
Eliminating Decryption Failures from the Simple
Matrix Encryption Scheme

Albrecht Petzoldt1, Jintai Ding2, and Lih-Chung Wang3

1 Kyushu University, Fukuoka, Japan
petzoldt@imi.kyushu-u.ac.jp

2 University of Cincinnati, Ohio, USA
jintai.ding@gmail.com

3 National Dong Hwa University, Taiwan
lihchungwang@gmail.com

Abstract. The SimpleMatrix encryption scheme as proposed by Tao et
al. [16] is one of the very few existing approaches to create a secure and ef-
ficient encryption scheme on the basis of multivariate polynomials. How-
ever, in its basic version, decryption failures occur with non-negligible
probability. Although this problem has been addressed in several papers
[5,17], a general solution to it is still missing.
In this paper we propose an improved version of the SimpleMatrix scheme,
which eliminates decryption failures completely and therefore solves the
biggest problem of the SimpleMatrix encryption scheme. Additionally,
we propose a second version of the scheme, which reduces the blow-up
factor between plain and ciphertext size to a value arbitrary close to 1.

Keywords: Multivariate Cryptography, SimpleMatrix Encryption Scheme, De-
cryption Failures, Blow-up Factor

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [14], DSA [11] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers arrive. The reason
for this is Shor’s algorithm [15], which solves number theoretic problems like
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on mathematical problems not affected by quantum computer
attacks.
Besides lattice, code and hash based cryptosystems, multivariate cryptography
is one of the main candidates for this [1]. Multivariate schemes are very fast and
require only modest computational resources, which makes them attractive for

the use on low cost devices like smart cards and RFID chips [2,3]. However, while
there exist many practical multivariate signature schemes [7,10,13], the number
of efficient and secure multivariate encryption schemes is somewhat limited.
At PQCrypto 2013, Tao et al. proposed a new MPKC for encryption called the
SimpleMatrix (or ABC) encryption scheme [16], which is quite efficient and re-
sists all known attacks against multivariate cryptosystems. However, decryption
failures occur with non-negligible probability. The problem of decryption failures
occurring in the SimpleMatrix scheme has been addressed in several papers, in-
cluding [5,17]. However, while these approaches could reduce the probability of
decryption failures occurring, a general solution to the problem is still missing.
Moreover, the strategy presented in [17] increases key and ciphertext sizes of the
scheme.
In this paper, we propose an improved version of the SimpleMatrix scheme,
which eliminates decryption failures from the scheme completely, without in-
creasing the key sizes or the blow-up factor between plain and ciphertext size.
Therewith we solve the biggest problem of the SimpleMatrix encryption scheme,
which prevented the scheme from being used in practice. Furthermore, in con-
trast to previous versions of the SimpleMatrix scheme, our scheme can be used
over small fields, which reduces the key sizes significantly.
We achieve our results by choosing a linear map T of a special form. By doing
so, we enable the sender of a message to check a priori if the corresponding
ciphertext will be decryptable. Therefore it is ensured that only decryptable ci-
phertexts are sent to the receiver.
Additionally to this, we propose a second improved version of the SimpleMatrix
encryption scheme, which reduces the blow-up factor between plain and cipher-
text size from 2 to a value arbitrary close to 1.
The rest of this paper is organized as follows. In Section 2 we give an overview of
multivariate cryptography and introduce the basic ABC encryption scheme as
proposed in [16]. In Section 3 we present our technique to eliminate decryption
failures from the SimpleMatrix scheme, while Section 4 reduces the blow-up fac-
tor of the scheme. We discuss the differences between the improved schemes and
the basic scheme and analyze the security of our constructions. Section 5 gives
practical parameter sets for our schemes and discusses their efficiency, while Sec-
tion 6 considers the question, if and how our two approaches can be combined.
Finally, Section 7 concludes the paper.

2 The basic ABC Encryption Scheme

In this section we introduce the basic ABC encryption scheme as proposed by
Tao et al. in [16]. Before we come to the description of the scheme itself, we start
with an overview of the main concepts of multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials. The security of multivariate schemes is therefore based on the

MQ Problem: Givenmmultivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in the n variables x1, . . . , xn, find a vector x̄ = (x̄1, . . . , x̄n) such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) has been proven to be NP-hard even for quadratic
polynomials over the field GF(2) [9].

