
Comparison analysis and efficient implementation of
reconciliation-based RLWE key exchange protocol

Xinwei Gao

Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,

Beijing Jiaotong University,

No.3 ShangYuanCun, HaiDian District, Beijing, 100044, P.R.China

Email: xinweigao@bjtu.edu.cn

Jintai Ding*, Saraswathy RV

Department of Mathematical Sciences, University of Cincinnati,

French Hall, West, 2815 Commons Way, Cincinnati, Ohio, 45219, United States

Email: jintai.ding@gmail.com

Email: rvsaras86@gmail.com

*Corresponding author

Lin Li, Jiqiang Liu

Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,

Beijing Jiaotong University,

No.3 ShangYuanCun, HaiDian District, Beijing, 100044, P.R.China

Email: lilin@bjtu.edu.cn

Email: jqliu@bjtu.edu.cn

Abstract: Error reconciliation is an important technique for Learning With Error (LWE) and Ring-

LWE (RLWE)-based constructions. In this paper, we present a comparison analysis on two error

reconciliation-based RLWE key exchange protocols: Ding et al. in 2012 (DING12) and Bos et al.

in 2015 (BCNS15). We take them as examples to explain core idea of error reconciliation, building

key exchange over RLWE problem, implementation, real-world performance and compare them

comprehensively. We also analyse a LWE key exchange “Frodo” that uses an improved error

reconciliation mechanism in BCNS15. To the best of our knowledge, our work is the first to pre-

sent at least 128-bit classic (80-bit quantum) and 256-bit classic (>200-bit quantum) secure

parameter choices for DING12 with efficient portable C/C++ implementations. Benchmark shows

that our efficient implementation is 11x faster than BCNS15 and one key exchange execution only

costs 0.07ms on a 4-year-old middle range CPU. Error reconciliation is 1.57x faster than BCNS15.

Keywords: RLWE, Post Quantum, Key Exchange, Implementation, Analysis

Biographical notes: Xinwei Gao received B.S degree from Beijing Jiaotong University in 2014.

He is a Ph.D. student at Beijing Key Laboratory of Security and Privacy in Intelligent

Transportation at Beijing Jiaotong University. He is currently a visiting student at University of

Cincinnati with sponsorship from China Scholarship Council. His research interest include post-

quantum cryptography and RLWE-based key exchange.

Jintai Ding received Ph.D. degree in Yale in 1995. He is currently a professor of Mathematics at

the University of Cincinnati. He was Humboldt fellow and visiting professor at TU Darmstadt in

2006-2007. He received the Zhong Jia Qing Prize from the Chinese math society in 1990. His

research interest lies in post-quantum cryptography (PQC). He was a co-chair of the second

international workshop on PQC. He and his colleagues invented LWE and RLWE-based key

exchange protocols, Rainbow signature, “GUI” HFEV- signature and Simple Matrix encryption.

Saraswathy RV received bachelor degree in mathematics from University of Madras, India in 2006.

She worked as a software quality assurance engineer in information technology industry for a few

years till 2011 and is now a Ph.D. candidate in mathematics at University of Cincinnati. Her current

research interests include lattice based cryptography, Learning with Errors and key exchange using

RLWE.

Lin Li received Ph.D. degree from Shandong University in 2007. She is currently an assistant

professor at Beijing Key Laboratory of Security and Privacy in Intelligent Transportation at Beijing

Jiaotong University. Her current research interests include cryptography and privacy preserving.

Jiqiang Liu received B.S. and Ph.D. degree from Beijing Normal University in 1994 and 1999

respectively. He is currently a professor at the Beijing Key Laboratory of Security and Privacy in

Intelligent Transportation at Beijing Jiaotong University. He is also the vice dean of graduation

school of Beijing Jiaotong University. His research interests include security protocols, trusted

computing and privacy preserving.

1 Introduction

The groundbreaking Diffie-Hellman key exchange protocol

was proposed in “New Direction in Cryptography” in 1976

[1]. It has been over 40 years since Diffie-Hellman key

exchange was proposed. We have seen numerous similar

cryptosystems and real world deployments. Most current

public key cryptosystems are constructed from classical hard

mathematical problems in number theory (e.g., integer

factorization problem, discrete logarithm problem or elliptic

curve variant etc.). They are hard to break with securely

chosen parameter and implementation on classical computers.

However, with the advent of large quantum computers, such

public key algorithms are vulnerable and can be broken

practically. Efficient quantum algorithms (e.g., Shor’s

algorithm [2]) can solve these hard problems and therefore

break most current public key cryptosystems. Experiments

had shown great undiscovered potential of quantum

computers. Therefore, it is imperative to focus on designing

novel cryptography constructions for coming quantum world.

Post-quantum cryptography has become one of the

forefront research topics during the past years. These

cryptosystems are thought to be secure against classic and

quantum computers. There are several approaches to realize

post-quantum cryptosystems, including: lattice-based,

multivariate-based, hash-based, code-based etc. Various

extremely versatile and efficient constructions had come to

horizon in recent years, including: encryption, signature, key

exchange, identity-based encryption, fully homomorphic

encryption, multi-linear maps etc. In 2015, National Security

Agency announced their plan to switch to quantum-resistant

cryptography primitives in near future. At PQCrypto 2016

conference, National Institute of Standards and Technology

(NIST) announced formal call for quantum-resistant

cryptographic algorithms for future and their plans for post-

quantum cryptography standards. It is estimated that draft of

post-quantum cryptography standards will be ready within 10

years after the submission.

1.1 LWE & RLWE key exchange

Regev introduced Learning With Errors (LWE) problem in

2005 [3]. It is an average-case problem with strong security

guarantee and high efficiency when parameters are properly

chosen. Lyubashevsky et al. introduced its ring variant, Ring

Learning With Errors (RLWE) in 2010 [4]. Hardness of LWE

and RLWE can be reduced to solving hard problems in

regular lattice and ideal lattice respectively. Since no classic

or quantum algorithms can solve lattice problems and their

versatility, LWE and RLWE are considered as important

building blocks for post-quantum cryptography. Several

proof-of-concept implementations of real world application

that adopt LWE/RLWE-based cryptography algorithms have

been proposed, including post-quantum TLS, VPN etc.

An important line of post-quantum cryptography is post-

quantum key exchange. Key exchange is crucial for real

world applications since data that transferred between parties

is encrypted using symmetric encryption algorithms (e.g.,

AES), not public key encryption algorithms since they are too

costly. Encryption key for symmetric encryption algorithms

is derived from key exchange, therefore secure and efficient

key exchange protocol is very important. Key exchange

protocols based on RLWE problem are considered to be most

secure and efficient among all approaches to achieve post-

quantum key exchange. In the case of RLWE, the biggest

problem for key exchange is how to agree on an identical

value (or session key) since shared key computation value

perturbed by small error terms.

First Diffie-Hellman like LWE and RLWE-based key

exchange protocols were introduced in 2012. We have seen

various works that take advantage of LWE or RLWE to

design and implement post-quantum key exchange protocols.

These constructions cover unauthenticated and authenticated

key exchange, Diffie-Hellman-like and HMQV-like, explicit

and implicit authenticated etc.

