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Abstract: Error reconciliation is an important technique for Learning With Error (LWE) and Ring-

LWE (RLWE)-based constructions. In this paper, we present a comparison analysis on two error 

reconciliation-based RLWE key exchange protocols: Ding et al. in 2012 (DING12) and Bos et al. 

in 2015 (BCNS15). We take them as examples to explain core idea of error reconciliation, building 

key exchange over RLWE problem, implementation, real-world performance and compare them 

comprehensively. We also analyse a LWE key exchange “Frodo” that uses an improved error 

reconciliation mechanism in BCNS15. To the best of our knowledge, our work is the first to pre-

sent at least 128-bit classic (80-bit quantum) and 256-bit classic (>200-bit quantum) secure 

parameter choices for DING12 with efficient portable C/C++ implementations. Benchmark shows 

that our efficient implementation is 11x faster than BCNS15 and one key exchange execution only 

costs 0.07ms on a 4-year-old middle range CPU. Error reconciliation is 1.57x faster than BCNS15. 
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1 Introduction 

The groundbreaking Diffie-Hellman key exchange protocol 

was proposed in “New Direction in Cryptography” in 1976 

[1]. It has been over 40 years since Diffie-Hellman key 

exchange was proposed. We have seen numerous similar 

cryptosystems and real world deployments. Most current 

public key cryptosystems are constructed from classical hard 

mathematical problems in number theory (e.g., integer 

factorization problem, discrete logarithm problem or elliptic 

curve variant etc.). They are hard to break with securely 

chosen parameter and implementation on classical computers. 

However, with the advent of large quantum computers, such 

public key algorithms are vulnerable and can be broken 

practically. Efficient quantum algorithms (e.g., Shor’s 

algorithm [2]) can solve these hard problems and therefore 

break most current public key cryptosystems. Experiments 

had shown great undiscovered potential of quantum 

computers. Therefore, it is imperative to focus on designing 

novel cryptography constructions for coming quantum world. 

Post-quantum cryptography has become one of the 

forefront research topics during the past years. These 

cryptosystems are thought to be secure against classic and 

quantum computers. There are several approaches to realize 

post-quantum cryptosystems, including: lattice-based, 

multivariate-based, hash-based, code-based etc. Various 

extremely versatile and efficient constructions had come to 

horizon in recent years, including: encryption, signature, key 

exchange, identity-based encryption, fully homomorphic 

encryption, multi-linear maps etc. In 2015, National Security 

Agency announced their plan to switch to quantum-resistant 

cryptography primitives in near future. At PQCrypto 2016 

conference, National Institute of Standards and Technology 

(NIST) announced formal call for quantum-resistant 

cryptographic algorithms for future and their plans for post-

quantum cryptography standards. It is estimated that draft of 

post-quantum cryptography standards will be ready within 10 

years after the submission. 

1.1 LWE & RLWE key exchange 

Regev introduced Learning With Errors (LWE) problem in 

2005 [3]. It is an average-case problem with strong security 

guarantee and high efficiency when parameters are properly 

chosen. Lyubashevsky et al. introduced its ring variant, Ring 

Learning With Errors (RLWE) in 2010 [4]. Hardness of LWE 

and RLWE can be reduced to solving hard problems in 

regular lattice and ideal lattice respectively. Since no classic 

or quantum algorithms can solve lattice problems and their 

versatility, LWE and RLWE are considered as important 

building blocks for post-quantum cryptography. Several 

proof-of-concept implementations of real world application 

that adopt LWE/RLWE-based cryptography algorithms have 

been proposed, including post-quantum TLS, VPN etc. 

An important line of post-quantum cryptography is post-

quantum key exchange. Key exchange is crucial for real 

world applications since data that transferred between parties 

is encrypted using symmetric encryption algorithms (e.g., 

AES), not public key encryption algorithms since they are too 

costly. Encryption key for symmetric encryption algorithms 

is derived from key exchange, therefore secure and efficient 

key exchange protocol is very important. Key exchange 

protocols based on RLWE problem are considered to be most 

secure and efficient among all approaches to achieve post-

quantum key exchange. In the case of RLWE, the biggest 

problem for key exchange is how to agree on an identical 

value (or session key) since shared key computation value 

perturbed by small error terms. 

First Diffie-Hellman like LWE and RLWE-based key 

exchange protocols were introduced in 2012. We have seen 

various works that take advantage of LWE or RLWE to 

design and implement post-quantum key exchange protocols. 

These constructions cover unauthenticated and authenticated 

key exchange, Diffie-Hellman-like and HMQV-like, explicit 

and implicit authenticated etc. 

1.2 Related works 

Ding et al. presented first LWE and RLWE-based key 

exchange protocols in 2012 [5] (denoted as DING12). This 

work gives analogues of classical Diffie-Hellman key 

exchange over LWE and RLWE. Main contribution of this 

work is giving the first LWE and RLWE key exchange 

constructions with a novel error reconciliation mechanism. 

This reconciliation mechanism utilizes a “signal” value to 

assist error reconciliation over approximately equal values 

and extracts uniformly random bits in order to generate same 

session key both parties. It also enjoys high error tolerance 

and efficiency. No parameter choice or implementation is 

provided in this work. 

There are a few variants that share similar general 

structure and the idea of error reconciliation using signal 

value: A RLWE exchange protocol was given by Peikert in 

2014 [6] (denoted as PKT14). This work gives a slightly 

modified error reconciliation mechanism over DING12. 

PKT14 is instantiated by Bos et al. at IEEE S&P 2015 in [7] 

with 128-bit secure parameters and implementation (denoted 

as BCNS15). BCNS15 also integrates their implementation 

into OpenSSL as post-quantum TLS ciphersuite. A highly 

optimized version of BCNS15 was proposed by Alkim et al. 



 

at USENIX 2016 [8] (denoted as NewHope). This work 

improves BCNS15 by adopting alternative error 

reconciliation mechanism, more compact parameter choices, 

efficient implementation and other improvements. They 

claim that their portable and AVX2-optimized 

implementation achieve 9x and 24x performance boost over 

BCNS15 respectively. 