To build a public key cryptosystem on the basis of the MQ problem, one starts
with an easily invertible quadratic map F : Fn → Fm (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps S : Fm → Fm and T : Fn → Fn. The public key is therefore given
by P = S ◦ F ◦ T . The private key consists of S, F and T and therefore allows
to invert the public key.

Remark: Due to the upper construction, the security of multivariate public
key schemes is not solely based on the MQ problem. Instead of this, an attacker
can also try to find the decomposition of the public key (EIP-Problem).

In this paper we concentrate on multivariate encryption schemes. The standard
encryption/decryption process works as shown in Figure 1.

Encryption

d ∈ Fn -P
c ∈ Fm

6

T −1

y ∈ Fn x ∈ Fm� F−1 ?

S−1

Decryption

Fig. 1. General workflow of multivariate encryption schemes

Encryption: To encrypt a message d ∈ Fn, one simply computes c = P(d). The
ciphertext of the message d is c ∈ Fm.

Decryption: To decrypt the ciphertext c ∈ Fm, one computes recursively x =
S−1(c), y = F−1(x) and d = T −1(y). d ∈ Fn is the plaintext corresponding to
the ciphertext c.

Since, for multivariate encryption schemes, we have m ≥ n, the pre-image of
the vector x under the central map F and therefore the decrypted plaintext is

unique.

A good overview of existing multivariate schemes can be found in [4].

2.2 The ABC Encryption Scheme

The basic SimpleMatrix encryption scheme as proposed by Tao et al. in [16] can
be described as follows.

Key Generation: Let F be a finite field. For a parameter s ∈ N we set n = s2

and m = 2 · n and define three matrices A, B and C of the form

A =

(x1 ... xs

...
...

x(s−1)·s+1 ... xn

)
, B =

(
b1 ... bs
...

...
b(s−1)·s+1 ... bn

)
, C =

(c1 ... cs
...

...
c(s−1)·s+1 ... cn

)
.

Here, x1, . . . , xn are the linear monomials of the multivariate polynomial ring
F[x1, . . . , xn], whereas b1, . . . , bn and c1, . . . , cn are randomly chosen linear com-
binations of x1, . . . , xn.
One computes E1 = A · B and E2 = A · C. The central map F of the scheme
consists of the m components of E1 and E2.

The public key of the scheme is the composed map P = S◦F ◦T : Fn → Fm with
two randomly chosen invertible linear maps S : Fm → Fm and T : Fn → Fn, the
private key consists of the matrices B and C and the linear maps S and T .

Encryption: To encrypt a message d ∈ Fn, one simply computes c = P(d) ∈ Fm.

Decryption: To decrypt a ciphertext c ∈ Fm, one has to perform the follow-
ing three steps.

1. Compute x = S−1(c). The elements of the vector x ∈ Fm are written into
matrices Ē1 and Ē2 as follows.

Ē1 =

(x1 ... xs

...
...

x(s−1)·s+1 ... xn

)
, Ē2 =

(xn+1 ... xn+s

...
...

xn+(s−1)·s+1 ... xm

)
.

2. In the second step one has to find a vector y = (y1, . . . , yn) such that F(y) =
x. To do this, one has to distinguish four cases:
– If Ē1 is invertible, one considers the equation B · Ē−11 · Ē2 − C = 0.

Therefore one gets n linear equations in the n variables y1, . . . , yn.
– If Ē1 is not invertible, but Ē2 is invertible, one considers the equation
C · Ē−12 · Ē1 −B = 0. One gets n linear equations in the n variables.

– If none of Ē1 and Ē2 is invertible, but Ā = A(y) is invertible, one
considers the relations Ā−1 · Ē1 − B = 0 and Ā−1 · Ē2 − C = 0. One
interprets the elements of Ā−1 as new variables w1, . . . , wn and therefore
gets m linear equations in the m variables w1, . . . , wn, y1, . . . , yn.

– If none of Ē1, Ē2 and Ā is invertible, there occurs a decryption failure.
3. Finally, one computes the plaintext by d = T −1(y1, . . . , yn).

The probability of a decryption failure occurring in the second step is about 1
q ,

where q is the cardinality of the underlying field F.

