎠
−1

.

9: Compute (Qi,i+1|| . . . ||Qi,u+1) = Fi ·

⎛
⎜⎜⎝

A1,i+1 . . . AT
1,u+1

.

.

.
.
.
.

Ai,i+1 . . . Ai,u+1

⎞
⎟⎟⎠.

10: end for
11: for i = 1 to u do

12: Compute Ci = (Si,1|| . . . ||Si,u) ·

⎛
⎜⎜⎝

Q1,i . . . Q1,u+1
.
.
.

.

.

.

Qu,i . . . Qu,u+1

⎞
⎟⎟⎠.

13: end for
14: Compose F from F1, . . . , Fu.
15: Compose P from B1, . . . , Bu, C1, . . . , Cu.
16: return ((S,F, T ),P)

Table 5.4 shows the resulting key and signature sizes for our three security levels.

5.6.4 LUOV

The LUOV (LiftedUOV) signature scheme was proposed by the research group
in Leuven in [2] and later submitted to the NIST standardization process for
post-quantum cryptosystems. The basic idea is to choose the coefficients of the
public and private key from a small subfield of the field F2, while messages (hash
values) and signatures are defined over the larger field F2r . The scheme uses the
same parameters as the standard UOV signature scheme (see Sect. 5.1). The only
difference is that we restrict to fields of even characteristic. The workflow of the
scheme can be described as follows:
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Table 5.4 Parameters and key sizes of StructuredRainbow

Security Parameters Public key Private key Signature
category (F, v1, o1, o2) size (kB) size (kB) size (bit)

I (GF(256), 40, 24, 24) 53.1 140.0 704

II (GF(256), 68, 36, 36) 192.6 525.2 1120

III (GF(256), 92, 48, 48) 463.8 1244.4 1504

Key Generation To create a key pair of LUOV, a user Alice performs the following
steps

• Choose randomly a seed s of length 256 bit (32 byte), which is used to generate
a matrix T ′ ∈ F

v×o
2 and a public seed sp.

• Define the linear transformation T using the matrix T =
(

1v×v T ′
0o×v 1o×o

)
.

• Use the seed sp to create a matrix B ∈ F
o(v(v+1)/2+ov)

2 . View B as the matrix
containing the coefficients of the vinegar × vinegar and vinegar × oil terms of
the public map P .

• Use the technique described in Sect. 5.6.1 to generate from B and T the central
map F and the coefficients of the oil× oil terms of the public polynomials. Store
these coefficients as a matrix Q ∈ F

o×o(o+1)/2
2 .

The private key of the LUOV signature scheme is just the seed s, the public key
consists of the public seed sp and the matrix Q ∈ F

o×o(o+1)/2
2 .

Remark 5.14 Despite of the fact that all coefficients of the private and public maps
are elements of the subfield GF(2), all three maps F , T and P are viewed as maps
over the extension field F = F2r . This process is denoted as “Lifting”, hence
the name LiftedUOV. Therefore, hash values and signatures are vectors over the
extension field F

r
2. This enabled the authors to choose the parameters of their scheme

(compared to those of a UOV scheme over GF(2)), which reduces the key sizes
significantly. Furthermore, direct attacks have to be performed over the larger field,
which is more costly than a direct attack over GF(2).

To reduce the private and public key sizes further, major parts of the keys are
stored as small seeds of size 256 bits (in fact, the private key consists only of the
seed s, the public key contains, besides of the seed sp, only the matrix Q containing
the coefficients of the oil × oil terms of the public key).

The downside of this extreme key size reduction is that, in the signature
generation process, we have to recover the UOV private key (F , T ) out of the seed
s. In the signature verification process, we have to recover the public key P out of
sp and Q. Therefore, the key size reduction leads to a slow down of the signature
generation and verification processes.

Signature Generation The signature generation process of LUOV consists of two
parts. In the first part, we recover the private UOV key (F , T ) out of the seed s. In
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the second part, we use this UOV private key to generate a UOV signature in the
standard way.

1. Step: Recover the UOV private key (F , T ) from the seed s.

(a) Generate from s the matrix T ′ ∈ F
v×o
2 and the seed sp. Define the linear

transformation T : Fn → F
n as T =

(
1 T ′
0 1

)
.

(b) Generate from sp the matrix B ∈ F
o(v(v+1)/2+ov)

2 .
(c) Use the technique described in Sect. 5.6.1 to generate from B and T the

central map F .

2. Step: Generate a UOV signature for the document d.

(a) Use a hash function H : {0, 1}� → F
o
2r to compute a hash value w ∈ F

o
2r of

the document d

(b) Derive from w and the seed s the values of the vinegar variables x1, . . . , xv ∈
F2r and substitute them into the central map F to obtain a linear map in the
oil variables (denoted by a matrix F ′(xv+1, . . . xn) = c′).

(c) Solve the linear system F ′(xv+1, . . . , xn) = c′ for xv+1, . . . , xn and set x =
(x1, . . . , xv, xv+1, . . . , xn) ∈ F2r .

(d) Compute the signature z = T −1(x) ∈ F2r .

Signature Verification Similar to the signature generation process, the signature
verification process of LUOV consists of two parts. In the first part, we generate
from the seed sp and the matrix Q the UOV public key P . In the second part, we
use the key P to check the authenticity of a signature z ∈ F

n
2r in the standard way.

• Step: Generate from sp the matrix B ∈ F
o(v(v+1)/2+ov)

2 . Concatenate B with the
matrix Q to get the UOV public key P : Fn

2r → F
o
2r .

• Step Compute the hash value w = H(d) of the document and compute w′ =
P(z). If w′ = w holds, accept the signature, otherwise reject.

Regarding the details on how the matrices T ′ and B as well as the vinegar variables
are derived from the seeds s and sp, we refer the interested reader to [2].

5.6.5 Security

Since the LUOV scheme can be seen as a special instance of the UOV signature
scheme, all known attacks against UOV apply against LUOV, too. However, since
major parts of the private coefficients of LUOV are chosen from GF(2), we have to
recompute the complexities of these attacks.

• direct attack: Since both the hash value and signature are defined over GF(2r ),
the direct attack behaves like a direct attack against a standard UOV scheme over
GF(2r ).
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• UOV attack: Against LUOV, the UOV attack can be performed over the field
GF(2) (since it only uses the public key). Therefore, we have to choose the
parameters of LUOV in a way that

2v−o+1o4 > 2k,

where k is the security parameter.
• UOV Reconciliation attack: Like the UOV attack, the UOV Reconciliation attack

depends only on the public key. Therefore we can perform this attack over the
field GF(2). We therefore have to choose the number o of oil variables in such
a way that a Gröbner basis attack against a determined system of o equations is
infeasible.

To summarize, in order to get the same security, the parameters o and v of LUOV
have to be chosen significantly larger than for a standard UOV scheme over GF(2r ).
However, since major parts of the public and private key can be stored as small
seeds, we still get a significant reduction of the key sizes (see Table 5.5).

Recently, Ding et al. [7] presented a new attack on the LUOV scheme. The
method is called the Subfield Differential Attack (SDA). This attack does not rely
on the Oil and Vinegar structure of LUOV but merely on the fact that the coefficients
of the quadratic terms are contained in a small subfield, which is the basis for the
design of LUOV. It is argued heuristically that there is a high probability that there
exists a way to find a solution using differentials from a small subfield.

More precisely, the problem of finding a signature to a problem is reduced
to solving a set of underdetermined quadratic equations over the subfield. The
complexity of such an attack is much reduced. For each proposed set of parameters
in the LUOV submission, Ding et al. showed that the attack will make it impossible
for LUOV to fulfill the requirements of the NIST security levels. Furthermore they
show that UOV and Rainbow (both the standard and cyclic versions) are unaffected
by this attack. The new attack method casts serious doubt if the basic idea of LUOV
is sound.

5.6.6 Key Sizes and Efficiency

The public key size of LUOV is given as

sizepk LUOV = o2 (o+ 1)

2︸ ︷︷ ︸
matrix Q

+ 256︸︷︷︸
seeds

bits,

the size of the private key is

sizesk LUOV = 256 bits.
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Table 5.5 Parameters and key sizes of LUOV

Security Parameters Public key Private key Signature
category (F, v, o) size (kB) size (byte) size (bit)

Ia (GF(256), 256, 63) 15.5 32 2552

IIa (GF(256), 351, 90) 45 32 3528

III (GF(256), 404, 117) 98.6 32 4168

Since the parameters are significantly larger, the key generation takes longer than
for the standard UOV scheme. During the signature generation process, we have to
recover the private key from the seed s, which leads to a drastic slow down of the
signature generation. The same can be said for signature verification, though the
slow down factor is not as large as for signature generation.

Table 5.5 shows practical parameters for the LUOV scheme (without considera-
tion of the new attack mentioned above).

5.7 Efficient Key Generation of Rainbow

While the signature generation and verification processes of Rainbow are very fast,
the straightforward key generation process as presented in Sect. 5.4 is far too costly.
In this section we describe a much more efficient way to generate a Rainbow key
pair. To simplify our description, we restrict to Rainbow schemes with two layers.

Note that this is the standard setup for implementing Rainbow. Furthermore, we
restrict to homogeneous maps S , F and T . Therefore, the public key P = S ◦F ◦T
will be a homogeneous quadratic map, too. Note that, by this restriction, the security
of our Rainbow instance is not weakened.

Remember from Sect. 5.5 that, for every Rainbow public key P , there exists a
Rainbow private key (S,F , T ) with linear maps S and T of the form

S =
⎛
⎝ Io1×o1 S′o1×o2

0o2×o1 Io2×o2

⎞
⎠ , T =

⎛
⎜⎜⎜⎝

Iv1×v1 T
(1)
v1×o1

T
(2)
v1×o2

0o1×v1 Io1×o1 T
(3)
o1×o2

0o2×v1 0o2×o1 Io2×o2

⎞
⎟⎟⎟⎠ . (5.40)

Therefore, without weakening the security of the scheme, we can assume that the
maps S and T of our Rainbow instance are of the form (5.40).

For our special choice of S and T we have det(S) = det(T ) = 1 and (for fields
of characteristic 2)
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Fig. 5.5 Matrices F (i) (left) and Q(i) (right) representing the polynomials of the Rainbow central
and intermediate maps. The only non-zero elements are contained in the gray spaces

S−1 =
(

Io1×o1 S′o1×o2

0o2×o1 Io2×o2

)
= S, T −1 =

⎛
⎝ I T (1) T (1) · T (3) + T (2)

0 I T (3)

0 0 I

⎞
⎠ .

(5.41)
For abbreviation, we set T (4) := T (1) · T (3) + T (2).

We introduce an intermediate map Q = F ◦ T . Note that we can write the
components of the maps F and Q as quadratic forms

f (i)(x) = xT · F (i) · x
q(i)(x) = xT ·Q(i) · x (5.42)

with upper triangular matrices F (i) and Q(i) (i = v1 + 1, . . . , n). Note that, due to
the relation Q = F ◦ T , we get

Q(i) = T T · F (i) · T (i = v1 + 1, . . . , n). (5.43)

Note further that, due to the special form of the Rainbow central map, the matrices
F (i) look as shown in Fig. 5.5. The matrices Q(i) are divided into submatrices
Q

(i)
1 , . . . ,Q

(i)
9 analogously.

In order to generate a Rainbow key pair, we choose the non-zero elements of
the matrices S , T and F (v1+1), . . . , F (n) uniformly at random from the field F and
perform the following three steps.
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5.7.1 First Step: Compute the Matrices Q(i) of the First Layer

In the first step, we compute from the matrices F (v1+1), . . . , F (v2) the matrices
Q(v1+1), . . . ,Q(v2). Since the only non-zero elements of the matrices F (i) (i =
v1 + 1, . . . , v2) are contained in the matrices F

(i)
1 and F

(i)
2 , we obtain from

Q(i) = T T · F (i) · T

Q
(i)
1 = F

(i)
1 ,

Q
(i)
2 = (F

(i)
1 + (F

(i)
1 )T ) · T1 + F

(i)
2 ,

Q
(i)
3 = (F

(i)
1 + (F

(i)
1 )T ) · T2 + F

(i)
2 · T3,

Q
(i)
5 = UT(T T

1 · F (i)
1 ) · T1 + T T

1 · F (i)
2 ), (5.44)

Q
(i)
6 = T T

1 (F
(i)
1 + (F

(i)
1 )T ) · T2 + T T

1 · F (i)
2 · T3 + (F

(i)
2 )T · T2,

Q
(i)
9 = UT(T T

2 · F (i)
1 · T2 + T T

2 · F (i)
2 · T3).

Here, UT(A) transforms a matrix A into an equivalent upper triangular matrix (i.e.
aij = aij + aji for i < j , aij = 0 for i > j ).

5.7.2 Second Step: Compute the Matrices Q(i) of the Second
Layer

In the second step, we compute from the matrices F (v2+1), . . . , F (n) the matrices
Q(v2+1), . . . ,Q(n). Since the only non-zero elements of the matrices F (i) (i = v2+
1, . . . , n) are contained in the submatrices F

(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 and F

(i)
6 , we obtain

from Q(i) = T T · F (i) · T

Q
(i)
1 = F

(i)
1 ,

Q
(i)
2 = (F

(i)
1 + (F

(i)
1 )T ) · T1 + F

(i)
2 ,

Q
(i)
3 = (F

(i)
1 + (F

(i)
1 )T ) · T2 + F

(i)
2 · T3 + F

(i)
3 ,

Q
(i)
5 = UT(T T

1 · F (i)
1 · T1 + T T

1 · F (i)
2 + F

(i)
5 , (5.45)

Q
(i)
6 = T T

1 · (F (i)
1 + (F

(i)
1 )T ) · T2 + T T

1 · F (i)
2 · T3)

+ T T
1 · F (i)

3 + (F
(i)
2 )T · T2 + (F

(i)
5 + (F

(i)
5 )T ) · T3 + F

(i)
6 ,

Q
(i)
9 = UT(T T

2 · F (i)
1 · T2+T T

2 · F (i)
2 · T3+T T

3 · F (i)
5 · T3+T T

2 · F (i)
3 +T T

3 · F (i)
6 ).
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Fig. 5.6 Computing the public key

Here, again, UT(A) transforms the matrix A into an equivalent upper triangular
matrix.

5.7.3 Third Step: Compute the Public Key

In the third step, we compute from the matrices Q(i) (i = v1 + 1, . . . , n) the public
key P of the scheme. To do this, we first transform the matrices Q(i) into a Macaulay
matrix MQ. For i = v1 + 1, . . . , v2, we copy the entries of the matrix Q(i) into the
(i − v1)-th row of the matrix MQ1 (from left to right and top to bottom) Similarly,
we copy the elements of the matrices Q(i) of the second layer into the matrix MQ2
(see Fig. 5.6). After this, we compute the Macaulay matrix MP of the public key as
MP = S ·MQ or

MP1 = MQ1 + S′ ·MQ2

MP2 = MQ2. (5.46)

This process is illustrated in Fig. 5.6.
Algorithm 5.9 shows our key generation algorithm for the standard Rainbow

scheme in compact form.

5.7.4 Efficient Key Generation for StructuredRainbow

As in the previous section, we restrict here to Rainbow schemes with two layers
and homogeneous maps S,F , T and P . As above, we choose the matrices S and T
of form (5.40) . Furthermore, we assign arbitrary values to the entries of the three
matrices B1, B2 and B3 of Fig. 5.7. Note that, in this section, we assumes that the
monomials of F , Q and P are ordered according to the monomial order defined in
Sect. 5.6.2.
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Algorithm 5.9 Efficient key generation of the standard rainbow signature scheme
Input: linear transformations S, T of form (5.40), Rainbow central map F (given as matrices

F (i) (i = v1 + 1, . . . , n); see Fig. 5.5)
Output: Rainbow public key P (consisting of the matrices MP1 and MP2)
1: for i = v1 + 1 to v2 do
2: Compute the matrices Q

(i)
1 ,Q

(i)
2 ,Q

(i)
3 ,Q

(i)
5 ,Q

(i)
6 ,Q

(i)
9 using (5.44).

3: end for
4: for i = v2 + 1 to n do
5: Compute Q

(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
5 , Q

(i)
6 , Q

(i)
9 using (5.45).

6: end for
7: for i = 1 to m do
8: Insert the elements of the matrix Q(i) into the (i − v1)-th row of the

matrices MQ1 and MQ2 (as described above)
9: end for

10: Compute the Rainbow public key using (5.46).
11: return MP1,MP2.

Fig. 5.7 The 2-layer StructuredRainbow Signature Scheme. The dark gray parts are chosen by the
user, while the light gray parts are computed from them

The key generation process of StructuredRainbow computes from these matrices
the matrices F1, F2, F3 and C1, C2, C3 of Fig. 5.7. To do this, it performs the
following four steps.

5.7.4.1 First Step: Compute the Matrices MQ1,1, MQ2,1 and MQ2,2

Similarily to the Macaulay matrices of F and P of Fig. 5.7, we divide the Macaulay
matrix MQ of the intermediate map Q into six submatrices MQ1,1, MQ1,2, MQ1,3,
MQ2,1, MQ2,2 and MQ3,2. Due to the relation P = S ◦Q we find

MQ1,1 = B1 + S′ · B2,

MQ2,1 = B2, (5.47)

MQ2,2 = B2.
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Fig. 5.8 Computing the central polynomials of the first layer

5.7.4.2 Second Step: Compute the Central Polynomials of the First
Rainbow Layer

For this, we represent the first o1 components of the map Q as upper triangular
matrices Q(i).

We insert the D1 elements of the i-th row of MQ1,1 into the dark gray parts of
the matrices Q

(i)
1 and Q

(i)
2 (from left to right and top to bottom; see Fig. 5.8 (left)).

The corresponding matrices F (i) representing the i-th central polynomial look as
shown in Fig. 5.8 (middle). Note that the only non-zero elements are located in the
submatrices F

(i)
1 and F

(i)
2 . Due to the relation F (i) = (T −1)T ·Q(i) · T −1 we get

F
(i)
1 = Q

(i)
1 ,

F
(i)
2 = (Q

(i)
1 + (Q

(i)
1 )T ) · T1 +Q

(i)
2 . (5.48)

All the other elements of the matrices F (i) (i ∈ {1, . . . , o1}) are zero. So, after
having determined the elements of F

(i)
1 and F

(i)
2 , we can use the inverse relation

Q(i) = T T · F (i) · T to compute the light gray parts of Q(i). We find

Q
(i)
3 = (F

(i)
1 + (F

(i)
1 )T ) · T2 + F2 · T3,

Q
(i)
5 = UT(T T

1 · F (i)
1 · T1 + T T

1 · F (i)
2 ,

Q
(i)
6 = T T

1 (F
(i)
1 + (F

(i)
1 )T ) · T2 + T T

1 · F (i)
2 · T3 + (F

(i)
2 )T · T2,

Q
(i)
9 = UT(T T

2 · F (i)
1 · T2 + T T

2 · F (i)
2 · T3). (5.49)

(see Fig. 5.8 (right)).
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Fig. 5.9 Computing the central polynomials of the second layer

5.7.4.3 Third Step: Compute the Central Polynomials of the Second
Rainbow Layer

For this, we insert the D1 elements of the i-th row of MQ2,1 into the dark gray parts
of the matrices Q

(i)
1 and Q

(i)
2 (from left to right and top to bottom). The D2 − D1

elements of the i-th row of the matrix MQ2,2 are inserted into the dark gray parts
of the matrices Q

(i)
3 ,Q

(i)
5 and Q

(i)
6 (again left to right and top to bottom; i.e. we fill

the matrix Q
(i)
3 first.). Therefore, the matrices Q(i) look as shown in Fig. 5.9 (left).

Due to the relation F (i) = (T −1)T · Q(i) · T −1 we can compute the non zero
parts of the matrices F (i) (i = v2 + 1, . . . , n) as

F
(i)
1 = Q

(i)
1 ,

F
(i)
2 = (Q

(i)
1 + (Q

(i)
1 )T ) · T1 +Q

(i)
2 ,

F
(i)
3 = (Q

(i)
1 + (Q

(i)
1 )T ) · T4 +Q

(i)
2 · T3 +Q

(i)
3 ,

F
(i)
5 = UT(T T

1 ·Q(i)
1 · T1 + T T

1 ·Q(i)
2 +Q

(i)
5 ),

F
(i)
6 = T T

1 · (Q(i)
1 + (Q

(i)
1 )T ) · T4 + T T

1 ·Q(i)
2 · T3

+ T T
1 ·Q(i)

3 + (Q
(i)
2 )T · T 4+ (Q

(i)
5 + (Q

(i)
5 )T ) · T3 +Q

(i)
6 . (5.50)

After this, we can use the inverse relation Q(i) = T T · F (i) · T to compute the
matrices Q

(i)
9 . We get

Q
(i)
9 = UT(T T

2 ·F (i)
1 ·T2+T T

2 ·F (i)
2 ·T3+T T

3 ·F (i)
5 ·T3+T T

2 ·F (i)
3 +T T

3 ·F (i)
6 ). (5.51)

5.7.4.4 Fourth Step: Compute the Public Key

For this last step, we transform the matrices Q(i) (i = v1 + 1, . . . , n) back into a
Macaulay matrix MQ. This is done as shown in Fig. 5.10. For i = v1, . . . , n, we
perform the following 4 steps
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Fig. 5.10 Building the matrix MQ of StructuredRainbow

Table 5.6 Running times of our efficient key generation algorithms of the standard and the
structured rainbow signature schemes on an intel xeon @ 3.6 GHz (Skylake) using AVX2 vector
instructions

Security category I/Ia II/IIa III/IIIa

Parameter set (GF(16), 32, 32, 32) (GF(256), 68, 36, 36) (GF(256), 92, 48, 48)

Standard Structured Standard Structured Standard Structured

Mcycles 8.29 9.28 94.8 110 126 137

Time (ms) 2.30 2.58 26.3 30.5 34.9 38.0

Memory (MB) 3.5 3.5 4.6 4.6 7.0 7.0

• First, we write the D1 elements of the submatrix (Q
(i)
1 ||Q(i)) into the (i − v1)-th

row of the matrix MQ (from left to right and top to bottom).
• The following v1o2 columns of the (i − v1)− th row of the matrix MQ are filled

with the elements of the matrix Q
(i)
3 . Again, these are read from left to right and

top to bottom.
• We continue with the elements of the submatrix (Q

(i)
5 ||Q(i)

6 ).
• The last D3 − D2 columns of the (i − v1)-row are filled with the entries of the

matrix Q
(i)
9 (again from left to right and top to bottom).

We divide the matrix MQ into submatrices as described above.
Finally, we compute the matrix MP by MP = S ·MQ or, with the special form

of our matrix S ,

B1 = MQ1,2 + S′ ·MQ2,2,

B2 = MQ1,3 + S′ ·MQ2,3,

B3 = MQ2,3. (5.52)

Note that the coefficients in MP are ordered according to the special monomial
order defined above.
Algorithm 5.10 presents this key generation algorithm in compact form. Table 5.6
shows the running time of our key generation algorithms for the standard and the
StructuredRainbow signature scheme.
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Algorithm 5.10 Efficient Key Generation of the StructuredRainbow Signature
Scheme
Input: linear transformations S, T of form (5.40), matrices B1 ∈ F

o1×D1 , B2 ∈ F
o2×(D1) and

B3 ∈ F
o2×(D2−D1).

Output: Rainbow central map F , matrices C1, C2, C3 (see Fig. 5.7).
1: Compute the matrices MQ1,1, MQ2,1 and MQ2,2 using (5.48)
2: for i = 1 to o1 do
3: Insert the coefficients of the i-th row of the matrix MQ1,1 into the

submatrices Q
(i)
1 and Q

(i)
2 .

4: Set F
(i)
1 = Q

(i)
1 and F

(i)
2 = (Q

(i)
1 + (Q

(i)
1 )T ) · T1 +Q

(i)
2 .

5: Compute the matrices Q
(i)
3 ,Q

(i)
5 ,Q

(i)
6 ,Q

(i)
9 using (5.49).

6: end for
7: for i = o1 + 1 to m do
8: Insert the coefficients of the i-th row of the matrix MQ2,1 into the

submatrices Q
(i)
1 and Q

(i)
2 .

9: Insert the coefficients of the i-th row of the matrix MQ2,2 into the

submatrices Q
(i0
3 ,Q

(i)
5 and Q

(i)
6 .

10: Compute F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 , F

(i)
6 using (5.50).

11: Compute Q
(i)
9 using (5.51).

12: end for
13: for i = 1 to m do
14: Insert the elements of the matrix Q(i) into the i-th row of the matrix

MQ (as described above)
15: end for
16: Compute the remaining parts of the public key by (5.52).
17: return F (1), . . . , F (m), C1, C2, C3.

Note that the algorithms presented in this section can also be used to speed up
the key generation process of (Structured)UOV.
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Chapter 6
MQDSS

Abstract In this chapter we introduce the MQDSS signature scheme, which is one
of the few provably secure multivariate public key cryptosystems. We start by a
description of the MQ based identification scheme which allows a prover to identify
himself using a zero knowledge proof based on the knowledge of the solution of
a random system. We then describe the Fiat-Shamir construction of transforming
an identification to a signature scheme and finally present the MQDSS signature
scheme.

In [1], Chen et al. proposed a new multivariate signature scheme called MQDSS
(Multivariate Quadratic Digital Signature Scheme). In contrast to the multivariate
public key schemes discussed so far, the security of MQDSS is based solely on the
MQ Problem of solving a system of multivariate quadratic equations, which makes
the MQDSS signature scheme provably secure. However, the provable security of
MQDSS comes with the price of relatively large signatures.

The MQDSS signature scheme is based on the MQ based identification scheme
of Sakumoto et al. [4]. Using the Fiat-Shamir transformation [2], it is possible to
convert this identification scheme into a signature scheme.

We start this chapter by describing the MQ based identification scheme of
Sakumoto et al. in Sect. 6.1. In Sect. 6.2, we then introduce the Fiat-Shamir
transformation to convert an identification scheme into a signature scheme. Finally,
in Sect. 6.3, we describe the MQDSS signature scheme.

6.1 The MQ Based Identification Scheme

In [4], Sakumoto et al. presented a new identification scheme whose security is
based solely on the hardness of the MQ Problem. It is therefore one of the very few
provable secure multivariate public key cryptosystems. The scheme exists both as a
3-pass and a 5-pass version.
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154 6 MQDSS

The scheme uses a multivariate quadratic system P : Fn → F
m with randomly

chosen coefficients which can be seen as a system parameter and is fixed for a large
number of users.1 Every user chooses a random vector s ∈ F

n as his private key and
computes his public key as v = P(s) ∈ F

m.
To identify himself to a verifier, a user (called prover) has to show that he knows

a solution s of the quadratic system P(x) = v without revealing any information
about s. This is done using a so called zero-knowledge proof.

To create a zero-knowledge proof of knowledge for the vector s, we need the so
called polar form of the multivariate system P , which is defined as

G(x, y) = P(x+ y)− P(x)− P(y). (6.1)

Note that G(x, y) is bilinear in x and y.

Remark 6.1 In general, the polar form of a multivariate system P is defined as
G(x, y) = P(x+ y)−P(x)−P(y)+P(0) (c.f. Chap. 2). But, since we assume the
system P to have no constant terms, the term P(0) vanishes.