A LWE-based key exchange protocol “Frodo” was 

proposed by Bos et al. in 2016 [9]. This work modifies error 

reconciliation in BCNS15 to extract more bits from each 

coefficient in order to choose smaller parameters and reduce 

communication cost. Performance of this work is 8x slower 

than NewHope and communication cost is 4.7x larger. 

For authenticated key exchange (AKE) protocol, a 

RLWE-based protocol which is a RLWE analogue of HMQV 

was proposed by Zhang et al. in 2015 [10]. Two provably 

secure password-based authenticated key exchange (PAKE) 

protocols that are RLWE analogues of PAK and PPK were 

given in 2017 [11]. These two works use same error 

reconciliation mechanism as DING12. 

1.3 Contribution 

In this paper, we first present a comprehensive comparison 

analysis on two error reconciliation-based RLWE key 

exchange protocols: DING12 and BCNS15. Our analysis and 

comparison efforts are focusing on protocol design and error 

reconciliation mechanism. Error reconciliation mechanism is 

the major difference between these two protocols. In addition, 

error reconciliation of Frodo LWE key exchange is also 

analysed and compared since it uses a modified error 

reconciliation in BCNS15. Principle and realization of error 

reconciliation in these key exchange protocols are well 

explained and compared. We conclude that they share similar 

protocol structure and error reconciliation mechanism. 

Second, we instantiate DING12 with two parameter 

choices. To the best of our knowledge, our work is the first 

to instantiate and implement this protocol with two practical 

and common parameter choices efficiently. Both parameter 

choices choose same degree 𝑛 = 1024  for ring 𝑅𝑞 . First 

parameter choice P30 is 128-bit classic (80-bit quantum) 

secure and adopts a 30-bit prime which is smaller than 

BCNS15 (32-bit modulus) and discrete Gaussian distribution 

for sampling with same standard deviation 𝜎 = 3.192  as 

BCNS15. Second parameter choice P14 is 256-bit classical 

(>200-bit quantum) secure which adopts same 14-bit prime 

𝑞 = 12289 and centered binomial distribution for sampling 

with parameter 𝑘 = 16  as [8]. Efficient portable C/C++ 

implementations of P30 and P14 are also provided. For 

complete key exchange execution, implementation of P30 

and P14 is 11x and 3.94x faster than BCNS15 respectively, 

error reconciliation part is 1.57x faster. Our results show that 

DING12 can be instantiated with compact parameters and 

implemented truly efficiently. We also present comparison 

and discussion between our implementations and BCNS15. 

We believe that RLWE-based key exchange protocols 

and our implementations are truly practical toward real-world 

applications for the upcoming post-quantum world. 

1.4 Organization 

In section 2, we recall background knowledge on LWE and 

RLWE. In sections 3, we present detailed analysis and 

comparisons between DING12, BCNS15 and Frodo. We 

discuss and compare overall protocol structure and error 

reconciliation mechanism of these protocols. Principle and 

differences between DING12, BCNS15 and Frodo on error 

reconciliation are well explained. In section 4, we introduce 

two parameter choices for DING12 RLWE key exchange - 

P30 and P14. Efficient implementations, classic and quantum 

security level analysis, performance measurements of 

standalone operations and overall protocol execution, 

communication cost. Discussions are given in section 5. We 

conclude the paper in section 6. 

2  LWE & RLWE 

LWE problem was introduced by Oded Regev in 2005 [3]. It 

is an average-case problem and the security of LWE can be 

reduced to solving worst-case hard lattice problems. 

Currently there are no publicly known algorithms can solve 

LWE or underlying lattice problems. LWE distribution 𝐴𝑠,𝜒 

over 𝑍𝑞
𝑛 × 𝑍𝑞 is generated by uniformly random sampled 𝑎 ∈

𝑍𝑞
𝑛, small secret vector 𝑠 ∈ 𝑍𝑞

𝑛 and error vector 𝑒 ∈ 𝑍𝑞
𝑛 . 𝑒 is 

sampled from some distribution 𝜒  (common choice is 

discrete Gaussian distribution), outputs (𝑎, 𝑏 = 𝑎 ⋅ 𝑠 +
𝑒 mod 𝑞). There are two versions of LWE problem: search 

and decision. Search-LWE problem is to recover fixed secret 

term 𝑠  given various LWE samples and decision-LWE 

problem is to distinguish LWE samples from uniform 

randomly generated ones. Properly chosen parameters, 

perturbation from secret error term and indistinguishable 

from uniform random keep LWE problem very hard to solve. 

Lyubashevsky et al. introduced RLWE (Ring-LWE) 

problem in 2010 [4]. It is the ring analogue of LWE. RLWE 

problem is much more efficient than LWE and its hardness 

can be reduced to solving hard problems in ideal lattices, 

which is also very hard to solve on classical and quantum 

computers currently when secure parameters are chosen 

properly. Define ring 𝑅 = 𝑍[𝑥]/𝑓(𝑥), where 𝑓(𝑥) = 𝑥𝑛 + 1 

with 𝑛  be a power of 2. Modulus 𝑞  defines quotient ring 

𝑅𝑞 = 𝑅/𝑞𝑅. Let ring 𝑅 be cyclotomic ring and 𝜒 be discrete 

Gaussian distribution. Define ‖𝑎‖∞ = max {|𝑎𝑖|}, which is 

the 𝑙∞  norm of 𝑎. RLWE distribution 𝐴𝑠,𝜒  over 𝑅𝑞 × 𝑅𝑞  is 

sampled by uniformly random chosen vector 𝑎 ∈ 𝑅𝑞 , small 

secret vector 𝑠 ∈ 𝑅𝑞 , error term 𝑒 ∈ 𝑅𝑞  is sampled from 

discrete Gaussian distribution, outputs (𝑎, 𝑏 = 𝑎 ⋅ 𝑠 +
𝑒 mod 𝑞). RLWE also has search and decision version as 

LWE and we omit details here. If one can solve decision 

version of RLWE problem, then he can also solve search 

version of RLWE problem and underlying hard lattice 

problems. 