It might happen that the linear systems in the second step of the decryption
process have multiple solutions y(1), . . . ,y(`) . In this case one has to perform
the third step for each of these solutions to get a set of possible plaintexts
d(1), . . . ,d(`). By encrypting these plaintexts one can test which of them corre-
sponds to the given ciphertext c.

3 Eliminating the Decryption Failures

In this section we present our technique to eliminate the decryption failures from
the SimpleMatrix encryption scheme. These decryption failures occur in all so
far existing versions of the SimpleMatrix encryption scheme [16,5,17] and there-
fore prevent the scheme from being used in practice. Our technique enables the
sender to check a priori, if the ciphertext corresponding to his message will be
decryptable. If not, he can change his message slightly until he gets a message
whose corresponding ciphertext is deryptable. By doing so, he can make sure to
send only decryptable ciphertexts to the receiver.
Our scheme, denoted as the TensorSimpleMatrix encryption scheme, can be de-
scribed as follows.

Let F = Fq be a finite field with q elements, s ∈ N be an integer, n = s2

and m = 2 · n.

Key Generation: The s × s matrices A, B, C, E1 and E2 and the maps F :
Fn → Fm and S : Fm → Fm are defined as in the case of the basic ABC scheme
(see Subsection 2.2). Additionally, we choose two invertible s × s matrices T1
and T2 and compute T = T1⊗T2, where ⊗ is the standard tensor product. Note
that with T1 and T2 being invertible the n× n matrix T is invertible, too. The
linear map T used in our scheme is represented by this matrix T .

Lemma 1. Let d = (d1, . . . , dn) ∈ Fn be a vector such that A(d) is an invertible
s× s matrix. Then the s× s matrix A(T (d)) will be invertible, too.

Proof. We get A(T (d)) = T1 · A(d) · TT
2 . Since all three matrices T1, A(d) and

T2 are invertible, the same holds for A(T (d)). ut

Remark: Lemma 1 states that, for a plaintext vector d whose associated ma-
trix A(d) is invertible, the matrix Ā = A(T (d)) considered in the second step of
the decryption process is invertible, too. By encrypting only plaintexts d ∈ Fn

for which the matrix A(d) is invertible (this can be ensured easily during the
encryption process) we can therefore ensure that the decryption process of the
ABC scheme runs correctly.

The public key is the composed map P = S ◦ F ◦ T , the private key consists
of the matrices T1, T2, B, C and the linear map S.

Encryption: To encrypt a message d = (d1, d2, . . .) of F-elements, we decompose
the message into message blocks D1, D2, . . . of length n. We define a matrix

A(D1) =

(
d1 ... ds

...
...

dn−s+1 ... dn

)
(1)

and test, if the matrix Â = A(D1) is invertible. If this is the case, we pro-
ceed to the next step, if not, we insert a predefined element pre at a ran-
dom position into the message block D1

4. By doing so, we get the block
D1
′ = (d1, . . . , dj ,pre, dj+1, . . . , dn−1) 5. After that we test if the resulting ma-

trix A(D′1) is invertible. We repeat this step, until we find a block D′1 ∈ Fn

whose associated matrix A(D′1) is invertible.
After having found such a block D′1 with A(D′1) being invertible we compute the
ciphertext by P(D′1).
We continue this process with the next message block D2 (if we inserted i ele-
ments pre into the first message blockD1,D2 has the formD2 = (dn−i+1, . . . , d2n−i)).

Remark: By Lemma 1 we know that, with A(D′1) , the matrix Ā = A(T (D′1)
appearing in the second step of the decryption process will be invertible, too.
Therefore we know that the decryption process will run correctly.

Decryption: The decryption process works as shown in Subsection 2.2. How-
ever, in the new setting, the matrix Ā used in step 2 of the decryption process
will always be invertible and therefore decryption failures no longer occur.

After having found the encrypted plaintext d, we remove all the appearances of
the character pre to get the original message.

3.1 Security Analysis

Direct attacks The most straightforward way to attack a multivariate scheme
such as SimpleMatrix is by trying to solve the public equation P(d) = c directly
(message recovery attack). For this an attacker can use an algorithm like XL [6]
or a Gröbner basis method such as F4 or F5 [8].
To analyze the effectiveness of direct attacks against our scheme, we performed
a number of experiments with MAGMA, which contains an efficient implemen-
tation of Faugères F4 algorithm. The experiments were performed on a server
with 24 AMD Opteron processors (2.5 GHz) and 128 GB RAM. Table 1 shows
the results.
4 In our implementation (over the field F=GF(256)) we use pre = 0x10 which corre-

sponds to the ASCII character ¯.
5 The element dn is moved to the next message block.