The basic observation of [4] is the following: The knowledge of s is equivalent
to knowing a tuple (r0, r1, t0, t1, e0, e1) with r0, r1, t0, t1 ∈ F

n and e0, e1 ∈ F
m

satisfying

G(t0, r1)+ e0 = v− P(r1)− G(t1, r1)− e1 and (6.2)

(t0, e0) = (r0 − t1,P(r0)− e1). (6.3)

Under the assumption that there exists a computationally binding and statistically
hiding commitment scheme Com,2 the authors of [4] used this observation to create
a zero-knowledge proof of knowledge of a solution of the system P(x) = v.
This proof can be used by a prover P to identify himself to a verifier V using an
interactive protocol. In the paper [4], the authors proposed both a 3- and a 5- pass
version of the resulting identification scheme. The workflow of these two schemes
is shown in Figs. 6.1 and 6.2.

The identification protocols as shown in Figs. 6.1 and 6.2 are not error free, i.e.
there is a non negligible probability that an attacker, who is not the owner of the
private key s, can pass one round of the protocol (soundness error). In case of the
3-pass version, this soundness error is 2

3 , for the 5-pass version it is 1
2 + 1

2q
, where

q is the cardinality of the underlying field. To make the impersonation probability
reasonably small, it is therefore necessary to perform several rounds of the protocol.

1To simplify the description of the scheme, we assume that the system P does not contain constant
terms.
2In practice this is realized by a collision- and pre-image resistant hash function.
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Prover: P,v, s Verifier: P,v

Choose r0, t0 ∈R Fn, e0 ∈R Fm

Set r1 = s − r0, t1 = r0 − t0
Set e1 = P(r0) − e0

c0 = Com(r1, G(t0, r1) + e0)
c1 = Com(t0, e0)
c2 = Com(t1, e1)

(c0, c1, c2)

Ch

If Ch = 0, Rsp = (r0, t1, e1)
If Ch = 1, Rsp = (r1, t1, e1)
If Ch = 2, Rsp = (r1, t0, e0)

Rsp

Pick Ch ∈R {0, 1, 2}

If Ch = 0, check

c1
?= Com(r0 − t1, P(r0) − e1)

c2
?= Com(t1, e1)

If Ch = 1, check

c0
?= Com(r1,v − P(r1) − G(t1, r1) − e1)

c2
?= Com(t1, e1)

If Ch = 2, check

c0
?= Com(r1, G(t0, r1) + e0)

c1
?= Com(t0, e0)

Fig. 6.1 The MQ based identification scheme (3-pass version)

In order to show that the two versions of the MQ based identification scheme
really provide zero-knowledge proofs of knowledge, we have to prove the following
three theorems, of which the first is easy to show.

Theorem 6.2 The MQ based identification scheme as shown in Figs. 6.1 and 6.2
is correct, i.e. an honest user can respond to all challenges correctly and therefore
will pass the identification protocol with probability 1.

Theorem 6.3 The MQ based identification scheme as shown in Figs. 6.1 and 6.2
is statistically zero-knowledge, if the underlying commitment scheme Com is
statistically hiding.
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Prover: P,v, s Verifier: P,v

Choose r0, t0 ∈R Fn, e0 ∈R Fm

r1 = s − r0
c0 = Com(r0, t0, e0)
c1 = Com(r1, G(t0, r1) + e0) (c0, c1)

Pick α ∈R F

α

t1 = αr0 − t0
e1 = αP(r0) − e0

(t1, e1)

Pick Ch ∈R {0, 1}
Ch

If Ch = 0, Rsp = r0
If Ch = 1, Rsp = r1

Rsp

If Ch = 0, check

c0
?= Com(r0, αr0 − t1, αP(r0) − e1)

If Ch = 1, check c1
?=

Com(r1, α(v − P(r1)) − G(t1r1) − e1)

Fig. 6.2 The MQ based identification scheme (5-pass version)

Proof (sketch) We restrict to the 3-pass version (see Fig. 6.1). Let S be a simulator
which only gets the public key (P, v) interacting with a cheating verifier CV . We
have to show that S can impersonate an honest prover with probability 2/3. To
do this, S chooses randomly a value Ch� ∈ {0, 1, 2} and vectors s′, r′0, t′0 ∈ F

n,
e′0 ∈ F

m. Here, Ch� is a prediction which challenge the cheating verifier CV will
not choose. Then, S computes r′1 = s′ − r′0 and t′1 = r′0 − t′0. Furthermore, he
computes

• If Ch� = 0: e′1 = v− P(s′)+ P(r′0)− e′0 and c′0 = Com(r′1,G(t′0, r′1)+ e′0)
• If Ch� = 1: e′1 = P(r′0)− e′0 and c′0 = Com(r′1,G(t′0, r′1)+ e′0)
• If Ch� = 2: e′1 = P(r′0)− e′0 and c′0 = Com(r′1, v− P(r′1)− G(t′1, r′1)+ e′1).

Then, S computes c′1 = Com(t′0, e′0) and c′2 = Com(t′1, e′1) and sends the
commitments (c′0, c′1, c′2) to CV .

Due to the statistical hiding property of Com, the challenge chosen by CV will be
different from Ch� with probability 2/3. In this case, the responses Rspi (i �= Ch�)
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will be accepted. Therefore, the simulator S can produce a valid transcript of one
round of the identification scheme with probability 2

3 . 	

Theorem 6.4 If the commitment scheme Com is computationally binding, the
3- and 5-pass versions of the MQ based identification scheme are arguments of
knowledge for a solution s of P(x) = v with knowledge errors of 2

3 and 1
2 + 1

2q

respectively.

Proof (Sketch) Again we restrict to the 3-pass version of the identification scheme.
We have to show that a user, who is able to respond to all three challenges correctly,
can either break the binding property of the commitment scheme Com or extract a
solution of the given instance of the MQ Problem. So, let Rsp0 = (r̃(0)

0 , t̃(0)
1 , ẽ(0)

1 ),

Rsp1 = (r̃(1)
1 , t̃(1)

1 , ẽ(1)
1 ) and Rsp2 = (r̃(2)

1 , t̃(2)
0 , ẽ(2)

0 ) be valid responses to the
challenges 0, 1 and 2 respectively (for fixed commitments c0, c1 and c2). Since all
three responses are found to be correct, we have

c0 = Com(r̃(1)
1 , v− P(r̃(1)

1 )− G(t̃(1)
1 , r̃(1)

1 )− ẽ(1)
1 )

= Com(r̃(2)
1 ,G(t̃(2)

0 , r̃(2)
1 )+ ẽ(2)

0 ), (6.4)

and

c1 = Com(r̃(0)
0 − t̃(0)

1 ,P(r̃(0)
0 )− ẽ(0)

1 )

= Com(t̃(2)
0 , ẽ(2)

0 ), (6.5)

and

c2 = Com(t̃(0)
1 , ẽ(0)

1 )

= Com(t̃(1)
1 , ẽ(1)

1 ). (6.6)

If, in any of the Eqs. (6.4)–(6.6), the input values of Com in the two rows are distinct,
the bounding property of the commitment scheme is broken. Otherwise we find from
(6.4) r̃(1)

1 = r̃(2)
1 and therefore

v = P(r̃(2)
1 )+ G(t̃(1)

1 + t̃(2)
0 , r̃(2)

1 )+ ẽ(2)
0 + ẽ(1)

1 .

Furthermore we find

t̃(1)
1 + t̃(2)

0
(6.6)= t̃(0)

1 + t̃(2)
0

(6.5)= r̃(0)
0

and

ẽ(2)
0 + ẽ(1)

1
(6.6)= ẽ(2)

0 + ẽ(0)
1

(6.5)= P(r̃(0)
0 ).



158 6 MQDSS

Therefore we have

v = P(r̃(2)
1 )+ G(r̃(0)

0 , r̃(2)
1 )+ P(r̃(0)

0 )
(6.1)= P(r̃(0)

0 + r̃(2)
1 ).

We have therefore found a solution of the equation P(x) = v. 	


6.1.1 Reducing the Communication Cost

For the 3-pass identification scheme, we can reduce the overall communication
cost by using the following technique. Instead of sending the three commitments
c0, c1, c2 to the verifier, the prover sends the hash value com = H(c0, c1, c2)

for a collision resistant hash function H. To enable verification, he has to add
the commitment cCh to the response. The verifier computes the commitments cj

(j �= Ch) and finally checks if com = H(c0, c1, c2) holds. By doing so, the
communication cost of the 3-pass identification scheme is reduced by the length
of one hash value per round.

For the 5-pass identification scheme, this technique does not lead to a reduction
of communication directly. However, when using the 5-pass identification scheme
as basis of a Fiat-Shamir signature, we can use a similar technique to reduce the
signature size significantly (see Sect. 6.3).

6.1.2 Security

An attacker against the identification scheme can have one or both of the goals

1. Impersonate himself as a different user
2. Break the underlying hardness assumption (in this case find a solution of

P(x) = v).

Note that, due to the correctness of the scheme, a successful attack against (2)
implies an attack against (1).

Usually it is demanded that the hardness of the underlying problem is at least
2128, which requires the system P to consist of at least 148 equations in the same
number of variables over GF(2) (or 32 equations over GF(256)). On the other hand,
the security of the scheme against impersonation attacks might be significantly
smaller.

In order to reduce the impersonation probability of the 3-pass scheme to 2−k , we
need


 ≥ k

log2 3/2
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Table 6.1 Minimal number of rounds needed in the MQ based identification scheme

Impersonation Number of rounds

probability 3-pass identification 5-pass identification (q = 256)

2−32 55 33

2−64 110 65

2−80 137 81

2−128 219 129

rounds. For the 5-pass version, the minimal number of rounds is given by


 ≥ k

log2(1/2+ 1/(2q))
.

Table 6.1 shows, for different values of k, the minimal number of rounds needed to
reduce the impersonation probability below 2−k .

6.1.3 Key Sizes and Efficiency

Since the public system P of the MQ based identification scheme is a completely
random system, it can be stored as a small seed of e.g. 256 bits. Together with the
vector v, we therefore obtain a public key size of

sizepk MQident = m�log2 q� + 256 bits.

For a security level of 128 bit, the public key size of the MQ based identification
scheme is therefore 404 bits (3-pass scheme, q = 2) or 512 bits (5-pass scheme,
q = 256).

The private key consists of the vector s, which can be stored using

sizesk MQident = n�log2 q� bits.

For the 3-pass scheme (q = 2), this results in a private key size of 148 bits, for the
5-pass scheme (q = 256), we get a private key size of 256 bits.

For the 3-pass version, the communication cost between prover and verifier is

3|h| + 2+ (2n+m)�log2 q� bits.

per round, where |h| is the output length of the commitment scheme Com. Using
the above technique to reduce the communication cost, we can reduce this to

2|h| + 2+ (2n+m)�log2 q� bits.
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Table 6.2 Key sizes (in bit) and communication cost of the MQ based identification scheme

Impersonation Communication cost (kB)

probability 3-pass scheme (q = 2) 5-pass scheme (q = 256)

2−32 8.16 (6.43) 5.19

2−64 16.3 (12.9) 10.2

2−80 20.3 (16.0) 12.7

2−128 32.5 (25.6) 20.3

The hardness of the underlying MQ instance is 128 bit. For the 3-pass scheme, the number in
brackets shows the overall communication cost using the mentioned idea to reduce it

For the 5-pass version, the communication cost per round is

2|h| + 1+ (2n+m+ 1)�log2 q� bits.

Table 6.2 shows the overall communication cost of the 3- and 5-pass MQ based
identification scheme for different impersonation probabilities (128 bit security
of the underlying MQ Problem, |h| = 256). In the fourth column, the number
in brackets shows the overall communication cost using the above technique to
reduce it.

6.1.4 Toy Example

We choose m = n = 4 and take F = GF(4) as the underlying finite field,
whose addition and multiplication tables are given in Fig. 3.3. We choose randomly
a multivariate quadratic system P = (p(1), . . . , p(4)) : F4 → F

4 of the form

p(1)(x1, . . . , x4) = α2x1x3 + x1x4 + x2
2 + α2x2x3 + x2x4 + α2x2

+ x2
3 + α2x3 + αx4 + 1,

p(2)(x1, . . . , x4) = αx2
1 + α2x1x2 + x1x4 + αx2

2 + αx2x3 + αx2x4

+ α2x2 + α2x2
3 + α2x3x4 + αx4 + α2,

p(3)(x1, . . . , x4) = α2x2
1 + α2x1x3 + x1 + x2x3 + α2x2x4 + x2 + αx2

3

+ x3x4 + αx3 + αx4 + α2,

p(4)(x1, . . . , x4) = x1x2 + x2
2 + αx2x3 + α2x2x4 + α2x2 + α2x2

3

+ α2x3x4 + α2x2
4 + α.

The prover randomly chooses a vector s ∈ F
4 as his private key, for example

s = (α, α, 1, 1),
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and computes v = F(s) as his public key. He obtains

v = (α2, 0, 0, α).

In the following we perform two rounds of the 3-pass identification scheme.

1. Round

We choose randomly 3 vectors r0, t0 and e0 ∈ F
4, e.g.

r0 = (0, α, α, 1),

t0 = (α, 0, 1, α2),

e0 = (α, 0, α, 1)

and compute

r1 = s− r0 = (α, 0, α2, 0),

t1 = r0 − t0 = (α, α, α2, α),

e1 = P(r0)− e0 = (1, 0, α2, 1).

Finally, we compute the three commitments

c0 = Com(r1,G(t0, r1)+ e0) = Com(α, 0, α2, 0, 1, 0, α, 0)

c1 = Com(t0, e0) = Com(α, 0, 1, α2, α, 0, α, 1)

c2 = Com(t1, e1) = Com(α, α, α2, α, 1, 0, α2, 1)

and send them to the verifier. Let us assume that we get Ch1 = 0 as the challenge
for round 1. Therefore, we have to compute the response as

Rsp1 = (r0, t1, e1) = (0, α, α, 1, α, α, α2, α, 1, 0, α2, 1).

2. Round

We choose randomly 3 vectors r0, t0 and e0 ∈ F
4, e.g.

r0 = (α, 0, α, α),

t0 = (α, 1, 1, 1),

e0 = (0, 1, α2, α2)

and compute
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r1 = s− r0 = (0, α, α2, α2),

t1 = r0 − t0 = (0, 1, α2, α2),

e1 = P(r0)− e0 = (1, α2, 0, α2).

Finally, we compute the three commitments

c0 = Com(r1,G(t0, r1)+ e0) = Com(0, α, α2, α2, 0, α, α, 1)

c1 = Com(t0, e0) = Com(α, 1, 1, 1, 0, 1, α2, α2)

c2 = Com(t1, e1) = Com(0, 1, α2, α2, 1, α2, 0, α2)

and send them to the verifier. Let us assume that we get Ch2 = 2 as the challenge
for round 2. Therefore, we have to compute the response as

Rsp2 = (r1, t0, e0) = (0, α, α2, α2, α, 1, 1, 1, 0, 1, α2, α2).

6.2 The Fiat-Shamir Transformation

In [2], Fiat and Shamir proposed a general construction to convert an identification
scheme into a digital signature scheme. The basic idea is to produce a transcript of
the interactive identification protocol over r rounds. The challenges Ch1, . . . , Chr

are hereby derived from the hash value of the message to be signed. The resulting
signature scheme can be described as follows:

Public Key The public key of the underlying identification scheme.

Private Key The private key of the underlying identification scheme.

Signature Generation To generate a signature for a message d ∈ {0, 1}�, the
signer uses a hash function H : {0, 1}� → {0, 1}n to compute a hash value
h = H(d) of the message and two derivation functions DCh and DCom to derive
from h the challenges Ch1, . . . , Chr and the commitments (Com1, . . . , Comr) of
the identification scheme. He computes, for i = 1, . . . , r , the responses Rspi of
the identification scheme corresponding to Comi and Chi . The signature σ of the
message d is given by

σ = (Com1, . . . , Comr, Rsp1, . . . , Rspr).

Since the functions H and DCh are publicly known, the challenges Ch1, . . . , Chr

do not have to be part of the signature.
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Signature Verification To check if σ is indeed a valid signature for the doc-
ument d, the verifier uses the functions H and DCh to compute the challenges
Ch1, . . . , Chr . Then he parses σ into Com1, . . . , Comr, Rsp1, . . . , Rspr and
checks, for i = 1, . . . , r , if Rspi is the correct response according to Comi and
Chi . The signature σ is accepted if and only if all these tests are fulfilled. If one of
the test fails, the signature is rejected.

6.2.1 Security Analysis

The security of the Fiat-Shamir signature scheme was proven by Stern et al. in [3].
The proof is given in the so called random oracle model.

Definition 6.5 A random oracle is an oracle which, on every unique query, outputs
a response chosen uniformly at random from its output domain. If a query is
repeated, it gives the same response every time the query is submitted.

In the random oracle model, one assumes that every hash function behaves like a
random oracle.

The security proof for the Fiat-Shamir transform is based on

Theorem 6.6 (Forking Lemma) Let A be a PPT Turing Machine receiving only
public data as input. If A can find a valid signature (m, σ1, h1, σ2), then a replay
of the same machine, with the same random tape but a different random oracle, can
find another valid signature (m, σ1, h

′, σ ′2) with h �= h′.

Proof see [3], Lemma 2. 	

Using the Forking Lemma it is now possible to prove

Theorem 6.7 Forging a Fiat-Shamir signature implies breaking the security
assumption of the underlying identification scheme.

Proof We proof the theorem for the case of the MQ based identification scheme of
Sect. 6.1 being the scheme underlying the Fiat-Shamir construction.

Let A be an algorithm forging a signature for a message d and commitments
Com1, . . . , Comr . Due to the forking lemma, we find that, by applying the algo-
rithm A several times (with different random oracles), we can get valid signatures
σ (1), . . . , σ (k) for (d, Com1, . . . , Comr) of the form

σ (i) = (Com1, . . . , Comr, Ch
(i)
1 , . . . , Ch(i)

r , Rsp
(i)
1 , . . . , Rsp(i)

r )

where (Ch
(i)
1 , . . . , Ch

(i)
r ) �= (Ch

(j)

1 , . . . , Ch
(j)
r ) for i �= j .

In particular, we can find three signatures σ̃0, σ̃1 and σ̃2 such that
Ch

(0)
l = 0, Ch

(1)
l = 1 and Ch

(2)
j = 2 for some l ∈ {1, . . . , r}. Since σ̃1, σ̃2

and σ̃3 are valid Fiat-Shamir signatures, we know that Rsp
(i)
l is a valid response to
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Coml, Ch
(i)
l (i = 0, 1, 2). As shown by Theorem 6.4, we can extract from this a

solution of the MQ instance P(x) = v. 	

Remark 6.8 The security proof of the Fiat-Shamir construction as given above is
only true in the classical random oracle model (i.e. the attacker has only classical
access to the random oracle). However, under some additional assumptions, the Fiat-
Shamir construction still leads to a provably secure signature scheme, even when
quantum attacks are considered [5].

Remark 6.9 The number r of rounds of the identification scheme underlying a Fiat-
Shamir signature must be chosen in a way that the security requirements of the
signature scheme are fulfilled. In particular, we do not longer distinguish between
the security level against impersonation attacks and that of attacks against the
underlying problem, but require that both meet a high security level of at least
128 bit. In the case of signatures based on the MQ based identification scheme,
this means that we need at least 219 rounds (3-pass version) or 129 rounds (5-pass
version; q = 256).

6.3 The MQDSS Signature Scheme

The MQDSS signature scheme was proposed by Chen et al. in [1] and later
submitted to the NIST competition for post-quantum public key cryptosystems. The
scheme uses the Fiat-Shamir construction to transform the 5-pass version of the MQ
based identification scheme (see Sect. 6.1) into a signature scheme. Therefore, the
security of the scheme is solely based on the MQ Problem, which makes the scheme
to be one of the very few provable secure multivariate public key schemes.

The scheme uses the following parameters:

• a positive integer k—the security parameter
• a positive integer n = n(k)—the number of variables and equations in the

multivariate quadratic system
• a positive integer q = q(k) (a prime or prime power)—the size of the underlying

field
• a positive integer r = r(k)—the number of rounds

Key Generation In order to generate a key pair of MQDSS, the signer proceeds as
follows:

• He chooses randomly a bitstring sk of length k

• using a PRNG, he derives from sk the three seeds SP , Ss and Srte:

– SP is used to generate the system parameter P (a multivariate quadratic
system of n equations in n variables)

– Ss is used to generate the input s ∈ F
n of the multivariate system
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– Srte is used in the signature generation process to derive all the values r(i)
0 , t(i)0

and e(i)
0 (i = 1, . . . , r). (This step is not performed during key generation.)

• Finally, he computes v = P(s).

The private key of the scheme is the seed sk, the public key consists of the seed SP
and the vector v ∈ F

n.

Signature Generation In order to generate a signature for a document d ∈
{0, 1}�, the signer generates a valid transcript of r rounds of the 5-pass MQ based
identification scheme of Sect. 6.1. In particular, he performs the following steps

1. Derive the seeds SP , Ss and Srte from sk.
2. Derive the multivariate quadratic system P from SP .
3. Derive the vector s from Ss and compute v = P(s). Set pk = (SP , v).
4. Use a hash function H to compute a message dependent random value R by

R = H(sk, d) and a randomized message digest D by D = H(pk,R, d). R

must be included in the signature to enable verification.
5. Derive from Srte and D the values r(1)

0 , . . . , r(r)
0 , t(1)

0 , . . . , t(r)0 , e(1)
0 , . . . , e(r)

0 .
6. For i = 1, . . . r compute

r(i)
1 = s− r(i)

0

c
(i)
0 = Com(r(i)

0 , t(i)0 , e(i)
0 )

c
(i)
1 = Com(r(i)

1 ,G(t(i)0 , r(i)
1 )+ e(i)

0 )

com(i) = (c
(i)
0 , c

(i)
1 )

7. Set σ0 = H(com(1), . . . , com(r))

8. Derive from D and σ0 the first challenge ch1 and parse it into
α(1), . . . , α(r) ∈ F.

9. For i = 1, . . . r compute

t(i)1 = α(i)r(i)
0 − t(i)0

e(i)
1 = α(i)F(r(i)

0 )− e(i)
0

and set Rsp
(i)
1 = (t(i)1 , e(i)

1 ).

10. Set σ1 = (Rsp
(1)
1 , . . . , Rsp

(r)
1 ) and derive from D, σ0, ch1 and σ1 the

challenges Ch(1), . . . , Ch(r) ∈ {0, 1}.
11. For i = 1, . . . , r compute the response Rsp

(i)
2

• If Ch(i) = 0, Rsp(i) = r(i)
0 .

• If Ch(i) = 1, Rsp(i) = r(i)
1 .
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12. Set σ2 = (Rsp
(1)
2 , . . . , Rsp

(r)
2 , c

(1)

1−Ch(1) , . . . , c
(r)

1−Ch(r) ).

The signature for the message d is given as

σ = (R, σ0, σ1, σ2).

The length of the signature σ is |σ | = (2+ r)k + 3rn�log2 q� bits.

Remark 6.10 For a standard Fiat-Shamir signature, we would have to include all
the commitments c

(1)
0 , c

(1)
1 , . . . , c

(r)
0 , c

(r)
1 into the signature. However, as shown in

step 7 of the signature generation process, it is enough to include the hash value
com = H(c

(1)
0 , c

(1)
1 , . . . , c

(r)
0 , c

(r)
1 ), when we include the commitments

c
(1)

1−Ch(1) , . . . , c
(r)

1−Ch(r) (see step 12). During verification, the verifier computes the

commitments c
(1)

Ch(1) , . . . , c
(r)

Ch(r) and checks, if com = H(c
(1)
0 , c

(1)
1 , . . . , c

(r)
0 , c

(r)
1 )

holds. If this is the case, the signature is accepted, otherwise it is rejected.
By this modification, we can reduce the signature size by (r − 1) hash lengths.

Signature Verification In order to check, if σ is a valid MQDSS signature for
the message d, the verifier parses σ into R, σ0, σ1 and σ2. He derives from R, σ0
and σ1 the challenges α(1), . . . , α(r), Ch(1), . . . , Ch(r), computes the commitments
c
(1)

Ch(1) , . . . , c
(r)

Ch(r) and finally checks, if

σ0 = H(c
(1)
0 , c

(1)
1 , . . . , c

(r)
0 , c

(r)
1 )

holds. If this is the case, he accepts the signature σ , otherwise he rejects it.
In detail, the verifier performs the following steps.

1. Derive from SP the multivariate quadratic system P .
2. Parse σ into R, σ0, σ1 and σ2 and derive from R the randomized message digest

D = H(pk,R, d).
3. Derive from D and σ0 the first challenge ch1 and parse it into

α(1), . . . , α(r) ∈ F.
4. Derive from D, σ0, ch1 and σ1 the challenges Ch(1), . . . , Ch(r) ∈ {0, 1}.
5. Parse σ1 into Rsp

(1)
1 , . . . , Rsp

(r)
1 and σ2 into Rsp

(1)
2 , . . . , Rsp

(r)
2 ,

c
(1)

1−Ch(1) , . . . , c
(r)

1−Ch(r) .

6. Recover the missing commitments c
(1)

Ch(1) , . . . , c
(r)

Ch(r) by performing for i =
1, . . . , r the following steps

(a) Parse Rsp
(i)
1 into t(i)1 , e(i)

1 .

(b) If Ch(i) = 0, compute c
(i)
0 as

c
(i)
0 = Com(r(i)

0 , α(i)r(i)
0 − t(i)1 , α(i)P(r(i)

0 )− e(i)
1 ),

otherwise compute c
(i)
1 as
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c1 = Com(r(i)
1 , α(i)(v− Pr(i)

1 )− G(t(i)1 , r(i)
1 )− e

(i)
1 ).

(c) Set com(i) = (c
(i)
0 , c

(i)
1 ).

7. Compute σ ′0 = H(com(1), . . . , com(r)).
8. If σ ′0 = σ0 holds, accept the signature, otherwise reject it.

6.3.1 Security

Due to its construction using the Fiat-Shamir transformation, the security of the
MQDSS Signature scheme is directly based on the security of the underlying MQ
based identification scheme and therefore on the hardness of inverting the system P .
Since P is a completely random system,3 the security of the scheme is based solely
on the hardness of the MQ Problem, which makes the scheme one of the very few
provable secure multivariate public key schemes.

6.3.2 Key Sizes and Efficiency

The public key size of the MQDSS signature scheme is given as

sizepk MQDSS = k + �log2 q�n bits,

the size of the private key is

sizesk MQDSS = k bits.

In [1], the authors used the field GF(31) as the underlying field for MQDSS.
Furthermore, they decided to use a determined system P as the public system
parameter.

Since P is a completely random system, we only have to consider the direct
attack. To defend a determined multivariate quadratic system over GF(31) against
this attack, we need, in order to achieve a security level of 
 bits, about 
/3 equations
and variables.

Regarding the signature size, the most important factor is the number of rounds
of the identification scheme we need to achieve the given level of security. For the 5-
pass identification scheme and GF(31) as the underlying field, this number is given
as

3Here, we assume that the PRNG used to generate the system P from the seed sk works fine.



168 6 MQDSS

Table 6.3 Parameters and key sizes of MQDSS

Security Parameters Public key Secret key Signature
category (k, q, n, r) size (bytes) size (bytes) size (bytes)

I (256, 31, 48, 269) 62 32 32,882

II (384, 31, 64, 403) 88 48 67,800

r =
⌈




log2(1/2+ 1/62)

⌉
≈ 0.95
.