1.2 Related works

Ding et al. presented first LWE and RLWE-based key

exchange protocols in 2012 [5] (denoted as DING12). This

work gives analogues of classical Diffie-Hellman key

exchange over LWE and RLWE. Main contribution of this

work is giving the first LWE and RLWE key exchange

constructions with a novel error reconciliation mechanism.

This reconciliation mechanism utilizes a “signal” value to

assist error reconciliation over approximately equal values

and extracts uniformly random bits in order to generate same

session key both parties. It also enjoys high error tolerance

and efficiency. No parameter choice or implementation is

provided in this work.

There are a few variants that share similar general

structure and the idea of error reconciliation using signal

value: A RLWE exchange protocol was given by Peikert in

2014 [6] (denoted as PKT14). This work gives a slightly

modified error reconciliation mechanism over DING12.

PKT14 is instantiated by Bos et al. at IEEE S&P 2015 in [7]

with 128-bit secure parameters and implementation (denoted

as BCNS15). BCNS15 also integrates their implementation

into OpenSSL as post-quantum TLS ciphersuite. A highly

optimized version of BCNS15 was proposed by Alkim et al.

at USENIX 2016 [8] (denoted as NewHope). This work

improves BCNS15 by adopting alternative error

reconciliation mechanism, more compact parameter choices,

efficient implementation and other improvements. They

claim that their portable and AVX2-optimized

implementation achieve 9x and 24x performance boost over

BCNS15 respectively.

A LWE-based key exchange protocol “Frodo” was

proposed by Bos et al. in 2016 [9]. This work modifies error

reconciliation in BCNS15 to extract more bits from each

coefficient in order to choose smaller parameters and reduce

communication cost. Performance of this work is 8x slower

than NewHope and communication cost is 4.7x larger.

For authenticated key exchange (AKE) protocol, a

RLWE-based protocol which is a RLWE analogue of HMQV

was proposed by Zhang et al. in 2015 [10]. Two provably

secure password-based authenticated key exchange (PAKE)

protocols that are RLWE analogues of PAK and PPK were

given in 2017 [11]. These two works use same error

reconciliation mechanism as DING12.

1.3 Contribution

In this paper, we first present a comprehensive comparison

analysis on two error reconciliation-based RLWE key

exchange protocols: DING12 and BCNS15. Our analysis and

comparison efforts are focusing on protocol design and error

reconciliation mechanism. Error reconciliation mechanism is

the major difference between these two protocols. In addition,

error reconciliation of Frodo LWE key exchange is also

analysed and compared since it uses a modified error

reconciliation in BCNS15. Principle and realization of error

reconciliation in these key exchange protocols are well

explained and compared. We conclude that they share similar

protocol structure and error reconciliation mechanism.

Second, we instantiate DING12 with two parameter

choices. To the best of our knowledge, our work is the first

to instantiate and implement this protocol with two practical

and common parameter choices efficiently. Both parameter

choices choose same degree 𝑛 = 1024 for ring 𝑅𝑞 . First

parameter choice P30 is 128-bit classic (80-bit quantum)

secure and adopts a 30-bit prime which is smaller than

BCNS15 (32-bit modulus) and discrete Gaussian distribution

for sampling with same standard deviation 𝜎 = 3.192 as

BCNS15. Second parameter choice P14 is 256-bit classical

(>200-bit quantum) secure which adopts same 14-bit prime

𝑞 = 12289 and centered binomial distribution for sampling

with parameter 𝑘 = 16 as [8]. Efficient portable C/C++

implementations of P30 and P14 are also provided. For

complete key exchange execution, implementation of P30

and P14 is 11x and 3.94x faster than BCNS15 respectively,

error reconciliation part is 1.57x faster. Our results show that

DING12 can be instantiated with compact parameters and

implemented truly efficiently. We also present comparison

and discussion between our implementations and BCNS15.

We believe that RLWE-based key exchange protocols

and our implementations are truly practical toward real-world

applications for the upcoming post-quantum world.

1.4 Organization

In section 2, we recall background knowledge on LWE and

RLWE. In sections 3, we present detailed analysis and

comparisons between DING12, BCNS15 and Frodo. We

discuss and compare overall protocol structure and error

reconciliation mechanism of these protocols. Principle and

differences between DING12, BCNS15 and Frodo on error

reconciliation are well explained. In section 4, we introduce

two parameter choices for DING12 RLWE key exchange -

P30 and P14. Efficient implementations, classic and quantum

security level analysis, performance measurements of

standalone operations and overall protocol execution,

communication cost. Discussions are given in section 5. We

conclude the paper in section 6.

2 LWE & RLWE

LWE problem was introduced by Oded Regev in 2005 [3]. It

is an average-case problem and the security of LWE can be

reduced to solving worst-case hard lattice problems.

Currently there are no publicly known algorithms can solve

LWE or underlying lattice problems. LWE distribution 𝐴𝑠,𝜒

over 𝑍𝑞
𝑛 × 𝑍𝑞 is generated by uniformly random sampled 𝑎 ∈

𝑍𝑞
𝑛, small secret vector 𝑠 ∈ 𝑍𝑞

𝑛 and error vector 𝑒 ∈ 𝑍𝑞
𝑛 . 𝑒 is

sampled from some distribution 𝜒 (common choice is

discrete Gaussian distribution), outputs (𝑎, 𝑏 = 𝑎 ⋅ 𝑠 +
𝑒 mod 𝑞). There are two versions of LWE problem: search

and decision. Search-LWE problem is to recover fixed secret

term 𝑠 given various LWE samples and decision-LWE

problem is to distinguish LWE samples from uniform

randomly generated ones. Properly chosen parameters,

perturbation from secret error term and indistinguishable

from uniform random keep LWE problem very hard to solve.

Lyubashevsky et al. introduced RLWE (Ring-LWE)

problem in 2010 [4]. It is the ring analogue of LWE. RLWE

problem is much more efficient than LWE and its hardness

can be reduced to solving hard problems in ideal lattices,

which is also very hard to solve on classical and quantum

computers currently when secure parameters are chosen

properly. Define ring 𝑅 = 𝑍[𝑥]/𝑓(𝑥), where 𝑓(𝑥) = 𝑥𝑛 + 1

with 𝑛 be a power of 2. Modulus 𝑞 defines quotient ring

𝑅𝑞 = 𝑅/𝑞𝑅. Let ring 𝑅 be cyclotomic ring and 𝜒 be discrete

Gaussian distribution. Define ‖𝑎‖∞ = max {|𝑎𝑖|}, which is

the 𝑙∞ norm of 𝑎. RLWE distribution 𝐴𝑠,𝜒 over 𝑅𝑞 × 𝑅𝑞 is

sampled by uniformly random chosen vector 𝑎 ∈ 𝑅𝑞 , small

secret vector 𝑠 ∈ 𝑅𝑞 , error term 𝑒 ∈ 𝑅𝑞 is sampled from

discrete Gaussian distribution, outputs (𝑎, 𝑏 = 𝑎 ⋅ 𝑠 +
𝑒 mod 𝑞). RLWE also has search and decision version as

LWE and we omit details here. If one can solve decision

version of RLWE problem, then he can also solve search

version of RLWE problem and underlying hard lattice

problems.