For security of LWE and RLWE problems, they can both 

be reduced to hard problems in lattice, which are very hard to 

solve with properly instantiated instances. LWE and RLWE 

problems can be reduced to lattice problems including: 

Shortest Vector Problem (SVP), Closest Vector Problem 



(CVP), Bounded Distance Decoding (BDD) etc. These 

problems are hard for both classical and quantum computers, 

which serve as solid foundation for post-quantum 

cryptography. Moreover, RLWE-based constructions are 

extremely efficient while key size is larger than current 

public key cryptosystems. 

Compared with RLWE-based constructions, LWE-based 

ones are considered to have much larger key size (at least 

quadratic) and slower computation due to structure of LWE 

(large matrix). It is believed that RLWE shares same security 

level with LWE since no attack takes advantage of ring 

structure. LWE and RLWE are extremely versatile for 

cryptographic constructions. They served as fundamental 

building blocks for modern lattice-based constructions, 

including encryption, digital signature, key exchange, 

homomorphic encryption, attribute-based encryption etc. 

3 Analysis of reconciliation-based RLWE key 

exchange 

There are two major approaches to realize RLWE-based key 

exchange: one is error reconciliation-based, the other is key 

encapsulation mechanism (KEM)-based. In [6], they claimed 

that an important advantage of reconciliation-based protocols 

is reduced bandwidth with nearly halve the ciphertext size, 

therefore they are more attractive. Additional advantage of 

error reconciliation-based Diffie-Hellman like protocols is 

forward security. Encryption-based approaches to achieve 

key exchange are more “static” like RSA key exchange. Once 

long-term private key is revealed, attacker can decrypt and 

recover all past messages. Latest draft of TLS 1.3 has 

removed support of RSA due to this reason. 

The reason why we need error reconciliation mechanism 

is the construction of key exchange over LWE/RLWE 

problem. Generally we have the following construction: both 

parties generate public key 𝑝𝑘 = 𝑎 ⋅ 𝑠 + 𝑒, then compute key 

exchange material 𝑘′ = 𝑝𝑘 ⋅ 𝑠′ + 𝑒1 = 𝑎𝑠𝑠′ + 𝑒𝑠′ + 𝑒1 . 

Note that 𝑠, 𝑠′, 𝑒, 𝑒′, 𝑒1  are error terms that sampled from 

some distribution. For party 𝑖  and 𝑗 , 𝑘𝑖  cannot rigorously 

equal to 𝑘𝑗 since if we expand 𝑘𝑖 and 𝑘𝑗, we can see that 𝑘𝑖 −

𝑘𝑗 = 𝑒𝑠′ + 𝑒1 − 𝑒′𝑠 − 𝑒2. The difference between 𝑘𝑖 and 𝑘𝑗 

is small therefore they are approximately equal, unlike 

(𝑔𝑎)𝑏 mod 𝑝 = (𝑔𝑏)𝑎 mod 𝑝  in Diffie-Hellman key 

exchange. Therefore there has to be some mechanism to 

reconcile the errors in order to agree on same key. 

In this section, we recall and compare error reconciliation 

techniques in literatures. Our major focus is on two major 

reconciliation-based RLWE key exchange protocols: RLWE 

version of DING12 and BCNS15. A LWE-based key 

exchange called Frodo is also analysed since it uses a slightly 

modified error reconciliation in BCNS15 to realize LWE key 

exchange. Comprehensive analysis on error reconciliation 

mechanism is an important contribution and focus of this 

work. We compare protocol design, error reconciliation 

mechanism, implementation and performance of these three 

protocols. First two parts are discussed in this section, the rest 

are presented in section 4. We believe that DING12, BCNS15 

and Frodo LWE/RLWE key exchange protocols adopt 

similar error reconciliation mechanism to reconcile errors in 

order to agree on same key for both parties. 

3.1 DING12 RLWE key exchange 

3.1.1 Introduction 
In 2012, Ding et al. introduced LWE and RLWE-based key 

exchange protocols which are analogues of classic Diffie-

Hellman key exchange [5]. Both LWE and RLWE-based key 

exchange protocols in DING12 are quantum-resistant, 

practically efficient and provably secure. This work 

introduces an error reconciliation mechanism that can cancel 

out differences between approximately equal values. It 

generates a serial of uniformly distributed 0 and 1 bits called 

“signal”, which is a binary string that indicates which region 

does each coefficient of key exchange material belongs to. 

Signal is computed by one side and sent to the other party to 

reconcile errors. 

The motivation of using signal is that in order to agree on 

identical value over approximately equal values, one intuitive 

approach is to mod 2 on each coefficient of key exchange 

material for both parties simultaneously. However, due to 

difference between key exchange materials is even and 

representation of 𝑍𝑞 is {−
𝑞−1

2
, ⋯ ,

𝑞−1

2
} , mod 2 on both sides 

cannot generate same value for all cases (e.g., boundary of 

𝑍𝑞). This is where the importance of signal is highlighted. 

Signal value implies which region does 𝑘𝑗  belongs to, 

therefore the other party can decide whether adding 
𝑞−1

2
 to its 

own value or not in order to keep the difference to be even 

and agree on same key. In order to ensure correctness of key 

exchange with overwhelming probability, the difference 

between key exchange materials of two parties (i.e., error 

tolerance) is bounded. The approach to realize this is to 

control modulus 𝑞 carefully. 

Figure 1 illustrates DING12 RLWE key exchange 

protocol: 

 

Figure 1   DING12 RLWE key exchange protocol. 



 

 
 

3.1.2 Error reconciliation 
Here we recall error reconciliation mechanism: 

Signal Function. For prime 𝑞 > 2 , hint functions 

𝜎0(𝑥), 𝜎1(𝑥)  from 𝑍𝑞  to {0, 1}  are defined as: 𝜎0(𝑥) =

{
0, 𝑥 ∈ [− ⌊

𝑞

4
⌋ , ⌊

𝑞

4
⌋]

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
; 𝜎1(𝑥) = {

0, 𝑥 ∈ [− ⌊
𝑞

4
⌋ + 1, ⌊

𝑞

4
⌋ + 1]

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
. 

