
Advances in Mathematics of Communications doi:10.3934/amc.2020043
Volume 15, No. 1, 2021, 65–72

THE SINGULARITY ATTACK TO THE MULTIVARIATE

SIGNATURE SCHEME HIMQ-3

Jintai Ding, Zheng Zhang and Joshua Deaton

Department of Mathematical Science

University of Cincinnati, USA

(Communicated by Tsuyoshi Takagi)

Abstract. We present a cryptanalysis of a signature scheme HIMQ-3 due

to Kyung-Ah Shim et al [10], which is a submission to National Institute of
Standards and Technology (NIST) standardization process of post-quantum

cryptosystems in 2017. We will show that inherent to the signing process is a

leakage of information of the private key. Using this information one can forge
a signature.

1. Background

1.1. Multivariate public key cryptography. In the past several decades,
public key cryptosystems have experienced a rapid development in cryptography.
Early public key cryptosystems such as RSA and DSA depend on their difficulty
from hard classical number theory. However, Peter Shor’s [11] polynomial-time in-
teger factorization algorithm proved that some hard number theory problems, such
as the Integer Prime Factorization Problem and the Discrete Logarithm Problem,
given the use of a quantum computer. This leads to a crisis in cryptography, and
new public-key cryptosystems that have the ability to resist quantum computer
attacks are urgently needed. Multivariate public key cryptosystems (MPKC) are
considered as candidates of public key cryptosystems that have the potential to re-
sist quantum computer attacks. The security of a MPKC depends on the difficulty
of solving a system of multivariate polynomials over a finite field, which has been
proved as a NP-complete problem.

1.2. MPKC signature scheme. One of the most well known multivariate public
key signature schemes is the Oil Vinegar scheme. The idea of Oil Vinegar signature
scheme is that a certain set of the variables are never multiplied together with
themselves. If the rest of variables are randomly guessed for, the system will become
linear and hopefully have a solution for the message to be signed. The Oil Vinegar
schemes can be classified into three groups: Balanced Oil Vinegar [9] (Patarin 1997),
Unbalanced Oil Vinegar [8] (Kipnis et al. 1999) and Rainbow [4], a multilayer
signature scheme with unbalanced Oil Vinegar at each layer (Ding and Schmidt
2005). The Balanced Oil Vinegar scheme was broken by Kipnis and Shamir[6] using
the method of invariant subspaces. The other two scheme types are still unbroken.
The HIMQ-3 signature scheme is a multilayer signature scheme which is similar to
rainbow.

2020 Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases: Multivariate public key cryptography, cryptanalysis, oil vinegar sig-

nature scheme, multivariate qudratic equations.

65

http://dx.doi.org/10.3934/amc.2020043


66 Jintai Ding, Zheng Zhang and Joshua Deaton

1.3. Post-quantum cryptography standardization. National Institute of
Standards and Technology (NIST)[5] believes that it is prudent to begin devel-
oping standards for post-quantum cryptography because of the fast development
of quantum computers. These new standards will be used as quantum resistant
counterparts to existing standards. By the end of 2017, 23 signature schemes and
59 encryption/KEM schemes were submitted, of which 69 participated in the first
round. HIMQ-3 is a round 1 candidate on the list.

2. HIMQ-3 signature scheme

2.1. Cycle products [6]. The HIMQ-3 scheme contains a system of quadratic
equations called cycle products. The system makes it possible to invert the central
map.

Suppose Fq is a field of characteristic 2 and l is an odd positive integer. The
cycle products system Q is defined by:

Q : α1x1x2 = β1, α2x2x3 = β2, · · · , αlxlx1 = βl,

where αi and βi are nonzero elements in Fq.
To find a solution to Q, first write the cycle products in the form

x1x2 = γ1, · · · , xlx1 = γl,

where γi = βi/αi. Let A = γ1γ2 · · · γl and B = γ2γ4 · · · γl−1. It is easy to see that

x1 =
√
A/B, xi = γi−1/xi−1 for i = 2, · · · , l − 1, and xl = γl/x1. Critical is the

observation that this means for any given cycle product of the form above, a given
solution will never contain zero. This is the crux of our attack.