For security of LWE and RLWE problems, they can both

be reduced to hard problems in lattice, which are very hard to

solve with properly instantiated instances. LWE and RLWE

problems can be reduced to lattice problems including:

Shortest Vector Problem (SVP), Closest Vector Problem

(CVP), Bounded Distance Decoding (BDD) etc. These

problems are hard for both classical and quantum computers,

which serve as solid foundation for post-quantum

cryptography. Moreover, RLWE-based constructions are

extremely efficient while key size is larger than current

public key cryptosystems.

Compared with RLWE-based constructions, LWE-based

ones are considered to have much larger key size (at least

quadratic) and slower computation due to structure of LWE

(large matrix). It is believed that RLWE shares same security

level with LWE since no attack takes advantage of ring

structure. LWE and RLWE are extremely versatile for

cryptographic constructions. They served as fundamental

building blocks for modern lattice-based constructions,

including encryption, digital signature, key exchange,

homomorphic encryption, attribute-based encryption etc.

3 Analysis of reconciliation-based RLWE key

exchange

There are two major approaches to realize RLWE-based key

exchange: one is error reconciliation-based, the other is key

encapsulation mechanism (KEM)-based. In [6], they claimed

that an important advantage of reconciliation-based protocols

is reduced bandwidth with nearly halve the ciphertext size,

therefore they are more attractive. Additional advantage of

error reconciliation-based Diffie-Hellman like protocols is

forward security. Encryption-based approaches to achieve

key exchange are more “static” like RSA key exchange. Once

long-term private key is revealed, attacker can decrypt and

recover all past messages. Latest draft of TLS 1.3 has

removed support of RSA due to this reason.

The reason why we need error reconciliation mechanism

is the construction of key exchange over LWE/RLWE

problem. Generally we have the following construction: both

parties generate public key 𝑝𝑘 = 𝑎 ⋅ 𝑠 + 𝑒, then compute key

exchange material 𝑘′ = 𝑝𝑘 ⋅ 𝑠′ + 𝑒1 = 𝑎𝑠𝑠′ + 𝑒𝑠′ + 𝑒1 .

Note that 𝑠, 𝑠′, 𝑒, 𝑒′, 𝑒1 are error terms that sampled from

some distribution. For party 𝑖 and 𝑗 , 𝑘𝑖 cannot rigorously

equal to 𝑘𝑗 since if we expand 𝑘𝑖 and 𝑘𝑗, we can see that 𝑘𝑖 −

𝑘𝑗 = 𝑒𝑠′ + 𝑒1 − 𝑒′𝑠 − 𝑒2. The difference between 𝑘𝑖 and 𝑘𝑗

is small therefore they are approximately equal, unlike

(𝑔𝑎)𝑏 mod 𝑝 = (𝑔𝑏)𝑎 mod 𝑝 in Diffie-Hellman key

exchange. Therefore there has to be some mechanism to

reconcile the errors in order to agree on same key.

In this section, we recall and compare error reconciliation

techniques in literatures. Our major focus is on two major

reconciliation-based RLWE key exchange protocols: RLWE

version of DING12 and BCNS15. A LWE-based key

exchange called Frodo is also analysed since it uses a slightly

modified error reconciliation in BCNS15 to realize LWE key

exchange. Comprehensive analysis on error reconciliation

mechanism is an important contribution and focus of this

work. We compare protocol design, error reconciliation

mechanism, implementation and performance of these three

protocols. First two parts are discussed in this section, the rest

are presented in section 4. We believe that DING12, BCNS15

and Frodo LWE/RLWE key exchange protocols adopt

similar error reconciliation mechanism to reconcile errors in

order to agree on same key for both parties.

3.1 DING12 RLWE key exchange

3.1.1 Introduction
In 2012, Ding et al. introduced LWE and RLWE-based key

exchange protocols which are analogues of classic Diffie-

Hellman key exchange [5]. Both LWE and RLWE-based key

exchange protocols in DING12 are quantum-resistant,

practically efficient and provably secure. This work

introduces an error reconciliation mechanism that can cancel

out differences between approximately equal values. It

generates a serial of uniformly distributed 0 and 1 bits called

“signal”, which is a binary string that indicates which region

does each coefficient of key exchange material belongs to.

Signal is computed by one side and sent to the other party to

reconcile errors.

The motivation of using signal is that in order to agree on

identical value over approximately equal values, one intuitive

approach is to mod 2 on each coefficient of key exchange

material for both parties simultaneously. However, due to

difference between key exchange materials is even and

representation of 𝑍𝑞 is {−
𝑞−1

2
, ⋯ ,

𝑞−1

2
} , mod 2 on both sides

cannot generate same value for all cases (e.g., boundary of

𝑍𝑞). This is where the importance of signal is highlighted.

Signal value implies which region does 𝑘𝑗 belongs to,

therefore the other party can decide whether adding
𝑞−1

2
 to its

own value or not in order to keep the difference to be even

and agree on same key. In order to ensure correctness of key

exchange with overwhelming probability, the difference

between key exchange materials of two parties (i.e., error

tolerance) is bounded. The approach to realize this is to

control modulus 𝑞 carefully.

Figure 1 illustrates DING12 RLWE key exchange

protocol:

Figure 1 DING12 RLWE key exchange protocol.

3.1.2 Error reconciliation
Here we recall error reconciliation mechanism:

Signal Function. For prime 𝑞 > 2 , hint functions

𝜎0(𝑥), 𝜎1(𝑥) from 𝑍𝑞 to {0, 1} are defined as: 𝜎0(𝑥) =

{
0, 𝑥 ∈ [− ⌊

𝑞

4
⌋ , ⌊

𝑞

4
⌋]

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 𝜎1(𝑥) = {

0, 𝑥 ∈ [− ⌊
𝑞

4
⌋ + 1, ⌊

𝑞

4
⌋ + 1]

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

Signal function. Cha() is defined as: For any 𝑦 ∈ 𝑍𝑞 ,

Cha(𝑦) = 𝜎𝑏(𝑦) , where 𝑏
$

← {0,1} . We denote the

coefficient is in “inner region” if Cha(𝑦) = 0. Otherwise,

coefficient lies in “outer region”.

Robust Extractor. The robust extractor is defined as:

Mod2(𝑥, 𝑤) = (𝑥 + 𝑤 ⋅
𝑞−1

2
 mod 𝑞) mod 2.

Mod2() is a robust extractor on 𝑍𝑞 with error tolerance 𝛿

with respect to signal 𝑤 derived from function Cha(), if the

following holds:

Deterministic algorithm Mod2() takes input 𝑥 ∈ 𝑍𝑞 and

signal 𝑤 ∈ {0,1}, outputs 𝑘 = Mod2(𝑥, 𝑤) ∈ {0,1}.

Signal function Cha() takes input 𝑦 ∈ 𝑍𝑞 and outputs

signal 𝑤 ← Cha(𝑦) ∈ {0,1}.

For any 𝑥, 𝑦 ∈ 𝑍𝑞 such that 𝑥 − 𝑦 is even and ||𝑥 −

𝑦|| ≤ 𝛿, then it holds that Mod2(𝑥, 𝑤) = Mod2(𝑦, 𝑤), where

𝑤 ← Cha(𝑦).

The robust extractor is designed to guarantee the

correctness of key exchange. One party sends a signal to the

other party and utilize the error reconciliation mechanism

(i.e., robust extractor) to agree on an identical value. Both

parties compute final shared key using this robust extractor.