Signal function. Cha()  is defined as: For any 𝑦 ∈ 𝑍𝑞 , 

Cha(𝑦) = 𝜎𝑏(𝑦) , where 𝑏
$

← {0,1} . We denote the 

coefficient is in “inner region” if Cha(𝑦) = 0. Otherwise, 

coefficient lies in “outer region”. 

Robust Extractor. The robust extractor is defined as: 

Mod2(𝑥, 𝑤) = (𝑥 + 𝑤 ⋅
𝑞−1

2
 mod 𝑞)  mod 2. 

Mod2() is a robust extractor on 𝑍𝑞 with error tolerance 𝛿 

with respect to signal 𝑤 derived from function Cha(), if the 

following holds: 

Deterministic algorithm Mod2() takes input 𝑥 ∈ 𝑍𝑞  and 

signal 𝑤 ∈ {0,1}, outputs 𝑘 = Mod2(𝑥, 𝑤) ∈ {0,1}. 

Signal function Cha()  takes input 𝑦 ∈ 𝑍𝑞  and outputs 

signal 𝑤 ← Cha(𝑦) ∈ {0,1}. 

For any 𝑥, 𝑦 ∈ 𝑍𝑞  such that 𝑥 − 𝑦  is even and ||𝑥 −

𝑦|| ≤ 𝛿, then it holds that Mod2(𝑥, 𝑤) = Mod2(𝑦, 𝑤), where 

𝑤 ← Cha(𝑦). 

The robust extractor is designed to guarantee the 

correctness of key exchange. One party sends a signal to the 

other party and utilize the error reconciliation mechanism 

(i.e., robust extractor) to agree on an identical value. Both 

parties compute final shared key using this robust extractor. 

Lemma 1. Let 𝑞 > 8  be an odd integer, the function 

Mod2() defined above is a robust extractor with respect to 𝑆 

with error tolerance 𝛿 =
𝑞

4
− 2. 

Lemma 2. For any odd 𝑞 > 2, if 𝑥 is uniformly random 

in 𝑍𝑞, then Mod2(𝑥) is uniformly random conditioned on 𝑤, 

where 𝑤 ← Cha(𝑥). 

Lemma 3. If 8𝑛𝛽2 ≤
𝑞

4
− 2 , then 𝑠𝑘𝑖 = 𝑠𝑘𝑗  with 

overwhelming probability. 

For detailed proofs, please refer to [5]. 

The reason of introducing signal function Cha()  is to 

indicate which region (inner or outer) does coefficient of 𝑘𝑗 

belongs to. It serves as input for Mod2()  function. If 

Cha(𝑦) = 0, i.e., coefficient is in inner region, we can simply 

mod 2 simultaneously for both parties using Mod2()  with 

high confidence. Despite adding small error term might result 

in the value of 𝑘𝑖 /𝑘𝑗  jumping from inner region to outer 

region, this only happens with very low probability. The main 

problem lies on error reconciliation is the case where 

coefficient of 𝑘𝑖/𝑘𝑗  is in outer region, i.e., Cha(𝑦) = 1. In 

this case, we need to “pull” the coefficient from outer region 

to inner region by adding (𝑞 − 1)/2, then coefficients are in 

inner region therefore we can mod 2 simultaneously using 

Mod2() to agree on same key with overwhelming probability. 

We can take outer region as buffer area for 𝑘𝑖 − 𝑘𝑗 since as 

long as |𝑘𝑖 − 𝑘𝑗|  is smaller than half size of buffer area, 

reconciliation mechanism works and both parties can derive 

same key. Output size of signal function Cha() and Mod2() 

is 𝑛  bit, i.e., each coefficient of 𝑘𝑗  generates 1 bit 

reconciliation and key information. 

3.2 BCNS15 RLWE key exchange 

3.2.1 Introduction 
In 2015, Bos et al. instantiated PKT14 RLWE key exchange 

protocol [6] in [7]. BCNS15 gives parameter choice of 

PKT14 aiming at 128-bit security and proof-of-concept 

implementation. They also integrate it into TLS and 

constructs post-quantum TLS ciphersuite. Generally, 

BCNS15 (i.e., PKT14) and DING12 share same similar 

protocol structure, techniques and slightly different error 

reconciliation mechanism. 

Here we recall error reconciliation mechanism of 

BCNS15 (i.e., PKT14): 

Define cross-rounding function 〈·〉𝑞,2: 𝑍𝑞 → 𝑍2, 𝑥 ⟼

〈𝑥〉𝑞,2 = ⌊
4

𝑞
𝑥⌋  mod 2 , modular rounding function 

⌊·⌉𝑞,2: 𝑍𝑞 → 𝑍2, 𝑥 ⟼ ⌊𝑥⌉𝑞,2 = ⌊
2

𝑞
𝑥⌉  mod 2. When extended 

to elements of 𝑅𝑞  coefficient-wise: for 𝑓 ∈ 𝑅𝑞 , ⌊𝑓⌉𝑞,2 =

(⌊𝑓𝑛−1⌉𝑞,2, ⌊𝑓𝑛−2⌉𝑞,2, ⋯ , ⌊𝑓0⌉𝑞,2) , 〈𝑓〉𝑞,2 =

(〈𝑓𝑛−1〉𝑞,2, 〈𝑓𝑛−2〉𝑞,2, ⋯ , 〈𝑓0〉𝑞,2) . If modulus 𝑞  is odd, it 

requires working in 𝑍2𝑞 instead of 𝑍𝑞 to avoid bias in derived 

bits. Randomized doubling function dbl(): 𝑍𝑞 → 𝑍2𝑞 , 𝑥 ⟼

dbl(𝑥) = 2𝑥 − 𝑒 , where 𝑒  is sampled from {−1,0,1}  with 

probability 𝑝−1 = 𝑝1 =
1

4
, 𝑝0 =

1

2
. Reconciliation function 

rec() : 𝑍2𝑞 × 𝑍2 → 𝑍2  is defined by rec(𝑤, 𝑏) =

{
0, 𝑖𝑓 𝑤 ∈ 𝐼𝑏 + 𝐸 mod 2𝑞
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 where 𝐼0 = {0,1, ⋯ , ⌊
𝑞

2
⌋ − 1} 

and 𝐼1 = {− ⌊
𝑞

2
⌋ , ⋯ , −1} , 𝐸 = [−

𝑞

4
,

𝑞

4
) . For details and 

proofs, please refer to [6] and [7]. 
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Figure 2 illustrates BCNS15 key exchange protocol:  

Figure 2   BCNS15 (PKT14) RLWE key exchange protocol. 