Table 6.3 shows the parameter sets recommended for MQDSS.
As can be seen from the table, the key sizes of MQDSS are much smaller than

those of HFEv- or UOV/Rainbow. The reason for this is the choice of P as a
completely random system, which enables to create the system from a small random
seed.

On the other hand, the signatures are much larger than those of other multivariate
schemes. Also with regard of the efficiency of the signature generation algorithm,
the scheme can’t compete with Rainbow.
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Chapter 7
The SimpleMatrix Encryption Scheme

Abstract In this chapter we study the Simple Matrix encryption scheme, which
is one of the very few multivariate encryption schemes from the SingleField
family. After introducing the basic Simple Matrix encryption scheme, we consider a
variation called rectangular Simple Matrix encryption scheme. This scheme allows
a more flexible parameter choice which leads to smaller key sizes and a decreases
the probability of decryption failures. We end this chapter by a security analysis of
the Simple Matrix scheme.

In the previous chapters, we already discussed a number of multivariate encryption
schemes from the BigField family (e.g. MI, PMI+, HFE, ZHFE). In this chapter we
now introduce a SingleField encryption scheme, called the SimpleMatrix (or ABC)
encryption scheme.

The central map of the SimpleMatrix encryption scheme is a quadratic map
from F

n to F
2n, whose components are defined as the product of linear maps. In

particular, we start with three matrices A, B and C containing linear combinations
of the plaintext variables and define the central map F as F = (E1, E2), where E1
and E2 are given as the matrix products E1 = A · B and E2 = A · C (hence the
name of the scheme).

Although the structure of the SimpleMatrix scheme seems to be very simple, it
has (for suitable parameter sets) withstood all cryptanalytic attempts. Since both
encryption and decryption are very efficient (we only have to solve linear systems),
the scheme is considered to be one of the most promising encryption schemes on
the basis of multivariate polynomials.

Section 7.1 describes the basic SimpleMatrix encryption scheme as proposed by
Tao et al. in [4]. In Sect. 7.2, we then describe an extension of the scheme called
rectangular SimpleMatrix [5], which allows a flexible balance between security and
efficiency and an even more efficient decryption process. Finally, in Sect. 7.3, we
handle the most important attacks against the SimpleMatrix encryption scheme.
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7.1 The Basic SimpleMatrix Encryption Scheme

The SimpleMatrix encryption scheme, as proposed by Tao et al. in [4], can be
described as follows.

Key Generation Let F be a finite field with q elements, r be a small integer and

A =
⎛
⎜⎝

x1 . . . xr

...
...

xn−r+1 . . . xn

⎞
⎟⎠ ∈ F

r×r .

We set n = r2 and m = 2n. In order to generate a key pair for the SimpleMatrix
scheme, Alice chooses two r × r matrices B and C containing randomly chosen
linear combinations of the variables y1, . . . , yn. She computes E1 = A · B and
E2 = A · C. The central map of the scheme is given as F = (E1, E2) : Fn → F

2n.
In order to hide the structure of the central map in the public key, F is composed
with two invertible affine transformations S : F2n → F

2n and T : Fn → F
n.

Public Key P = S ◦ F ◦ T : Fn → F
2n

Private Key The private key consists of

• the three matrices A, B and C and
• the two affine maps S and T .

Encryption In order to encrypt a plaintext z ∈ F
n, Bob computes w = P(z) ∈ F

2n.

Decryption To decrypt the ciphertext w ∈ F
2n, Alice performs the following three

steps

1. Compute x = S−1(w) ∈ F
2n and set

Ē1 =
⎛
⎜⎝

x1 . . . xr

...
...

xn−r+1 . . . xn

⎞
⎟⎠ , Ē2 =

⎛
⎜⎝

xn+1 . . . xn+r

...
...

xm−r+1 . . . xm

⎞
⎟⎠ .

2. Assume that, for the (so far unknown) plaintext z, the matrix Ā = A(T (z)) is
invertible and set W = Ā−1. From E1 = A · B and E2 = A · C we obtain

B = W · Ē1 and C = W · Ē2.

These two relations yield a system of m linear equations in the n unknown
elements of W and the n variables y1, . . . , yn. By solving this system using
Gaussian elimination, we get the vector y = (y1, . . . , yn) ∈ F

n.

3. Compute the plaintext z ∈ F
n by z = T −1(y).
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Remark 7.1 If the linear system in step 2 of the decryption process is not invertible,
decryption is not possible. In this case, we get a decryption failure. This happens
with a probability of

Probdecryption failure = 1− (1− 1/qn)(1− 1/qn−1) · · · (1− 1/q) ≈ 1

q
.

In order to decrease the probability of decryption failures, the SimpleMatrix scheme
is therefore mainly used over fields of large characteristic such as GF(216) or
GF(232).

Remark 7.2 It might happen that the linear system in step 2 of the decryption
process has multiple solutions. In this case, one can use redundancy in the plaintext
to make the solution unique. One possibility for this is to choose the first coordinate
of each plaintext to be one (see the Toy Example below).

7.1.1 Key Sizes and Efficiency

The public key size of SimpleMatrix is

sizepk SimpleMatrix = 2n
(n+ 1)(n+ 2)

2

F-elements. The size of the private key is

sizesk SimpleMatrix = n(n+ 1)︸ ︷︷ ︸
S

+ n(n+ 1)︸ ︷︷ ︸
T

+ 2n(n+ 1)︸ ︷︷ ︸
F

F-elements. So, in contrast to most other SingleField schemes such as UOV or
Rainbow, the private key size of SimpleMatrix is only quadratic in n.

The decryption process of the SimpleMatrix encryption scheme requires only
the solution of linear systems. This can be implemented much more efficiently
than for example the decryption of HFE and its variants which requires inverting a
univariate polynomial of high degree. Moreover, unlike schemes which use internal
perturbation, the decryption process of Simple Matrix contains no guessing step. It
is therefore much more efficient than the decryption step of the BigField multivariate
encryption schemes discussed so far.

7.1.2 Toy Example

In the following we illustrate the workflow of the SimpleMatrix encryption scheme
using a toy example. We choose F = GF(4) as the underlying field and r = 2.
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Therefore, the public key of our scheme consists of 8 quadratic equations in 4
variables.

The private key of our scheme consists of the two affine maps S : F8 → F
8,

S(x1, . . . , x8) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2 1 0 0 α2 α α 0
α2 0 0 α2 α2 0 1 α

0 0 1 0 α α 0 0
1 0 α α2 1 α2 0 1
0 0 0 0 1 α 1 1
α α2 α2 α α2 0 α α2

α2 α 1 1 0 α2 α 0
α2 α2 0 α2 α2 α2 α2 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

α

α2

α2

1
α

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and T : F4 → F
4,

T (x1, . . . , x4) =

⎛
⎜⎜⎝

0 1 1 α2

α2 1 0 α2

α2 α2 α α2

1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x1

x1

x3

x4

⎞
⎟⎟⎠+
⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

as well as the two matrices B,C ∈ F[x1, x2, x3, x4]2×2

B =
(

αx4 x1 + x2 + α2x3

αx1 + αx3 + α2x4 α2x1 + αx3 + x4

)
and

C =
(

α2x2 + x4 x2 + αx3 + x4

α2x2 + x4 x1 + α2x2 + αx3 + α2x4

)
.

In order to compute the public key, we first compute the matrices

E1 = A · B =
(

x1 x2

x3 x4

)
· B

=
(

αx1x2 + αx1x4 + αx2x3 + α2x2x4 x2
1 + αx1x2 + α2x1x3 + αx2x3 + x2x4

αx1x4 + α2x2
4 x1x3 + α2x1x4 + x2x3 + α2x2

3 + αx3x4 + x2
4

)

and

E2 = A·C =
(

α2x1x2 + x1x4 + α2x2
2 + x2x4 αx1x3 + x1x4 + α2x2

2 + αx2x3 + α2x2x4

α2x2x3 + α2x2x4 + x3x4 + x2
4 x1x4 + x2x3 + α2x2x4 + αx2

3 + α2x3x4 + α2x2
4

)

and set F = (f (1), . . . , f (8)) = (E1,11, E1,12, E1,21, E1,22, E2,11, E2,12, E2,21,

E2,22).
Finally, we compute the public key P = (p(1), . . . , p(8)) : F4 → F

8 by
P = S ◦ F ◦ T , obtaining
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p(1) = α2x2
1 + αx2

2 + x2x4 + αx2 + α2x2
3 + αx3x4 + α2x3 + α2x2

4 + α,

p(2) = αx2
1 + αx1x2 + αx1x3 + α2x1x4 + x1 + x2x4 + x2 + α2x3x4 + αx3

+ x4 + 1,

p(3) = αx2
1 + αx1x2 + α2x1x3 + αx1x4 + α2x1 + α2x2

2 + αx2x3 + x2x4 + x2

+ αx2
3 + x3x4 + α2x3 + x2

4 + α2x4,

p(4) = α2x1x2 + αx2
2 + α2x2x3 + α2x2x4 + x2

3 + αx3x4 + α2x3 + x2
4 ,

p(5) = αx2
1 + αx1x2 + α2x1x4 + x1 + αx2x3 + x2x4 + x2 + x3x4 + αx3 + x2

4

+ x4 + 1,

p(6) = α2x2
1 + x1x2 + x1x3 + x2

2 + x2x4 + x3x4 + α2x2
4 + α,

p(7)=αx2
1+α2x1x3+αx2

2+αx2x3+x2x4+αx2+α2x2
3+α2x3x4+α2x2

4+α2,

p(8) = x2
1 + αx1x2 + x1x3 + α2x2

2 + αx2x3 + α2x2 + αx2
3 + x3x4 + x2

4 + 1.

In order to encrypt a message z = (1, α, α2, α2) ∈ {1} × F
3, we just compute

w = P(z) and obtain

w = (α2, α, 1, 1, 0, 1, α2, α) ∈ F
8.

In order to decrypt the ciphertext (α2, α, 1, 1, 0, 1, α2, α) ∈ F
8, we first compute

x = S−1(w) = (α2, α, α2, α2, 0, α2, 0, 0) ∈ F
8

and write the result into the matrices Ē1 and Ē2 ∈ F
2×2 as

Ē1 =
(

α2 α

α2 α2

)
and Ē2 =

(
0 α2

0 0

)
.

After that, we have to invert the central map, i.e. we have to find a vector y ∈ F
4 such

that F(y) = x holds. We set W =
(

w1 w2

w3 w4

)
to be the inverse of the (unknown)

matrix Ā = A(y) and build the linear system given by the equations W · Ē1−B = 0
and W · Ē2 − C = 0, obtaining
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 α α2 α2 0 0
1 1 α2 0 α α2 0 0
α 0 α α2 0 0 α2 α2

α2 0 α 1 0 0 α α2

0 α2 0 1 0 0 0 0
0 1 α 1 α2 0 0 0
0 α2 0 1 0 0 0 0
1 α2 α α2 0 0 α2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4

w1

w2

w3

w4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rank of this system is 7. Therefore, after eliminating the variables w1, . . . , w4,
we get 3 linear equations in the 4 variables y1, . . . , y4. By solving these equations
we obtain

y = k · (1, α, α2, 1) with k ∈ F.

Finally, we have to compute z(k) = T −1(y(k)) for each k ∈ F. Only for k = α2, the
first component of the vector z(k) is 1, which guarantees that

z(α2) = (1, α, α2, α2)

is the encrypted plaintext.

7.2 The Rectangular SimpleMatrix Encryption Scheme

A natural extension of the SimpleMatrix encryption scheme is the rectangular
SimpleMatrix encryption scheme proposed by Tao et al. in [5]. Instead of using
square matrices A, B and C, the rectangular SimpleMatrix scheme allows these
matrices to be rectangular. It therefore introduces a lot of new parameters, which
make the scheme more flexible and allow the user to find a balance between security,
efficiency and the probability of a decryption failure. The scheme can be described
as follows.

Key Generation Let F be a finite field with q elements and r, s, u,m, n ∈ N

be integers satisfying m = 2su. For the efficiency of the decryption process
we furthermore choose the number n of variables such that (n − r(2u − s))

·(n− r(2u− s)+ 1) ≤ 2m. We set

A =
⎛
⎝ a11 a12 ... a1r

a21 a22 ... a2r

...
...

. . .
...

as1 as2 ... asr

⎞
⎠ , B =

⎛
⎝ b11 b12 ... b1u

b21 b22 ... b2u

...
...

. . .
...

br1 br2 ... bru

⎞
⎠ , C =

⎛
⎝ c11 c12 ... c1u

c21 c22 ... c2u

...
...

. . .
...

cr1 cr2 ... cru

⎞
⎠ ,
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where A is an s×r matrix, whereas B and C are r×u matrices containing randomly
chosen linear combinations of the variables x1, . . . , xn.

As in the case of the standard SimpleMatrix encryption scheme, we define E1 =
A · B and E2 = A · C. The central map F of our scheme consists of the m = 2su

components of the matrices E1 and E2. Note that each of these components is a
homogeneous quadratic polynomial in F[x1, . . . , xn].

Additionally one chooses two invertible linear maps S : Fm → F
m and T :

F
n → F

n.

Public Key P = S ◦ F ◦ T : Fn → F
m.

Private Key The private key consists of

• the matrices A, B, and C and
• the affine maps S and T .

Encryption For a message z = (z1, z2, . . . , zn), the corresponding ciphertext w ∈
F

m is given by w = P(z).

Decryption To decrypt the ciphertext w = (w1, w2, . . . , wm), the owner of the
private key performs the following steps:

1. Compute x = (x1, x2, . . . , xm) = S−1(w) and set

Ē1 =
⎛
⎝

x1 x2 ... xu
xu+1 xu+2 ... x2u

...
...

. . .
...

x(s−1)u+1 x(s−1)u+2 ... xsu

⎞
⎠ ∈ F

s×u;

Ē2 =
⎛
⎝

xsu+1 xsu+2 ... z(s+1)u
z(s+1)u+1 z(s+1)u+2 ... z(s+2)u

...
...

. . .
...

z(2s−1)u+1 z(2s−1)u+2 ... z2su

⎞
⎠ ∈ F

s×u.

Let Ā = A(y), where y = (y1, . . . , yn) is the (so far unknown) pre-image of x
under the central map F .

• If the rank of Ā is r , then there exists an r × s matrix W such that W · Ā = Ir ,
where Ir is the r × r identity matrix. From Ē1 = Ā · B and Ē2 = Ā · C we
get W · Ē1 = W · Ā · B, W · Ē2 = W · Ā · C and therefore W · Ē1 = B and
W · Ē2 = C. We interpret the elements of W as new variables and end up with
2ru linear equations in sr + n unknowns. Then we eliminate the sr elements
of W from these equations. We obtain roughly r(2u − s) linear equations in
the variables y1, y2, . . . , yn.
The dimension of the solution space of this system is usually very small.
Solving this system by Gaussian elimination enables us to eliminate most
of the unknowns, say Z of them. Then we write these Z variables as
linear combinations of the remaining unknown variables and substitute these
equations into the central polynomials. By doing so, we obtain a new system
of m quadratic equations in the remaining n−Z unknowns. When the number
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n−Z is small enough, we can solve this system easily by the Relinearization
algorithm of [3] (see below).

• In the case of Rank(Ā) < r , decryption remains an open problem.

2. Compute the plaintext z = (z1, z2, . . . , zn) = T −1(y).

7.2.1 Solving the Quadratic Systems

During the second step of the decryption process, we have to solve a system of
quadratic equations. This system consists of m equations in about n − r(2u − s)

variables. If the condition

(n− r(2u− s))(n− r(2u− s)+ 1) ≤ 2m (7.1)

is fulfilled, we can solve this system easily by the Relinearization technique [3].

1. Interpret each quadratic monomial xixj as a new variable xij .
2. Solve the resulting linear system by Gaussian elimination.

If the condition (7.1) is fulfilled, the linear system will have exactly one solution
which coincides with the solution of the quadratic system. The Relinearization
technique therefore enables us to find the solution of highly overdetermined systems
in polynomial time.

7.2.2 Probability of Decryption Failures

In the case of the rectangular SimpleMatrix encryption scheme, a decryption failure
occurs if and only if the rank of the matrix Ā is less than r . The probability of this
can be computed by

1− (1− 1

qs
)(1− 1

qs−1
) · · · (1− 1

qs−r+1
) ≈ 1

qs−r+1
,

Therefore, the probability of a decryption failure occurring can be estimated by
qr−s−1. By choosing the parameters s and r of our scheme in an appropriate way,
we can therefore reduce the probability of decryption failures to a negligible value.

7.2.3 Key Sizes and Efficiency

The public key size of the rectangular SimpleMatrix encryption scheme is given as
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sizepk rectSM = 2su
(n+ 1)(n+ 2)

2

field elements, the size of the private key is

sizesk rectSM = n(n+ 1)︸ ︷︷ ︸
T

+ 2su(2su+ 1)︸ ︷︷ ︸
S

+ (sr + 2ru)(n+ 1)︸ ︷︷ ︸
F

F-elements. In order to decrypt a ciphertext we have to solve only systems of linear
equations, just like in the case of the standard SimpleMatrix encryption scheme
However, there we had a system of size m×m, but now we deal with significantly
smaller systems.

Since the running time of Gaussian elimination is cubic in the size of the linear
system, this leads to a significant speed up in running time. Furthermore we note
that, while, for the standard SimpleMatrix scheme, the ratio between plain and
ciphertext length was fixed to two, the rectangular SimpleMatrix scheme allows
significantly smaller blow up factors.

7.2.4 Toy Example

In this section we demonstrate the workflow of the rectangular SimpleMatrix
scheme. However, to reduce the dimensions of the public key, we choose the
size of the matrices A, B and C as in the case of the standard SimpleMatrix
scheme. Therefore, the main purpose of this toy example is to demonstrate the new
decryption algorithm used for rectangular SimpleMatrix.

Let F=GF(4) and r = s = u = 2. Therefore, the number of equations in the
public system is given by m = 2su = 8. However, the number of variables is no
longer fixed to n = m/2, but we set n = 5 (i.e. we have a smaller blow up factor).

We choose the affine maps S : F8 → F
8 and T : F5 → F

5 as

S(x1, . . . , x8) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2 α 0 α 0 0 α2 α2

0 1 α 1 0 α α2 α

0 1 1 α α 0 α2 α

α2 1 0 α2 α α α2 0
α2 α 0 α α2 α2 0 α2

0 α2 α2 1 α2 α 0 α

α α α α2 α α α2 α2

1 1 0 1 α2 α α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
α

α2

1
α2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

and
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T (x1, . . . , x5) =

⎛
⎜⎜⎜⎜⎜⎝

α2 1 α α α

α2 α α2 α 1
1 α α2 α2 1
1 1 α α 1
α 1 0 α 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠+
⎛
⎜⎜⎜⎜⎜⎝

α2

α2

1
0
α

⎞
⎟⎟⎟⎟⎟⎠ .

The matrices A,B and C ∈ F
2×2 are chosen as

A =
(

x1 + αx2 + x3 + αx4 αx1 + α2x3 + α2x4

αx1 + x2 + αx4 + αx5 x1 + x2

)
,

B =
(

αx1 + α2x2 + α2x3 + αx4 + α2x5 αx1 + αx3 + x4 + x5

αx1 + α2x2 + αx3 + x4 + x5 αx1 + x2 + αx3 + αx4 + α2x5

)
,

C =
(

α2x1 + x3 + α2x5 α2x1 + α2x2 + α2x3 + α2x4 + x5

x1 + αx2 + αx4 + α2x5 x1 + x2 + α2x4 + x5

)
.

We compute E1=A ·B, E2=A ·C, F=(E1,1,1, E1,1,2, E1,2,1, E1,2,2, E2,1,1, E2,1,2,

E2,2,1, E2,2,2) and P = (p(1), . . . , p(8)) = S ◦ F ◦ T . We get

p(1) = αx2
1 + α2x1x2 + x1x3 + α2x1x5 + x2

2 + x2x4 + α2x2x5

+ αx3x4 + αx4x5 + x5 + α,

p(2) = α2x1x2 + αx1 + x2x3 + α2x2x5 + α2x2 + αx2
3 + αx3x4 + x3x5

+ x3 + x2
4 + α2x4 + αx2

5 + 1,

p(3) = x2
1 + x1x3 + x1x4 + α2x1 + x2

2 + x2x3 + α2x2x4 + αx2x5 + x2 + x3 + αx2
4

+ x5 + 1,

p(4) = α2x2
1 + αx1x2 + x1x4 + x2

2 + x2x3 + αx2x4 + α2x2 + α2x3x4

+ α2x3x5 + α2x2
4 + αx4x5 + αx4 + αx2

5 + α2x5,

p(5) = x2
1 + x1x2 + α2x1x3 + x1x4 + x1x5 + α2x1 + α2x2

2 + αx2x3 + x2x4 + x2x5

+ αx3x4 + x3x5 + αx3 + α2x2
4 + x4x5 + αx4 + α2x2

5 + αx5 + 1,

p(6) = αx2
1 + x1x2 + αx1x3 + α2x1x4 + α2x1 + α2x2x3 + αx2x5 + α2x2 + x3

+ αx4x5 + x4 + αx2
5 + α2x5 + α,

p(7) = α2x1x2 + x1x3 + α2x1x4 + α2x1x5 + α2x1α
2x2

2 + x2x3 + α2x2x4

+ α2x2
3 + αx3x4 + α2x3x5 + α2x3 + x4x5 + α2x2

5 + x5 + 1,

p(8) = αx2
1 + α2x1x2 + α2x1x3 + α2x1x4 + α2x2

2αx2x4 + α2x2x5 + α2x2

+ α2x2
3 + α2x3x4 + α2x3x5 + αx3 + αx2

4 + x4x5 + x4 + αx2
5 + αx5
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We want to encrypt the message z = (α, α, α2, 1, α2) ∈ F
5. We get

w = P(z) = (α, 1, 1, α2, α2, 0, 1, α2) ∈ F
8.

In order to decrypt the ciphertext w = (α, 1, 1, α2, α2, 0, 1, α2) ∈ F
8, we compute

S−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 1 0 α2 α2 0 1 α

α 1 α2 0 α 1 1 α

0 1 α2 1 α2 1 α α

α α2 1 1 0 α2 1 0
0 α2 α2 α α2 0 1 1
α2 α2 α2 α α α2 0 α

1 0 0 0 α2 α2 1 α2

1 0 1 0 1 α 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

x = S−1(α − cS) = (0, 1, 0, α2, α2, α, 0, 0).

We define the matrices Ē1 and Ē2 ∈ F
2×2 as

Ē1 =
(

0 1
0 α2

)
and Ē2 =

(
α2 α

0 0

)

and consider the relations W · Ē1 = B and W · Ē2 = C (for an unknown matrix
W = Ā−1). After eliminating the elements of the matrix W from these equations,
we find 3 linearly independent equations in the 5 plaintext variables

y2 + y3 = 0

α2y1 + α2y2 + y4 = 0

y1 + αy2 + y5 = 0 (7.2)

After substituting these equations into the public key, we get

from p(1) : 0 = 0

from p(2) : αy2
2 = 1

from p(3) : 0 = 0

from p(4) : y2
2 = α2

from p(5) : α2y1y2 + αy2
2 = α2
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from p(6) : αy1y2 + y2
2 = α

from p(7) : α2y2
1 + y1y2 + αy2

2 = 0

from p(8) : αy2
1 + α2y1y2 + y2

2 = 0

We interpret y2
1 , y1y2 and y2

2 as new variables and solve the resulting linear system
by Gaussian elimination. We get

(y2
1 , y1y2, y

2
2 , y1, y2) = (α2, α2, α2, α, α)

which corresponds to (y1, y2) = (α, α). By substituting this result into (7.2), we get
(y3, y4, y5) = (α, 0, 1). Altogether, we find

y = F−1(x) = (α, α, α, 0, 1).

Finally, we have to invert the second affine map T . We get

T −1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 α2 0
1 α α2 α2 1
1 0 0 α α2

α 1 α2 1 0
1 0 α2 0 0

⎞
⎟⎟⎟⎟⎟⎠

and

z = T −1(y− cT ) = (α, α, α2, 1, α2) ∈ F
5.

7.3 Attacks on SimpleMatrix

In order to find secure parameters for the SimpleMatrix encryption scheme, we
basically have to consider two different attacks:

• the direct attack and
• rank based attacks

7.3.1 Direct Attack

The most straightforward way to attack a multivariate encryption scheme such as
SimpleMatrix is the direct attack. For this, an attacker considers the public system

P(z1, . . . , zn) = w
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as an instance of the MQ Problem and tries to solve it using an algorithm like XL,
Mutant XL or F4.

Experiments [4, 5] have shown that the public systems of the SimpleMatrix
scheme and its variants can be solved faster then random systems. The reason
for this is the relatively low degree of regularity of these systems. A conservative
assertion is that the degree of regularity of a direct attack against SimpleMatrix is at
least r + 1.

This assertion can be supported by the fact that even the holder of the private key
in some sense needs to deal with polynomials of this degree due to the involvement
of the inverse of matrix Ā.

In order to defend the scheme against direct attacks, we therefore need signifi-
cantly more equations than for the public systems like UOV and Rainbow. This is
also due to the fact that we deal here with overdetermined systems to ensure the
public key P to be injective.

7.3.2 Rank Attacks

In general, there are two different flavors of the rank attack.
The first one is called the MinRank attack or LowRank attack as proposed by

Goubin et al. in [2]. The other one is called the HighRank Attack [1]. In this section
we analyze the complexity of these two attacks against the SimpleMatrix encryption
scheme.

In the case of the SimpleMatrix schemes, the components of the central map
F and the public key P are homogeneous quadratic polynomials in F[x1, . . . , xn].
Let Qi and Q̄i (i = 1, . . . , m) be the symmetric matrices associated to the i-th
component of F and P respectively (see Sect. 5.2). Note that, for underlying fields
of characteristic 2, the diagonal elements of these matrices are 0. In the case of the
SimpleMatrix scheme, the rank of the matrices Qi is obviously bounded by 2r .

The goal of the MinRank attack is to find a vector t = (t1, t2, . . . , tm) ∈ F
m such

that the rank of the matrix Q̃ = ∑m
i=1 tiQ̄i is less or equal to 2r . Such a matrix Q̃

corresponds to a central polynomial. By finding m of these matrices of low rank the
attacker can therefore recover the affine map S and therefore the private key of the
scheme.

In order to find such a matrix Q̃ of low rank, the attacker can apply any of the
MinRank algorithms discussed in Sect. 4.2.

The complexity of the MinRank attack against the SimpleMatrix scheme can be
estimated by

ComplexityMinRank SimpleMatrix = O(q�
m
n
�2rm3) = O(q4r r6). (7.3)

For the HighRank Attack, we form an arbitrary linear combination
Q̃ =∑m

i=1 αiQ̄i and find V = Ker(Q̃).
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If Q̃ has a nontrivial kernel, we set (
∑m

i=1 λiQ̄i)·V = 0 and check if the solution
set V̂ for the λi has dimension n− 2r . If this is true, V is, with certain probability,
a subspace of T −1(O) where O = {x = (x1, . . . , xn) : x1 = . . . = xn−2r = 0}.