Lemma 1. Let 𝑞 > 8 be an odd integer, the function

Mod2() defined above is a robust extractor with respect to 𝑆

with error tolerance 𝛿 =
𝑞

4
− 2.

Lemma 2. For any odd 𝑞 > 2, if 𝑥 is uniformly random

in 𝑍𝑞, then Mod2(𝑥) is uniformly random conditioned on 𝑤,

where 𝑤 ← Cha(𝑥).

Lemma 3. If 8𝑛𝛽2 ≤
𝑞

4
− 2 , then 𝑠𝑘𝑖 = 𝑠𝑘𝑗 with

overwhelming probability.

For detailed proofs, please refer to [5].

The reason of introducing signal function Cha() is to

indicate which region (inner or outer) does coefficient of 𝑘𝑗

belongs to. It serves as input for Mod2() function. If

Cha(𝑦) = 0, i.e., coefficient is in inner region, we can simply

mod 2 simultaneously for both parties using Mod2() with

high confidence. Despite adding small error term might result

in the value of 𝑘𝑖 /𝑘𝑗 jumping from inner region to outer

region, this only happens with very low probability. The main

problem lies on error reconciliation is the case where

coefficient of 𝑘𝑖/𝑘𝑗 is in outer region, i.e., Cha(𝑦) = 1. In

this case, we need to “pull” the coefficient from outer region

to inner region by adding (𝑞 − 1)/2, then coefficients are in

inner region therefore we can mod 2 simultaneously using

Mod2() to agree on same key with overwhelming probability.

We can take outer region as buffer area for 𝑘𝑖 − 𝑘𝑗 since as

long as |𝑘𝑖 − 𝑘𝑗| is smaller than half size of buffer area,

reconciliation mechanism works and both parties can derive

same key. Output size of signal function Cha() and Mod2()

is 𝑛 bit, i.e., each coefficient of 𝑘𝑗 generates 1 bit

reconciliation and key information.

3.2 BCNS15 RLWE key exchange

3.2.1 Introduction
In 2015, Bos et al. instantiated PKT14 RLWE key exchange

protocol [6] in [7]. BCNS15 gives parameter choice of

PKT14 aiming at 128-bit security and proof-of-concept

implementation. They also integrate it into TLS and

constructs post-quantum TLS ciphersuite. Generally,

BCNS15 (i.e., PKT14) and DING12 share same similar

protocol structure, techniques and slightly different error

reconciliation mechanism.

Here we recall error reconciliation mechanism of

BCNS15 (i.e., PKT14):

Define cross-rounding function 〈·〉𝑞,2: 𝑍𝑞 → 𝑍2, 𝑥 ⟼

〈𝑥〉𝑞,2 = ⌊
4

𝑞
𝑥⌋ mod 2 , modular rounding function

⌊·⌉𝑞,2: 𝑍𝑞 → 𝑍2, 𝑥 ⟼ ⌊𝑥⌉𝑞,2 = ⌊
2

𝑞
𝑥⌉ mod 2. When extended

to elements of 𝑅𝑞 coefficient-wise: for 𝑓 ∈ 𝑅𝑞 , ⌊𝑓⌉𝑞,2 =

(⌊𝑓𝑛−1⌉𝑞,2, ⌊𝑓𝑛−2⌉𝑞,2, ⋯ , ⌊𝑓0⌉𝑞,2) , 〈𝑓〉𝑞,2 =

(〈𝑓𝑛−1〉𝑞,2, 〈𝑓𝑛−2〉𝑞,2, ⋯ , 〈𝑓0〉𝑞,2) . If modulus 𝑞 is odd, it

requires working in 𝑍2𝑞 instead of 𝑍𝑞 to avoid bias in derived

bits. Randomized doubling function dbl(): 𝑍𝑞 → 𝑍2𝑞 , 𝑥 ⟼

dbl(𝑥) = 2𝑥 − 𝑒 , where 𝑒 is sampled from {−1,0,1} with

probability 𝑝−1 = 𝑝1 =
1

4
, 𝑝0 =

1

2
. Reconciliation function

rec() : 𝑍2𝑞 × 𝑍2 → 𝑍2 is defined by rec(𝑤, 𝑏) =

{
0, 𝑖𝑓 𝑤 ∈ 𝐼𝑏 + 𝐸 mod 2𝑞
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where 𝐼0 = {0,1, ⋯ , ⌊
𝑞

2
⌋ − 1}

and 𝐼1 = {− ⌊
𝑞

2
⌋ , ⋯ , −1} , 𝐸 = [−

𝑞

4
,

𝑞

4
) . For details and

proofs, please refer to [6] and [7].

 Party 𝒊

Public key: 𝑝𝑖 = 𝑎𝑠𝑖 + 2𝑒𝑖 ∈ 𝑅𝑞

Private key: 𝑠𝑖 ∈ 𝑅𝑞

where 𝑠𝑖 , 𝑒𝑖 ⟵ 𝜒𝛼

𝑘𝑖 = 𝑝𝑗𝑠𝑖 + 2𝑒𝑖′

𝜎𝑖 = Mod2൫𝑘𝑖, 𝑤𝑗൯ ∈ {0,1}𝑛

𝑝𝑗 , 𝑤𝑗

Party 𝒋

Public key: 𝑝𝑗 = 𝑎𝑠𝑗 + 2𝑒𝑗 ∈ 𝑅𝑞

Private key: 𝑠𝑗 ∈ 𝑅𝑞

where 𝑠𝑗 , 𝑒𝑗 ⟵ 𝜒𝛼

𝑘𝑗 = 𝑝𝑖𝑠𝑗 + 2𝑒𝑗
′

where 𝑒𝑗
′ ⟵ 𝜒𝛼

𝑤𝑗 = Cha൫𝑘𝑗൯ ∈ {0,1}𝑛

𝜎𝑗 = Mod2൫𝑘𝑗 , 𝑤𝑗൯ ∈ {0,1}𝑛

 𝑝𝑖

Figure 2 illustrates BCNS15 key exchange protocol:

Figure 2 BCNS15 (PKT14) RLWE key exchange protocol.

It is clear to see that BCNS15 and DING12 RLWE key

exchange share similar paradigm, except that DING12 adds

2𝑒 when computing public key and 𝑘𝑗. Another difference is

that in BCNS15, party 𝑖 does not add additional error term to

2𝑝𝑗𝑠𝑖 .

3.2.2 Error reconciliation and comparison
Major difference between DING12 RLWE key exchange

protocol and BCNS15 is error reconciliation mechanism. As

recalled in section 3.1, signal function Cha() is used to derive

bits that indicates which region 𝑘𝑗 lies in. Robust extractor

reconciles small error for both parties and derives same

shared key. We note that in the case of the signal function,

we divide 𝑍𝑞 into two regions as 𝐸 and 𝐸𝑐 (complement of

𝐸). Suppose 𝑞 is odd, then there is a bias in the output of the

signal function, since there are more numbers in 𝐸 than 𝐸𝑐.

However, this bias is removed by randomized signal

functions, i.e., 𝜎0(𝑥) and 𝜎1(𝑥) in DING12. Same idea is

also applied using dbl() function in BCNS15.