 
 

It is clear to see that BCNS15 and DING12 RLWE key 

exchange share similar paradigm, except that DING12 adds 

2𝑒 when computing public key and 𝑘𝑗. Another difference is 

that in BCNS15, party 𝑖 does not add additional error term to 

2𝑝𝑗𝑠𝑖 . 

3.2.2 Error reconciliation and comparison 
Major difference between DING12 RLWE key exchange 

protocol and BCNS15 is error reconciliation mechanism. As 

recalled in section 3.1, signal function Cha() is used to derive 

bits that indicates which region 𝑘𝑗 lies in. Robust extractor 

reconciles small error for both parties and derives same 

shared key. We note that in the case of the signal function, 

we divide 𝑍𝑞  into two regions as 𝐸 and 𝐸𝑐  (complement of 

𝐸). Suppose 𝑞 is odd, then there is a bias in the output of the 

signal function, since there are more numbers in 𝐸 than 𝐸𝑐. 

However, this bias is removed by randomized signal 

functions, i.e., 𝜎0(𝑥)  and 𝜎1(𝑥)  in DING12. Same idea is 

also applied using dbl() function in BCNS15. 

Now we compare error reconciliation mechanism of 

DING12 and BCNS15. As defined above, cross rounding 

function 〈·〉  provides the functionality of signal function 

Cha()  as in DING12. As a result of applying the cross 

rounding function on each coordinate of vector 𝑘𝑗, we receive 

the bits corresponding to whether each value lies in 𝐼0 ∪ 𝐼0′ 
or 𝐼1 ∪ 𝐼1′ . Sets 𝐼0, 𝐼1, 𝐼0

′ , 𝐼1′  are defined as follows: 𝐼0 =

{0,1, … , ⌊
𝑞

4
⌉ − 1} ,  𝐼1 = {− ⌊

𝑞

4
⌋ − 1, … , −1}  and 𝐼0′ =

𝑞

2
+ 𝐼0 , 

𝐼1′ =
𝑞

2
+ 𝐼1. 

There are two cases to apply the rounding function 

depending on whether 𝑞  is odd or even. If 𝑞  is even, then 

there is no bias since the regions are divided equally. If 𝑞 is 

odd, this results in a bias in generated bits. To overcome this, 

they switch to operations in 2𝑞 using dbl() function and then 

moves back to 𝑞. This technique is similar as 𝜎0() and 𝜎1() 

in DING12. Error tolerance 𝛿 is 𝑞/4 since if ||𝑘𝑖 − 𝑘𝑗||∞ >

𝑞/4, key bit will jump to other regions, therefore final shared 

key does not agree. Lemma of [7] explain this claim. 

Figure 3 gives intuitive comparison of signal and 

reconciliation functions in DING12 and BCNS15: 

Figure 3   Comparison of Cha() in DING12, 〈·〉𝑞,2 and two cases of ⌊·⌉𝑞,2 in BCNS15. 

    
 

To sum up, dbl()  function is designed to avoid bias in 

generated keys, which is a variant of hint functions 

( 𝜎0(𝑥), 𝜎1(𝑥) ) in DING12. For generating signal, it is 

denoted as cross-rounding function 〈·〉𝑞,2 in BCNS15, which 

is a modified version of Cha()  in DING12. Figure 3 

demonstrates the difference between them. We can see that 

compared with DING12, reconciliation mechanism in 

BCNS15 divides 𝑍𝑞  into four regions instead of two in 

DING12, then rotate them. For generating keys, modular 
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rounding function ⌊·⌉𝑞,2 and rec() are variants of Mod2() in 

DING12. More precisely, DING12 extracts least significant 

bit (LSB) from each coefficient while BCNS15 extracts most 

significant bit (MSB). Output size of cross rounding function, 

reconciliation function and error tolerance are the same for 

these two works. 

3.3 Modifying error reconciliation in BCNS15 

towards LWE key exchange - Frodo 

Frodo LWE key exchange protocol was proposed by Bos et 

al. at CCS 2016 [9]. It adapts a slightly modified error 

reconciliation mechanism in BCNS15 to construct a LWE-

based key exchange protocol. They also implement Frodo 

key exchange with practical parameter choice and integrate 

into TLS as post-quantum ciphersuite like BCNS15. Since 

Frodo modifies error reconciliation in BCNS15 very slightly, 

we would like to analyse the difference. 

In Frodo, they stated that their error reconciliation 

mechanism is a generalized version compared with BCNS15. 

The major difference between Frodo and BCNS15 in terms 

of reconciliation is that Frodo extracts more bits from each 

coefficient of 𝑘𝑗 . Note that in DING12 and BCNS15, they 

both extract one bit from one coefficient. In Frodo, they 

extract 𝐵-bit from one coefficient. According to parameters 

suggested in Frodo (𝐵 = 4), they extract four bits from one 

coefficient of 𝑘𝑗. The motivation for extracting more bits is 

to reduce dimension of large matrix 𝑍𝑞
𝑚×𝑛 while preserving 

same 128-bit security. Matrix dimension, 𝐵  and security 

level is bounded by 𝑚 ⋅ 𝑛 ⋅ 𝐵 ≥ 256. Similar as BCNS15, 

cross rounding function 〈·〉2𝐵 is defined as උ2−�̅�+1𝑣⌋ mod 2, 

rounding function ⌊·⌉2𝐵 = උ2−�̅�𝑣ඇ mod 2𝐵 , where �̅� =

log2 𝑞 − 𝐵 . For any 𝑣 ∈ 𝑍𝑞  represented as [0, 𝑞) , ⌊·⌉2𝐵 

outputs 𝐵  most significant bits of ൫𝑣 + 2�̅�−1൯ mod 𝑞 . 

Correctness of Frodo is bounded by |𝑣 − 𝑤| < 2�̅�−2. 