GF(24) GF(28)
s 3 4 5 3 4 5
m,n 18,9 32, 16 50, 25 18, 9 32, 16 50, 25

TensorSimpleMatrix
dreg 4 5 6 4 5 6
time (s) 0.3 2.3 6,759 0.3 2.4 13,488
memory (MB) 12.5 37.2 7,899 12.5 37.0 8,825

for comparison: dreg 4 5 6 4 5 6
standard time (s) 0.3 2.4 6,759 0.3 2.4 13,546
SimpleMatrix [16] memory (MB) 12.5 37.3 7,932 12.5 37.2 8,832

Table 1. Results of our experiments with direct attacks on the TensorSimpleMatrix
scheme

As the table shows, there is no major difference between the basic SimpleMatrix
scheme and our improved scheme with respect to the behavior of direct attacks.

Special Attacks Compared to the case of the standard SimpleMatrix encryp-
tion scheme (see Section 2.2), the TensorSimpleMatrix encryption scheme uses a
specially designed linear map T . In particular, the n× n matrix T representing
the linear map T is given by

T = T1 ⊗ T2 (2)

with two invertible s× s matrices T1 and T2. In this section we analyze whether
this can be used by an attacker against the scheme.
The special structure of the matrix T reduces the number of possible choices of
this matrix significantly. However, even for the smallest of the parameter sets
proposed in Section 5 (F = GF(24), s = 8), we still have(

s−1∑
i=0

(qs − qi)

)2

≈ 2511.8 (3)

possibilities for the choice of T .

To answer the question, if the special structure of the map T yields any re-
lation between the coefficients of the public key P, we made the following test:
For simplicity, we fixed the first affine map S to be the identity map, i.e.
P = F ◦ T . In this case, the coefficient matrix MP of the public key can be
computed by

MP = MF ·A, (4)

where MF is the coefficient matrix of the central map and A = (αrs
ij) is an

n·(n+1)
2 × n·(n+1)

2 matrix, whose elements are given by [12]

αrs
ij =

{
tri · tsi i = j
tri · tsj + trj · tsi i 6= j

(5)

Note that, in the case of T = T1 ⊗ T2, the elements of the matrix A are quartic
polynomials in the elements of T1 and T2.

We compared the distribution of the matrices A in the case of TensorSimpleMa-
trix scheme with that of the standard scheme and found that there is no sig-
nificant difference. Therefore we believe that it will be difficult for an attacker
to distinguish between public keys of the TensorSimpleMatrix and the standard
ABC scheme.

4 Reducing the Blow-up Factor between Plain and
Ciphertext

For all the previously proposed variants of the SimpleMatrix encryption scheme
the ciphertext is at least twice as large as the corresponding plaintext. In this
section we present a simple technique to reduce this blow-up factor to a value
arbitrary close to 1. We achieve this by using more than three matrices in the key
generation process of the scheme. Our scheme, denoted as the ABCD encryption
scheme, can be described as follows:

Let F = Fq be a finite field with q elements and s and k be integers. We set
m = k · s2 and n = m− s2.

Key Generation: We choose an s×s matrix A and k s×s matrices B(1), . . . , B(k)

of the form

A =

 a11 a12 ... a1s
a21 a22 ... a2s

...
...

. . .
...

as1 as2 ... ass

 , B(i) =


b
(i)
11 b

(i)
12 ... b

(i)
1s

b
(i)
21 b

(i)
22 ... b

(i)
2s

...
...

. . .
...

b
(i)
s1 b

(i)
s2 ... b(i)ss

 (i = 1, . . . , k)

containing randomly chosen linear combinations of the monomials x1, . . . , xn of
the multivariate polynomial ring F[x1, . . . , xn] 6.

Similar to the case of the original SimpleMatrix scheme (see Subsection 2.2)
we define E(i) = A · B(i) (i = 1, . . . , k). The central map F of our scheme con-
sists of the m = k · s2 components of the matrices E(i) (i = 1, . . . , k). We note
that each of these components is a quadratic polynomial in F[x1, . . . , xn] whose
associated quadratic form has a rank close or equal to 2s.