Now we compare error reconciliation mechanism of

DING12 and BCNS15. As defined above, cross rounding

function 〈·〉 provides the functionality of signal function

Cha() as in DING12. As a result of applying the cross

rounding function on each coordinate of vector 𝑘𝑗, we receive

the bits corresponding to whether each value lies in 𝐼0 ∪ 𝐼0′
or 𝐼1 ∪ 𝐼1′ . Sets 𝐼0, 𝐼1, 𝐼0

′ , 𝐼1′ are defined as follows: 𝐼0 =

{0,1, … , ⌊
𝑞

4
⌉ − 1} , 𝐼1 = {− ⌊

𝑞

4
⌋ − 1, … , −1} and 𝐼0′ =

𝑞

2
+ 𝐼0 ,

𝐼1′ =
𝑞

2
+ 𝐼1.

There are two cases to apply the rounding function

depending on whether 𝑞 is odd or even. If 𝑞 is even, then

there is no bias since the regions are divided equally. If 𝑞 is

odd, this results in a bias in generated bits. To overcome this,

they switch to operations in 2𝑞 using dbl() function and then

moves back to 𝑞. This technique is similar as 𝜎0() and 𝜎1()

in DING12. Error tolerance 𝛿 is 𝑞/4 since if ||𝑘𝑖 − 𝑘𝑗||∞ >

𝑞/4, key bit will jump to other regions, therefore final shared

key does not agree. Lemma of [7] explain this claim.

Figure 3 gives intuitive comparison of signal and

reconciliation functions in DING12 and BCNS15:

Figure 3 Comparison of Cha() in DING12, 〈·〉𝑞,2 and two cases of ⌊·⌉𝑞,2 in BCNS15.

To sum up, dbl() function is designed to avoid bias in

generated keys, which is a variant of hint functions

(𝜎0(𝑥), 𝜎1(𝑥)) in DING12. For generating signal, it is

denoted as cross-rounding function 〈·〉𝑞,2 in BCNS15, which

is a modified version of Cha() in DING12. Figure 3

demonstrates the difference between them. We can see that

compared with DING12, reconciliation mechanism in

BCNS15 divides 𝑍𝑞 into four regions instead of two in

DING12, then rotate them. For generating keys, modular

 Party 𝒊

Public key: 𝑝𝑖 = 𝑎𝑠𝑖 + 𝑒𝑖 ∈ 𝑅𝑞

Private key: 𝑠𝑖 ∈ 𝑅𝑞

𝑠𝑖 , 𝑒𝑖 ⟵ 𝜒𝛼

𝑘𝑖 = 2𝑝𝑗𝑠𝑖

𝑠𝑘𝑖 = rec(𝑘𝑖 , 𝑤𝑗) ∈ {0,1}𝑛

𝑝𝑗 , 𝑤𝑗

Party 𝒋

Public key: 𝑝𝑗 = 𝑎𝑠𝑗 + 𝑒𝑗 ∈ 𝑅𝑞

Private key: 𝑠𝑗 ∈ 𝑅𝑞

where 𝑠𝑗 , 𝑒𝑗 ⟵ 𝜒𝛼

𝑘𝑗 = 𝑝𝑖𝑠𝑗 + 𝑒𝑗
′

where 𝑒𝑗
′ ⟵ 𝜒𝛼

𝑘𝑗
ഥ = dbl൫𝑘𝑗൯ ∈ 𝑅2𝑞

𝑤𝑗 = 〈𝑘𝑗
ഥ 〉2𝑞,2 ∈ {0,1}𝑛

𝑠𝑘𝑗 = උ𝑘𝑗
ഥ ඇ

2𝑞,2
∈ {0,1}𝑛

 𝑝𝑖

rounding function ⌊·⌉𝑞,2 and rec() are variants of Mod2() in

DING12. More precisely, DING12 extracts least significant

bit (LSB) from each coefficient while BCNS15 extracts most

significant bit (MSB). Output size of cross rounding function,

reconciliation function and error tolerance are the same for

these two works.

3.3 Modifying error reconciliation in BCNS15

towards LWE key exchange - Frodo

Frodo LWE key exchange protocol was proposed by Bos et

al. at CCS 2016 [9]. It adapts a slightly modified error

reconciliation mechanism in BCNS15 to construct a LWE-

based key exchange protocol. They also implement Frodo

key exchange with practical parameter choice and integrate

into TLS as post-quantum ciphersuite like BCNS15. Since

Frodo modifies error reconciliation in BCNS15 very slightly,

we would like to analyse the difference.

In Frodo, they stated that their error reconciliation

mechanism is a generalized version compared with BCNS15.

The major difference between Frodo and BCNS15 in terms

of reconciliation is that Frodo extracts more bits from each

coefficient of 𝑘𝑗 . Note that in DING12 and BCNS15, they

both extract one bit from one coefficient. In Frodo, they

extract 𝐵-bit from one coefficient. According to parameters

suggested in Frodo (𝐵 = 4), they extract four bits from one

coefficient of 𝑘𝑗. The motivation for extracting more bits is

to reduce dimension of large matrix 𝑍𝑞
𝑚×𝑛 while preserving

same 128-bit security. Matrix dimension, 𝐵 and security

level is bounded by 𝑚 ⋅ 𝑛 ⋅ 𝐵 ≥ 256. Similar as BCNS15,

cross rounding function 〈·〉2𝐵 is defined as උ2−�̅�+1𝑣⌋ mod 2,

rounding function ⌊·⌉2𝐵 = උ2−�̅�𝑣ඇ mod 2𝐵 , where �̅� =

log2 𝑞 − 𝐵 . For any 𝑣 ∈ 𝑍𝑞 represented as [0, 𝑞) , ⌊·⌉2𝐵

outputs 𝐵 most significant bits of ൫𝑣 + 2�̅�−1൯ mod 𝑞 .

Correctness of Frodo is bounded by |𝑣 − 𝑤| < 2�̅�−2.

Compared with BCNS15, Frodo’s reconciliation

mechanism extracts 𝐵 most significant bits from one

coefficient in order to reduce dimension of large matrix,

compared with extracting most significant bit in BCNS15 and

least significant bit in DING12. We believe Frodo’s error

reconciliation mechanism shares similar idea as BCNS15 and

DING12.

4 DING12 instantiation and implementation

4.1 Practical parameter choices

To the best of our knowledge, there is no existing work had

instantiated or implemented DING12 RLWE key exchange

protocol efficiently. In original DING12 paper, they did not

present parameter choice, implementation or choice of error

distribution to sample error terms. In this section, we

instantiate DING12 RLWE key exchange with two practical

parameter choices: P30 and P14.

For security estimation of our parameter choices, we use

two approaches: (1) LWE estimator in [12] to estimate

classical security; (2) [8] to estimate quantum security. LWE

estimator gives a thorough security estimation for both LWE

and RLWE-based cryptosystems. It evaluates security level

of cryptosystems by computing attack complexity of

exhaustive search, BKW, lattice reduction, decoding,

reducing BDD to unique-SVP and meet-in-the-middle

attacks. Given any parameters, LWE estimator outputs

computation and space complexity of these attacks, therefore

it gives a nice security estimation result for LWE and RLWE-

based cryptosystems. BCNS15 also takes this approach to

estimate security of their parameter choice. For quantum

security estimation, [8] presents an analysis on LWE and

RLWE-based cryptosystems which covers primal and dual

attack for solving underlying lattice problem on quantum

computer. [8] claims that this estimation is pessimistic since

they only consider core SVP hardness, therefore actual attack

complexity and security level should be larger than result

from estimation in [8].