2.2. HIMQ-3 scheme [10]. Let us denote Fq to be the finite field of order q = 2k.
Let v, o1, o2, o3 be positive integers where o1 and o2 are odd. Further, let v1 = v+o1,
v2 = v+ o1 + o2, m = o1 + o2 + o3 and n = v+ o1 + o2 + o3. Let X = (x1, · · · , xn).
Let F = (F (1), · · · ,F (m)) be the central map defined by three layers:

Layer 1: For i = 1, · · · , o1− 1, F (i)(X) = Φi(X) + δixv+ixv+i+1, and for i = o1,

F (o1)(X) = Φo1(X)+δo1xv+o1xv+1; where Φi(X) =
v∑

j=1

αi,jxjx1+(i+j−1)(mod v) with

αi,j a nonzero element in Fq.

Layer 2: For i = 1, · · · , o2 − 1, F (o1+i)(X) = Ψi(X) + δo1+ixv1+ixv1+i+1,
and for i = o2, F (o1+o2)(X) = Ψo2(X) + δo1+o2xv1+o2xv1+1; where Ψi(X) is a

quadratic polynomial in the variables (x1, · · · , xv+o1) defined by Ψi(X) =
v∑

j=1

α′i,jxjxv+(i+j−1)(mod o1) with α′i,j a nonzero element in Fq.

Layer 3: For i = 1, · · · , o3, F (o1+o2+i)(X) =
∑

v+1≤l≤j≤v1
β
(i)
l,j xlxj + Θi(X) +

Θ′i(X) + εixo1+o2+i; where β
(i)
l,j ∈ Fq, and Θi and Θ′i are quadratics in variables

(x1, · · · , xn) defined by Θi(X) =
v1∑
j=1

γi,jxjxv1+(i+j−1)(mod o2), Θ′i(X) =
v2∑
j=1

γ′i,jxjxv2+(i+j−1)(mod o3) with γi,j and γ′i,j nonzero elements in Fq.
To hide the ability to find pre-images and thus construct a public key from F ,

one uses two invertible affine maps S : Fm
q → Fm

q , and T : Fn
q → Fn

q . The public
key is the composition P = S ◦ F ◦ T . The private keys are the invertible affine
maps S and T . The signing process for a document is as follows:

Fm
q
S−1

−−−→ Fm
q
F−1

−−−→ Fn
q
T −1

−−−→ Fn
q



The singularity attack to the multivariate signature scheme HIMQ-3 67

The verification process is just backwards

Fm
q
P←− Fn

q

2.3. Inverting the central map. Given a M = (M1, · · · ,Mm) in Fm
q , we want

to compute F−1(M) = s.
1. Randomly generate sv ∈ Fv

q , and plug sv into the first layer obtaining the cycle
product 

δ1xv+1xv+2 = M1 − Φ1(sv)
...

δo1xv+o1xv+1 = Mo1 − Φo1(sv).

2. If Mi − Φi(sv) 6= 0 for all i, then solve by the process described before. Name
this sv1 ∈ Fv1

q . Otherwise, return to step 1.
3. Plug sv1 into the second layer creating another cycle product

δo1+1xv1+1xv1+2 = Mo1+1 −Ψ1(sv1)
...

δo1+o2xv1+o2xv1+1 = Mo1+o2 −Ψo1(sv1).

If Mo1+i − Ψi(sv) 6= 0 for all i, call the solution sv2 ∈ Fv2
q . Otherwise, return to

step 1.
4. Plug sv2 into the third layer. It will thus have only linear terms. Use Gaussian
Elimination to see if there is a solution. If so, then the solution is s. Otherwise,
return to step 1.

3. The singularity attack

3.1. Key observation. The weakness of HIMQ-3 is that the cycle variables cannot
be equal to zero when evaluated at a honestly generated signature. In addition, this
fact does not change under a change of basis T . Since the scheme is constructed
over a finite field of 2k elements, it is a basic knowledge that if we raise any nonzero

element a in the field to the power of 2k − 1, then a2
k−1 = 1. For this reason, if we

evaluate the cycle variables at signatures under the action of T , and then raise the
power, we will obtain some equations. Once we solve these equations, we will get
part of the private key up to unit multiplication.