The public key P of the scheme is defined as

P = S ◦ F
6 In the case of k = 3, we denote the matrices B(1), B(2) and B(3) by B, C and D.

In analogy to the ABC scheme we call our scheme therefore the ABCD encryption
scheme.

with an invertible linear map S : Fm → Fm. 7

The private key consists of the linear map S and the matrices B(i) (i = 1, . . . , k).

Encryption: To encrypt a message d = (d1, d2, . . . , dn) ∈ Fn, one simply com-
putes c = P(d). c ∈ Fm is the ciphertext corresponding to the message d.

Decryption: To decrypt the ciphertext c = (c1, c2, . . . , cm) ∈ Fm, one has to
perform the following two steps:

1. Compute x = (x1, x2, . . . , xm) = S−1(c) and set

Ē(i) =


x(i−1)s2+1 x(i−1)s2+2 ... x(i−1)s2+s

x(i−1)s2+s+1 x(i−1)s2+s+2 ... x(i−1)s2+2s

...
...

. . .
...

xi·s2−s+1 xi·s2−s+2 ... xi·s2

 (i = 1, . . . , k).

2. Let Ā = A(y), where y = (y1, . . . , yn) is the (so far unknown) pre-image of
x under the central map F .
– If Ā is invertible, we set W = Ā−1 and consider the equations Ē(i) =
Ā ·B(i) (i = 1, . . . , k). From these we obtain W · Ē(i) = W · Ā ·B(i) and
therefore W · Ē(i) = B(i) (i = 1, . . . , k). We interpret the elements of W
as new variables w1, . . . , ws2 and end up with k · s2 linear equations in
k · s2 unknowns (the s2 elements of W and the n = (k− 1) · s2 plaintext
variables.). We can solve the system by Gaussian Elimination.

– In the case of the matrix Ā being singular, decryption remains an open
problem.

The plaintext corresponding to the ciphertext c is given by d = (y1, . . . , yn) ∈
Fn.

Remark: As in the case of the standard SimpleMatrix scheme, it may hap-
pen that the linear system in step 2 of the decryption process has multiple
solutions d(1), . . . ,d(`). In this case one has to encrypt the possible plaintexts
to check which of them corresponds to the given ciphertext.

Remark: In step 2 of the decryption process we obtain a system of m = k ·s2
linear equations in m variables. Of these variables, s2 are the unknown ele-
ments of the matrix W = Ā−1 and n = (k−1) ·s2 are the plaintext variables,
which can be recovered by Gaussian Elimination. We therefore get a blow-up
factor between plain and ciphertext size of

blow−up−factor =
m

n
=

k · s2

(k − 1) · s2
= 1 +

1

k − 1
(6)

By using large values of k, we therefore can reduce the blow-up factor be-
tween plain and ciphertext size to values arbitrary close to 1.

7 For the security of our scheme, we do not need the second linear map T . So we drop
it.

4.1 Security

Direct attacks To estimate the behavior of direct attacks against the ABCD
encryption scheme, we performed a number of experiments with MAGMA which
contains an efficient implementation of the F4 algorithm. The results are shown
in Table 2. Note that for k = 2 our scheme is just the standard SimpleMatrix
scheme of [16].

GF(28) GF(216)
s 3 4 5 3 4 5

k = 2

m,n 18,9 32,16 50,25 18,9 32,16 50,25
dreg 4 5 6 4 5 6
time(s) 0.3 2.3 13,546 0.3 12.6 191,114
memory (MB) 12.5 37.2 8,824 14.1 51.0 16,886

k = 3

m,n 27,18 48,32 75,50 27,18 48,32 75,50
dreg 4 5 5 1 4 5 51

time (s) 1.7 22,956 - 4.9 120,736 -
memory (MB) 34.3 29,247 ooM 2 39.0 33,735 ooM

k = 4

m,n 36,27 64,48 100,75 36,27 64,48 100, 75
dreg 4 5 5 1 4 5 5 1

time(s) 26.4 - - 895.6 - -
memory (MB) 350.7 ooM ooM 1,537 ooM ooM

1 After having reached degree 5, we ran out of memory
2 out of memory

Table 2. Results of our experiments with direct attacks against
the ABCD scheme

For k > 2 the public systems of the ABCD scheme are much larger (and less
overdetermined) than the public systems of the original SimpleMatrix scheme.
One therefore could expect that they are significantly harder to solve. But, as
our experiments show, increasing k has no influence on the degree of regularity
of the F4 algorithm. However, time and memory requirements increase drasti-
cally with larger k. We therefore feel secure to decrease the parameter s while
increasing k. For our proposed parameter sets (see Section 5) we chose s and k
in such a way that s+ k = 10.