4.1.1 128-bit classic and 80-bit quantum secure

parameter choice - P30
Recall parameter choice of BCNS15: 𝑅𝑞 = 𝑍𝑞[𝑥]/(𝑥𝑛 + 1)

with 𝑛 = 1024, discrete Gaussian sampling with standard

deviation 𝜎 = 3.192 and modulus 𝑞 = 232 − 1 . Similarly,

our parameter choice P30 for DING12 chooses 𝑛 = 1024,

discrete Gaussian sampling 𝜎 = 3.192 and modulus 𝑞 =
1073479681 (approximately 30 bits). Our parameter choice

is very close to BCNS15 which can be compared relative

fairly.

With estimation approaches for both classic and quantum

security from LWE estimator and [8], parameter choice P30

provides at least 128-bit classic security and 80-bit quantum

security.

4.1.2 256-bit classic and >200-bit quantum secure

parameter choice - P14
For parameter choice P14, we choose same 𝑛 = 1024, but

utilize centred binomial distribution 𝛹𝑘 of parameter 𝑘 = 16

for sampling and modulus 𝑞 = 12289. This choice is exact

same as [8]. They claimed that choosing 𝛹𝑘 is to achieve

better performance than sampling discrete Gaussian

distribution and they proved that sample from 𝛹𝑘 as secret

and error term will not affect security.

We also apply same security level estimation approaches

as P30 and results show that P14 provides least 256-bit

classic security and 200-bit quantum security with wide

margin.

4.2 Implementations, benchmark and comparison

In this section, we introduce our efficient portable DING12

implementations for parameter choice P30 and P14. The goal

of our portable implementation is to provide better

compatibility, allowing more devices can take advantage of

the security from post-quantum key exchange and its

efficiency. We want to achieve high performance with good

portability, namely, our implementation can run on most Intel

and AMD processors even they were released several years

ago. For parameter choice P30 and P14, we provide two

different implementations. In this section, we introduce

details of both implementations, benchmark of major

computation operations and performance of overall key

exchange.

All implementations are tested on same server equipped

with 3.4GHz Intel Xeon E5-2687W v2 processor (released in

2012) and 64GB memory. This processor was released 4

years ago with middle range single core performance and it

does not support AVX2 instruction set. Server runs 64-bit

Ubuntu 14.04. Implementations are compiled by g++ or gcc

version 4.8.4 with ‘-O3 -march=native -m64’ flags and only

run on single core without parallel computing techniques.

Implementation of BCNS15 we use is the same code as they

suggested in the paper.

4.2.1 DING12-P30
Our efficient portable C++ DING12 implementation for P30

parameter choice is implemented using NFLlib library [13].

NFLlib is a very fast NTT-based C++ library dedicated to

ideal lattice cryptography. It includes highly optimized

algorithms and programming optimizations to achieve very

high performance. NTT, inverse NTT and discrete Gaussian

sampling are very efficient. NFLlib also takes advantage of

SSE instruction sets to improve efficiency of NTT and

inverse NTT. We make full use of bitwise operations to

optimize our implementation, especially in error

reconciliation. We safely set the statistical distance from

sampled distribution to discrete Gaussian distribution to be

2−128 to preserve high statistical quality and security. More

details are discussed in section 5. Note that for error

reconciliation, our implementation does not utilize NFLlib

library or assemble-level optimizations, but only plain C++

operations to reconcile errors. BCNS15 also does not use

additional library when implementing error reconciliation.

Since error reconciliation mechanism of DING12 is simpler

than BCNS15, we expect it will have better performance.

For BCNS15 portable C implementation, they implement

key exchange protocol and integrate into TLS as post-

quantum ciphersuite. They use the approach from

Nussbaumer-based on recursive negacyclic convolutions to

implement FFT and inverse FFT. Sampling part adopts

OpenSSL’s RAND_bytes function to generate 256-bit seed

and use AES-CTR as PRNG function to obtain

approximately 24 KiB of data. This implementation is

portable since it does not use dedicated instruction sets for

specified CPUs.

BCNS15 provides constant time and non-constant time

version implementations. Since NFLlib does not provide

constant time implementation, therefore we compare our

implementation with BCNS15 non-constant time

implementation. Detailed benchmark of DING12-P30 and

BCNS15 is reported in table 1:

Table 1 Benchmark of DING12-P30 and BCNS15

implementation

 DING12-P30

(ms)

BCNS15

(ms)

Sampling 0.007 0.134

Polynomial

multiplication
0.023 0.207

Signal computation

(Cha()/〈·〉)
0.004 0.008

Pre-shared key

generation

(Mod2()/⌊⋅⌉)
0.003 0.003

Public key

generation
0.038 0.492

Complete

key exchange

execution - party 𝑖
0.0706 0.708

Complete

key exchange

execution - party 𝑗

0.0707 0.847

Compared with DING12-P30 implementation, BCNS15 is

19.14x, 9x and 12.95x slower on sampling, polynomial

multiplication and key generation respectively. Highly

efficient discrete Gaussian sampling, NTT and inverse NTT

implementation in NFLlib contribute to efficiency of our

implementation. NFLlib also utilizes SSE instruction sets to

optimize NTT and inverse NTT computation while BCNS15

does not, therefore NFLlib-based implementation is more

efficient. We believe that if these two protocols are

implemented with same library, performance should be

relative close since these two protocols share very similar

structure, error reconciliation mechanism and parameter

choices.

For error reconciliation (signal and pre-shared key

generation), BCNS15 is 1.57x slower. For overall key

exchange execution, BCNS15 is 10.03x and 11.98x slower

than DING12-P30 for party 𝑖 and 𝑗 respectively.

4.2.2 DING12-P14
Our efficient portable implementation of P14 is a modified

version of LatticeCrypto library [15] and it is different from

P30 implementation. LatticeCrypto provides a faster C

implementation of NewHope RLWE key exchange with no

improvements on key exchange protocol itself. LatticeCrypto

implementation protects against timing and cache-timing

attacks through regular, constant-time implementation of all

operations on secret key material. We work on portable C

implementation rather than AVX2-optimized version for

better compatibility. We fork LatticeCrypto library and take

advantage major parts of the code, including sampling and

polynomial computations. We replace error reconciliation

mechanism, message encoding/decoding and other slight

differences between DING12 and NewHope carefully to

adapt to DING12 design.

Detailed benchmark of DING12-P14 and LatticeCrypto

is reported in Table 2:

Table 2 Benchmark of DING12-P14 and LatticeCrypto

implementation

DING12-P14

(ms)

LatticeCrypto

(ms)

Sampling 0.024 0.024

NTT 0.009 0.009

Inverse NTT 0.010 0.010

Signal computation

(Cha()/HelpRec())
0.002 0.010

Pre-shared

key generation

(Mod2()/Rec())

0.003 0.004

Public key

generation
0.092 0.092

Complete

key exchange

execution - party 𝑖
0.139 0.113

Complete

key exchange

execution - party 𝑗

0.142 0.149

For signal computation and pre-shared key generation (i.e.,

error reconciliation), DING12-P14 is 2.8x faster than

LatticeCrypto. Efficient reconciliation algorithm and

implementation contribute to this result. For overall key

exchange execution, performance of DING12-P14 for party

𝑖 is 1.23x slower than LatticeCrypto since DING12 adds

additional error term 2𝑒𝑖
′ to 𝑝𝑗𝑠𝑖 while NewHope does not.