We can therefore use the attack to recover the secret linear transformation T and
with it the private key of our scheme. The complexity of the HighRank attack can
be estimated by

ComplexityHighRank SimpleMatrix = O(n6q2r ) = O(r12q2r ). (7.4)

Therefore, for carefully chosen parameters, Rank attacks against the Simple Matrix
scheme are highly impractical.

We also would like to point out that, as stated in [5], linearization and higher order
linearization equations (HOLE) attacks do not apply to SimpleMatrix schemes.
Recently there are publications claiming polynomial time attacks on all SM
schemes, but our analysis of the paper shows that they are not correct and
this is further confirmed by the fact that none of the papers have any practical
implementation of the attacks.

7.3.3 Practical Parameters

In this section we propose practical parameters for the (rectangular) Simple Matrix
scheme leading to schemes which are secure against the attacks discussed above.
For this, we choose GF(216) for the underlying field.

For the rectangular SimpleMat- rix encryption scheme we furthermore choose
the parameters in such a way that the probability of a decryption failure is less than
2−40. Thus we get s = r + 2. In order to enable efficient decryption, we choose
u = r + 2. Tables 7.1 and 7.2 show the resulting key and ciphertext sizes.

Table 7.1 Parameters and key sizes of the SimpleMatrix encryption scheme

Security Parameters Public key Private key Plaintext Ciphertext Probability of
category (q, r,m, n) size (MB) size (MB) size (byte) size (byte) decr. failure

I (216, 12,

288, 144)
5.8 0.28 288 576 2−16

II (216, 16,

512, 256)
32.4 0.90 512 1024 2−16
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Table 7.2 Parameters and key sizes of the rectangular SimpleMatrix encryption scheme

Security Parameters Public key Private key Plaintext Ciphertext Probability of
category (q, r, s, u,m, n) size (MB) size (MB) size (byte) size (byte) decr. failure

I (216, 12, 14,

14, 392, 196)
14.6 0.38 392 784 2−48

II (216, 16, 18,

18, 648, 324)
65.5 1.03 648 1296 2−48

References

1. D. Coppersmith, J. Stern, S. Vaudenay, Attacks on the birational signature scheme, in Advances
in Cryptology — CRYPTO 1994. Lecture Notes in Computer Science, vol. 773 (Springer, Berlin,
1994), pp. 435–443

2. L. Goubin, N. Courtois, Cryptanalysis of the TTM cryptosystem, in Advances in Cryptology —
ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976 (Springer, Berlin, 2000), pp.
44–57

3. A. Kipnis, A. Shamir, Cryptanalysis of the HFE public key cryptosystem by relinearization,
in Advances in Cryptology — CRYPTO 1999. Lecture Notes in Computer Science, vol. 1666
(Springer, Berlin, 1999), pp. 19–30

4. C. Tao, A. Diene, S. Tang, J. Ding, Simple matrix scheme for encryption, in Advances in
Cryptology — PQCrypto 2013. Lecture Notes in Computer Science, vol. 7932 (Springer, Berlin,
2013), pp. 231–242

5. C. Tao, H. Xiang, A. Petzoldt, J. Ding, Simple matrix–a multivariate public key cryptosystem
(MPKC) for encryption. Finite Fields Th. App. 35, 352–368 (2015)



Chapter 8
Solving Polynomial Systems

Abstract This chapter considers the known techniques to solve (systems of)
nonlinear polynomial equations. After giving a historical overview of the topic, we
describe algorithms to solve univariate polynomials of high degree. The remainder
of the chapter deals with algorithms to solve systems of nonlinear multivariate
polynomials. We describe the XL algorithm, give a short introduction into the
theory of Gröbner bases and present the most important algorithms to compute these
bases. After analyzing the complexity of these algorithms against various types of
multivariate polynomial systems, we end this chapter by giving an overview of the
known algorithms used to solve over and underdetermined systems of multivariate
quadratic equations.

In this chapter we discuss various methods to solve (systems of) polynomial
equations. As already discussed in previous chapters of this book, this task is not
only important in multivariate cryptography, but also in many other areas. In fact,
nearly every cryptosystem can be written using systems of multivariate quadratic
equations and therefore can be attacked by the methods described in this chapter.
Especially in the cryptanalysis of symmetric schemes such as block and stream
ciphers, this so called algebraic cryptanalysis plays an important role. But also in
many fields outside cryptography such as coding and representation theory, as well
as in the analysis of biological and chemical models, the methods discussed in this
chapter play an important role.

After giving a quick overview of the long history of this field, we describe
two algorithms to solve univariate polynomials of high degree over finite fields.
These algorithms, Berlekamp’s algorithm [4] and the Cantor–Zassenhaus algorithm
[7], are used during the inversion of the central map of HFE and its variants (see
Chap. 4).

The second part of this chapter deals with algorithms to solve systems of
multivariate quadratic polynomials over finite fields. These systems appear in direct
attacks against multivariate schemes, in which one tries to solve the equation P(z) =
w directly as an instance of the MQ Problem as well as the UOV Reconciliation
and the Rainbow-Band-Separation attacks (see Chap. 5). However, the discussed
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algorithms are also used in many other fields such as the algebraic cryptanalysis of
symmetric ciphers and membership and equality checks in the theory of ideals. A
central notion in this area is that of Gröbner bases, which can be seen as a standard
basis of the ideal generated by a polynomial system. After having computed a
Gröbner basis of the corresponding ideal in lexicographic order, the solution of the
nonlinear system can be found easily. In this chapter, we give a short introduction
into the theory of Gröbner bases and describe the most important algorithms to
compute these bases.

We finish the chapter by describing various algorithms to solve overdetermined
(m  n) and underdetermined (m ! n) quadratic systems. As we will see, these
systems can be solved much faster than systems with m ∼ n.

The chapter is organized as follows: In Sect. 8.1 we give a short overview of the
history of solving (systems of) polynomial equations. In Sect. 8.2 we discuss two
algorithms for finding roots of univariate polynomials of high degree, which can
be used to invert the central map of HFE and its variants. Section 8.3 describes
the XL-Algorithm for solving multivariate quadratic systems and discusses some
of its variations. In Sect. 8.4 we introduce the concept of Gröbner Bases, while
Sect. 8.5 discusses the most important algorithms used to compute these bases. In
Sect. 8.6 we deal with the complexity of these algorithms against random systems
and systems of the HFE type. Finally, Sect. 8.7 discusses techniques to solve over-
and underdetermined systems of multivariate quadratic equations.

8.1 History of Solving Polynomial Equations

In this section we give a short overview of the history of solving (systems of)
polynomial equations, see Table 8.1. While the research in the univariate case was
basically finished at around 1820, many of the results in the multivariate case are
quite new and have been found only in the second half of the last century.

Table 8.1 History of solving (systems of) polynomial equations

Degree D Univariate case Multivariate case

1
China (∼ 1 AD)

Trivial Gaussian elimination (1810)

2 Babylonia ( ∼ 800 BC)

3 Cardano-Tartaglia (1545)

4 Cardano-Ferrari (1545) XL-Algorithm

≥ 5 No explicit formula Gröbner Basis techniques

(Theorem of Abel-Ruffino, (Buchberger’s algorithm (1965),

Galois Theory ∼ 1820) F4 (1999), F5 (2002))

Berlekamp’s algorithm (1967) (exponential running time)

Cantor–Zassenhaus (1981)

(exponential in d)
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8.1.1 Solving Nonlinear Univariate Polynomial Equations

While solving a linear polynomial equation in one variable is a trivial task, solving
nonlinear polynomial equations requires some mathematical understanding. In the
quadratic case, this problem was first solved in ancient Babylon at around 800 BC
with a method called quadratic extension.

Let f (x) = x2 + ax + b be a monic quadratic polynomial. In order to solve the
equation f (x) = 0, we extend the left side of the equation to a real square, i.e.

x2 + ax + b = 0

x2 + ax + a2

4
= −b + a2

4(
x + a

2

)2 = −b + a2

4

x1,2 = −a

2
±
√

a2

4
− b,

which leads to the famous solution formula for quadratic equations. This formula
is an example for solving a polynomial equation by radicals, i.e. an algorithm
consisting of the operations addition, subtraction, multiplication, division and root
taking.

Starting from about 1450, many mathematicians tried to extend this idea to poly-
nomials of higher degree. The first result was obtained by the Italian mathematician
Tartaglia, who succeeded in reducing the cubic polynomial equation to the quadratic
case. Although Tartaglia wanted to keep his method secret, it was leaked to Cardano
who published it in his book Ars Magna of 1545 in a more general form.

Theorem 8.1 (Cardano-Tartaglia) Let f (x) = x3 + ax2 + bx + c. Set

p = b − a2

3
and q = 2

27
a3 − 1

3
ab + c.

The three solutions of the equation f (x) = 0 are given by

x1 = u+ v − a

3
, x2 = ζ3u+ ζ 2

3 v − a

3
, x3 = ζ 2

3 u+ ζ3v − a

3
,

where

u = 3

√√√√−q

2
+
√

q2

4
+ p3

9
, v = 3

√√√√−q

2
−
√

q2

4
+ p3

9
(8.1)

and ζ3 = − 1
2 + ı

2

√
3 is the third root of unity.
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Proof Set x = z− a
3 so that f (x) = 0 becomes

z3 + pz+ q = 0.

Note that (u + v)3 − 3uv(u + v) − u3 − v3 = 0. Set z = u + v and compare
coefficients in the two cubic equations in order to obtain

p = −3uv, q = −u3 − v3.

This leads to the quadratic equation u6 + qu3 − p3

27 = 0 for u3. It has the solutions

u3 = − q
2 ±
√

q2

4 + p3

27 . Also v3 has the same solutions. Choose opposite signs for
u and v and take the cubic roots in order to arrive at the above formulas.

With the discriminant D = q2/4 + p3/27 one sees that f (x) = 0 has three
real roots when D < 0, but has only one real root for D > 0. For D < 0 the
method works well, despite the fact that it requires the use of complex numbers.
When D > 0 the formulas as given may not provide the correct answer. The reason
is that x1 should be the real solution. When D < 0 this is the case since then
u and v as given in (8.1) are conjugate to each other. When D > 0 this is not
guaranteed. Instead one has to select u from u, ζ3u, ζ 2

3 u and v from v, ζ3v, ζ 2
3 v so

that x1 = u+ v − a/3 is real. 	

In his book, Cardano also published a solution method for quartic polynomial

equations, which was found by his student Ferrari. Similar to Tartaglia’s strategy
for the cubic case (reducing a cubic polynomial to a quadratic one), this formula
was obtained by reducing the quartic to the cubic case.

The first proof that this method can not be extended to polynomials of degree
≥ 5 was given by Abel and Ruffino in 1799/1824.1

However, further insight into the problem was given by the work of Évariste
Galois. In order to understand his result, we need a number of definitions.

Definition 8.2 If E/F is a field extension, the Galois group of E/F, denoted by
Gal(E/F), is the set of F-automorphisms of E.

Definition 8.3 Let f (x) be a univariate polynomial over F[x]. The splitting field
Sf is the smallest extension field of F in which f (x) can be written as a product of
linear factors.

1The proof given by Ruffino in 1799 was incomplete and corrected by Abel in 1824.
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Definition 8.4 The group G is said to be solvable if there exists a series

1 = G(r) � G(r−1) � · · · � G(0) = G,

where each of the G(i) is a normal subgroup of its successor.

Thus we get

Theorem 8.5 (Galois) Let f (x) be a polynomial over a field of characteristic 0.
If f is solvable by radicals, then the Galois group of the field extension Sf /F is a
solvable group.

Since the alternating group A5 is not solvable, this theorem shows that general
polynomial equations of degree 5 and higher can not be solved by radicals.

In order to find the roots of polynomials of degree ≥ 5, one therefore has
to use other techniques. Over fields of characteristic 0, we can use for example
Newton’s method to find approximate solutions. Over finite fields, there exist
with Berlekamp’s algorithm and the Cantor–Zassenhaus algorithm two efficient
algorithms to solve this problem. Since these two algorithms are important for the
inversion of the central map of the HFE cryptosystem (see Chap. 4), we take a closer
look on these algorithms in Sect. 8.2.

8.1.2 Solving Systems of Multivariate Polynomial Equations

The problem of solving a system of linear equations first appeared at around 1 AD
in ancient China. However, a general method to solve this problem was not found
until the work of Gauss and Lagrange at about 1810. For us it is only important
that a system of linear equations can be solved efficiently in polynomial time (in
time O(n3) by Gaussian elimination or O(22.376) by the Coppersmith/Winograd
method).

On the other hand, solving a system of nonlinear multivariate polynomial
equations is a much harder task. In fact, that problem or the MQ Problem (see
Sect. 2.3) can be proven to be NP-hard. Algorithms to solve this problem did not
appear until 1965, when Buchberger published his thesis. Since these algorithms for
solving systems of nonlinear polynomial equations are important for estimating the
security of multivariate schemes, we take a closer look on them in Sects. 8.3–8.7.
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8.2 Solving Univariate Polynomials of High Degree

In order to invert the central map of HFE and its variants (see Chap. 4), one has
to find a root of the univariate polynomial F(Y ) = X over the extension field
E. Since this polynomial can be of very high degree, we can not do this with the
methods described in the previous section. In this section, we describe two efficient
algorithms to solve univariate polynomials of high degree over finite fields: The
Berlekamp and the Cantor–Zassenhaus algorithm.

Since both of these algorithms require as input a square-free polynomial, we first
have to deal with the question of how to turn a general polynomial into a square-free
one. We find

Theorem 8.6 A monic polynomial f ∈ F[X] is square-free (no repeated factors),
if and only if

gcd(f (X), f ′(X)) = 1

holds.

Proof “⇒”: Let f (X) ∈ F[X] be a monic square-free polynomial of degree d. So,
in the splitting field of f (X), we have

f (X) =
d∏

i=1

(X − αi)

with pairwise distinct linear factors. Therefore,

f ′(X) =
d∑

i=1

⎛
⎝∏

j �=i

(X − αj )

⎞
⎠ .

Since the linear factors are pairwise distinct, we have (X − αi) � |∏j �=i (X − αj ).
Moreover, (X − αi) divides all but one of the summands of f ′(X) which implies
gcd(f (X), f ′(X)) = 1.

“⇐”: If f (X) is not square-free, we can write f (X) = g(X)2h(X) with two
monic polynomials g(X) and h(X) of lower degree. We get

f ′(X) = 2g(X)g′(X)h(X)+ g(X)2h′(X)

which implies that g(X)|f ′(X) and g(X)|gcd(f (X), f ′(X)). Therefore,
gcd(f (X), f ′(X)) �= 1, which proves the claim by contradiction. 	


Moreover, we have
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Theorem 8.7 Let gcd(f (X), f ′(X)) = 0 for some non constant polynomial
f (X) ∈ Fpe [X]. Then f (X) = g(X)p for some g(X) ∈ Fpe [X].
Proof Let f (X) =∑d

i=0 αiX
i with ad �= 0. Thus, f ′(X) =∑d

i=1 iαiX
i−1. Since

f (X) �= 0, gcd(f (X), f ′(X)) = 0 implies f ′(X) = 0 and therefore iαi = 0 ∀i ∈
{1, . . . , d}.

Assume that, for a fixed i, αi �= 0 holds. We then have i = 0 mod p, which
implies that all non zero terms of f (X) have exponents divisible by p. Therefore,
we have f (X) = g(Xp), which, due to the Frobenius mapping property, implies
f (X) = g(X)p. 	


We therefore get the following algorithm to make a univariate monic polynomial
square-free.

Algorithm 8.1 Square-free algorithm
Input: A monic non-zero polynomial f ∈ Fpe [X], f (X) =∏i fi (X)ei

Output: A square-free polynomial f̄ ∈ Fpe [X], f̄ (X) =∏i fi (X)

1: g(X)← gcd(f (X), f ′(X))

2: if g(X) == 0 then // f (X) = h(X)p for some polynomial h

3: h(X)← f (X)1/p

4: run the algorithm again with h(X)

5: else if g(X) == 1 then // f (X) is already square free
6: return f (X)

7: else
8: run the algorithm again with f (X)

g(X)
.

9: end if

8.2.1 Berlekamp’s Algorithm

The Berlekamp algorithm was developed in 1967 by Elwyn Berlekamp at Bell
laboratories [4].

An important ingredient of the algorithm is the so called Berlekamp matrix.

Definition 8.8 For a polynomial f (X) ∈ Fq [X] of degree d, we define the
Berlekamp matrix Q as

Qf =

⎛
⎜⎜⎜⎝

q0,0 q0,1 . . . q0,d−1

q1,0 q1,1 . . . q1,d−1
...

. . .
...

qd−1,0 qd−1,1 . . . qd−1,d−1

⎞
⎟⎟⎟⎠ ∈ F

d×d
q .
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Here, the element qi,j is the coefficient of Xj of the degree (d-1) polynomial
Xiq mod f (X).

Theorem 8.9 Berlekamp’s algorithm gives the factorization of a monic square-free
polynomial f (X) into its irreducible factors.

Proof See [1, Theorem 7.4.5]. 	


Algorithm 8.2 Berlekamp’s algorithm
Input: A monic square free polynomial f (X) ∈ Fq [X] of degree d

Output: List B of irreducible factors f̂ (X) such that f =∏
f̂∈B f̂ (X)

1: Generate the Berlekamp matrix Qf of f (X) (see Definition 8.8).
2: Compute a basis v1, . . . , vr of the left-kernel of the matrix Qf − Id . If r = 1, the polynomial

f (X) is irreducible and we are done. Otherwise, continue to the next step.
3: for k = 2 to r do
4: for s ∈ F do
5: Set f̂ = gcd(f (X), vk(X)− s). If f̂ �= 1, add f̂ to B and set

f (X) = f (X)

f̂ (X)
. If f (X) = 1, then terminate.

6: end for
7: end for
8: return B.

Theorem 8.10 Over a finite field Fq , the computational complexity of Berlekamp’s
algorithm for a degree n polynomial is

O(nω + n(log (n) log (log (n)) log q)),

where nω is the cost to multiply two n× n matrices, and O(n(log(n) log(log(n))) is
the complexity to multiply two polynomials of degree n.

Proof See [25, Sect. 2]. 	


8.2.2 Toy Example

We want to find the irreducible factors of the polynomial

f (X) = X6 +X5 +X4 +X3 + 1 ∈ F2[X].

First, we have to check if f (X) is square-free. We get

f (X)

f ′(X)
= X6 +X5 +X4 +X3 + 1

X4 +X2 = 1.



8.2 Solving Univariate Polynomials of High Degree 193

We therefore know that f (X) is square-free and can continue with Berlekamp’s
algorithm. For this, we compute for i ∈ {0, . . . , 5} the polynomials X2i mod f (X),
i.e.

X2∗0 mod f (X) = 1

X2∗1 mod f (X) = X2

X2∗2 mod f (X) = X4

X2∗3 mod f (X) = X5 +X4 +X3 + 1

X2∗4 mod f (X) = X4 +X2 +X

X2∗5 mod f (X) = X5 + 1

and put the result into the Berlekamp matrix Qf . We obtain

Qf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By subtracting the identity matrix I6 from Qf we get

Qf − I6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 1 0
1 0 0 0 1 1
0 1 1 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

A basis of the left kernel of this matrix is given by b1 = (1, 0, 0, 0, 0, 0) ≡ 1 and
b2 = (0, 1, 0, 0, 1, 0) ≡ X +X4.

Next, we perform step 3 of the algorithm for the nontrivial basis element u(X) =
X +X4.

• For s = 0, we get gcd(f (X), u(X)) = gcd(X6+X5+X4+X3+1, X4+X) = 1.
• For s = 1, we get gcd(f (X), u(X)− 1) = gcd(X6 +X5 +X4 +X3 + 1, X4 +

X − 1) = X4 +X + 1.
So, f1(X) = X4 +X + 1 is an irreducible factor of f (X) and we get

f (X)

f1(X)
= X6 +X5 +X4 +X3 + 1

X4 +X + 1
= X2 +X + 1 =: f2(X).
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Since the algorithm terminates, we know that f2(X) is irreducible and we have

f (X) = f1(X)f2(X) = (X4 +X + 1)(X2 +X + 1)

.

8.2.3 The Cantor–Zassenhaus Algorithm

In [7], Cantor and Zassenhaus proposed a polynomial factoring algorithm which
works over finite fields of odd characteristic. The algorithm factors a monic square-
free polynomial f (X) ∈ F following two steps:

1. Factor the polynomial f (X) into a product of polynomials f (X) = ∏d Rd(X),
where each Rd(X) is the product of all degree d irreducible factors of f (X)

(distinct degree factoring algorithm, DDF)
2. Factor each of the polynomials Rd(X) into its irreducible components (fixed

degree factoring algorithm, FDF).

Before we come to the description of the algorithms, we need two propositions.

Proposition 8.11 In the polynomial ring Fq [X] we have

Xq −X =
∏
s∈F

(X − s).

Proof The elements of F�
q form a multiplicative group of order q−1, and therefore,

for all elements s ∈ F
�
q , we have sq − s = 0. Thus, all elements of F�

q are roots of
the polynomial Xq − X. Since 0 ∈ Fq is clearly another root, the terms on the
right hand side of the above equation are exactly the q linear factors of the degree q

polynomial Xq −X. 	

Proposition 8.12 The polynomial Xqm − X is the product of all irreducible
polynomials over Fq of degree d|m.

Proof We prove the proposition by showing that each root of Xqm − X is a root of
some irreducible polynomial in Fq [X] of degree d|m and vice versa.

By Proposition 8.11, the roots of Xqm − X are exactly the elements of the field
Fqm .

Consider an element α ∈ Fqm and the extension field Fq(α) of Fq . Then we get

[Fqm : Fq ] = [Fqm : Fq(α)] ∗ [Fq(α) : Fq ].

We therefore get [Fq(α) : Fq ] = d for some d|m which implies that the degree of
the minimal polynomial of α divides m.
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On the other hand, let β be a root of some irreducible polynomial in Fq [X] of
degree d|m. Then, Fq(β) is a subfield of Fqm which implies β ∈ Fqm . Therefore, β

is a root of Xqm −X. 	

With the help of these two propositions, we can now formulate the DDF and FDF

algorithms as shown in Algorithms 8.3 and 8.4.

Algorithm 8.3 Distinct degree factoring algorithm (DDF)
Input: A monic squarefree polynomial f (X) ∈ Fq [X]
Output: Polynomials R1(X), . . . , Rs(X) ∈ Fq [X] such that

∏s
i=1 Ri(X) = f (X). Each

polynomial Ri is the product of all irreducible factors of f (X) of degree i.
1: i ← 1
2: repeat
3: Ri(X)← gcd(Xqi −X, f (X))

4: f (X)← f (X)
Ri (X)

5: i ← i + 1
6: until f (X) = 1
7: return R1(X), . . . , Ri(X)

Algorithm 8.4 Fixed degree factoring algorithm (FDF)
Input: A monic squarefree polynomial Rd(X) ∈ Fq [X] which can be written as product of

irreducible polynomials f1, . . . , fr of degree d

Output: Set B of irreducible factors of Rd

1: B = ∅
2: repeat
3: Choose a random polynomial a(x) of degree ≥ d and compute

g(X) = gcd(a(X), Rd(X))

4: if g(X) �= 1 then // g(X) is a non-trivial factor of Rd(X)

5: B = B ∪ {g(X)}
6: Rd(X) = Rd(X)/g(X)

7: else
8: g(X) = gcd(a(qd−1)/2 − 1, Rd(X))

9: if g(x) �= 1 then
10: B = B ∪ {g(x)}
11: Rd(X) = Rd(X)/g(X)

12: end if
13: end if
14: until deg(Rd(X)) = d

15: B = B ∪ {Rd }
16: return B

By composing the DDF and the FDF algorithms, the Cantor–Zassenhaus algo-
rithm now finds all irreducible factors of a polynomial f ∈ Fq [X].
Theorem 8.13 The Cantor–Zassenhaus algorithm factors a monic squarefree poly-
nomial over a finite field of odd characteristic into its irreducible factors.
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Algorithm 8.5 Cantor–Zassenhaus algorithm
Input: A monic squarefree polynomial f (X) ∈ Fq [X]
Output: Set B of irreducible polynomials f̄ (X) such that f (X) =∏f̄∈B f̄ (X).
1: B = ∅
2: Use the DDF algorithm to factor f into its distinct degree components R1, . . . , Rs ; each

Rd(X) is the product of all irreducible factors of f (X) of degree d

3: for i = 1 to s do
4: B = B ∪ FDF(Ri(X))

5: end for
6: return B

Proof Due to Proposition 8.12, Xqi − X is a the product of all irreducible
polynomials in Fq [X] of degree d|i. Since, in step 4 of the DDF algorithm, we

divided out lower degree factors, Ri(X) = gcd(Xqi − X, f (X)) is the product of
all irreducible factors of f (X) of degree i, which shows the correctness of the DDF
algorithm.

So, it remains to show that the FDF algorithm factors a polynomial Rd(X) into
irreducible polynomials g1(X), . . . , gr (X), where all g1, . . . , gr are of degree d.
Since gcd(gi, gj ) = 1 for i �= j , the Chinese Remainder theorem yields a ring
isomorphism

χ : F[X]/〈f 〉 → F[X]/〈g1〉 × · · · × F[X]/〈gr 〉.

Let S � {1, . . . , r}. If we can find a polynomial s(X) ∈ F[X] such that
s(X) mod gi(X) = 0 for i ∈ S, but s(X) mod gi(X) �= 0 for i /∈ S (a so called
splitting polynomial), then gcd(Rd(X), s(X)) is a non-trivial factor of Rd(X).

Let a ∈ F[X] be a polynomial of low degree with gcd(a(X), Rd(X)) = 1. We
therefore have a mod gi �= 0 ∀ i = 1, . . . , r . Since each of the rings F[X]/〈gi〉 is
a finite group of order qd , we have aqd−1 = 1 mod gi(x) ∀i. Since qd is odd, we
have a(qd−1)/2 mod gi(X) = ±1 with equal probability. In other words, we have
a(qd−1)/2− 1 mod gi = 0 with probability exactly 1/2. Therefore, a(qd−1)/2− 1 is a
splitting polynomial for Rd(x) with probability 1−21−r , which yields an irreducible
factor of degree d of Rd(X). By repeating this step, the algorithm therefore outputs
all irreducible factors of Rd(x). 	

Theorem 8.14 The computational complexity of the algorithm is

O(n2 log n log (log n)(log q + log n))

over a finite field Fq .

Proof see [25, Sect. 2]. 	

Remark 8.15 The Cantor–Zassenhaus algorithm as described above works only for
finite fields Fq [X] of odd characteristic. However, by using the polynomial b(X) =∑qd

i=0 Xi instead of a(X), it can be directly extended to fields of even characteristic.
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Remark 8.16 In the case of the HFE scheme, it is not necessary to factor the
polynomial F(X) − Y completely. Instead of this, it is sufficient to find one root
of this polynomial. To do this, we run the DDF algorithm to find the polynomial
R1(X) which is the product of all linear factors of F(X)− Y . We then use the FDF
algorithm to find a root of R1(X). We can abort the algorithm after having found
one root.

8.2.4 Toy Example

Consider the polynomial f (X) = X7 + 2X5 +X3 + 2X ∈ F3[X].
First, we have to check if f (X) is square free. Since

gcd(f (X), f ′(X)) = gcd(X7 + 2X5 +X3 + 2X,X6 +X4 + 2) = 1

this is the case. Next, we apply the DDF algorithm

• i = 1⇒ gcd(X3−X, f (X)) = X3+2X =: f1(X) and g(X) = f (X)
f1(X)

= X4+1.