Other attacks Regarding further security analysis (e.g. Rank attacks, (Higher
Order) Linearization Attacks) we just note that the internal structure of the
public polynomials is exactly equal to the case of the standard SimpleMatrix
scheme. In particular, the components of the central map F are quadratic poly-
nomials of rank close to 2s. For a discussion of the security of our scheme against
the above mentioned attacks we therefore refer to [16].

5 Parameters and Efficiency

In this section we propose concrete parameter sets for our improved variants of
the SimpleMatrix encryption scheme.

For all the previously proposed versions of the SimpleMatrix encryption scheme,
the probability of an decryption failure occurring depends on the cardinality q of
the underlying field. To reduce the probability of decryption failures occurring,
the authors of [16,5,17] suggested therefore to use the scheme over large fields
such as GF(216) or GF(232). However, this increases the key sizes of the scheme
and reduces its performance.
In the case of the TensorSimpleMatrix encryption scheme (see Table 3), we do
not have to consider decryption failures. Therefore, we can use this scheme also
over small fields, e.g. GF(16) and GF(256). By doing so, we can reduce the
public key size of the SimpleMatrix scheme from 1,040 kB [16] to 130 kB. The
parameters in the table are chosen in such a way that the complexity of a direct
attack against the scheme is beyond the proposed level of security.

Claimed security parameters input output public key private key
level F, s size (bit) size (bit) size (kB) size (kB)

280 GF(24), 8 256 512 130.0 12.1
GF(28), 8 512 1,024 260.0 24.1

295 GF(24), 9 324 648 262.7 19.3
GF(28), 9 648 1,296 525.4 38.6

Table 3. Proposed parameters and key sizes for the TensorSimpleMatrix encryption
scheme

In the case of the ABCD encryption scheme (Table 4), we choose GF(216) as
the underlying field. By doing so, we can bound the probability of decryption
failures occurring by 2−16. As above, the parameters in the table are chosen in
such a way that the complexity of a direct attack against the scheme is beyond
the proposed security level.
Basically, our strategy would allow to reduce the blow-up factor between plain
and ciphertext size to a value arbitrary close to 1. However, this leads to very
large sizes of the public key. Therefore we do not think that values of k ≥ 5 are
useful in practice.

Claimed security parameters input output public key private key blow-up probability of
level F, s, k size (bit) size (bit) size (kB) size (kB) factor decryption failure

280 GF(216), 7, 3 1,568 2,352 1,393 49.2 1.50 2−16

GF(216), 6, 4 1,728 2,304 1,655 50.6 1.33 2−16

295 GF(216), 8, 3 2,048 3,072 3,096 84.0 1.50 2−16

GF(216), 7, 4 2,352 3,136 4,164 93.8 1.33 2−16

Table 4. Proposed parameters and key sizes for the ABCD encryption scheme

The most costly step in the decryption process of our schemes is the solution of the

linear system obtained in step 2 of the decryption process, which consists in solving
a linear system of m equations in m variables. In the case of the TensorSimpleMatrix
scheme, the complexity of this step is about 8 · s6, in the case of the ABCD scheme the
complexity is given by k3 · s6.

6 Combining the two approaches

A natural extension of our work would be to combine the two approaches presented in
Sections 3 and 4. By doing so, one would obtain a version of the SimpleMatrix scheme
which both reduces the blow-up factor between plain and ciphertext size and solves
the problem of decryption failures. However, this can not be done straightforward.

1. To eliminate decryption failures from the scheme, the matrix A must be known to
the sender of the message. Therefore, we can not choose the matrix A to contain
randomly chosen linear combinations of x1, . . . , xn as it is done in the case of
the ABCD scheme. Moreover, we can not choose the matrix A to contain only
monomials as in the case of the standard and TensorSimpleMatrix scheme, since
then only s2 of the (k−1) ·s2 monomials would appear in the matrix. One possible
solution to this problem would be to choose the elements of the matrix A as

aij =

k−2∑
l=0

xl·s2+(i−1)·s+j (7)

2. When choosing the matrix A as shown in equation (7), we need a linear transfor-
mation T : Fn → Fn to hide the structure of A in the public key. However, for
n = (k − 1) · s2 with k > 2 it is totally unclear how to find a relation similar to
that of Lemma 1. Therefore we do not know how to enable the sender to check
whether the ciphertext corresponding to his message will be decryptable.