Compared with BCNS15, Frodo’s reconciliation 

mechanism extracts 𝐵  most significant bits from one 

coefficient in order to reduce dimension of large matrix, 

compared with extracting most significant bit in BCNS15 and 

least significant bit in DING12. We believe Frodo’s error 

reconciliation mechanism shares similar idea as BCNS15 and 

DING12. 

4 DING12 instantiation and implementation 

4.1 Practical parameter choices 

To the best of our knowledge, there is no existing work had 

instantiated or implemented DING12 RLWE key exchange 

protocol efficiently. In original DING12 paper, they did not 

present parameter choice, implementation or choice of error 

distribution to sample error terms. In this section, we 

instantiate DING12 RLWE key exchange with two practical 

parameter choices: P30 and P14. 

For security estimation of our parameter choices, we use 

two approaches: (1) LWE estimator in [12] to estimate 

classical security; (2) [8] to estimate quantum security. LWE 

estimator gives a thorough security estimation for both LWE 

and RLWE-based cryptosystems. It evaluates security level 

of cryptosystems by computing attack complexity of 

exhaustive search, BKW, lattice reduction, decoding, 

reducing BDD to unique-SVP and meet-in-the-middle 

attacks. Given any parameters, LWE estimator outputs 

computation and space complexity of these attacks, therefore 

it gives a nice security estimation result for LWE and RLWE-

based cryptosystems. BCNS15 also takes this approach to 

estimate security of their parameter choice. For quantum 

security estimation, [8] presents an analysis on LWE and 

RLWE-based cryptosystems which covers primal and dual 

attack for solving underlying lattice problem on quantum 

computer. [8] claims that this estimation is pessimistic since 

they only consider core SVP hardness, therefore actual attack 

complexity and security level should be larger than result 

from estimation in [8]. 

4.1.1 128-bit classic and 80-bit quantum secure 

parameter choice - P30 
Recall parameter choice of BCNS15: 𝑅𝑞 = 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) 

with 𝑛 = 1024, discrete Gaussian sampling with standard 

deviation 𝜎 = 3.192  and modulus 𝑞 = 232 − 1 . Similarly, 

our parameter choice P30 for DING12 chooses 𝑛 = 1024, 

discrete Gaussian sampling 𝜎 = 3.192  and modulus 𝑞 =
1073479681 (approximately 30 bits). Our parameter choice 

is very close to BCNS15 which can be compared relative 

fairly. 

With estimation approaches for both classic and quantum 

security from LWE estimator and [8], parameter choice P30 

provides at least 128-bit classic security and 80-bit quantum 

security. 

4.1.2 256-bit classic and >200-bit quantum secure 

parameter choice - P14 
For parameter choice P14, we choose same 𝑛 = 1024, but 

utilize centred binomial distribution 𝛹𝑘 of parameter 𝑘 = 16 

for sampling and modulus 𝑞 = 12289. This choice is exact 

same as [8]. They claimed that choosing 𝛹𝑘  is to achieve 

better performance than sampling discrete Gaussian 

distribution and they proved that sample from 𝛹𝑘 as secret 

and error term will not affect security. 

We also apply same security level estimation approaches 

as P30 and results show that P14 provides least 256-bit 

classic security and 200-bit quantum security with wide 

margin. 

4.2 Implementations, benchmark and comparison 

In this section, we introduce our efficient portable DING12 

implementations for parameter choice P30 and P14. The goal 

of our portable implementation is to provide better 

compatibility, allowing more devices can take advantage of 

the security from post-quantum key exchange and its 

efficiency. We want to achieve high performance with good 

portability, namely, our implementation can run on most Intel 

and AMD processors even they were released several years 

ago. For parameter choice P30 and P14, we provide two 



different implementations. In this section, we introduce 

details of both implementations, benchmark of major 

computation operations and performance of overall key 

exchange. 

All implementations are tested on same server equipped 

with 3.4GHz Intel Xeon E5-2687W v2 processor (released in 

2012) and 64GB memory. This processor was released 4 

years ago with middle range single core performance and it 

does not support AVX2 instruction set. Server runs 64-bit 

Ubuntu 14.04. Implementations are compiled by g++ or gcc 

version 4.8.4 with ‘-O3 -march=native -m64’ flags and only 

run on single core without parallel computing techniques. 

Implementation of BCNS15 we use is the same code as they 

suggested in the paper. 

4.2.1 DING12-P30 
Our efficient portable C++ DING12 implementation for P30 

parameter choice is implemented using NFLlib library [13]. 

NFLlib is a very fast NTT-based C++ library dedicated to 

ideal lattice cryptography. It includes highly optimized 

algorithms and programming optimizations to achieve very 

high performance. NTT, inverse NTT and discrete Gaussian 

sampling are very efficient. NFLlib also takes advantage of 

SSE instruction sets to improve efficiency of NTT and 

inverse NTT. We make full use of bitwise operations to 

optimize our implementation, especially in error 

reconciliation. We safely set the statistical distance from 

sampled distribution to discrete Gaussian distribution to be 

2−128 to preserve high statistical quality and security. More 

details are discussed in section 5. Note that for error 

reconciliation, our implementation does not utilize NFLlib 

library or assemble-level optimizations, but only plain C++ 

operations to reconcile errors. BCNS15 also does not use 

additional library when implementing error reconciliation. 

Since error reconciliation mechanism of DING12 is simpler 

than BCNS15, we expect it will have better performance. 

For BCNS15 portable C implementation, they implement 

key exchange protocol and integrate into TLS as post-

quantum ciphersuite. They use the approach from 

Nussbaumer-based on recursive negacyclic convolutions to 

implement FFT and inverse FFT. Sampling part adopts 

OpenSSL’s RAND_bytes function to generate 256-bit seed 

and use AES-CTR as PRNG function to obtain 

approximately 24 KiB of data. This implementation is 

portable since it does not use dedicated instruction sets for 

specified CPUs. 