3.2. Finding parts of T . Suppose that a private key (F , T ,S) has been generated
with its corresponding public key P = S ◦ F ◦ T . We may describe the affine map
T by an invertible matrix (aij)1≤i,j≤n and a vector b = (b1, · · · , bn) so that for any
(x1, · · · , xn) ∈ Fn

q we have that

T ((x1, · · · , xn)) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



x1
x2
...
xn

+


b1
b2
...
bn

 =


∑n

i=1 a1ixi + b1∑n
i=1 a2ixi + b2

...∑n
i=1 anixi + bn

 .
Our goal is to find how T mixes the variables used in the cycle products up to a
multiplication by a non-zero constant. In other words, we only need solutions for
aji and bj up to unit multiplication. If we have a signature σ = (σ1, · · · , σn), then



68 Jintai Ding, Zheng Zhang and Joshua Deaton

for v+ 1 ≤ j ≤ v+ o1 + o2, we have
∑n

i=1 ajiσi + bj 6= 0. This allows us to say that
for any γj ∈ F∗q and signature σ

1 =

(
n∑

i=1

γjajiσi + γjbj

)2k−1

=

k∏
h=1

(
n∑

i=1

γjajiσi + γjbj

)2k−h

=

k∏
h=1

(
n∑

i=1

(γjajiσi)
2k−h

+ (γjbj)
2k−h

)
.

First we will solve the case when bj 6= 0, the case for bj = 0 is essentially the same.

Let γj = b−1j , we obtain

k∏
h=1

(
n∑

i=1

(b−1j ajiσi)
2k−h

+ 1

)
= 1.

For the sake of notation let ãji = b−1j aij . Thus we see by performing the above
product that

ã2
k−1

j1 σ2k−1
1 + ã2

k−2
j1 ãj2σ

2k−2
1 σ2 + · · ·+ ãjnσn + 1 = 1.

We can treat the individual products of the ãij ’s as individual variables to get a
homogeneous linear equation with (n+1)k−1 terms. We get another homogeneous
linear equation if we use a different signature. Hence by collecting (n + 1)k − 1
signatures we can form a matrix in the following way.

3.2.1. Construction of the matrix. For v + 1 ≤ j ≤ v + o1 + o2, we list the prod-

ucts of ãij in the order: ã2
k−1

j1 , ã2
k−2

j1 ãj2, · · · , ãjn (Here we use lexicographic or-

der on (l1,−l′1, l2,−l′2, ...) for products ã
l′1
jl1
ã
l′2
jl2
...). Moreover, for each signature

σ = (σ1, · · · , σn), the corresponding coefficients are: σ2k−1
1 , σ2k−2

1 σ2, · · · , σn. The
matrix is simply constructed by having these corresponding coefficients as a row for
each signature we use. Therefore the size of this matrix is (n+1)k−1 by (n+1)k−1
if we use (n + 1)k − 1 signatures. Hence, we obtain a homogeneous linear system:

Ax = 0, where A is the matrix whose rows are (σ2k−1
1 , σ2k−2

1 σ2, · · · , σn) for each

signature used, and x = (ã2
k−1

j1 , ã2
k−2

j1 ãj2, · · · , ãjn)T .

Remark 1. Assume that bj 6= 0, for v+1 ≤ j ≤ v+o1 +o2, ãj = (ã2
k−1

j1 , ã2
k−2

j1 ãj2,

· · · , ãjn)T is contained in the kernel of A. Moreover, it is obvious that they are
linearly independent. It follows that Rank(A) ≤ (n + 1)k − 1 − (o1 + o2). In fact,
according to our experiments (see chapter 4), with very high probability, Rank(A) =
(n+ 1)k − 1− (o1 + o2).