We therefore leave the problem of combining our two approaches as future work.

7 Conclusion

In this paper we presented a technique to eliminate decryption failures from the Sim-
pleMatrix scheme completely. By choosing a linear map T of a special form, we enable
the sender to check a priori if the ciphertext corresponding to his message will be de-
cryptable. This guarantees that only decryptable ciphertexts are sent to the receiver
and therefore solves one of the biggest problems of the SimpleMatrix encryption scheme,
which prevented the scheme from being used in practice. Additionally, our new scheme
has significantly smaller keys than all so far published versions of the SimpleMatrix
scheme.
Furthermore, in this paper, we presented a technique to reduce the blow-up factor be-
tween plain and ciphertext to a value arbitrary close to 1.
We hope that our techniques contribute to turn the SimpleMatrix scheme into a really
practical multivariate encryption scheme.
Future work includes

– Combination of the two approaches (see Section 6).
– Creation of a cyclic version of the SimpleMatrix encryption scheme. This will

enable us to reduce the public key size of the scheme significantly.

References

1. D.J. Bernstein, J. Buchmann, E. Dahmen (eds.): Post Quantum Cryptography.
Springer, 2009.

2. A. Bogdanov, T. Eisenbarth, A. Rupp, C. Wolf: Time-area optimized public-key
engines: MQ-cryptosystems as replacement for elliptic curves? CHES 2008, LNCS
vol. 5154, pp. 45-61. Springer, 2008.

3. A.I.T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F.
Y.-S. Lee, B.-Y. Yang: SSE implementation of multivariate PKCS on modern x86
CPUs. CHES 2009, LNCS vol. 5747, pp. 33–48. Springer, 2009.

4. J. Ding, J. E. Gower, D. S. Schmidt: Multivariate Public Key Cryptosystems.
Springer, 2006.

5. J. Ding, A. Petzoldt, L.C. Wang: The Cubic SimpleMatrix Encryption Scheme.
PQCrypto 2014, LNCS vol. 8772, pp. 76 - 87. Springer, 2014.

6. J. Ding, J. Buchmann, M. S. E. Mohamed, W. S. A. E. Mohamed, R.P. Weinmann:
MutantXL. SCC 2008.

7. J. Ding, D. S. Schmidt: Rainbow, a new multivariate polynomial signature scheme.
ACNS 2005, LNCS vol. 3531, pp. 164-175. Springer, 2005.

8. J.C. Faugère: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, pp. 61-88 (1999).

9. M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

10. A. Kipnis, L. Patarin, L. Goubin: Unbalanced Oil and Vinegar Schemes. EURO-
CRYPT 1999, LNCS vol. 1592, pp. 206–222 Springer, 1999.

11. D. Kravitz: Digital Signature Algorithm. US patent 5231668 (July 1991).
12. A. Petzoldt, S. Bulygin, J. Buchmann: Linear Recurring Sequences for the UOV

Key Generation. PKC’11, LNCS vol. 6571, pp. 335-350, Springer, 2011.
13. J. Patarin, N. Courtois, L. Goubin: QUARTZ, 128-Bit Long Digital Signatures.

CTRSA 2001, LNCS vol. 2020, pp. 282-297. Springer, 2001.
14. R. L. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Commun. ACM 21 (2), pp. 120-126 (1978).
15. P. Shor: Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-

rithms on a Quantum Computer. SIAM J. Comput. 26 (5), pp. 1484–1509.
16. C. Tao, A. Diene, S. Tang, J. Ding: Simple Matrix Scheme for Encryption.

PQCrypto 2013, LNCS vol. 7932, pp. 231-242. Springer, 2013.
17. C. Tao, H. Xiang, A. Petzoldt, J. Ding: SimpleMatrix - A Multivariate Public Key

Cryptosystem (MPKC) for Encryption. Finite Fields and Their Applications 35,
pp. 352 - 368. Elsevier, 2015.