• i = 2⇒ gcd(X9 −X, g(X)) = X4 + 1 =: f2(X).

Therefore we have f (X) = f1(X)f2(X), where f1(X) is the product of all linear
factors of f (X) and f2(X) is the product of all irreducible quadratic factors of f (X).

Next, we factor f1(X) into its linear factors. For this, we choose random
polynomials r(X) of degree 1. We have e = (p1 − 1)/2 = 1.

• a(X) = X + 2⇒ gcd(X, f1(X)) = X. We set f1(X) = f1(X)/X = X2 + 2.
• a(X) = X + 1 ⇒ gcd(X + 2, f1(X)) = X + 1. We now have f1(X) =

f1(X)/(X + 1) = X + 2, which is itself an irreducible linear factor. So we
are done.

We have f (X) = X(X + 1)(X + 2)f2(X).
In the last step, we have to factor f2(X) = X4 + 1 into its irreducible quadratic

factors. For this, we choose random polynomials r(x) of degree 2. We have e =
(p2 − 1)/2 = 4.

• a(X) = x2 ⇒ gcd(X8 + 1, f2(x)) = 1. So, we have to choose another
polynomial r(X).

• a(X) = X2 + X + 2 ⇒ r(X)4 + 1 = X8 + X7 + 2X6 + X5 + X4 + 2X3 +
2X2 + 2X + 2.
⇒ gcd(f2(X), r(X)4 + 1) = 2X2 + 2X + 2. We set f2(X) = f2(X)/(2X2 +
2X + 2) = X2 +X + 2. Since this is also quadratic, we are done.

Altogether, we have

f (X) = X(X + 1)(X + 2)(2X2 + 2X + 2)(X2 +X + 2).
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8.3 The XL-Algorithm

The XL-Algorithm (“eXtended Linearization”) is a general method to find a solution
of a system P of nonlinear multivariate equations over a finite field F proposed by
Courtois et al. in [8]. It is most effective for overdetermined systems having exactly
one solution. The algorithm consists of two steps.

1. Extend the system P ⊂ F[x1, . . . , xn] by multiplying the polynomials p ∈ P by
all monomials h ∈ F[x1, . . . , xn] up to a given degree.

2. Perform Gaussian elimination on the extended system to generate a univariate
polynomial p̂(xi). Solve this polynomial by e.g. Berlekamp’s algorithm to find
the value of xi , substitute it into the polynomials of P and continue with step 1
on the simplified system.

This procedure is formalized in Algorithm 8.6. If the value of D was chosen
too small, the Gaussian elimination performed in step 4 of the algorithm will not
produce a univariate polynomial. In this case one has to choose a larger value of D

and try again.

Algorithm 8.6 XL-Algorithm

Input: System P = (p(1), . . . , p(m)) of multivariate quadratic polynomials in the variables
x1, . . . , xn

Output: vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0
1: for i = 1 to n do
2: Fix an integer D > 2.
3: Let T D−2 be the set of all monomials up to degree D − 2 and define P̃D to be the set of

all polynomials of the form hp(j) with h ∈ T D−2 and j = 1, . . . , m.
4: Let >σ be a monomial ordering according to which the univariate polynomials in xi and

the constant terms come last. Sort the monomials of P̃D according to >σ and interpret each
monomial as an independent variable. Perform Gaussian elimination on the resulting system.
If this produces a univariate polynomial p̂(xi), go to the next step. Otherwise, choose a larger
value for D and try again.

5: Use Berlekamp’s algorithm to find the value x̄i of xi and substitute this value into the
polynomials of P .

6: end for
7: return x̄ = (x̄1, . . . , x̄n).

Let PD be the vector space spanned by the polynomials in P̃D (when interpreting
each monomial as an independent variable). Then we have

Theorem 8.17 The XL-Algorithm terminates for a fixed degree D, if |T D| −
dim(PD) ≤ D holds.

Proof The XL-Algorithm terminates, if and only if Step 4 of the algorithm
generates a univariate polynomial. Let us suppose that, in Step 4 of Algorithm
8.6, we want to find a univariate polynomial in the variable x̂. We denote the
space spanned by the D + 1 monomials in T D containing only x̂ (these are the
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monomials x̂0, . . . , x̂D) by Px̂ . Under the assumption of the theorem, we have
dim(PD)+ dim(Px̂) > |T D|, i.e. PD ∩ Px̂ �= ∅. Therefore, Step 4 of the algorithm
will find at least one univariate polynomial. 	


Unfortunately, Theorem 8.17 does not yield the smallest degree D for which the
XL-Algorithm works. Analyzing this problem would go beyond the scope of this
book. For the interested reader we refer to [9].

8.3.1 Toy Example

Let F =GF(7) and (m, n) = (4, 3). We want to find a solution of the (overdeter-
mined) system P = (p(1), p(2), p(3), p(4)) with

p(1)(x1, x2, x3) = 5x2
1 + 5x1x2 + 2x1x3 + 6x1 + 4x2 + 6x2

3 + 2x3 + 2,

p(2)(x1, x2, x3) = 6x2
1 + 5x1x2 + 3x1x3 + 3x1 + 5x2

2 + x2x3 + 3x2 + 3x2
3 + 5x3,

p(3)(x1, x2, x3) = 2x2
1 + 5x1x2 + 5x1x3 + 2x2

2 + 3x2x3 + 3x2,

p(4)(x1, x2, x3) = 4x2
1 + 5x1x2 + x1 + x2

2 + x2x3 + 3x2 + 4x2
3 + 6x3 + 6.

We multiply the polynomials of the system P by all monomials of degree ≤ 1 and
obtain the coefficient matrix

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 5 0 0 5 0 2 6 0 0 0 0 0 4 0 6 2 2
0 0 0 6 0 0 5 0 3 3 0 0 5 0 1 3 0 3 5 0
0 0 0 2 0 0 5 0 5 0 0 0 2 0 3 3 0 0 0 0
0 0 0 4 0 0 5 0 0 1 0 0 1 0 1 3 0 4 6 6
5 5 2 6 0 0 4 6 2 2 0 0 0 0 0 0 0 0 0 0
6 5 3 3 5 1 3 3 5 0 0 0 0 0 0 0 0 0 0 0
2 5 5 0 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 0 1 1 1 3 4 6 6 0 0 0 0 0 0 0 0 0 0
0 5 0 0 5 2 6 0 0 0 0 0 4 6 2 2 0 0 0 0
0 6 0 0 5 3 3 0 0 0 5 1 3 3 5 0 0 0 0 0
0 2 0 0 5 5 0 0 0 0 2 3 3 0 0 0 0 0 0 0
0 4 0 0 5 0 1 0 0 0 1 1 3 4 6 6 0 0 0 0
0 0 5 0 0 5 0 2 6 0 0 0 0 0 4 0 6 2 2 0
0 0 6 0 0 5 0 3 3 0 0 5 0 1 3 0 3 5 0 0
0 0 2 0 0 5 0 5 0 0 0 2 0 3 3 0 0 0 0 0
0 0 4 0 0 5 0 0 1 0 0 1 0 1 3 0 4 6 6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Within this matrix, the polynomials of the extended system (rows) are sorted in the
order
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(p(1), . . . , p(4), x1p
(1), . . . , x1p

(4), x2p
(1), . . . , x2p

(4), x3p
(1), . . . , x3p

(4)).

The monomials of degree ≤ 3 are sorted according to the monomial ordering >σ

with x3
1 >σ x2

1x2 >σ x2
1x3 >σ x2

1 >σ x1x
2
2 >σ x1x2x3 >σ x1x2 >σ x1x

2
3 >σ x1x3

>σ x1 >σ x3
2 >σ x2

2x3 >σ x2
2 >σ x2x

2
3 >σ x2x3 >σ x2 >σ x3

3>σ x2
3>σ x3>σ 1.

Putting the matrix M1 into echelon form yields

M̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 5 2 6 0 0 4 6 2 2 0 0 0 0 0 0 0 0 0 0
0 6 2 0 5 1 1 0 4 6 0 0 0 0 0 0 0 0 0 0
0 0 6 6 3 6 3 6 0 6 0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 5 0 0 1 0 0 1 0 1 3 0 4 6 6
0 0 0 0 3 3 2 3 0 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 1 1 3 5 5 1 6 3 1 2 0 5 4 4
0 0 0 0 0 0 6 0 5 3 0 0 5 0 6 5 0 5 4 4
0 0 0 0 0 0 0 5 0 0 0 4 6 3 0 1 0 5 4 4
0 0 0 0 0 0 0 0 1 1 0 0 5 0 2 0 0 2 0 2
0 0 0 0 0 0 0 0 0 3 0 0 4 6 5 0 0 4 6 6
0 0 0 0 0 0 0 0 0 0 3 3 2 3 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 2 3 4 6 4 2 2
0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 1 0 5 0 5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 2 4 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 5 4 6 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 6 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the last row of the matrix M̃1 we can derive the univariate polynomial

5x3
3 + 6x3 + 3 = 0.

Solving this polynomial using Berlekamp’s algorithm yields x3 = 5.
Note here that, as the toy example shows, the inversion of Theorem 8.17 is not

true. Here we have |T 3| = 20 (number of columns of M̃1) and dim(P3) = 16
(number of non-zero rows in M̃1). It follows |T D| − dim(PD) = 4 > 3. Despite of
this, the XL-Algorithm terminates.

We substitute the solution x3 = 5 into the polynomials of the system P , obtaining

p̂(1)(x1, x2) = 5x2
1 + 5x1x2 + 2x1 + 4x2 + 1,

p̂(2)(x1, x2) = 6x2
1 + 5x1x2 + 4x1 + 5x2

2 + x2 + 2,

p̂(3)(x1, x2) = 2x2
1 + 5x1x2 + 4x1 + 2x2

2 + 4x2,

p̂(4)(x1, x2) = 4x2
1 + 5x1x2 + x1 + x2

2 + x2 + 3.



8.3 The XL-Algorithm 201

The system P̂ corresponds to the matrix

M2 =

⎛
⎜⎜⎝

5 5 2 0 4 1
6 5 4 5 1 2
2 5 4 2 4 0
4 5 1 1 1 3

⎞
⎟⎟⎠ .

Here we used the monomial ordering >σ : x2
1 >σ x1x2 >σ x1 >σ x2

2 >σ x2 >σ 1.

We do not have to extend the system P̂ anymore, but can directly compute the
row echelon form of the matrix M2. We obtain

M̃2 =

⎛
⎜⎜⎝

5 5 2 0 4 1
0 6 3 5 6 5
0 0 1 3 5 2
0 0 0 3 3 1

⎞
⎟⎟⎠ .

From the last row of the matrix M̃2 we can derive the univariate polynomial

3x2
2 + 3x2 + 1 = 0,

leading to x2 = 5. Substituting this value into the polynomials of P̂ yields

ˆ̂p(1)(x1) = 5x2
1 + 6x1,

ˆ̂p(2)(x1) = 6x2
1 + x1 + 6,

ˆ̂p(3)(x1) = 2x2
1 + x1,

ˆ̂p(4)(x1) = 4x2
1 + 5x1 + 5,

yielding x1 = 3. Therefore, we have found the solution (x1, x2, x3) = (3, 5, 5) of
the original system P(x1, x2, x3) = 0. 	


After the proposal of the basic algorithm, several variants of XL were suggested.
The most important of these are

• FXL: The idea of this variation is to fix the values of some of the variables before
applying the XL-Algorithm. This often helps to find a solution of the system P
at a lower degree D. However, in case of a wrong guess, one has to run the XL-
Algorithm several times.

• XL2: This XL-variant was proposed for the use over the field GF(2) of 2
elements. The main idea is to make use of the field equations x2

i − xi = 0 during
the elimination process.

• MutantXL: During the elimination process of XL, there sometimes appear
polynomials of lower degree than expected (so called Mutants). The basic idea
of MutantXL is to privilege these mutants during the next extension process.
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8.4 Gröbner Bases

Gröbner Basis was proposed by Bruno Buchberger in [6]. It allow us to find all
solutions of a system of multivariate nonlinear polynomial equations by giving
a simple representation of the variety of the solution space. Especially, if the
Gröbner Basis was computed according to the lexicographic order of monomials,
it is very easy to derive all the solutions of the system from it. In this sense, Gröbner
Basis techniques can be viewed as an extension of the Gaussian elimination to the
nonlinear case.

Definition 8.18 An ideal in F[x1, . . . , xn] is a subset I ⊂ F[x1, . . . , xn] such that
for each element a ∈ F[x1, . . . , xn] and any element b ∈ I we have ab ∈ I .

A subset M ⊂ I is called generating system of the ideal I (we write I = 〈M〉)

⇔ ∀a ∈ I ∃m1, . . . , ms ∈ M and α1, . . . , αs ∈ F[x1, . . . , xn] such that

a =
s∑

i=1

αimi. (8.2)

Theorem 8.19 For every ideal I ⊂ F[x1, . . . , xn] there exists a finite generating
system.

Proof See [22, Theorem 1.8]. 	

Let σ be an admissible order of monomials (see Definition 2.8).

Definition 8.20 Let f =∑s
i=1 ci ti be a polynomial in F[x1, . . . , xn]. Without loss

of generality we assume that we have t1 >σ t2 >σ . . . >σ ts . Then we call

• t1 the leading monomial of f with respect to the monomial order σ . We denote
it by LMσ (f ) or LM(f ).

• c1 the leading coefficient of f with respect to the monomial order σ . We denote
it by LCσ (f ) or LC(f ).

• c1t1 the leading term of f with respect to σ . We denote it by LTσ (f ) or LT(f ).

Note that we have

LT(f ) = LC(f )LM(f ).

Definition 8.21 A Gröbner Basis of an ideal I is a subset G = {g(1), . . . , g(s)}
⊂ I such that

I = 〈g(1), . . . , g(s)〉 and 〈LT(I)〉 = 〈LT(g(1)), . . . , LT(g(s))〉. (8.3)
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Remark 8.22 Definition 8.21 shows that the result of a Gröbner Basis algorithm
depends on the chosen monomial order. For example, a Gröbner Basis with respect
to the lexicographical order is in general not a Gröbner Basis with respect to the
graded reverse lexicographical order.

8.4.1 Reduction of Polynomials

Let g ∈ F[x1, . . . , xn] and F = {f (1), . . . , f (s)} ⊂ F[x1, . . . , xn]. The polynomial
g can be reduced modulo F to a polynomial h ∈ F[x1, . . . , xn] (we write g �→F h),
if ∃ p(i) ∈ F[x1, . . . , xn] (i = 1, . . . , s) such that

h = g −
s∑

i=1

p(i)f (i). (8.4)

Definition 8.23 The polynomial g ∈ F[x1, . . . , xn] is called completely reduced
with respect to F = {f (1), . . . , f (s)}, if no term of g is divisible by any LT(f (i))

for all f (i) ∈ F .

Theorem 8.24 Let F = {f (1), . . . , f (s)} be an ordered set of polynomials
in F[x1, . . . , xn]. Then, for any g ∈ F[x1, . . . , xn] there exist polynomials
p(1), . . . , p(s) such that

g =
s∑

i=1

p(i)f (i) + r,

with a polynomial r ∈ F[x1, . . . , xn] being completely reduced with respect to F .

Proof See [22, Theorem 4.6]. 	

Definition 8.25 The polynomial r of Theorem 8.24 is denoted as the normal form
of g with respect to F .

For F = {f (1), . . . , f (s)} being a random subset of F[x1, . . . , xn], the normal form
r of a polynomial g ∈ F[x1, . . . , xn] is not uniquely determined and depends on the
order of the polynomials f (i) ∈ F . However, we get

Theorem 8.26 If G = {g(1), . . . , g(s)} is a Gröbner Basis, the normal form r of
a polynomial h ∈ F[x1, . . . , xn] with respect to G is uniquely determined and
independent of the order of the polynomials g(i) ∈ G.

Proof See [22, Theorem 4.13]. 	
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8.5 Buchberger’s Algorithm and F4

In this section we introduce the most important algorithms to compute Gröbner
Bases. We start with a description of Buchberger’s algorithm, which was the
first general method to compute Gröbner Bases. After that, we discuss several
improvements of this algorithm which finally led to Faugère’s F4 and F5 algorithms
which are currently considered as the fastest general methods to solve systems of
nonlinear multivariate polynomial equations.

8.5.1 Buchberger’s Algorithm

In his thesis [6], Buchberger developed an efficient algorithm to compute a Gröbner
Basis of the ideal generated by a set F = {f (1), . . . , f (s)} ⊂ F[x1, . . . , xn]. The
most important notion in his algorithm is the so called S-polynomial.

Definition 8.27 Let f, g ∈ F[x1, . . . , xn]. The S-polynomial of f and g is defined
by

Spoly(f, g) = LCM(LT(f ), LT(g))

LT(g)
g − LCM(LT(f ), LT(g))

LT(f )
f. (8.5)

The following example shows that the notion of the S-polynomial depends on the
monomial order: Let F = GF(7) and f, g ∈ F[x1, x2, x3] with

f (x1, x2, x3) = 3x1 + 5x2
2 + 6x2x3,

g(x1, x2, x3) = 6x1x3 + 2x2
2 .

• in the lexicographical order (lex) we have LT(f ) = 3x1, LT(g) = 6x1x3 and
therefore

Spolylex(f, g) = x1x3

6x1x3
g − x1x3

3x1
f

= 3x2
2x3 + 5x2

2 + 5x2x
2
3 .

• in the graded lexicographical order (glex) we have LT(f ) = 5x2
2 and LT(g) =

6x1x3 and therefore

Spolyglex(f, g) = x1x
2
2x3

6x1x3
g − x1x

2
2x3

5x2
2

f

= 3x1x2x
2
3 + 5x4

2 + 5x2
1x3.
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• in the graded reverse lexicographical order (grevlex) we have LT(f ) = 5x2
2 and

LT(g) = 2x2
2 and therefore

Spolygrevlex(f, g) = x2
2

2x2
2

g − x2
2

5x2
2

f

= 3x1x3 + 3x2x3 + 5x1.

	

Buchberger discovered the following criterion on a set G for being a Gröbner Basis:

Theorem 8.28 Let I ⊂ F[x1, . . . , xn] be an ideal in the polynomial ring
F[x1, . . . , xn]. A subset G ⊂ I with I = 〈G〉 is a Gröbner Basis of I if and
only if

NormalForm(Spoly(p, q)) = 0 ∀ p, q ∈ G.

Proof See [22, Theorem 4.18]. 	

We can use this criterion to construct an algorithm for finding a Gröbner Basis of an
ideal I = 〈F 〉 ⊂ F[x1, . . . , xn] (see Algorithm 8.7).

Algorithm 8.7 Buchberger’s algorithm

Input: F = {f (1), . . . , f (s)}, monomial order σ

Output: Gröbner Basis G = {g(1), . . . , g(s)} of I = 〈f (1), . . . , f (m)〉
1: G← F

2: repeat
3: G′ ← G

4: for each pair {p, q}, p �= q ∈ G′ do
5: S ← NormalForm(Spoly(p, q),G)

6: if S �= 0 then
7: G← G ∪ {S}
8: end if
9: end for

10: until G = G′
11: return G

Theorem 8.29 Buchberger’s algorithm outputs a Gröbner Basis of the ideal I with
respect to the monomial order σ after finitely many steps.

Proof See [22, Theorem 4.19]. 	
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8.5.2 Improvements of Buchberger’s Algorithm

Buchberger’s algorithm as presented above has two main disadvantages:

(1) The output of the algorithm depends on the order of the polynomials f (i) ∈ F

and
(2) many reductions of S-polynomials lead to zero and cause unnecessary work.

The first problem can be easily solved by introducing the term reduced Gröbner
Basis.

Definition 8.30 A Gröbner Basis G = {g(1), . . . , g(s)} is said to be reduced, if
all polynomials g(i) are monic and LM(g(i)) does not divide LM(g(j)) for all i �=
j, 1 ≤ i < j ≤ s.

Theorem 8.31 If G and H are reduced Gröbner Bases generating the same ideal,
then G = H .

Proof See [22, Theorem 4.21]. 	

Thus, if we reduce the set G each time we enlarge it (i.e. after line 7 of Algorithm
8.7), the output of the algorithm will be unique.

In his thesis [6], Buchberger discovered two criteria to avoid reductions to zero.

• If LT(g(i)) and LT(g(j)) are relatively prime, then Spoly(g(i), g(j)) reduces to
zero and can be ignored.

• If there exists g(k) ∈ G such that LT(g(k)) divides LCM(LT(g(i)), LT(g(j))),
and if Spoly(g(i), g(k)) and Spoly(g(j), g(k)) have already been considered,
Spoly(g(i), g(j)) reduces to zero and can be ignored.

8.5.3 Faugère’s F4-Algorithm

As a further improvement, Faugère suggested for his F4 [16] algorithm to compute
many of the normal forms in one go by using the Macaulay matrix of the system
and fast linear algebra. Let B be the set of all pairs (p, q) with p �= q ∈ G.

Definition 8.32 Let (f (i), f (j)) be a pair of polynomials from the set B. The
weight Dij of the pair (f (i), f (j)) is defined as

Dij = deg(LCM(LM(f (i)), LM(f (j)))).

We set

d = min
(f (i),f (j))∈B

Dij

and define the selection function Select(B) by
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Select(B) = {(f (i), f (j)) ∈ B : Dij = d}. (8.6)

Faugère’s idea was now to reduce all pairs (f (i), f (j)) ∈ Select(B) at the same
time. This can be done as follows.

Let F = (f (1), . . . , f (s)) be a set of multivariate polynomials. Let S =
(t1, . . . , tr ) be the support of the system F (see Definition 2.2) and MF be its
Macaulay matrix (see Definition 2.10). As in Chap. 2 we can then write

F(x1, . . . , xn) = MF (t1, . . . , tr )
T .

Let M̃F be the unique reduced row echelon form of the matrix MF . By

F̃(x1, . . . , xn) := M̃F (t1, . . . , tr )
T

we therefore get a somewhat simplified system of polynomials. However, the system
F̃ may contain leading monomials which did not appear in the leading monomials
of F . We define

F̃+ = {f ∈ F̃ : LM(f ) /∈ LM(F)}.

Definition 8.33 Let F = {f (1), . . . , f (s)} ⊂ F[x1, . . . , xn] and let p =
(f (i), f (j)) be a pair of polynomials with i �= j . Let ti and tj be the two monomials
such that

tiLM(f (i)) = tj LM(f (j)) = LCM(LM(f (i)), LM(f (j))).

Define Left(p) = (ti , f
(i)) and Right(p) = (tj , f

(j)); therefore, Left(p) and
Right(p) are both pairs consisting of a monomial and a polynomial.

If C ⊂ B is a set of pairs, then we extend the definition as follows:

Left(C) = ∪p∈CLeft(p) and Right(C) = ∪p∈CRight(p).

We now describe Faugère’s F4 algorithm. The algorithm takes as input a set F ⊂
F[x1, . . . , xn] of multivariate polynomials and a selection function Select(B). The
selection function Select(B) returns a subset of pairs from the list B of pairs. Besides
choosing Select(B) as indicated by Eq. (8.6), it is also possible that Select(B)

returns just one pair as in Buchberger’s algorithm. The F4 algorithm makes use
of Algorithm 8.9 as a subroutine, which reduces a subset of F[x1, . . . , xn] by the
candidate basis G. This algorithm takes as input a set L ⊂ T n × F[x1, . . . , xn]
and G, and returns a reduced set of polynomials whose leading monomials have
not yet appeared as leading monomials in G. In the procedure, tf is simply the
multiplication of a monomial by a polynomial.

Faugère calls the part before the Gaussian elimination “Symbolic Preprocessing,”
as it can be done quickly in a strictly symbolic manner, and also in a time that
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Algorithm 8.8 F4-algorithm

Input: set of polynomials F = {f (1), . . . , f (s)} ⊂ F[x1, . . . , xn], selection function
Output: reduced Gröbner basis G of I = 〈F〉
1: G = F̃ // Echelon form of F
2: B = {(f (i), f (j)) | f (i) �= f (j) ∈ G}
3: d = 0
4: while B �= ∅ do
5: d = d + 1
6: Cd = Select(B)

7: B = B \ Cd

8: Ld = Left(Cd) ∪ Right(Cd)

9: F̃+ = Reduction(Ld,G)

10: for h ∈ F̃+ do
11: B = B ∪ {(h, g)} | g ∈ G}
12: G = G ∪ {h}
13: end for
14: end while
15: return G

Algorithm 8.9 Reduction algorithm of F4

Input: set L of (monomial / polynomial) pairs, candidate basis G

Output: set F̃+ of polynomials whose leading monomials did not appear in G

1: F = {tf | (t, f ) ∈ L}
2: D = LM(F)

3: while D �= Supp(F) do
4: Choose m ∈ Supp(F) \D

5: D = D ∪ {m}
6: if ∃ g ∈ G such that m = m′LM(g) then
7: F = F ∪ {m′g}
8: end if
9: end while

10: use Gaussian elimination on MF to compute F̃
11: F̃+ = {f ∈ F̃ | LM(f ) �∈ LM(F)}
12: return F̃+

is linear in the size of the input. The Gaussian elimination is the most time
consuming step, since Supp(Fd) can grow exponentially in n as the degree of
the terms increases. Unfortunately for the Gröbner Bases algorithms, intermediate
polynomials can have a very high degree, even if the degrees of the final basis
elements are moderate.

8.5.4 Toy Example

We perform the first round of the F4 algorithm for the system F =
(f (1), f (2), f (3)) : F3

5 → F
3
5 with



8.5 Buchberger’s Algorithm and F4 209

f (1)(x1, x2, x3) = 3x2
1 + 4x2

3 ,

f (2)(x1, x2, x3) = 3x1x2 + x1x3,

f (3)(x1, x2, x3) = 4x2
2 + 2x2x3 + 2.

The monomials in f (1), f (2) and f (3) are pairwise distinct. We therefore have
G = F̃ = F . We therefore define g(i) = f (i) (i = 1, . . . , 3). We have
B = {(f (1), f (2)), (f (1), f (3)), (f (2), f (3))} and

D12 = deg(LCM(x2
1 , x1x2)) = deg(x2

1x2) = 3,

D13 = deg(LCM(x2
1 , x2

2)) = deg(x2
1x2

2) = 4,

D23 = deg(LCM(x1x2, x
2
2)) = deg(x1x

2
2) = 3.

We therefore set

C0 = Select(B) = {(f (1), f (2)), (f (2), f (3))}.

When we look at the first pair (f (1), f (2)), we find

x2LM(f (1)) = x1(LM(f (2)) = LCM(LM(f (1)), LM(f (2))).

Therefore, for this pair we have

Left(f (1), f (2)) = (x2, f
(1)) and Right(f (1), f (2)) = (x1, f

(2)).

Analogously, we find

Left(f (2), f (3)) = (x2, f
(2)) and Right(f (2), f (3)) = (x1, f

(3)).

We therefore enter Reduction with the set

L0 = {(x2, f
(1)), (x1, f

(2)), (x2, f
(2)), (x1, f

(3))}.

We set

F = {3x2
1x2 + 4x2x

2
3 , 3x2

1x2 + x2
1x3, 3x1x

2
2 + x1x2x3, 4x1x

2
2 + 2x1x2x3 + 2x1}.