3.2.2. Solving the ãji’s. We do Gaussian Elimination on this matrix A, and turn
the linear system into A′x = 0. Now we try to solve for the ãji’s. We start at the
bottom of A′. If A has rank (n+ 1)k − 1− (o1 + o2), then in the last nonzero row
of A′, most entries will equal to zero and the nonzero entries will only appear in
the last o1 + o2 + 1 columns in variables ão1+o2+1

jn , ão1+o2
jn , ão1+o2−1

jn , · · · , ãjn. Hence,
converting this back into a polynomial means we have a univariate polynomial
equation which we can thus solve. One can see that if 2k − 1 ≥ o1 + o2 + 1, we
will obtain a univeriate polynomial. This allows us to get our possibilities for ãjn
(as the above equation will be true for any of the ãji’s, v + 1 ≤ j ≤ v + o1 + o2,
we will return all of these values). We then move up the matrix to the first time



The singularity attack to the multivariate signature scheme HIMQ-3 69

that ãj(n−1) appears only with powers of itself and ãjn. As we already know what
ãjn can be, this is also a univariate polynomial equation. For each of our possible
solutions to ãjn, we plug in and get the possible solutions to ãj(n−1). Continue this
process until we collect all the ãji for which bj 6= 0. On the other hand, to avoid
the inequality 2k − 1 ≥ o1 + o2 + 1, the size of the field is then forced to be small,
which reduces the complexity of other attacks such as direct attack, min/high rank
attack (see Section 2.2, 2.3 and 2.4 in [10]). The process is essentially the same as
for the case bj = 0 except that we then guess the last available ãji to be non-zero

hence enabling us to set γj = ã−1ji for that particular ãji. Repeat until all of the ãji
are found, which generally is after the first few guesses. Note that the collection of
ãji that we found can recover the cycle variables. A toy example is provided in the
appendix.

3.3. Getting public key into right form. The second step is to convert the
public key into an equivalent HIMQ-3 central map. Observe that second layer
polynomials will vanish but not those from the first and third if we set the cycle
variables to be zero. So we can kill the second layer by setting cycle variables
equal to zero, then apply the Gaussian Elimination to separate the second layer. In
addition we want to remove the o3 variables from all but the third layer, and this
can be done given that the image of the o3 variables lies in the kernel of symmetric
matrices of second layer. To separate first and second layer. This can be achieved
by using linear combinations of the symmetric matrices to reduce the rank. The
third layer is not of importance because it is essentially an oil Vinegar layer, and the
values for the vinegar variables will be found using the first two layers. The change
of basis transformation is formed by the images of v, o1, o2, and o3 variables, which
we get using the images and kernels of the symmetric matrices. After applying
change of basis, we can see that the matrices of the first and second layer are nearly
in the form that we want besides for some slight indices problem arising from us
not knowing the order of the variables. This is easily fixed.

4. Complexity and implement

In our attack, the most complicated step is to do Gaussian elimination over a
linear system of dimension (n + 1)k − 1. The complexity of solving such linear
system is ((n+ 1)k − 1)ω, where ω called the complexity exponent of linear algebra
[1] and it depends on the algorithm we choose. The best published estimates to
date gives ω ≈ 2.3727 [13][7]. In addition many people believe that the true value
of ω is 2 [13][3][2]. A practical algorithm that is frequently used for implementation
is Strassen-Winograd’s algorithm [12] with ω ≈ 2.8047. For v = 31, o1 = o2 =
15, o3 = 14 and k = 8, the parameters for 128-bit security parameter proposed in
[10], we need approximately 250 signatures, and we estimate the complexity to be
from 2119 using [13] and 2140 using [12].

We ran our experiments with magma of version V2 24-10 on 3.6 GHz Intel Core
i7 and 8GB of 2666 MHz DDR4 RAM. We attacked the scheme with two sets of
parameters. For v = 7, o1 = 3, o2 = 3, o3 = 2, k = 3, in 1000 attempts, the rank
of the matrix is always (n + 1)k − 1 − (o1 + o2) = 4089, and we can always get
parts of T . For v = 9, o1 = o2 = 3, o3 = 2, k = 3, in 1000 attempts, the rank of
the matrix is always (n+1)k−1−(o1+o2) = 5825, and we can always get parts of T .



70 Jintai Ding, Zheng Zhang and Joshua Deaton

Appendix A. Appendix: Toy example

We provide a toy example to clarify the step 3.2. In this example, we choose
k = 3, thus our field is the Galois field of 23 elements. The Galois field will be
represented by {0, 1, w, w2, · · · , w6}, where w is a generator in the multiplicative
group of the Galois field. Let n = 2. For the sake of clarity. We use a linear map
instead of a affine map. Our linear map T is randomly chosen to be the matrix[
w2 w2

w3 w

]
.