BCNS15 provides constant time and non-constant time 

version implementations. Since NFLlib does not provide 

constant time implementation, therefore we compare our 

implementation with BCNS15 non-constant time 

implementation. Detailed benchmark of DING12-P30 and 

BCNS15 is reported in table 1: 

Table 1   Benchmark of DING12-P30 and BCNS15 

implementation 

 DING12-P30 

(ms) 

BCNS15 

(ms) 

Sampling 0.007 0.134 

Polynomial 

multiplication 
0.023 0.207 

Signal computation 

(Cha()/〈·〉) 
0.004 0.008 

Pre-shared key 

generation 

(Mod2()/⌊⋅⌉) 
0.003 0.003 

Public key 

generation 
0.038 0.492 

Complete  

key exchange 

execution - party 𝑖 
0.0706 0.708 

Complete 

key exchange 

execution - party 𝑗 

0.0707 0.847 

 

Compared with DING12-P30 implementation, BCNS15 is 

19.14x, 9x and 12.95x slower on sampling, polynomial 

multiplication and key generation respectively. Highly 

efficient discrete Gaussian sampling, NTT and inverse NTT 

implementation in NFLlib contribute to efficiency of our 

implementation. NFLlib also utilizes SSE instruction sets to 

optimize NTT and inverse NTT computation while BCNS15 

does not, therefore NFLlib-based implementation is more 

efficient. We believe that if these two protocols are 

implemented with same library, performance should be 

relative close since these two protocols share very similar 

structure, error reconciliation mechanism and parameter 

choices. 

For error reconciliation (signal and pre-shared key 

generation), BCNS15 is 1.57x slower. For overall key 

exchange execution, BCNS15 is 10.03x and 11.98x slower 

than DING12-P30 for party 𝑖 and 𝑗 respectively. 

4.2.2 DING12-P14 
Our efficient portable implementation of P14 is a modified 

version of LatticeCrypto library [15] and it is different from 

P30 implementation. LatticeCrypto provides a faster C 

implementation of NewHope RLWE key exchange with no 

improvements on key exchange protocol itself. LatticeCrypto 

implementation protects against timing and cache-timing 

attacks through regular, constant-time implementation of all 

operations on secret key material. We work on portable C 

implementation rather than AVX2-optimized version for 

better compatibility. We fork LatticeCrypto library and take 

advantage major parts of the code, including sampling and 

polynomial computations. We replace error reconciliation 

mechanism, message encoding/decoding and other slight 

differences between DING12 and NewHope carefully to 

adapt to DING12 design. 

Detailed benchmark of DING12-P14 and LatticeCrypto 

is reported in Table 2: 



 

Table 2   Benchmark of DING12-P14 and LatticeCrypto 

implementation 
 

DING12-P14 

(ms) 

LatticeCrypto 

(ms) 

Sampling 0.024 0.024 

NTT 0.009 0.009 

Inverse NTT 0.010 0.010 

Signal computation 

(Cha()/HelpRec()) 
0.002 0.010 

Pre-shared 

key generation 

(Mod2()/Rec()) 

0.003 0.004 

Public key 

generation 
0.092 0.092 

Complete 

key exchange 

execution - party 𝑖 
0.139 0.113 

Complete 

key exchange 

execution - party 𝑗 

0.142 0.149 

 

For signal computation and pre-shared key generation (i.e., 

error reconciliation), DING12-P14 is 2.8x faster than 

LatticeCrypto. Efficient reconciliation algorithm and 

implementation contribute to this result. For overall key 

exchange execution, performance of DING12-P14 for party 

𝑖  is 1.23x slower than LatticeCrypto since DING12 adds 

additional error term 2𝑒𝑖
′ to 𝑝𝑗𝑠𝑖  while NewHope does not. 

Performance of DING12-P14 for party 𝑗 is 1.05x faster than 

LatticeCrypto since error reconciliation is more efficient. 

One more difference between DING12 and NewHope is that 

NewHope uses SHAKE128 XOF to generate different public 

parameter 𝑎  while DING12 does not. This computation is 

very fast therefore we ignore this minor difference. 

Compared with BCNS15 implementation, total execution 

timing for party 𝑖  and 𝑗  are 3.58x and 4.29x faster 

respectively. Since parameter choices in P30 and P14 are 

very different and cannot be compared directly, this result is 

provided for completeness and reference purposes. 

5 Discussion 

There are a few similarities and differences between these 

protocols that we would like to summarize: 

(1) Error reconciliation. We have explained this part in 

section 3. The fundamental idea of error reconciliation is: 

first generate signal value, which indicates which region does 

each coefficient of 𝑘𝑗  belongs to, then reconcile the errors 

with another function which returns uniformly distributed 

binary stream as key. Fundamental idea of using signal 

function and reconciliation using mod operation are the same 

for DING12, BCNS15 and Frodo. BCNS15 (i.e., PKT14) 

cuts 𝑍𝑞 region differently as DING12 and turn it around with 

different angles. They also extract most significant bit while 

DING12 extracts least significant bit. We show that they are 

very similar in essence and share same error tolerance. We 

remark that one may also derive other variants of error 

reconciliation with different approaches to divide 𝑍𝑞  or 

adding multiple times of error term 𝑒 on 𝑎 ⋅ 𝑠 (𝑎 ⋅ 𝑠 + 2𝑒 in 

DING12) or extract bits with different approaches. These 

approaches share same idea generally since they use signal to 

assist error reconciliation. We also practically show that 

performance of DING12 reconciliation is simpler and 1.57x 

faster than BCNS15. 

 (2) Error sampling. DING12-P30 and BCNS15 use 

discrete Gaussian sampling with 𝜎 = 3.192 to sample error 

terms. DING12-P30 implementation uses NFLlib, which 

adopts precomputed Cumulative Distribution Table (CDT) 

sampler to sample from discrete Gaussian distribution. For 

fixed centre sampling over 𝑍𝑛, it is the fastest alternative with 

reasonable memory usage (typically <100KB). We set 

statistical distance from sampled distribution to discrete 

Gaussian distribution to be 2−128 . BCNS15 also samples 

from discrete Gaussian distribution with a sampler they 

suggested using same standard deviation 𝜎 = 3.192 . 

DING12-P14 implementation samples from centred binomial 

distribution 𝜓𝑘  of parameter 𝑘 = 16, which has very close 

statistical distance to discrete Gaussian distribution with 

standard deviation 𝜎 = √16/2 ≈ 2.828  according to 

security analysis in [8]. According to [8], this consideration 

is mainly for faster performance while maintaining similar 

security level. 