The leading monomials of F are D = {x2
1x2, x1x

2
2} and its support is given by

Supp(F) = {x2
1x2, x1x

2
2 , x2

1x3, x2x
2
3 , x1x2x3, x1}.

The only monomial m ∈ Supp(F) \D which can be extended to a polynomial from
G is x1. We have
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x1x1 = x2
1 = LM(g(1)).

We therefore have to add f (5) = x1g
(1) = x3

1 + 4x1x
2
3 to F . By doing so, we get a

new leading monomial x3
1 and two new elements for the support of F .

The monomial x1 can also be extended to LM(g(2)) (by multiplying it with x2).
However, the polynomial x2g

(2) is already contained in F . Therefore, the Macaulay
matrix of F has the form

MF =

x3
1 x2

1x2 x1x
2
2 x2

1x3 x1x2x3 x1x
2
3 x2x

2
3 x1

f (1) 0 3 0 0 0 0 4 0
f (2) 0 3 0 1 0 0 0 0
f (3) 0 0 3 0 1 0 0 0
f (4) 0 0 4 0 2 0 0 2
f (5) 1 0 0 0 0 1 0 0

By putting this matrix into echelon form we get

M̃F =

x3
1 x2

1x2 x1x
2
2 x2

1x3 x1x2x3 x1x
2
3 x2x

2
3 x1

f (1) 1 0 0 0 0 1 0 0
f (2) 0 1 0 0 0 0 3 0
f (3) 0 0 1 0 0 0 0 4
f (4) 0 0 0 1 0 0 1 0
f (5) 0 0 0 0 1 0 0 3

We therefore get two new leading monomials x2
1x3 and x1x2x3, i.e.

F̃+ = {x2
1x3 + x2x

2
3 , x1x2x3 + 3x1}.

When denoting these monomials by f̃ (1) and f̃ (2), our new B has the form

B = {(f (1), f (3)), (f̃ (1), g(1)), (f̃ (1), g(2)), (f̃ (1), g(3)), (f̃ (2), g(1)),

(f̃ (2), g(2)), (f̃ (2), g(3))}.
The new candidate basis looks like

G = (g(1), g(2), g(3), f̃ (1), f̃ (2)}
= {3x2

1 + 4x2
3 , 3x1x2 + x1x3, 4x2

2 + 2x − 2x3 + 2, x2
1x3 + x2x

2
3 , x1x2x3 + 3x1}.

As can be seen, the set B of pairs as well as the degree of the polynomials increases
during the algorithm. Therefore, even for such a small example, performing the
complete F4 algorithm by hand is (nearly) impossible. 	


The F5 algorithm is another algorithm proposed by Faugère [17]. The fundamen-
tal idea of F5 is simple, namely one tries to avoid redundancy of computation in the
linear algebra steps of F4, where there may be many polynomials being reduced
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to zero. F5 claims that it has a very practical and efficient way to do so. In the
subsequent years, Faugère has claimed many surprisingly good results in practical
attack using his implementation of F5. However, by now, no one else could ever
reproduce such good results or anything even near in practical implementations.
Since Faugère kept his implementation private, from the point of view of scientific
research, we think it is better not to take it too seriously until people can publicly
verify the results claimed.

The complexity of Gröbner basis algorithms, such as F4 and F5, is mainly
determined by the size of the largest matrix appearing during the reduction process.
The number of columns in such a matrix is equal to the size of the support of F .
Before the first degree fall occurs, Supp(F) contains more or less all monomials
t ∈ T d , where d is the degree of the polynomials in F . After the first degree fall,
Supp(F) might be significantly smaller than T d , which leads to a smaller matrix and
therefore reduces the complexity of the reduction step. Therefore, the complexity of
the whole algorithm is mainly determined by the so called degree of regularity dreg.

Definition 8.34 The degree of regularity is the largest degree of the polynomials
computed by a Gröbner basis algorithm before the first degree fall occurs.

The complexity of the F4 algorithm can be estimated as

ComplexityF4
= 3

(
n+ dreg

dreg

)(
n

2

)
.

If the system F to be solved is underdetermined (the number n of variables is larger
than the number m of equations), we can estimate the number of solutions of the
system F by qn−m, where q is the cardinality of the underlying field F . In this
case, the variety of the ideal I = 〈F〉 can have a very complicated structure. Since
Gröbner basis algorithms such as F4 do not work well in this case, it is a good
strategy to fix n − m of the variables in order get a determined system F ′, before
applying the Gröbner basis algorithm on F ′.

One can expect that the system F ′ has exactly one solution. Therefore, the variety
of the ideal I = 〈F ′〉 has a simple structure and the Gröbner basis algorithm will
work well. However, if the system is highly underdetermined (n > 2m), we can do
even better than fixing variables. We discuss this case in Sect. 8.7.

Furthermore, in some cases, it helps to guess some variables in a determined
system F to create an overdetermined system F ′ (Hybrid Approach [5]). In this
case, one can not expect that the system F ′ has a solution. Indeed, after having
guessed k variables, the probability that the system F ′ is solvable is q−k . In order
to find a solution of the original system F , one therefore has to create about qk

overdetermined systems F ′ (by guessing different values for the k variables to be
guessed) and run the Gröbner basis algorithm on each of these systems.

Although this strategy implies running the algorithm qk times, it often reduces
the overall running time. We can estimate the complexity of solving a determined
system F of m equations in m variables using the Hybrid approach by
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ComplexityHybrid = min
k

qk

(
3

(
m− k + dreg(m, k)

dreg(m, k)

)(
m− k

2

))
.

8.6 Estimating the Degree of Regularity

As shown in the previous section, the complexity of a Gröbner Basis algorithm such
as Buchberger’s algorithm and F4/F5 mainly depends on the degree of regularity
dreg. In order to estimate the complexity of these algorithms, we therefore have to
study the behavior of the degree of regularity.

8.6.1 Semi-Regular Systems

The idea of semi-regular sequences is very much inspired by the intention of
describing a polynomial system of given size that is hardest to solve. The key
parameters here are the number of polynomials m, the number of variables n and
the degree of the polynomials. From our previous sections, we know that, in order
to solve a system of non-homogeneous polynomials, we must somehow find non-
trivial relations among the highest degree part of the polynomials of the (extended)
system.

Intuitively, the semi-regular sequences can be seen as sequences of homogeneous
polynomials which have the smallest possible number of these relations. The idea of
semi-regular sequences was introduced in [3] and leads to good theoretical estimates
of the complexity of Gröbner basis algorithms for such hard cases. These estimates
are strongly supported by a large number of experiments, which show that randomly
generated sequences in general are semi-regular. However, we know that most
polynomial systems in cryptography, in particular the polynomial systems coming
from the HFE cryptosystems, are not at all semi-regular. We will consider these
systems in the next subsection.

Due to the fact that semi-regular sequences are important concepts in the theory
of solving polynomial systems, but not so important for the complexity analysis of
direct attacks on multivariate public key cryptosystems, we will only briefly explain
the key definitions and some basic results and refer to [3, 10, 19] for more details.

Currently, the definition of semi-regular sequences is only applicable to the case
of q = 2, and it is not clear yet how it can be exactly extended to other finite fields.
To simplify the exposition and to avoid too much technical details, we will follow
a more mathematical definition of semi-regular sequences coming from the work
[10, 19] and will explain everything in the context of the finite field F2.

Let {{f (1)(x1, . . . , xn), . . . , f
(m)(x1, . . . , xn)} be a system of polynomials. Note

here that all the polynomials f (i) are treated as functions over F2, where x2
i is treated

automatically as xi .
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Let di be the degree of the polynomial f (i). We define f
(i)
h (x1, . . . , xn) to be the

homogeneous part of the polynomial f (i) of degree di .
Next, we will shift our polynomials f

(i)
h (x1, . . . , xn) to a new setting, namely we

will look at them in a new algebra Hn, which we define as

Hn = F2[x1, . . . , xn]/〈x2
1 , . . . , x2

n〉.

We define Hk
n to be the subspace of homogeneous polynomials of degree exactly k

inside Hn. It is clear that

Hn = ⊕n
0H

i
n,

Hn is a strongly graded F-algebra with the grading given by the degrees of the
polynomials.

We will abuse the terminology by treating, for now, the polynomials f
(i)
h and xi

as elements of Hn.

Definition 8.35 A graded ring is a ring R, which can be written as the direct
sum of Abelian groups Ri such that RiRj ⊂ Ri+j . The groups Ri are denoted
as homogeneous components of R. We define the index Ind(R) to be the grade of
the highest non-trivial homogeneous component of R.

Therefore we have

R = ⊕Ind(R)
0 Ri.

Definition 8.36 Let g(1), . . . , g(m) be a set of homogeneous elements in R and I =
〈g(1), . . . , g(m)〉 be the ideal generated by g(1), . . . , g(m). We define

Ind(g(1), . . . , g(m)) = Ind(R/I).

In the case that R is strongly graded, which means that RiRj = Ri+j , we also have
that

Ind(R/I) = min{i ≥ 0|I ∩ Ri = Ri}.

Definition 8.37 Let g(1), . . . , g(m) be a sequence of non-trivial homogeneous
elements of Hn. We call the sequence g(1), . . . , g(m) D-semi-regular if for all
i = 1, 2, . . . , m the following condition holds.

If h is a homogeneous element in R such that hg(i) ∈ 〈g(1), . . . , g(i−1)〉 and
deg(h)+ deg(g(i)) < D then h ∈ 〈g(1), . . . , g(i)).

A sequence of homogeneous polynomials g(1), . . . , g(m) is called semi-regular if it
is D-semi-regular for D = Ind(g(1), . . . , g(m)).
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Definition 8.38 For a graded ring R, the Hilbert series HSR is defined as the
function

HSR(z) =
Ind(R)∑

0

(dimension(Rk))zk.

For a graded ideal I of R, the Hilbert series HSI is defined as HSI = HSR/I and

HSI (z) = HSR/I (z).

Definition 8.39 For a series S(z), we define the index of S(z) to be the lowest
degree d such that the coefficient of zd is non-positive. Otherwise we define the
Index of S(z) to be∞. For a series S(z), we define the truncated series [S(z)]t to
be the series

∑t
0 siz

i , and [S(z)] to be [S(z)]Ind(S(z)).

Now let us move back to Hn, namely we set R = Hn and look at the polynomials
f

(1)
h . . . , f

(m)
h as elements in Hn. Then we have

Theorem 8.40 A sequence f
(1)
h , . . . , f

(n)
h is semi-regular if and only if

HS
(f

(1)
h ,...,f

(m)
h )

(z) = (1+ z)n∏m
i (1+ zdi )

,

where di is the degree of f
(i)
h .

Definition 8.41 In the setting of the above theorem, we define the degree of
regularity of the ideal I = 〈f (1)

h , . . . , f
(m)
h 〉 to be Ind(Hn/〈f (1)

h , . . . , f
(m)
h 〉).

In order to study the complexity of the polynomial solving algorithms for non-
homogeneous systems f (1), . . . , f (m), we essentially ignore the lower degree terms
and reuse the results from above on (f

(1)
h , . . . , f

(m)
h ). In particular, we set the degree

of regularity of (f (1), . . . , f (m)) to be the degree of regularity of f
(1)
h , . . . , f

(m)
h .

For a multivariate quadratic system F , we essentially ignore the linear part of
f (1), . . . , f (m), since, in the case of semi-regular sequences, this part has only a
minimal impact on the complexity of solving the system.

As we discussed before, the degree of regularity is essentially the highest
degree of the polynomials appearing in the process of Gröbner basis algorithms
such as F4 and F5. Therefore, the degree of regularity determines the complexity
of these algorithms. In [3] it is claimed that the complexity of the polynomial
solving algorithms like F4 can be estimated as O(

(
n+d
d

)ω
), where ω comes from

the exponent in the complexity of Gaussian elimination of a square system. It
is reasonable to take ω to be 2.39, which is the value typically quoted by the
community.

We can give reasonable asymptotic estimates for the degree of regularity of semi-
regular multivariate quadratic systems using modern analysis tools. For example, for
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the case of m = 2n, namely the number of equations is two times the number of
variables, the degree of regularity is asymptotically about 0.0858n. However, the
practical meaning of such an estimate is not clear at the moment.

Surely all the formulas presented in this section work only if the sequences are
semi-regular. In [2], there are conjectures about the ubiquitousness of semi-regular
sequences, but the results in [14, 19] show that the situation is actually very subtle
and there remain many interesting and important mathematical questions in the area.

As mentioned earlier in this section, the above discussion is more or less
theoretical, and the results on the degree of regularity obtained in this section can
not be used to estimate the complexity of a direct attack on a multivariate public
key cryptosystems. In order to estimate this complexity, one has to run computer
experiments to study the degree of regularity of the public systems produced by the
given multivariate scheme.

While, for some multivariate schemes such as UOV and Rainbow (see Chap. 5),
one finds that the public systems of the schemes behave very similar to semi-regular
sequences, this is not the case for other multivariate schemes. For example, for
the public systems of HFE and its variants (see Chap. 4) and SimpleMatrix (see
Chap. 7), the degree of regularity is much smaller than indicated above. The reason
for this is the large algebraic structure of these schemes. In the next section we show
how, in the case of HFE, we can use this algebraic structure to find an upper bound
on the degree of regularity of the public systems.

8.6.2 HFE and Variants

Let us first recall the HFE cryptosystem of Chap. 4. The HFE cryptosystem uses
a degree n extension field E of F as well as an isomorphism φ : Fn → E. In its
basic form, the HFE cryptosystem can be used both as an encryption and signature
scheme.

The central map of the HFE cryptosystem is a univariate polynomial map F :
E→ E of the form

F(X) =
qi+qj≤D∑

i,j=0

αijX
qi+qj +

qi≤D∑
i=0

βiX
qi + γ

with coefficients αij , βi and γ randomly chosen from E. Due to the special form of
F , the map F̄ = φ−1 ◦ F ◦ φ is a quadratic map over the vector space F

n. In order
to hide the structure of F in the public key, F̄ is composed with two affine maps S
and T : Fn → F

n. Therefore, the public key P of the scheme is given as

P = S ◦ F̄ ◦ T

and is a quadratic map from F
n to F

n.
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The private key of the scheme consists of the three maps S,F and T (and
possibly the isomorphism φ).

The public key is the multivariate quadratic map P : Fn → F
n.

As we explained earlier, the systems derived from HFE are no longer semi-
regular. Therefore, in order to study the complexity of direct attacks against schemes
of the HFE family, we have to extend the definition of the degree of regularity to the
non-semi-regular case (see [15]).

Let

A = F[x1, . . . , xn]/(xq

1 − x1, . . . , x
q
n − xn) ,

the algebra of functions from F
n to F. Let p(1), . . . , p(n) be quadratic elements

of A. Denote by Ak the subspace of A consisting of functions representable by
a polynomial of degree less than or equal to k. For all j we have a natural map
ψj : An

j →
∑

i Ajp
(i) given by

ψj (a1, . . . , an) =
∑

i

aip
(i) .

The key idea is to look for the so called “degree falls”; a degree fall occurs when the
ai have degree j , but

∑
i aip

(i) has degree less than degree j + 2. Obviously there
are trivial degree falls of the form p(j)p(i) + (−p(i))p(j) or ((p(i))q−1 − 1)p(i).

The degree of regularity of the set {p(i) . . . , p(n)} is now defined as the smallest
degree (measured as deg aj + deg p(i)) at which a non-trivial degree fall occurs.
Note that this idea is very much inspired by the original definition, namely for semi-
regular sequences, this definition is the same as the original one.

Here we actually look only at the highest degree terms in the ai , modulo terms of
lower degrees. Mathematically, we actually work again in the associated graded
ring Hn = F[x1, . . . , xn]/(xq

1 , . . . , x
q
n ). The degree of regularity of the system

{p(1), . . . , p(n)} in A will be the smallest degree at which we find non-trivial
relations among the leading components p

(i)
h , . . . , p

(n)
h (considered as elements of

Hn).
Denote by Hk

n the subspace of Hn consisting of the homogeneous elements
of degree k. Consider an arbitrary set of homogeneous quadratic elements
{λ(1), . . . , λ(n)} ∈ H 2

n . For all j , we have a natural map ψj : (H
j
n )n → H

j+2
n

given by

ψj (b1, . . . , bn) =
∑

i

biλ
(i) .

Let Zj (λ
(1), . . . , λ(n)) = ker ψj ; this is the subspace of relations of the form∑

i biλ
(i) = 0. Inside Zj (λ

(1), . . . , λ(n)), we have the subspace Tj (λ
(1), . . . , λ(n))

of trivial relations, which is generated by elements of the form:
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1. b(0, . . . , 0, λ(j), 0, . . . , 0,−λ(i), 0 . . . , 0) for 1 ≤ i < j ≤ n and b ∈ H
j−2
n ;

where λ(j) is in the i-th position and −λ(i) is in the j -th position;
2. b(0, . . . , 0, (λ(i))q−1 − 1, 0 . . . , 0) for 1 ≤ i ≤ n and b ∈ H

j−2(q−1)
n ; where

(λ(i))q−1 is in the i-th position;

The space of non-trivial relations is the quotient space

Zj (λ
(1), . . . , λ(n))/Tj (λ

(1), . . . , λ(n)).

Definition 8.42 The degree of regularity of the system {λ(1), . . . , λ(n)} is defined
by

dreg({λ(1), . . . , λ(n)})=min{j | Zj−2({λ(1), . . . , λ(n)})/Tj−2({λ(1), . . . , λ(n)}) �=0}.

Here, the degree of regularity depends only on the subspace generated by the λ(i)

and not on the order of the elements. Therefore we denote the space generated by
the λ(i) by V and write dreg(V ) for dreg({λ(1), . . . , λ(n)}).

There are two very important properties of the degree of regularity observed in
[15]. First, the degree of regularity of a space is less than or equal to the degree of
regularity of a subspace.

Proposition 8.43 (Property I) Let V ′ be a subspace of V . Then

dreg(V ) ≤ dreg(V
′).

Second, the degree of regularity is invariant under field extension. Let E be an
extension of F. Define HE = E[x1, . . . , xn]/

〈
x

q

1 , . . . , x
q
n

〉
and denote by VE the

E-subspace of HE generated by the λ(i).

Proposition 8.44 (Property II) Let E be an extension of F. Then

dreg(VE) = dreg(V ).

Let us now look at P , a quadratic map with component functions p(1),

. . . , p(n) ∈ A. Let V and V h be the vector spaces generated by the p(1), . . . , p(n)

and their leading homogeneous components p
(1)
h , . . . , p

(n)
h which are treated as

elements of Hn. It is clear that the goal is actually to find a good bound for dreg(V
h).

The first step is to extend the base field to E. When we extend the base field in
A, we shift from functions from F

n to F to functions from F
n to E. Via the linear

isomorphism φ−1 : E → F
n, this algebra is isomorphic to the algebra of functions

from E to E which is simply E[X]/ 〈Xqn −X
〉
.

From elementary Galois theory, we know that the space VE corresponds under
this identification to the space generated by F ,Fq, . . . ,Fqn−1

. If we filter the
algebra E[X]/ 〈Xqn −X

〉
by the degree of functions over F, then the linear

component is spanned by X,Xq, . . . , Xqn−1
. The associated graded ring will then be
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the algebra HE = E[X0, . . . , Xn−1]/〈Xq

1 , . . . , X
q
n〉 where Xi corresponds to Xqi

.
This is naturally isomorphic to the algebra Hn with coefficients extended to E [10],
which implies that the process of extending the base field and the process taking the
associated graded ring commute.

Let Pi denote the leading component of Fqi
in HE. Thus for instance, if F is

defined as above, then

P0 =
n−1∑
i,j=0

αijXiXj .

The space generated by the Pi is exactly isomorphic to V h
E

, the subspace of HE

generated by the p
(i)
h . By putting all the above together, we can easily reach the

following important theorem, stated in [15].

Theorem 8.45

dreg({p(1), . . . , p(n)}) = dreg({p(1)
h , . . . , p

(n)
h }) = dreg({P0, . . . , Pn−1}).

Using Property II, we get the following immediate corollary.

Corollary 8.46

dreg({p(1), . . . , p(n)}) ≤ min{dreg(Q) | Q ∈ V h
E
}.

Before the work of [10], the bounds on the degree of regularity in [15, 18] and
previous works were obtained by counting dimensions. The basic idea is going
back to [3, 27]. This approach was refined in [18] by using Property I to reduce to
subsets {P0, . . . , Ps} which, for HFE systems, involve significantly fewer variables.
It was further refined in [15]. The disadvantage of this approach was that no general
formula for the degree of regularity could be derived.

In [10], a completely different approach was developed, namely a purely
algebraic approach. Instead of counting and comparing dimensions, the authors
of [10] actually looked for specific non-trivial relations. Surprisingly, an important
bound could be found by restricting to the case of a single polynomial. They first
gave a bound on the degree of regularity of a single polynomial in terms of the
rank of the related quadratic from and then applied this simple formula to P0, thus
obtaining an elegant bound on the degree of regularity of an HFE system in terms
of its degree.

The degree of regularity of a single polynomial over F2 and F3 has been studied
in great detail in [13, 14]. However, we do not need the kind of exact information
found in those papers, but rather merely need to show the existence of non-trivial
relations, which can be done by explicitly using the classification of quadratic forms.

Recall that P0 is a homogeneous quadratic polynomial in the algebra
E[X0, . . . , Xn−1]/

〈
X

q

0 , . . . , X
q

n−1

〉
. Using the classification theorem of quadratic
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forms over finite fields, we are able to explicitly construct nontrivial relations and
hence derive a simple bound for the degree of regularity of P0 in terms of its rank.

We now briefly review the classification of quadratic forms over a finite field. We
begin with the case when q is odd. A quadratic form in n variables is a homogeneous
quadratic polynomial in the polynomial ring E[X1, . . . , Xn]. Two quadratic forms
P and Q are said to be equivalent (written P ∼ Q), if there is an invertible linear
change of variables L, which transforms P into Q:

P ◦ L(X1, . . . , Xn) = Q(X1, . . . , Xn).

Pick an element c ∈ E that is not a square. Then a standard classical theorem tells
us that a quadratic form is equivalent to one of the two types

1. X2
1 + · · · +X2

r−1 +X2
r

2. X2
1 + · · · +X2

r−1 + cX2
r

for some r ≤ n. The same classification applies to quadratic elements of the quotient
ring E[X1, . . . , Xn]/

〈
X

q

1 , . . . , X
q
n

〉
.

When q is even, the situation is more complicated due to the fact that X2 is
linear rather than quadratic for q = 2. It is well known that a quadratic polynomial
in the polynomial algebra E[X1, . . . , Xn] is equivalent to a polynomial of one of the
following forms for some r ≤ n:

1. X1X2 + · · · +Xr−1Xr

2. X1X2 + · · · +Xr−2Xr−1 +X2
r

3. X1X2 + · · · +Xr−1Xr +X2
r−1 + cX2

r where c ∈ E\{0} satisfies TRE(c) = 1.

For q > 2, this classification carries over to the quotient ring E[X1, . . . , Xn]/〈
X

q

1 , . . . , X
q
n

〉
. When q = 2, all quadratic elements of the quotient ring are

equivalent to an element of the first type. In all cases the number r is known as
the rank of Q. Note that if q = 2, the rank of a quadratic element must be at least 2.

When r = 1 (in the case q > 2), Q is actually equal to aX2
1 for some a ∈ E. It

is easily verified that the smallest non-trivial relation is Xq−2(aX2) = 0 and hence
that dreg(Q) = q. More generally we have the following inequality.

Theorem 8.47 Let Q be quadratic of rank r . If r > 1,

dreg(Q) ≤ r(q − 1)

2
+ 2.

Proof In the case of a single polynomial, the definition of the degree of regularity
can be expressed in terms of non-trivial annihilators. Let Q be an arbitrary quadratic
element of H = E[X1, . . . , Xn]/

〈
X

q

1 , . . . , X
q
n

〉
. The annihilators of Q are the

elements of Ann(Q) = {f ∈ H | f Q = 0}. The trivial annihilators are the
multiples of Qq−1. The degree of regularity is the smallest k such that there is a
non-trivial annihilator of Q of degree k − 2. The degree of regularity is invariant
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under a linear change of variables, so it is sufficient to prove the result by exhibiting
explicit non-trivial annihilators for each of the above types of quadratic elements.

Because of the different types of standard forms, we need to consider separately
the cases when q is odd and even. We also need to divide these cases into the cases
when r is odd or even.

• Case 1: q odd, r even

Set s = r/2. In this case Q is of the form

Q = X2
1 +X2

2 + · · · +X2
2s−1 + aX2

2s

for some a ∈ E. Let

Ki = X
q−1
2i−1 −X2

2iX
q−3
2i−1 +X4

2iX
q−5
2i−1 + · · · + (−1)(q−1)/2X

q−1
2i

for i = 1, . . . , s − 1; and

Ks = X
q−1
2s−1 − aX2

2sX
q−3
2s−1 + a2X4

2sX
q−5
2s−1 + · · · + (−a)(q−1)/2X

q−1
2s

Set

K = K1K2 . . . Ks .

It is clear that

Ki(X
2
2i−1 +X2

2i ) = X
q+1
2i−1 − (−1)(q+1)/2X

q+1
2i = 0 ,

for i = 1, . . . , s − 1; and

Ks(X
2
2s−1 + aX2

2s) = X
q+1
2s−1 − (−a)(q+1)/2X

q+1
2s = 0 .

Hence KQ = 0, which implies K ∈ Ann(Q)∩Hs(q−1). We claim that K /∈ 〈Qq−1
〉
.

Consider the quotient algebra

H̄ = H/
〈
X2

2i−1 +X2
2i , i = 1, . . . , s − 1; X2

2s−1 + aX2
2s

〉
.

The algebra H̄ has a basis consisting of monomials with the powers of the variables
X2, X4, . . . , X2s at most 1. It is clear that the image of Q (and hence also Qq−1) in
H̄ is zero, whereas the image of K is

s∏
i

X
q−1
2i−1

(
q + 1

2

)s
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which is non-zero. Therefore K is not in the ideal generated by Qq−1. Hence
dreg(Q) ≤ r(q − 1)/2+ 2.

• Case 2: q odd, r odd

Set s = (r − 1)/2. In this case Q is of the form

Q = X2
1 +X2

2 + · · · +X2
2s−1 +X2

2s + aX2
2s+1

for some a ∈ E. From the classification of quadratic forms, we have

X2
2s−1 +X2

2s + aX2
2s+1 ∼ X2

2s−1 −X2
2s − aX2

2s+1 ∼ X2s−1X2s − aX2
2s+1

so Q can be taken to be of the form:

Q = X2
1 +X2

2 + · · · +X2
2s−2 +X2s−1X2s − aX2

2s+1 .

Let

Ki = X
q−1
2i−1 −X2

2iX
q−3
2i−1 +X4

2iX
q−5
2i−1 + · · · + (−1)(q−1)/2X

q−1
2i

for i = 1, . . . , s − 1; and

K ′ = (X2s−1X2s)
(q+1)/2 − a(q+1)/2X

(q+1)

2s+1

X2s−1X2s − aX2
2s+1

X
(q−1)/2
2s−1 .

Note that

K ′(X2s−1X2s − aX2
2s+1) = (X2s−1X2s)

(q+1)/2X
(q−1)/2
2s−1 = 0 .

Set

K = K1K2 . . . Ks−1K
′.