Performance of DING12-P14 for party 𝑗 is 1.05x faster than

LatticeCrypto since error reconciliation is more efficient.

One more difference between DING12 and NewHope is that

NewHope uses SHAKE128 XOF to generate different public

parameter 𝑎 while DING12 does not. This computation is

very fast therefore we ignore this minor difference.

Compared with BCNS15 implementation, total execution

timing for party 𝑖 and 𝑗 are 3.58x and 4.29x faster

respectively. Since parameter choices in P30 and P14 are

very different and cannot be compared directly, this result is

provided for completeness and reference purposes.

5 Discussion

There are a few similarities and differences between these

protocols that we would like to summarize:

(1) Error reconciliation. We have explained this part in

section 3. The fundamental idea of error reconciliation is:

first generate signal value, which indicates which region does

each coefficient of 𝑘𝑗 belongs to, then reconcile the errors

with another function which returns uniformly distributed

binary stream as key. Fundamental idea of using signal

function and reconciliation using mod operation are the same

for DING12, BCNS15 and Frodo. BCNS15 (i.e., PKT14)

cuts 𝑍𝑞 region differently as DING12 and turn it around with

different angles. They also extract most significant bit while

DING12 extracts least significant bit. We show that they are

very similar in essence and share same error tolerance. We

remark that one may also derive other variants of error

reconciliation with different approaches to divide 𝑍𝑞 or

adding multiple times of error term 𝑒 on 𝑎 ⋅ 𝑠 (𝑎 ⋅ 𝑠 + 2𝑒 in

DING12) or extract bits with different approaches. These

approaches share same idea generally since they use signal to

assist error reconciliation. We also practically show that

performance of DING12 reconciliation is simpler and 1.57x

faster than BCNS15.

 (2) Error sampling. DING12-P30 and BCNS15 use

discrete Gaussian sampling with 𝜎 = 3.192 to sample error

terms. DING12-P30 implementation uses NFLlib, which

adopts precomputed Cumulative Distribution Table (CDT)

sampler to sample from discrete Gaussian distribution. For

fixed centre sampling over 𝑍𝑛, it is the fastest alternative with

reasonable memory usage (typically <100KB). We set

statistical distance from sampled distribution to discrete

Gaussian distribution to be 2−128 . BCNS15 also samples

from discrete Gaussian distribution with a sampler they

suggested using same standard deviation 𝜎 = 3.192 .

DING12-P14 implementation samples from centred binomial

distribution 𝜓𝑘 of parameter 𝑘 = 16, which has very close

statistical distance to discrete Gaussian distribution with

standard deviation 𝜎 = √16/2 ≈ 2.828 according to

security analysis in [8]. According to [8], this consideration

is mainly for faster performance while maintaining similar

security level.

 (3) Polynomial multiplication. For DING12-P30, We use

NFLlib that adopts NTT with SSE optimized implementation.

Performance of DING12-P30 on NTT and inverse NTT

credits to highly efficient NFLlib library with SSE

optimizations while BCNS15 gives plain C implementation.

This benefits efficiency of DING12-P30 significantly.

DING12-P14 and LatticeCrypto also use NTT. In BCNS15,

they choose Nussbaumer FFT.

(4) Overall performance. We remark that high efficiency

of our P30 implementation come from efficient NFLlib

library, which optimizes error sampling and polynomial

multiplication. For P14 implementation, LatticeCrypto

implements optimized-NTT for efficient polynomial

multiplication. However, implementation of error sampling

in LatticeCrypto library is not as efficient as NFLlib,

therefore overall performance of P14 parameter choice is less

efficient then P30. We also note that since DING12 error

reconciliation is 1.57x faster than BCNS15 and this part is

implemented using plain C language, this highlights error

reconciliation mechanism of DING12.

We present comprehensive comparison chart of DING12-

P30, BCNS15 and DING12-P14 in Table 3:

Table 3 Comparison result of DING12-P30, BCNS15 and DING12-P14.

 DING12-P30 DING12-P14 BCNS15

Party 𝑖 timing (ms) 0.0706 0.139 0.708

Party 𝑗 timing (ms) 0.0707 0.142 0.847

Party 𝑖 to 𝑗

message size (KB)
3.75 1.75 4

Party 𝑗 to 𝑖
message size (KB)

3.875 1.875 4.125

Signal size (KB) 0.125 0.125 0.125

Error tolerance 𝑞/4 𝑞/4 𝑞/4

𝑛 1024 1024 1024

Error

distribution

Discrete Gaussian

𝜎 = 3.192

Centred Binomial

𝑘 = 16

Discrete Gaussian

𝜎 = 3.192

Modulus size (bit) 30 14 32

Sampling operations Party 𝑖: 2. Party 𝑗: 3 Party 𝑖: 2. Party 𝑗: 3

FFT/NTT Party 𝑖: 2. Party 𝑗: 2 Party 𝑖: 2. Party 𝑗: 2

Inverse FFT/NTT Party 𝑖: 1. Party 𝑗: 1 Party 𝑖: 1. Party 𝑗: 1

Signal computation

operations

(Each coefficient)

1 random hint function selection

(𝜎0() or 𝜎1())

1 if condition

(decide value in inner or outer region)

1 subtraction

2 multiplication

1 division

1 rounding

1 mod operation

Error reconciliation

computation

operations

(Each coefficient)

1 addition

2 mod operation

1 random region selection

(𝐼0 + 𝐸 or 𝐼1 + 𝐸)

1 if condition

(decide value in region 𝐼0 +
𝐸 or 𝐼1 + 𝐸)

2 mod operation

Security level
128-bit classic

>80-bit quantum

>256-bit classic

>200-bit quantum

128-bit classic

<80-bit quantum

Table 3 shows that DING12-P30 has smaller communication

cost compared with BCNS15 since they choose 32-bit

modulus (𝑞 = 232 − 1). Size of signal value is exact same

1024 bits. DING12-P14 has more than half of message sizes

compared with P30 and BCNS15 due to choosing 14-bit

modulus.

We also would like to give a brief comment on NewHope

RLWE key exchange [8]. NewHope improves BCNS15 with

following major contributions: (1) an improved error

reconciliation mechanism; (2) Randomly generated public

parameter 𝑎 ; (3) Security analysis; (4) Efficient

implementation. Structure of protocol design and the idea of

using signal and reconciliation remain the same. For

reconciliation mechanism in NewHope, they adopt a more

geometric idea, which divides 4-dimensional space into

various parts and point coefficient vectors to different regions

to generate signal and final key bits. They use four

coefficients in key exchange material to extract one key bit.