 (3) Polynomial multiplication. For DING12-P30, We use 

NFLlib that adopts NTT with SSE optimized implementation. 

Performance of DING12-P30 on NTT and inverse NTT 

credits to highly efficient NFLlib library with SSE 

optimizations while BCNS15 gives plain C implementation. 

This benefits efficiency of DING12-P30 significantly. 

DING12-P14 and LatticeCrypto also use NTT. In BCNS15, 

they choose Nussbaumer FFT. 

(4) Overall performance. We remark that high efficiency 

of our P30 implementation come from efficient NFLlib 

library, which optimizes error sampling and polynomial 

multiplication. For P14 implementation, LatticeCrypto 

implements optimized-NTT for efficient polynomial 

multiplication. However, implementation of error sampling 

in LatticeCrypto library is not as efficient as NFLlib, 

therefore overall performance of P14 parameter choice is less 

efficient then P30. We also note that since DING12 error 

reconciliation is 1.57x faster than BCNS15 and this part is 

implemented using plain C language, this highlights error 

reconciliation mechanism of DING12. 

We present comprehensive comparison chart of DING12-

P30, BCNS15 and DING12-P14 in Table 3: 

 



Table 3   Comparison result of DING12-P30, BCNS15 and DING12-P14. 

 DING12-P30 DING12-P14 BCNS15 

Party 𝑖 timing (ms) 0.0706 0.139 0.708 

Party 𝑗 timing (ms) 0.0707 0.142 0.847 

Party 𝑖 to 𝑗 

message size (KB) 
3.75 1.75 4 

Party 𝑗 to 𝑖 
message size (KB) 

3.875 1.875 4.125 

Signal size (KB) 0.125 0.125 0.125 

Error tolerance 𝑞/4 𝑞/4 𝑞/4 

𝑛 1024 1024 1024 

Error 

distribution 

Discrete Gaussian 

𝜎 = 3.192 

Centred Binomial 

𝑘 = 16 

Discrete Gaussian 

𝜎 = 3.192 

Modulus size (bit) 30 14 32 

Sampling operations Party 𝑖: 2. Party 𝑗: 3 Party 𝑖: 2. Party 𝑗: 3 

FFT/NTT Party 𝑖: 2. Party 𝑗: 2 Party 𝑖: 2. Party 𝑗: 2 

Inverse FFT/NTT Party 𝑖: 1. Party 𝑗: 1 Party 𝑖: 1. Party 𝑗: 1 

Signal computation 

operations 

(Each coefficient) 

1 random hint function selection 

(𝜎0() or 𝜎1()) 

1 if condition 

(decide value in inner or outer region) 

1 subtraction 

2 multiplication 

1 division 

1 rounding 

1 mod operation 

Error reconciliation 

computation 

operations 

(Each coefficient) 

1 addition 

2 mod operation 

1 random region selection 

(𝐼0 + 𝐸 or 𝐼1 + 𝐸) 

1 if condition 

(decide value in region 𝐼0 +
𝐸 or 𝐼1 + 𝐸) 

2 mod operation 

Security level 
128-bit classic 

>80-bit quantum 

>256-bit classic 

>200-bit quantum 

128-bit classic 

<80-bit quantum 

 

Table 3 shows that DING12-P30 has smaller communication 

cost compared with BCNS15 since they choose 32-bit 

modulus (𝑞 = 232 − 1). Size of signal value is exact same 

1024 bits. DING12-P14 has more than half of message sizes 

compared with P30 and BCNS15 due to choosing 14-bit 

modulus. 

We also would like to give a brief comment on NewHope 

RLWE key exchange [8]. NewHope improves BCNS15 with 

following major contributions: (1) an improved error 

reconciliation mechanism; (2) Randomly generated public 

parameter 𝑎 ; (3) Security analysis; (4) Efficient 

implementation. Structure of protocol design and the idea of 

using signal and reconciliation remain the same. For 

reconciliation mechanism in NewHope, they adopt a more 

geometric idea, which divides 4-dimensional space into 

various parts and point coefficient vectors to different regions 

to generate signal and final key bits. They use four 

coefficients in key exchange material to extract one key bit. 

This is mainly for higher error tolerance. They use error 

correction codes on 𝐷4̃  lattice to achieve this. It is a 

geometric approach since signal vector in NewHope is 

computed as the difference between four coefficients of 𝑘𝑗 

and nearest center of Voronoi cell. For reconciliation, key bit 

is derived by adding signal vector to 𝑘𝑖/𝑘𝑗 and the sum points 

to nearest centre of Voronoi cell to decide 0 or 1 key bit is 

generated. Note that four coefficients generates 8-bit signal. 

Since they extract 1 bit from four coefficients, this allows 

higher tolerance than DING12 and BCNS15, which both of 

them extract 1 bit from one coefficient. NewHope directly 

generates 256-bit key, while DING12 and BCNS15 generate 

1024-bit key. 

6 Conclusion 

With all detailed analysis, comparison, efficient 

implementations and benchmark we presented, we conclude 

that DING12 and BCNS15 are truly practical RLWE-based 

key exchange protocols. Error reconciliation is an important 

technique in RLWE-based constructions. Applications like 



 

encryption, key exchange etc. require efficient, compact and 

high error tolerance reconciliation mechanism. How to 

reconcile errors using signal in DING12 and BCNS15 RLWE 

key exchange is explained. We analyse similarity and 

differences of these RLWE-based key exchange protocols 

very carefully, especially error reconciliation part. Our work 

is also the first to instantiate DING12 RLWE key exchange 

with 128-bit classic (80-bit quantum) and 256-bit classic 

(>200-bit quantum) secure parameter choices. Benchmarks 

show that our efficient implementations of P30 and P14 are 

truly efficient with 11x and 3.94x speed improvement over 

BCNS15, error reconciliation is 1.57x faster than BCNS15. 

RLWE-based cryptosystems are extremely efficient and have 

robust security, which can be applied in various applications 

(e.g., [16]-[24]) as post-quantum alternatives. 
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