Note that the degree of K is (s − 1)(q − 1)+ 3(q − 1)/2 = r(q − 1)/2. Again we
see that KQ = 0 and therefore K ∈ Ann(Q) ∩ Hr(q−1)/2. Consider the quotient
algebra

H̄ = H/
〈
X2

2i−1 +X2
2i , i = 1, . . . , s − 1; X2s−1X2s − aX2

2s+1

〉
,

Then H̄ has a basis consists of monomials in which the powers of the variables
X2, X4, . . . , X2(s−1), X2s+1 are at most one. The image of Q in H̄ is zero, but that
of K is
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s−1∏
i=1

X
q−1
2i−1

(
q + 1

2

)s−1

X
q−1
2s−1X

(q−1)/2
2s

(
q + 1

2

)

which is non-zero. Hence K is not in the ideal generated by Qq−1 and dreg(Q) ≤
r(q − 1)/2+ 2.

• Case 3: q even, r even (Q of type (1) or (3))

First suppose that Q is of the form Q = X1X2 + · · · + X2s−1X2s where r = 2s.
Set G = X

q−1
1 X

q−1
3 . . . X

q−1
2s−1. Then it is easily seen that H ∈ Ann(Q) ∩Hs(q−1).

Consider the quotient algebra

H̄ = H/ 〈X1 −X2, . . . , X2s−1 −X2s〉 .

The image of Q in H̄ is Q̄ = X2
1 + X2

3 + · · · + X2
2s−1 = (X1 + X3 + · · · +

X2n−1)
2, so the image of Qq−1 is Q̄q−1 = 0. On the other hand, the image of G

is X
q−1
1 X

q−1
3 . . . X

q−1
2s−1 which is non-zero. Thus G /∈ 〈Qq−1

〉
Hence Dreg(Q) ≤

r(q − 1)/2+ 2.
Next suppose that Q is of the form Q = X1X2+· · ·+X2s−1X2s+X2

2s−1+αX2
2s .

Let L be a finite extension field of E in which the equation 1+X+ aX2 has a root.
In L[X1, . . . , Xr ], Q is equivalent to X1X2 + · · · +X2s−1X2s . Since the degree of
regularity is invariant under extensions of the base field by Property II, it follows
from the first part that dreg ≤ r(q − 1)/2+ 2.

• Case 4: q even, r odd (Q of type (2))

Note that, in this case, we must have q > 2. We may assume that Q is of the form
Q = X1X2 + · · · +X2s−1X2s +X2

2s+1 where r = 2s + 1. Set

G = X
q−1
1 X

q−1
3 . . . X

q−1
2s−3X

q/2
2s−1(X2s−1X2s +X2

2s+1)
(q−2)/2 .

Note that deg H = r(q − 2)/2 and

GQ = (X2s−1X2s +X2
2s+1)

q/2X
q/2
2s−1 = X

q

2s−1X
q/2
2s +X

q

2s+1X
q/2
2s−1 = 0 .

Consider the quotient algebra

H̄ = H/ 〈X1 −X2, . . . , X2s−1 −X2s〉 .

The image of Q in H̄ is Q̄ = X2
1 +X2

3 + · · ·+X2
2s−1+X2

2s+1 = (X1+X3+ · · ·+
X2s−1+X2s+1)

2, so the image of Qq−1 is Q̄q−1 = 0. On the other hand, the image
of G is X

q−1
1 X

q−1
3 . . . X

q−1
2s−3X

q/2
2s−1(X

2
2s−1+X2

2s+1)
(q−2)/2 which is non-zero. Thus

G /∈ 〈Qq−1
〉

and hence dreg(Q) ≤ r(q − 1)/2+ 2. 	
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Let us define the Q-Rank of a quadratic operator P(X) to be the minimal rank of
elements of the space V h

E
generated by P0, . . . , Pn−1, i.e.

Q-Rank P = min{Rank Q | Q ∈ V h
E
}

Note in particular that Q-Rank(P ) ≤ Rank(P0).

Theorem 8.48 Let P be a quadratic operator of degree D. If Q-Rank(P ) > 1, the
degree of regularity of the associated system is upper bounded by

(q − 1) Q-Rank(P )

2
+ 2 .

In particular, this is less than or equal to

(q − 1)(�logq(D − 1)� + 1)

2
+ 2 .

If Q-Rank(P ) = 1, then the degree of regularity is less than or equal to q.

Proof The first assertion follows from Theorem 8.47 and Corollary 8.46. Suppose
that

P(X) =
∑

qi+qj≤D

aijX
qi+qj +

∑
qi≤D

biX
qi + c .

Then

P0 =
∑

qi+qj≤D

aijXiXj .

Let k be the largest subscript of a variable Xk that occurs non-trivially in P0 (that is,
aik �= 0 for some i). The rank of P0 is bounded by the number of variables involved
in its expression which is at most k + 1. On the other hand, by our assumption on
D, D ≥ qk + 1 or equivalently, k ≤ �logq(D − 1)�. Thus the rank of P0 is at most
�logq(D − 1)� + 1. 	


A very interesting case is the Matsumoto-Imai scheme, where F(X) = X1+2θ

over the field GF(2). Then P0 = X0Xθ has rank 2. So our theorem implies that the
degree of regularity is less than or equal to three. This is precisely the statement that
linearization equations exist in this case [23]. On the other hand if we consider a
Matsumoto-Imai operator over a field of order q = 2m, then the degree of regularity
remains 3 but our bound is 2m + 1. Therefore our estimate formula needs to be
improved when q is not a prime.

For fixed q, the degree of regularity of an HFE public key is O(logq D). Consider
now a Gröbner basis attack on an HFE system of degree D. We continue to make
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the assumption that these algorithms will terminate at degree equal to the degree
of regularity or shortly after this. The runtime of this algorithm will be O(nωDreg).
Assuming that the security parameter is chosen in such a way that D = O(nα), the
runtime for the Gröbner basis attack on an HFE system over any base field will be
2O(log(n)2); that is, it will be quasi-polynomial.

On the other hand, suppose that q itself is a component of the security parameter
and is taken to be of scale O(n) (this assumption is reasonable since it will only
increase the computation complexity for HFE systems by the scale of O(log2 n)).
If the bound above is asymptotically sharp, then the degree of regularity will be at
least of the scale O(n), and therefore inverting HFE systems will be exponential.

We do not expect or believe the bound obtained in Theorem 8.48 to be optimal
in any degree of generality. If we compare the bound

(q − 1)(�logq(D − 1)� + 1)/2+ 2

with that obtained in [15] for a large number of values of n and D and prime q. We
can see that as n becomes large relative to q, the two bounds appear to be getting
closer, though the bound in [10] are frequently slightly higher. It seems possible that
there may be a tighter upper bound of the form cq logq(D) for some scalar c when
q is a prime.

Later, this results were further extended to get upper bounds on the degree of
regularity of HFE variants such as HFE-, HFEv- and HFEv- [11, 12].

Theorem 8.49 The degree of regularity of the polynomial system derived from an
HFEv- system is less than or equal to

(q − 1)(r + v + a − 1)

2
+ 2 if q is even and r + a is odd,

(q − 1)(r + v + a)

2
+ 2 otherwise.

where q is the size of the base field, D is the degree of the HFE polynomial, and a

and v are the numbers of Minus equations and Vinegar variables respectively. The
“rank” parameter r is given by r = �logq(D − 1)� + 1.

When a = 0, which gives us the HFEv scheme, the degree of regularity is upper
bounded by

(q − 1)(r + v − 1)

2
+ 2 if q is even and r is odd,

(q − 1)(r + v)

2
+ 2 otherwise.

When v = 0, which gives us the HFE- scheme, the degree of regularity is less than
or equal to
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(q − 1)(r + a − 1)

2
+ 2 if q is even and r + a is odd,

(q − 1)(r + a)

2
+ 2 otherwise.

Though these are nice formula, we know for general q, especially large q, that they
are not so tight and need much improvement. However, for the case q = 2 and
currently practical parameters, the above formulas seem to be very accurate bounds,
which was verified by a large number of experiments [24]. These theoretical bounds
are actually used to select the parameters in some the submissions to the NIST
standardization process of post-quantum cryptosystems [21].

8.7 Algorithms for Solving Over- and
Underdetermined Systems

As discussed in the previous sections, the algorithms used to solve multivariate
quadratic systems require in general exponential time. However, if the systems
considered are either highly overdetermined (m  n) or highly underdetermined
(n  m), there exist special algorithms which run in polynomial time. In this
section, we present two of these algorithms. Furthermore, we discuss here an
algorithm which solves underdetermined systems of m equations in n = νm

variables by solving a determined system of m − �ν� + 1 equations and variables.
This algorithm plays an important role in the security analysis of the UOV scheme
(see Chap. 5).

8.7.1 Solving Overdetermined Systems with m ∼ n2

If the number of equations in a multivariate quadratic system is quadratic in the
number of variables, the system can be solved by the Relinearization method. In
particular, this method works if we have

m ≥ n(n+ 3)

2
.

The algorithm consists of two steps.

1. Interpret each quadratic monomial xixj as a new variable xij . Therefore one
obtains a system of m linear equations in the n(n+1)

2 + n = n(n+3)
2 variables
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x11, x12, . . . , x1n, x22, x23, . . . , xnn︸ ︷︷ ︸
former quadratic monomials

, x1, x2, . . . , xn︸ ︷︷ ︸
linear monomials

.2

2. Solve the linear system generated in the previous step by Gaussian elimination.
If m ≥ n(n+3)

2 , the linear system will have (with high probability) exactly one
solution, which corresponds to the solution of the original quadratic system.

The complexity of the algorithm is O(n2ω), where 2 < ω ≤ 3 is the exponent of
solving a linear system. Therefore, the algorithm solves the system in polynomial
time.

Remember that we used the above technique in the decryption process of the
(rectangular) SimpleMatrix scheme (see Chap. 7).

8.7.2 Solving Underdetermined Systems with n ∼ m2

In [20], Hashimoto et al. proposed an algorithm to solve an underdetermined
multivariate quadratic system P of m equations in n ≥ m(m+3)

2 variables in
polynomial time. The idea of the algorithm is to decompose the system P into
P = S ◦ F ◦ T , where S and T are linear transformations. From F one extracts
a number of expressions, which lead to m(m + 1)/2 linear equations in n − m

variables. If this linear system has a solution, then this solution is substituted back
into the transformed system F resulting in an easily invertible quadratic map. Note
that this idea is very similar to a structural attack against a multivariate public key
cryptosystem. The process of solving the equation P(z) = 0 consists of three steps.

Recall that a general system P of multivariate quadratic equations is given by

P : p(k) =
∑

1≤i,j≤n

a
(k)
ij xixj +

∑
1≤i≤n

b
(k)
i xi + c(k), for k = 1, . . . , m (8.7)

The system P can also be written in matrix notation, i.e.

P : p(k) = xT A(k)x+ b(k)x+ c(k)

with n × n matrices A(k) = (a
(k)
ij ) containing the coefficients of the homogeneous

quadratic terms, vectors b(k) = (b
(k)
1 , . . . , b

(k)
n ) containing the coefficients of the

linear terms and field elements c(k) (k = 1, . . . , m).
The system P is transformed iteratively into a system F of form (8.8) where

each of the m steps consists of two linear transformations. The two transformations
depend only on the quadratic terms (or the matrices A(k)), but will be applied also

2Note that, in the case of F = GF(2), we only need m ≥ n(n+1)
2 equations, since the quadratic

monomials x2
i (i = 1, . . . , n) don’t exist.
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Fig. 8.1 Structure of the homogeneous part of the system F

to the linear terms in order to keep everything consistent. When it is clear from the
context we will write sometimes a

(k)
m instead of a

(k)
m,m to refer to the coefficient of

x2
m of the polynomial p(k).

The idea of the algorithm is outlined below and described in more details later.

1. Decompose the system P into P = S ◦ F ◦ T , where S and T are linear maps
and F is a set of quadratic equations of the form

a(1)
m x2

m +
∑

1≤i≤m

xiL
(1)
i +Q

(1)
2 = 0,

a
(2)
m−1x

2
m−1 +Q

(2)
1 (xm)+

∑
1≤i≤m

xiL
(2)
i +Q

(2)
2 = 0,

a
(3)
m−2xm−2 +Q

(3)
1 (xm−1, xm)+

∑
1≤i≤m

xiL
(3)
i +Q

(3)
2 = 0,

... (8.8)

a
(
)
m−
+1x

2
m−
+1 +Q

(
)
1 (xm−
+2, . . . , xm)+

∑
1≤i≤m

xiL
(
)
i +Q

(
)
2 = 0,

...

a
(m)
1 x2

1 +Q
(m)
1 (x2, . . . , xm)+

∑
1≤i≤m

xiL
(m)
i +Q

(m)
2 = 0.

For i, j = 1, . . . , m, the L
(i)
j = L

(i)
j (xm+1, . . . , xn) are m2 linear functions

and each Q
(i)
2 = Q

(i)
2 (xm+1, . . . , xn) is a quadratic polynomial (with linear

and constant terms) in the given variables. The functions Q
(j)

1 are homogeneous

quadratic functions in the listed variables. For example Q
(2)
1 (xm) = a

(2)
m x2

m. The
structure of the equations of F is shown in Fig. 8.1.
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2. Consider the linear equations

L
(j)
i (xm+1, . . . , xn) = 0 for j = 1, . . . , m, i = 1, . . . , m+ 1− j, (8.9)

and solve this system of m(m + 1)/2 equations for (xm+1, . . . , xn). In order for
a solution to exist we need at least as many unknowns as equations, i.e.

n−m ≥ m(m+ 1)

2
or n ≥ m(m+ 3)

2
.

3. After having found a solution for xm+1, . . . , xn, we substitute the values of
xm+1, . . . , xn into the system F to obtain a system F̃ of the form

a(1)
m x2

m +Q
(1)

2 = 0,

a
(2)
m−1x

2
m−1 +Q

(2)
1 (xm)+ xmL

(2)

m +Q
(2)

2 = 0,

a
(3)
m−2xm−2 +Q

(3)
1 (xm−1, xm)+ xm−1L

(3)

m−1 + xmL
(3)

m +Q
(3)

2 = 0,

... (8.10)

a
(
)
m−
+1x

2
m−
+1 +Q

(
)
1 (xm−
+2, . . . , xm)+

∑
m−
+2≤i≤m

xiL
(
)

i +Q
(
)

2 = 0,

...

a
(m)
1 x2

1 +Q
(m)
1 (x2, . . . , xm)+

∑
2≤i≤m

xiL
(m)

i +Q
(m)

2 = 0.

Note that L
(i)

j and Q
(i)

2 are the values of L
(i)
j and Q

(i)
2 after being evaluated with

the result from the previous step and therefore are constants. If a square root
exists for the first equation in (8.10) we can solve for xm. By substituting this
solution into the second equation, we can hope to get a solution for xm−1. We
repeat this process until we get a value for x1.

8.7.2.1 Finding the Decomposition of P

In the first iteration we ensure that the element a
(m)
11 is not zero, if necessary by

interchanging p(m) with another equation. Then we set all coefficients of x2
1 in p(i)

(i ∈ {1, . . . , m− 1}) to 0 by computing p̃(i) = p(i) − a
(i)
11

a
(m)
11

p(1). This transformation

corresponds to a linear transformation P̃ = Sm ◦ P where, for the general case, the
matrix S
 is given by
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S
 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 s1,
 0 . . . . . . 0

0 1 0
.
.
. s2,


.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 1 s
−1,


.

.

.
.
.
.

0 . . . . . . 0 1 0 . . . . . . 0
.
.
.

.

.

. 0 1 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 . . . . . . 0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.11)

and si,
 = a
(i)
jj /a

(
)
jj .

The second transformation at each iteration is a linear transformation of the
variables. For this we introduce a n× n matrix T
 (
 = 2, . . . , m) of the form

T
 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 t1,
 0 . . . . . . 0

0 1 0
.
.
. t2,


.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 1 t
−1,


.

.

.
.
.
.

0 . . . . . . 0 t
,
 0 . . . . . . 0
.
.
.

.

.

. t
+1,
 1 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 . . . . . . 0 tn,
 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.12)

The matrix T
 is the identity matrix with the 
-th column replaced by the unknowns
tj,
 (j = 1, . . . , n). The quadratic terms are then transformed into Ã(k) =
T T


 A(k)T
. In the resulting matrix the terms in the 
-th column and 
-th row are
dot products of the vector of unknowns and columns and/or rows of A(k). The
exception is the term at the intersection of the 
-th row and the 
-th column, where
the unknowns appear in a quadratic form, but the explicit form of that term is not
needed. All other terms remain unchanged in this transformation.

For j �= 
, the transformed terms in column 
 and row 
 are given by

ã
(k)
j,
 =

∑
1≤i≤n

a
(k)
i,j ti,


ã
(k)

,j =

∑
1≤j≤n

a
(k)
j,i ti,


We are only interested in the transformed terms with 1 ≤ j < 
 and by setting

ã
(k)
j
 + ã

(k)

j = 0 (j < 
)
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Fig. 8.2 Structure of the system P after the first iteration of the algorithm (m = 4; a1 stands for
a

(4)
1,1)

the corresponding coefficients of xjx
 with j < 
 and 1 ≤ k ≤ m can be fixed to
zero. This results in the following system of homogeneous linear equations for the
unknowns t1,
 to tn,


∑
1≤i≤n

(a
(k)
j,i + a

(k)
i,j )ti,
 = 0 for j < 
 (8.13)

For this system only a non-trivial solution with t
,
 �= 0 is of interest.
In particular we use, in the first iteration, the matrix T2 in order to eliminate all

terms with x1x2. As seen from the above expressions this results in a system of
m homogeneous linear equations in the n unknowns t1,2, t2,2, . . . , tn,2. The terms,
which are eliminated from the polynomials p(1), . . . , p(m), are displayed in Fig. 8.2
(for the case of m = 4). By the transformation T2, the system P is transformed to a
system P̃ , but we stay with the same notation by setting P = P̃ .

During the second iteration of the algorithm we check that the new term am−1
2,2

is not zero; if necessary we interchange p(m−1) with another p(j) where 1 ≤ j <

m − 1. Next, we eliminate the terms with x2
2 in the equations p(1), . . . , p(m−2),

by subtracting the appropriate multiple of p(m−1) from these polynomials. This
transformation can be represented by the matrix Sm−1.

For the other transformation in the second iteration of the algorithm we use the
matrix T3. This time we eliminate the terms with x1x3 and x2x3 from p(1) to p(m−1),
but only x1x3 from p(m). From (8.13) we obtain 2m− 1 homogeneous equations in
the n unknowns t1,3, . . . , tn,3. Assuming that there exists a nontrivial solution, we
can transform the system into a system of the form shown in Fig. 8.3.

Figure 8.4 shows the system after the third iteration. Note that this time the terms
of x1x4, x2x4 and x3x4 are eliminated from p(1) to p(m−2), but only x1x4 and x2x4
from p(m−1), and only x1x4 from p(m). The figure also shows that, for m = 4, 3
iterations suffice to bring the system into the desired form of (8.8) and Fig. 8.1, as
the next iteration would only check that a

(1)
m,m is nonzero. For the general case with

m equations we need analogously m− 1 iterations.
Algorithm 8.10 computes step by step the two transformations S and T and a

map F of the form of (8.8) such that P = S ◦ F ◦ T . In particular, it finds linear
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Fig. 8.3 Structure of the system P after the second iteration of the algorithm (m = 4; a2 stands
for a

(3)
2,2)
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Fig. 8.4 Structure of the system P after the third iteration of the algorithm (m = 4; a3 stands for
a

(2)
3,3)

transformations S2, . . . , Sm and T2, . . . , Tm such that

F = S2 ◦ · · · ◦ Sm︸ ︷︷ ︸
S−1

◦P ◦ T2 ◦ · · · ◦ Tm︸ ︷︷ ︸
T −1

.

The algorithm as stated below assumes that a non zero term a
(m−k)
k,k �= 0 can

always be found. This might not always be the case. If it happens, we use the identity
matrix for the first transformation and compute the second transformation as before.

Although the algorithm is described with references to polynomials, it is much
easier to implement it with matrices which represent these polynomials. Here one
has the option to use either symmetric matrices or an upper triangular form. The
transformation T
 does not preserve the chosen form, and it appears to be beneficial
to restore it after each iteration.

8.7.2.2 Solving the System

After having found the decomposition of P (and therefore a system F of form
(8.8)), we solve the linear equations L

(j)
i (xm+1, . . . , xn) = 0 (i ∈ {1, . . . , m}, j ∈
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Algorithm 8.10 Transforming the system P into a system F of form (8.8)

Input: P , a multivariate quadratic system of m equations in n ≥ m(m+3)
2 variables

Output: linear transformations S and T , quadratic map F of the form of (8.8) such that P =
S ◦ F ◦ T .

1: 
 = 1.

2: while 
 <= m do
3: If necessary, permute the polynomials p(i) (i = 1, . . . , m) such that

the coefficient a
(m−
+1)

,
 of x2


 in p(m−
+1) is non zero.

4: For i = 1, . . . , m− 
 set p̃(i) = p(i) − a
(i)

,


a
(m−
+1)

,


p(m−
+1) and store

the coefficients
a

(i)

,


a
(m−
+1)

,


in a matrix Sm−
+1 of the form (8.11).

5: 
 = 
+ 1
6: Set P = P̃ .
7: Define a matrix T
 of the form (8.12) and compute P̂ = P ◦ T
.
8: for i = 1 to m+ 1− 
 do
9: Set the coefficients of the terms xj x
 in P̂ to zero for 1 ≤ j < 
.

10: end for
11: for i = m+ 2− 
 to m do
12: Set the coefficients of the terms xj x
 in P̂ to zero (1 ≤ j < m− i).
13: end for
14: This gives a system of homogeneous linear equations in the unknown

elements of T
. Find a solution with t
,
 �= 0.
15: Compute P̂ = P ◦ T
 and then set P = P̂ .
16: end while
17: Set F = P
18: Set T = (T2 · · · Tm)−1.
19: Set S = (Sm−1 · · · S1)

−1

20: return S,F, T

{1, . . . , m− i+1}) using Gaussian elimination. We then substitute this solution into
the system F in order to convert it to the form of (8.10).

Under the assumption that −Q
(1)

2 is a real square in F, we can derive from the
first equation of (8.10) the value of xm. By substituting this value into the second
equation of (8.10), we can hope to find a value for xm−1. We continue this process
until we have found a value for x1. In order to get a solution y of F(x) = 0,
we append the values of the variables xm+1, . . . , xn found by solving the linear
equations L

(j)
i (see above), i.e.

y = (x1, . . . , xm, xm+1, . . . , xm).

Finally, to get a solution z of the original system P(x) = 0, we compute z =
T −1(y).

Our algorithm works for fields of odd and of even characteristic. However, in the
process of solving the system F , we have to take square roots from field elements.
Since an element of a field of odd characteristic is a square with probability 1/2,
the success probability of the algorithm is (1/2)m. We therefore have to run the
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algorithm 2m times to find a solution of the original system P . So, the actual
complexity of solving the system P over a field of odd characteristic is O(2mnωm).

For fields of even characteristic, we can find the square roots of all field elements,
so that the first equation in (8.10) does not cause any difficulty. But further down the
line we may have to solve a quadratic equation with a linear term and it can happen
that the quadratic equation is irreducible.

It is possible that the decomposition gives a
(1)
m,m = 0. Then most likely Q

(1) �= 0

and a solution for xm can not be found. If Q
(1) = 0 holds, there is a chance that the

equations of (8.10) lead to a solution. In [20] it is mentioned that in this case a linear
equation may be encountered, which allows the process of solving the system to be
continued.

The algorithm assumes that a solution of the full system also satisfies the
linear system selected in (8.9). This is not guaranteed and it manifests itself when
solving (8.10) breaks down. Since the variables were subdivided into the two
groups (x1, . . . , xm) and (xm+1, . . . , xn) it is possible to overcome this difficulty
by interchanging some of the variables in the two groups. Another possibility is to
use a more general linear transformation.

Creating the toy example below indicated to us that there is a substantial chance
that the algorithm will fail when the underlying field is small, since the chance that
a

(1)
m,m = 0 is fairly high. For larger fields this should be less problematic.

8.7.3 Analysis of the Algorithm

The algorithm works, if and only if all linear systems appearing during the process
of transforming and solving the system have a solution. In particular, we require
that all systems contain at least as many variables as equations. The linear system
we have to solve in the 
-th iteration of the loop of Algorithm 8.10 (line 14) contains

(m− 
+ 1)(
− 1)+
m∑

m+2−


(m+ 1− i) = m(m+ 1)

2
− 1

equations in the n variables of T
. Therefore, choosing

n ≥ m(m+ 1)

2

enables us to find the desired decomposition of P into S ◦ F ◦ T .
In the process of solving the system F , we have to solve the linear equations

L
(j)
i = 0 with (i = 1, . . . , m, j = 1, . . . , m − i + 1) in the n − m variables

xm+1, . . . , xn. Altogether, there are



234 8 Solving Polynomial Systems

m∑
i=1

(m− i + 1) = m(m+ 1)

2

equations. We therefore need

n−m ≥ 1

2
m(m+ 1)

or

n ≥ m(m+ 3)

2

variables in the original quadratic system P to run the algorithm.
Assuming that the algorithm works on the first try, then the complexity of the

algorithm is O(nωm), where 2 < ω ≤ 3 is the linear algebra constant of solving a
linear system.

8.7.4 Toy Example

We want to solve the system P = (p(1), p(2), p(3)) in the variables x1, . . . , x9,
where

p(1) = x2
1 + α2x1x4 + x1x5 + αx1x6 + αx1x9 + x1 + x2

2 + α2x2x3 + α2x2x4

+ x2x5 + x2x6 + α2x2x7 + x2x8 + αx2x9 + αx2
3 + x3x4 + x3x6 + α2x3x9

+ α2x2
4 + x4x5 + αx4x6 + x4x9 + x4 + α2x2

5 + αx5x6 + αx5x7

+ x5x8 + x5x9 + α2x5 + α2x2
6 + x6x8 + αx6x9 + α2x2

7 + x7x8 + α2x7x9

+ α2x7 + α2x2
8 + α2x8x9 + αx2

9 + αx9 + α2,

p(2) = α2x1x2 + α2x1x3 + αx1x5 + x1x6 + αx1x8 + αx1x9 + x1 + x2x3

+ αx2x4 + α2x2x5 + αx2x6 + αx2x7 + x2x8 + αx2x9 + x2 + αx2
3 + x3x4

+ αx3x5 + x3x6 + α2x3x8 + α2x3x9 + αx3 + x2
4 + αx4x5 + αx4x6 + x4x7

+ αx4x8 + x4x9 + x4 + αx2
5 + αx5x7 + αx5x8 + αx5x9 + x5 + αx2

6

+ α2x6x7 + αx6x9 + α2x6 + αx2
7 + x7x8 + α2x7x9 + α2x2

8 + αx8x9

+ α2x8 + αx2
9 + α2x9 + 1,

p(3) = x2
1 + αx1x3 + α2x1x4 + αx1x5 + x1x6 + αx1 + x2

2 + αx2x3 + α2x2x4

+ α2x2x6 + α2x2x7 + α2x2x8 + x2x9 + αx2
3 + αx3x4 + α2x3x5 + α2x3x7
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+ x3x8 + αx2
4 + αx4x7 + x4x8 + α2x4x9 + αx4 + α2x2

5 + x5x6 + x5x7

+ αx5x8 + αx5x9 + x5 + α2x2
6 + α2x6x8 + α2x6x9 + αx6 + αx2

7 + x7x8

+ αx7 + α2x2
8 + αx8x9 + x8 + α2x2

9 + α.