Suppose we obtain a set of signatures (x1, x2):

(w,w5), (w5, w), (w2, 1), (w6, w5), (0, w2), (w5, w3), (1, w6), (0, w5),

(0, w2), (1, 0), (w5, w6), (0, w), (w5, w3), (1, w), (w5, 0), (w6, 1), (w6, w3),

(w,w4), (w2, w5), (w3, w), (1, w6), (w, 1), (w2, w), (w2, w), (w4, w), (w4, 1), (w4, w2).

We first construct a generic polynomial g = a1x1 + a2x2. We assume that this

polynomial is never equal to zero. Hence, in this Galois field, g2
3−1 = (a1x1 +

a2x2)2
3−1 = 1. By elementary field theory, we can rewrite this equation as

(a1x1 + a2x2)2
3−1 = (a1x1 + a2x2)2

3−1

(a1x1 + a2x2)2
3−2

(a1x1 + a2x2)2
3−3

= 1

Since this is a field of characteristic 2, the equations turns out to be

((a1x1)2
3−1

+ (a2x2)2
3−1

)((a1x1)2
3−2

+ (a2x2)2
3−2

)((a1x1)2
3−3

+ (a2x2)2
3−3

) = 1

Multiply the product out, we have

a71x
7
1 + a61a2x

6
1x2 + a51a

2
2x

5
1x

2
2 + a41a

3
2x

4
1x

3
2 + a31a

4
2x

3
1x

4
2+

a21a
5
2x

2
1x

5
2 + a1a

6
2x1x

6
2 + a72x

7
2 + 1 = 0

We view the products of ai as variables, and xi as coefficients. In other words, we
have the coefficients in the order:

x71, x
6
1x2, x

5
1x

2
2, x

4
1x

3
2, x

3
1x

4
2, x

2
1x

5
2, x1x

6
2, x

7
2, 1

and monomials in the order:

a71, a
6
1a2, a

5
1a

2
2, a

4
1a

3
2, a

3
1a

4
2, a

2
1a

5
2, a1a

6
2, a

7
2, 1

If we evaluate these coefficients at the signatures, we get (n+1)k vectors which will
be the rows of the following matrix:



The singularity attack to the multivariate signature scheme HIMQ-3 71

1 w4 w w5 w2 w6 w3 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w6 w5 w4 w3 w2 w 1 1
0 0 0 0 0 0 0 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w6 w5 w4 w3 w2 w 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1
1 w w2 w3 w4 w5 w6 1 1
0 0 0 0 0 0 0 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w w2 w3 w4 w5 w6 1 1
1 0 0 0 0 0 0 0 1
1 w w2 w3 w4 w5 w6 1 1
1 w4 w w5 w2 w6 w3 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w4 w w5 w2 w6 w3 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w5 w3 w w6 w4 w2 1 1


We apply echelon form on this matrix and then remove the zero rows. The new
matrix is: 

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 w5 0 w4

0 0 1 0 0 0 w2 0 w6

0 0 0 1 0 0 w4 0 w5

0 0 0 0 1 0 w3 0 w
0 0 0 0 0 1 w6 0 w2

0 0 0 0 0 0 0 1 1


Our next goal is to turn this matrix back to polynomials. Recall the order of the
monomials, we get 7 multivariate polynomials:

a71 + 1

a61a2 + w5a1a
6
2 + w4

a51a
2
2 + w2a1a

6
2 + w6

a41a
3
2 + w4a1a

6
2 + w5

a31a
4
2 + w3a1a

6
2 + w

a21a
5
2 + w6a1a

6
2 + w2

a72 + 1



72 Jintai Ding, Zheng Zhang and Joshua Deaton

The first and last polynomials do not help, they are trivial. Remember that we are
not looking for the original values for ai, we only need solutions for ai up to unit
multiple. Therefore, we can set a1 = 1, and if we pick the second polynomial, we
then get a univariate polynomial w5a62+a2+w4. The roots are a2 = 1 and a2 = w5.