This is mainly for higher error tolerance. They use error

correction codes on 𝐷4̃ lattice to achieve this. It is a

geometric approach since signal vector in NewHope is

computed as the difference between four coefficients of 𝑘𝑗

and nearest center of Voronoi cell. For reconciliation, key bit

is derived by adding signal vector to 𝑘𝑖/𝑘𝑗 and the sum points

to nearest centre of Voronoi cell to decide 0 or 1 key bit is

generated. Note that four coefficients generates 8-bit signal.

Since they extract 1 bit from four coefficients, this allows

higher tolerance than DING12 and BCNS15, which both of

them extract 1 bit from one coefficient. NewHope directly

generates 256-bit key, while DING12 and BCNS15 generate

1024-bit key.

6 Conclusion

With all detailed analysis, comparison, efficient

implementations and benchmark we presented, we conclude

that DING12 and BCNS15 are truly practical RLWE-based

key exchange protocols. Error reconciliation is an important

technique in RLWE-based constructions. Applications like

encryption, key exchange etc. require efficient, compact and

high error tolerance reconciliation mechanism. How to

reconcile errors using signal in DING12 and BCNS15 RLWE

key exchange is explained. We analyse similarity and

differences of these RLWE-based key exchange protocols

very carefully, especially error reconciliation part. Our work

is also the first to instantiate DING12 RLWE key exchange

with 128-bit classic (80-bit quantum) and 256-bit classic

(>200-bit quantum) secure parameter choices. Benchmarks

show that our efficient implementations of P30 and P14 are

truly efficient with 11x and 3.94x speed improvement over

BCNS15, error reconciliation is 1.57x faster than BCNS15.

RLWE-based cryptosystems are extremely efficient and have

robust security, which can be applied in various applications

(e.g., [16]-[24]) as post-quantum alternatives.

Acknowledgements

We would like to thank anonymous reviewers for valuable

feedbacks. This work is supported by China Scholarship

Council, National Natural Science Foundation of China

(Grant No. 61672092) and Fundamental Research Funds for

the Central Universities (Grant No. 2017YJS038). Jintai

Ding is partially supported by NSF grant DMS-1565748 and

US Air Force grant FA2386-17-1-4067.

References

[1] Diffie, W., Hellman, M.E., 1976. New directions in

cryptography. Information Theory, IEEE Transactions

on 22, 644–654.

[2] Shor, P.W., 1994. Algorithms for quantum computation:

Discrete logarithms and factoring, in: Foundations of

Computer Science, 1994 Proceedings., 35th Annual

Symposium on. IEEE, pp. 124–134.

[3] Regev, O., 2009. On lattices, learning with errors,

random linear codes, and cryptography. Journal of the

ACM (JACM) 56, 34.

[4] Lyubashevsky, V., Peikert, C., Regev, O., 2013. On

ideal lattices and learning with errors over rings. Journal

of the ACM (JACM) 60, 43.

[5] Ding, J., Xie, X., Lin, X., 2012. A Simple Provably

Secure Key Exchange Scheme Based on the Learning

with Errors Problem. IACR Cryptology ePrint Archive

2012, 688.

[6] Peikert, C., 2014. Lattice cryptography for the internet,

in: International Workshop on Post-Quantum

Cryptography. Springer, pp. 197–219.

[7] Bos, J.W., Costello, C., Naehrig, M., Stebila, D., 2014.

Post-quantum key exchange for the TLS protocol from

the ring learning with errors problem (No. 599).

[8] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.,

2015. Post-quantum key exchange-a new hope. IACR

Cryptology ePrint Archive 2015, 1092.

[9] Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig,

M., Nikolaenko, V., Raghunathan, A., Stebila, D., 2016.

Frodo: Take off the ring! practical, quantum-secure key

exchange from LWE, in: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and

Communications Security. ACM, pp. 1006–1018.

[10] Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.,

2015. Authenticated key exchange from ideal lattices,

in: Advances in Cryptology-EUROCRYPT 2015.

Springer, pp. 719–751.

[11] Ding, J., Alsayigh, S., Lancrenon, J., Saraswathy, R.V.,

Snook, M., 2017. Provably Secure Password

Authenticated Key Exchange Based on RLWE for the

Post-Quantum World, in: Cryptographers’ Track at the

RSA Conference. Springer, pp. 183–204.

[12] Albrecht, M.R., Player, R., Scott, S., 2015. On the

concrete hardness of Learning with Errors. IACR

Cryptology ePrint Archive 2015, 046.

[13] Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A.,

Killijian, M.-O., Lepoint, T., 2016. NFLlib: NTT-based

fast lattice library, in: Cryptographers’ Track at the RSA

Conference. Springer, pp. 341–356.

[14] Longa, P., Naehrig, M., 2016. Speeding up the number

theoretic transform for faster ideal lattice-based

cryptography, in: International Conference on

Cryptology and Network Security. Springer, pp. 124–

139.

[15] Albano, P., Bruno, A., Carpentieri, B., Castiglione,

Aniello, Castiglione, Arcangelo, Palmieri, F.,

Pizzolante, R., Yim, K., You, I., 2014. Secure and

distributed video surveillance via portable devices.

Journal of Ambient Intelligence and Humanized

Computing 5, 205–213.

[16] Castiglione, Arcangelo, DAmbrosio, C., De Santis, A.,

Castiglione, Aniello, Palmieri, F., 2013. On secure data

management in health-care environment, in: Innovative

Mobile and Internet Services in Ubiquitous Computing

(IMIS), 2013 Seventh International Conference on.

IEEE, pp. 666–671.

[17] Liu, Z., Gro\s sschädl, J., Hu, Z., Järvinen, K., Wang,

H., Verbauwhede, I., 2017a. Elliptic curve cryptography

with efficiently computable endomorphisms and its

hardware implementations for the internet of things.

IEEE Transactions on Computers 66, 773–785.

[18] Liu, Z., Huang, X., Hu, Z., Khan, M.K., Seo, H., Zhou,

L., 2017b. On emerging family of elliptic curves to

secure internet of things: Ecc comes of age. IEEE

Transactions on Dependable and Secure Computing 14,

237–248.

[19] Cui, Z., Gao, G., Zhou, C., Yu, J., Deng, A., Deng, C.,

2016. Efficient key management for publish/subscribe

system in cloud scenarios. International Journal of High

Performance Computing and Networking 9, 489–498.

[20] Shi, Y., Liu, J., Han, Z., Qiu, S., 2016. Deterministic

attribute-based encryption. International Journal of

High Performance Computing and Networking 9, 443–

450.

[21] Zhang, J., Zhao, X., Zhen, W., 2017. OGPADSM2:

oriented-group public auditing for data sharing with

multi-user modification. International Journal of High

Performance Computing and Networking 10, 240–249.

[22] González, S., Huguet, L., Martínez, C., Villafañe, H.,

2013. Discrete logarithm like problems and linear

recurring sequences. Advances in Mathematics of

Communications 7, 187–195.

https://doi.org/10.3934/amc.2013.7.187

[23] Jalili, R., Dousti, M.S., 2015. Forsakes: A forward-

secure authenticated key exchange protocol based on

symmetric key-evolving schemes. Advances in

Mathematics of Communications 9, 471–514.

https://doi.org/10.3934/amc.2015.9.471

[24] Micheli, G., 2015. Cryptanalysis of a noncommutative

key exchange protocol. Advances in Mathematics of

Communications 9, 247–253.

https://doi.org/10.3934/amc.2015.9.247