8.7.4.1 Finding the Decomposition of P

Iteration 1a In part 1 of the first iteration we have to set the coefficients of x2
1 in

the polynomials p(1) and p(2) to 0. We have

p
(1)
11

p
(3)
11

= 1 and
p

(2)
11

p
(3)
11

= 0.

Such we get

S3 =
⎛
⎝ 1 0 1

0 1 0
0 0 1

⎞
⎠ .

After this transformation, the components p̃(1), p̃(2) and p̃(3) of the map P̃ = S3◦P
have the form

p̃(1) = αx1x3 + α2x1x5 + α2x1x6 + αx1x9 + α2x1 + x2x3 + x2x5 + αx2x6

+ αx2x8 + α2x2x9 + α2x3x4 + α2x3x5 + x3x6 + α2x3x7 + x3x8

+ α2x3x9 + x2
4 + x4x5 + αx4x6 + αx4x7 + x4x8 + αx4x9 + α2x4

+ α2x5x6 + α2x5x7 + α2x5x8 + α2x5x9 + αx5 + αx6x8 + x6x9 + αx6

+ x2
7 + α2x7x9 + x7 + x8x9 + x8 + x2

9 + αx9 + 1,

p̃(2) = α2x1x2 + α2x1x3 + αx1x5 + x1x6 + αx1x8 + αx1x9 + x1 + x2x3

+ αx2x4 + α2x2x5 + αx2x6 + αx2x7 + x2x8 + αx2x9 + x2 + αx2
3

+ x3x4 + αx3x5 + x3x6 + α2x3x8 + α2x3x9 + αx3 + x2
4 + αx4x5

+ αx4x6 + x4x7 + αx4x8 + x4x9 + x4 + αx2
5 + αx5x7 + αx5x8

+ αx5x9 + x5 + αx2
6 + α2x6x7 + αx6x9 + α2x6 + αx2

7 + x7x8 + α2x7x9

+ α2x2
8 + αx8x9 + α2x8 + αx2

9 + α2x9 + 1,

p̃(3) = x2
1 + αx1x3 + α2x1x4 + αx1x5 + x1x6 + αx1 + x2

2 + αx2x3 + α2x2x4

+ α2x2x6 + α2x2x7 + α2x2x8 + x2x9 + αx2
3 + αx3x4 + α2x3x5
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+ α2x3x7 + x3x8 + αx2
4 + αx4x7 + x4x8 + α2x4x9 + αx4 + α2x2

5 + x5x6

+ x5x7 + αx5x8 + αx5x9 + x5 + α2x2
6 + α2x6x8 + α2x6x9 + αx6 + αx2

7

+ x7x8 + αx7 + α2x2
8 + αx8x9 + x8 + α2x2

9 + α.

We set P = P̃ .

Iteration 1b Next, we need to find a linear transformation T2 of the variables,
which turns the coefficients of x1x2 in p(i) to zero (i = 1, 2, 3). We set

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 t1,2 0 0 0 0 0 0 0
0 t2,2 0 0 0 0 0 0 0
0 t3,2 1 0 0 0 0 0 0
0 t4,2 0 1 0 0 0 0 0
0 t5,2 0 0 1 0 0 0 0
0 t6,2 0 0 0 1 0 0 0
0 t7,2 0 0 0 0 1 0 0
0 t8,2 0 0 0 0 0 1 0
0 t9,2 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and compute P̂ = P ◦ T2. Setting the coefficients of x1x2 to zero leads to three
linear homogeneous equations for the ti,2 with i = 1, . . . , 9. The coefficient matrix
for these equations is

⎛
⎝ 0 0 α 0 α2 α2 0 0 α

0 α2 α2 0 α 1 0 α α

0 0 α α2 α 1 0 0 0

⎞
⎠ .

The nullspace of this system is six dimensional, but only three dimensional if we
require that t2,2 �= 0. We select

(
t1,2, t2,2, t3,2, t4,2, t5,2, t6,2, t7,2, t8,2, t9,2

) = (0, 1, α, α, 1, 0, 0, 0, 0
)
.

By substituting this solution into the matrix T2 and computing P̃ = P ◦ T2, we get
the following system after the first iteration of the transformation process

p̃(1) = αx1x3 + α2x1x5 + α2x1x6 + αx1x9 + α2x1 + x2
2 + α2x2x3 + αx2x5

+ x2x7 + x2x8 + αx2x9 + α2x2 + α2x3x4 + α2x3x5 + x3x6 + α2x3x7

+ x3x8 + α2x3x9 + x2
4 + x4x5 + αx4x6 + αx4x7 + x4x8 + αx4x9 + α2x4

+ α2x5x6 + α2x5x7 + α2x5x8 + α2x5x9 + αx5 + αx6x8 + x6x9 + αx6

+ x2
7 + α2x7x9 + x7 + x8x9 + x8 + x2

9 + αx9 + 1,
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p̃(2) = α2x1x3 + αx1x5 + x1x6 + αx1x8 + αx1x9 + x1 + x2
2 + x2x3 + αx2x4

+ α2x2x5 + α2x2x6 + αx2x7 + x2x8 + α2x2x9 + x2 + αx2
3 + x3x4

+ αx3x5 + x3x6 + α2x3x8 + α2x3x9 + αx3 + x2
4 + αx4x5 + αx4x6

+ x4x7 + αx4x8 + x4x9 + x4 + αx2
5 + αx5x7 + αx5x8 + αx5x9 + x5

+ αx2
6 + α2x6x7 + αx6x9 + α2x6 + αx2

7 + x7x8 + α2x7x9 + α2x2
8

+ αx8x9 + α2x8 + αx2
9 + α2x9 + 1,

p̃(3) = x2
1 + αx1x3 + α2x1x4 + αx1x5 + x1x6 + αx1 + αx2x3 + x2x5 + αx2x6

+ x2x8 + αx2x9 + αx2 + αx2
3 + αx3x4 + α2x3x5 + α2x3x7 + x3x8

+ αx2
4 + αx4x7 + x4x8 + α2x4x9 + αx4 + α2x2

5 + x5x6 + x5x7 + αx5x8

+ αx5x9 + x5 + α2x2
6 + α2x6x8 + α2x6x9 + αx6 + αx2

7 + x7x8 + αx7

+ α2x2
8 + αx8x9 + x8 + α2x2

9 + α

Iteration 2 Next, we have to find a linear transformation S2 such that the coefficient
of x2

2 of the first polynomial becomes zero. This is accomplished with the matrix

S2 =
⎛
⎝ 1 1 0

0 1 0
0 0 1

⎞
⎠ .

We then have to turn the coefficients of x1x3 and x2x3 of the polynomials p(1) and
p(2) as well as the coefficient of x1x3 of the polynomial p(3) to zero. For this we
define a matrix T3 as specified in (8.12).

We compute p̂(i) = p(i) ◦ T3 (i = 1, . . . , 3) and obtain the following coefficient
matrix for the five homogeneous linear equations

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 1 α 0 α 0
0 0 α α 1 α2 α2 0 1
0 0 α2 0 α 1 0 α α

0 0 1 α α2 α2 α 1 α2

0 0 α α2 α 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

The dimension of the nullspace is five, but only one vector meets the requirement
that t3,3 �= 0:

(
t1,3, t2,3, t3,3, t4,3, t5,3, t6,3, t7,3, t8,3, t9,3

) = (0, 0, α, 0, α, 0, 0, 0, 1
)
.
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By substituting this solution into the matrix T3 and computing P̃ = P ◦ T3, we get
a system F of the form (8.8)

f (1) = x1x5 + αx1x6 + αx1x8 + αx1 + αx2x4 + x2x5 + α2x2x6 + α2x2x7

+ x2x9 + αx2 + αx2
3 + x3x4 + α2x3x5 + αx3x6 + α2x3x7 + αx3x8

+ αx3x9 + α2x3 + α2x4x5 + α2x4x7 + α2x4x8 + α2x4x9 + αx4 + αx2
5

+ α2x5x6 + x5x7 + x5x8 + x5x9 + α2x5 + αx2
6 + α2x6x7 + αx6x8

+ α2x6x9 + x6 + α2x2
7 + x7x8 + x7 + α2x2

8 + α2x8x9 + αx8 + α2x2
9 + x9,

f (2) = αx1x5 + x1x6 + αx1x8 + αx1x9 + x1 + x2
2 + αx2x4 + α2x2x5

+ α2x2x6 + αx2x7 + x2x8 + α2x2x9 + x2 + x2
3 + x3x5 + αx3x9 + αx3

+ x2
4 + αx4x5 + αx4x6 + x4x7 + αx4x8 + x4x9 + x4 + αx2

5 + αx5x7

+ αx5x8 + αx5x9 + x5 + αx2
6 + α2x6x7 + αx6x9 + α2x6 + αx2

7 + x7x8

+ α2x7x9 + α2x2
8 + αx8x9 + α2x8 + αx2

9 + α2x9 + 1,

f (3) = x2
1 + α2x1x4 + αx1x5 + x1x6 + αx1 + α2x2x3 + x2x5 + αx2x6

+ x2x8 + αx2x9 + αx2 + x2
3 + α2x3x5 + x3x6 + α2x3x7 + α2x3x8

+ α2x3x9 + αx3 + αx2
4 + αx4x7 + x4x8 + α2x4x9 + αx4 + α2x2

5 + x5x6

+ x5x7 + αx5x8 + αx5x9 + x5 + α2x2
6 + α2x6x8α

2x6x9 + αx6 + αx2
7

+ x7x8 + αx7 + α2x2
8 + αx8x9 + x8 + α2x2

9 + α.

The linear transformations S and T are given by the matrices

S−1 = S2 ◦ S3 =
⎛
⎝ 1 1 1

0 1 0
0 0 1

⎞
⎠ and T −1 = T2 ◦ T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 α α 0 0 0 0 0 0
0 α 0 1 0 0 0 0 0
0 1 α 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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8.7.4.2 Solving the System

We want to find a vector z ∈ F
9 such that P(z) = 0. For that we consider the linear

maps L
j
i (i ∈ {1, . . . , m}, j ∈ {1, . . . , m− i + 1}):

L
(1)
1 : x5 + αx6 + αx8 + 0x9 + α,

L
(2)
1 : αx4 + x5 + α2x6 + α2x7 + x9 + α,

L
(3)
1 : x4 + α2x5 + αx6 + α2x7 + αx8 + αx9 + α2,

L
(1)
2 : αx5 + x6 + αx8 + αx9 + 1,

L
(2)
2 : αx4 + α2x5 + α2x6 + αx7 + x8 + α2x9 + 1,

L
(1)
3 : α2x4 + αx5 + x6 + α.

By setting these equations to zero and solving for x4, . . . , x9, we get

(x4, . . . , x9) = (1, α2, 0, 0, α2, α2). (8.14)

We substitute these values into the components of F and obtain

f̃ (1) : αx2
3 + α,

f̃ (2) : x2
2 + x2

3 + α2,

f̃ (3) : x2
1 + α2x2x3 + α2x2 + x2

3 + 1.

We solve the system F̃(y) = 0 from top to bottom. f̃ (1) = 0 yields the double root
x3 = 1. Substituting this into f̃ (2) yields x2

2 + α = 0, which has the double root
x2 = α2. Substituting all of this into f̃ (3) yields x2

1 = 0 or x1 = 0.
Altogether, we obtain

y = F−1(0) = (0, α2, 1, 1, α2, 0, 0, α2, α2)

Finally, we invert the second linear map T to obtain

z = T −1(y) = (0, α2, α2, 0, α, 0, 0, α2, α).

By substituting z into the system P , we can check that it is a correct solution of the
equation P(z) = 0.

If we want to solve P(z) = w for an arbitrary w, say w = (1, α2, α) then we
have to invert the first linear map to get

x = S−1(w) = (0, α2, α).
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Since the linear system (8.14) does not depend on the constant terms of the system
P , we can simply set F̃ = F̃ − x and obtain

f̃ (1) : αx2
3 + α,

f̃ (2) : x2
2 + x2

3 ,

f̃ (3) : x2
1 + α2x2x3 + α2x2 + x2

3 + α2.

Solving these equations from top to bottom we get (x1, x2, x3) = (α2, 1, 1) and
with this

y = F−1(x) = (α2, 1, 1, 1, α2, 0, 0, α2, α2).

The solution to P(z) = w is then

z = T −1(y) = (α2, 1, 0, α2, 0, 0, 0, α2, α),

as can be verified directly.

8.7.5 Solving Underdetermined Systems with n = νm

As we have seen in the previous section, an underdetermined multivariate quadratic
system with m equations and n ≥ m(m+3)

2 variables can be solved in polynomial
time. When the number of variables is below this bound, we need exponential time
to solve the system.

However as proposed in [26], when the number of variables is given by n = νm

for ν ≥ 2, we can use the additional variables to solve the system faster. Hereby we
assume that ν is strictly less than m, because otherwise we could solve the system in
polynomial time using the techniques presented in the previous section. In particular
we get

Theorem 8.50 ([26]) A multivariate quadratic system of m equations in n = νm

variables can be solved in about the same time as a multivariate quadratic system
of m− �ν� + 1 equations in m− �ν� + 1 variables.3

Let P be a multivariate quadratic system of m equations in n = νm variables. In
the following we describe how to solve the system P(x1, . . . , xνm) = 0 by solving
a determined system P̂ (y1, . . . , ym−�ν�+1) = 0 of m− �ν� + 1 quadratic equations
and performing a number of linear algebra operations. The process consists of two
main steps, which are summarized in Algorithms 8.11 and 8.12.

3The term “about” here means that we do not consider polynomial terms in the complexity (e.g.
Gaussian elimination).
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Fig. 8.5 Structure of the
matrices representing the
homogeneous quadratic parts
of the polynomials
f (1), . . . , f (m) generated by
Algorithm 8.11

�

�

. . .

�ν� − 1

�ν� − 1

0

0 0

m

m

n

n

L
(i)
1

L
(i)
�ν�−1

...

Q(i)

0

1. Find a linear map T : Fn → F
n which transforms the system P into a system

F = P ◦ T −1, where F is a system of m equations in n variables. The
components f (k) (i = 1, . . . , m) of the map F are of the form (8.15) and are
illustrated by Fig. 8.5.

f (k) =
�ν�−1∑
i=1

a
(k)
ii x2

i +
�ν�−1∑
i=1

xiL
(k)
i (xm, . . . , xn)+Q(k)(x�ν�, . . . , xn) (8.15)

2. Invert recursively the maps F and T . This part includes the transformation of the
system F into a determined system F̂ of m − �ν� + 1 quadratic equations and
the solution of F̂(x) = 0 using a Gröbner basis technique.

Algorithm 8.11 Transforming the system P into a system F of the form of (8.15)
Input: Multivariate quadratic system P of m equations in n = νm variables (ν > 2)

Output: Maps F and T such that F = P ◦ T −1, where T is a linear map and F is a quadratic
map, whose components are of the form (8.15).

1: for 
 = 2 to m do
2: Define an n× n matrix T
 of the form of (8.12) and compute P̂ = P ◦ T
.
3: Set, for k = min{�ν� − 1, 
− 1} and i = 1, . . . , m the coefficients

â
(i)
1,
, . . . , â

(i)
k,
 to zero. This gives a linear system in the unknown

elements of the matrix T
, which can be solved for t1,
, . . . , tn,
.
4: Compute P̃ = P ◦ T
 and then set P = P̃ .
5: end for
6: Set F = P
7: Set T = (T2 · · · Tm)−1.
8: return F, T
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In order to find a solution of F(x) = 0, Algorithm 8.12 first solves the linear
system given by

L
(1)
1 (xm+1, . . . , xn) = 0

...

L
(1)
�ν�−1(xm+1, . . . , xn) = 0

L
(2)
1 (xm+1, . . . , xn) = 0 (8.16)

...

L
(m)
�ν�−1(xm+1, . . . , xn) = 0

(8.17)

In the case of n = νm, this system consists of m(�ν� − 1) linear equations in
n − m = m(ν − 1) variables. Therefore, with high probability, this system has a
solution.

By substituting this solution into the polynomials f (1), . . . , f (m), we obtain a
system F̃ of the form shown in Fig. 8.6. Note that the components of the map F̃ can
be written as

f̃ (i) = α
(i)
1 x2

1 + · · · + α
(i)
�ν�−1x

2�ν�−1 + Q̃(i)(x�ν�, . . . , xm), (8.18)

where ˜Q(1), . . . , Q̃(m) are quadratic functions in the variables x�ν�, . . . , xm. By
performing Gaussian elimination we can derive, from the first �ν� − 1 components
of F̃(x) = 0, �ν� − 1 equations of the form

x2
1 = Q̂(1)(x�ν�, . . . , xm)

...

x2�ν�−1 = Q̂(�ν�−1(x�ν�, . . . , xm). (8.19)

By substituting these representations of x2
1 , . . . , x2�ν�−1 into the last m − (�ν� − 1)

components of F̃ , we obtain a multivariate quadratic system F̂ of m − �ν� + 1
equations in the m − �ν� + 1 variables x�ν�, . . . , xm. We solve the equation
F̂(x) = 0 by e.g. a Gröbner basis technique. We substitute the so obtained values
of x�ν�, . . . , xm back into (8.19) to get the values of x2

1 , . . . , x2�ν�−1. By taking the
square roots, we therefore find the values of x1, . . . , x�ν�−1. Finally, we append the

values of xm+1, . . . , xn found by solving the equations L
(i)
j = 0 to obtain a solution

y = (y1, . . . , yn) of F(x) = 0.
In order to find a solution z of P(x) = 0, we finally set z = T −1(y).
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Algorithm 8.12 Solving the system F
Input: Multivariate quadratic system F of m equations in n = νm variables, whose components

are of the form of Fig. 8.5.
Output: vector y ∈ F

n such that F(y) = 0.
1: Set the linear equations L

(i)
1 , . . . , L

(i)
�ν�−1 (i = 1, . . . , m) of (8.17) to zero and solve the

resulting linear system for xm+1, . . . , xn.
2: Substitute the values of xm+1, . . . , xn into the polynomials f (1), . . . , f (m). The result is a

system F̃ , whose components are of form of Fig. 8.6.
3: Perform Gaussian elimination on the polynomials f̃ (1), . . . , f̃ (�ν�−1) to find equations x2

1 =
Q̂(1)(x�ν�, . . . , xm), . . . ,

x2�ν�−1 = Q̂(�ν�−1)(x�ν�, . . . , xm).

4: Substitute the representations of x2
1 , . . . , x2�ν�−1 found in the previous step into the polynomials

f̃ �ν�, . . . , f̃ (m). The result is a determined multivariate quadratic system F̂ of m − �ν� + 1
equations (corresponding to the lower right part of Fig. 8.6).

5: Solve the system F̂(x�ν�, . . . , xm) = 0 using XL or a Gröbner basis method.
6: Substitute the values of x�ν�, . . . , xm into the quadratic equations found in step 4 in order to

find the values of x2
1 , . . . , x2�ν�−1 and derive from this the values of x1, . . . , x�ν�−1 by taking

the square roots. (If F is of odd characteristic and a square root does not exist, return to step 3
and change your selection.)

7: Set y = (x1, . . . , x�ν�−1, x�ν�, . . . , xm, xm+1, . . . , xn). Here, xm+1, . . . , xn are the solutions
of the linear system of step 1.

8: return y.

8.7.6 Toy Example

For our toy example we choose q = 4, m = 3 and n = 2m = 6. We want to solve
the system P(x) = (0) with

p(1) = α2x2
1 + α2x1x2 + α2x1x4 + α2x1 + αx2

2 + x2x3 + α2x2x4 + x2x5

+ x2x6 + α2x2 + αx2
3 + αx3x4 + αx3x5 + x3 + αx2

4 + α2x4x5 + α2x4x6

+ αx4 + α2x2
5 + αx5x6 + α2x5 + αx2

6 + x6 + 1,

Fig. 8.6 Structure of the
matrices representing the
homogeneous quadratic parts
of the polynomials
f̃ (1), . . . , f̃ (m) (after step 2 of
Algorithm 8.12). Note that
the values of the variables
xm+1, . . . , xm have already
been determined. Therefore,
F̃ is a system in the m

variables x1, . . . , xm

�

�

. . .

�ν� − 1

m

�ν� − 1 m

0

0

0

0

F̂ (i)
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p(2) = α2x1x2 + α2x1x3 + x1x5 + x1x6 + αx1 + α2x2
2 + αx2x3 + x2x4 + x2x5

+ x2 + α2x3x4 + α2x3x6 + α2x3 + α2x2
4 + αx4x6 + x2

5 + x5x6 + α2x5 + αx2
6 ,

p(3) = α2x2
1 + αx1x3 + αx1x4 + x1x5 + αx1x6 + x1 + x2

2 + x2x3 + α2x2x4

+ α2x2x5 + αx2x6 + x2 + x2
3 + x3x4 + αx3x5 + αx3x6 + αx3 + αx4x5

+ α2x4x6 + α2x2
5 + x5x6 + α2x6 + α2.

8.7.6.1 Step 1: Finding the Decomposition of P

We define a matrix T2 of the form

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 t1,2 0 0 0 0
0 1 0 0 0 0
0 t3,2 1 0 0 0
0 t4,2 0 1 0 0
0 t5,2 0 0 1 0
0 t6,2 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

and compute the map

P̂ = P ◦ T2.

By setting the coefficient of x1x2 in the polynomials p̂(1), p̂(2) and p̂(3) to zero, we
obtain the linear equations

α2t4,2 + α2 = 0,

α2t3,2 + x5,2 + t6,2 + α2 = 0,

αt3,2 + αt4,2 + t5,2 + αt6,2 = 0.

Solving these equations by Gaussian elimination yields

(t1,2, t3,2, . . . , t6,2) = (0, 1, 1, 0, 0).

We substitute this solution into the matrix T2 and compute, for i = 1, . . . , 3,

P̃(i) = P ◦ T2.

After this, we set P = P̃ . In the second step we define a matrix T3 of the form
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T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 t1,3 0 0 0
0 1 t2,3 0 0 0
0 0 1 0 0 0
0 0 t4,3 1 0 0
0 0 t5,3 0 1 0
0 0 t6,3 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

and compute

P̂ = P ◦ T3.

By setting the coefficient of x1x3 in the polynomials p̂(1), p̂(2) and p̂(3) to zero, we
obtain the three linear equations

α2t4,3 = 0,

t5,3 + t6,3 + α2 = 0,

αt4,3 + t5,3 + αt6,3 + α = 0.

Solving these equations by Gaussian elimination yields

(t1,3, t2,3, t4,3.t5,3, t6,3) = (0, 0, 0, 1, α).

We substitute this solution into the matrix T3 and compute the linear transformation
T by T = (T2T3)

−1.
We obtain the transformed system F = (f (1), f (2), f (3)) by F = P ◦ T −1. We

find

f (1) = α2x2
1 + α2x1x4 + α2x1 + αx2

2 + x2x4 + αx2x6 + x2
3 + x3x5 + αx3x6

+ αx2
4 + α2x4x5 + α2x4x6 + αx4 + α2x2

5 + αx5x6 + α2x5 + αx2
6 + x6 + 1,

f (2) = x1x5 + x1x6 + αx1 + αx2x3 + αx2x4 + x2x5 + x2x6 + αx2 + α2x2
3

+ αx3x5 + αx3x6 + α2x2
4 + αx4x6 + x2

5 + x5x6 + α2x5 + αx2
6 ,

f (3) = α2x2
1 + αx1x4 + x1x5 + αx1x6 + x1 + α2x2

2 + αx2x3 + αx2x4 + α2x2x5

+ α2x2x6 + α2x2 + x2
3 + αx3x4 + α2x3x6 + α2x3 + αx4x5 + α2x4x6

+ α2x2
5 + x5x6 + α2x6 + α2.
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8.7.6.2 Step 2: Solving the System

In order to solve the system F(x) = 0, we first determine the variables x4, . . . , x6

in such a way that L
(i)
1 = 0 holds for i = 1, . . . , 3. We find

L
(1)
1 : α2x4 + α2 = 0,

L
(2)
1 : x5 + x6 + α = 0,

L
(3)
1 : αx4 + x5 + αx6 + 1 = 0.

Gaussian elimination yields (x4, x5, x6) = (1, 0, α). By substituting this into the
system F , we get the system F̃ with

f̃ (1) = α2x2
1 + αx2

2 + αx2 + x2
3 + α2x3 + α2,

f̃ (2) = αx2x3 + αx2 + α2x2
3 + α2x3 + 1,

f̃ (3) = α2x2
1 + α2x2

2 + αx2x3 + x2
3 + α2.

We remove the term x2
1 from f̃ (2) and f̃ (3), obtaining

f̂ (3) = f̃ (2) − 0 · f̃ (1) = αx2x3 + αx2 + α2x2
3 + α2x3 + 1,

f̂ (3) = f̃ (3) − f̃ (1) = x2
2 + αx2x3 + αx2 + α2x3.

and solve the multivariate quadratic system given by f̂ (2) = 0 and f̂ (3) = 0,
obtaining (x2, x3) = (α, α). By substituting this into f̃ (1) = 0, we get α2x2

1 + α2 =
0 or x1 = 1.

Altogether, we find the solution y = (x1, . . . , x6) = (1, α, α, 1, 0, α) of the
system F(x) = 0.

Finally, in order to find a solution z of the original system P(x) = 0, we compute

z = T (y) = (1, α, 0, α2, α, 1).

By substituting z into P , one can easily check that z is indeed a solution of
P(x) = 0.
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Software

For the multivariate schemes described in this book we developed implementations
in MAGMA code, which were used to compute the toy examples printed in this
book. The corresponding source files can be found on the website http://dx.doi.org/
10.7945/5sqr-g734.

In particular, you can find there

• Chapter 3 Matsumoto-Imai

– Key generation, encryption and decryption of the standard MI scheme
– Linearization Equations attack
– Key generation, encryption and decryption of the PMI and the PMI+ encryp-

tion schemes
– Key generation, signature generation and verification of the (Projected)

SFLASH signature scheme

• Chapter 4 Hidden Field Equations

– Key generation, encryption and decryption of the standard HFE scheme
– Key generation, signature generation and verification of the HFEv-signature

scheme

• Chapter 5 Oil and Vinegar

– Key generation, signature generation and verification of the (U)OV signature
scheme

– Kipnis-Shamir attack against OV (odd and even case)
– Key generation, signature generation and verification of the Rainbow signa-

ture scheme

• Chapter 6 MQDSS

– 3-pass MQ based identification scheme
– 5-pass MQ based identification scheme
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• Chapter 7 SimpleMatrix

– Key generation, encryption and decryption of the standard Simple Matrix
encryption scheme

– Key generation, encryption and decryption of the rectangular SimpleMatrix
encryption scheme

• Chapter 8 Solving Polynomial Systems

– Univariate polynomials: Berlekamp’s and Cantor-Zassenhaus algorithms
– Multivariate polynomials: Relinearization technique for solving overdeter-

mined systems, Solving underdetermined systems with n ≥ m(m+3)
2 and

n = νm.

Furthermore, you can find on this website corrections to this book. You are
welcomed to submit your findings per e-mail to any of the authors (addresses in
the preface).
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