Let us check our solution with the linear map T =

[
w2 w2

w3 w

]
. It is clear that

a1 = 1 and a2 = 1 are unit multiples of a1 = w2 and a2 = w2. Now if we check the
second row, The original values are:

a1 = w3

a2 = w

If we multiply the inverse of w3 by w, we get w−2 which is exactly equal to w5 in
the Galois field of 23 elements.

References

[1] M. Albrecht, G. Bard and C. Pernet, Efficient dense Gaussian elimination over the finite field

with two elements, preprint, arXiv:1111.6549.
[2] H. Cohn, R. Kleinberg, B. Szegedy and C. Umans, Group-theoretic algorithms for matrix mul-

tiplication, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05),
(2005), 379–388.

[3] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal

of symbolic computation, 9 (1990), 251–280.
[4] J. Ding and D. Schmidt, Rainbow, a new multivariable polynomial signature scheme, Interna-

tional Conference on Applied Cryptography and Network Security Springer , (2005), 164–175.

[5] National Institute of Standards and Technology, Submission Requirements and Evalua-
tion Criteria for the Post-Quantum Cryptography Standardization Process, 2017. Avail-

able from: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf.
[6] J. T. Ding, C. Wolf and B.-Y. Yang, l-invertible cycles for Multivariate Quadratic (MQ)

public key cryptography, Public Key Cryptography-PKC 2007, Lecture Notes in Comput.

Sci., Springer, Berlin, 4450 (2007), 226–281.
[7] J. Dumas and C. Pernet, Computational linear algebra over finite fields, preprint,

arXiv:1204.3735.

[8] A. Kipnis, J. Patarin and L. Goubin, Unbalanced oil and vinegar signature schemes, Ad-
vances in Cryptology—EUROCRYPT ’99 (Prague), Lecture Notes in Comput. Sci., Springer,

Berlin, 1592 (1999), 206–222.
[9] J. Patarin, The oil and vinegar algorithm for signatures, in Dagstuhl Workshop on Cryptog-

raphy, (1997).
[10] K. Shim, C. Park and A. Kim, Himq-3: A high speed signature scheme based on multivariate

quadratic equations, (2017).
[11] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM Review , 41 (1999), 303–332.
[12] V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik , 13 (1969), 354–

356.
[13] V. V. Williams, Breaking the Coppersmith-Winograd barrier, CiteSeer, Available from: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.9947&rep=rep1&type=pdf.

Received March 2019; 1st revision July 2019; final revision September 2019.

E-mail address: jintai.ding@gmail.com

E-mail address: zhzhang1989@gmail.com

E-mail address: deatonju@mail.uc.edu

http://arxiv.org/pdf/1111.6549
http://dx.doi.org/10.1109/SFCS.2005.39
http://dx.doi.org/10.1109/SFCS.2005.39
http://www.ams.org/mathscinet-getitem?mr=MR1056627&return=pdf
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1007/11496137_12
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://www.ams.org/mathscinet-getitem?mr=MR2404125&return=pdf
http://dx.doi.org/10.1007/978-3-540-71677-8_18
http://dx.doi.org/10.1007/978-3-540-71677-8_18
http://arxiv.org/pdf/1204.3735
http://www.ams.org/mathscinet-getitem?mr=MR1717470&return=pdf
http://dx.doi.org/10.1007/3-540-48910-X_15
http://www.ams.org/mathscinet-getitem?mr=MR1684546&return=pdf
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1137/S0036144598347011
http://www.ams.org/mathscinet-getitem?mr=MR248973&return=pdf
http://dx.doi.org/10.1007/BF02165411
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.9947&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.9947&rep=rep1&type=pdf
mailto:jintai.ding@gmail.com
mailto:zhzhang1989@gmail.com
mailto:deatonju@mail.uc.edu

	1. Background
	1.1. Multivariate public key cryptography
	1.2. MPKC signature scheme
	1.3. Post-quantum cryptography standardization

	2. HIMQ-3 signature scheme
	2.1. Cycle products ding2007invertible
	2.2. HIMQ-3 scheme himq
	2.3. Inverting the central map

	3. The singularity attack
	3.1. Key observation
	3.2. Finding parts of T
	3.3. Getting public key into right form

	4. Complexity and implement
	Appendix A. Appendix: Toy example
	References

