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0. Introduction

Resonances are spectral objects attached to differential operators acting on non-
compact domains and appear as poles of the meromorphic continuation of the resolvent 
of these operators. Their study evolved from an investigation of the Schrödinger oper-
ators on the Euclidean spaces like Rn, to a study of the Laplacian on curved spaces, 
like hyperbolic or asymptotically hyperbolic manifolds, symmetric or locally symmetric 
spaces. In a typical setting, one works on a complete Riemannian manifold X with a 
finite geometry, for which the positive Laplacian Δ is an essentially self-adjoint operator 
on the Hilbert space L2(X) of square integrable functions on X. We suppose that Δ has 
a continuous spectrum [ρX , +∞[, with ρX ≥ 0. The spectrum of Δ might have some 
discrete parts, but these parts do not play any significant role, so we neglect them. Also, 
for simplicity, we assume to have shifted the Laplacian so that its spectrum has bottom 
at 0, and have changed variables z �→ z2 for the resolvent so that, as above, the resolvent 
is analytic away from the real axis. The resolvent R(z) := (Δ −ρX − z2)−1 of the shifted 
Laplacian Δ − ρX is then a holomorphic function of z on the upper (and on the lower) 
complex half plane. For each such z, R(z) is a bounded linear operator from L2(X) to 
itself. As such, it cannot be extended across the real axis. However, let us restrict the 
resolvent to the dense subspace C∞

c (X) of compactly supported smooth functions on X. 
Then the map z �→ R(z) might admit a meromorphic extension across the real axis to 
a larger domain in C or to a cover of such a domain. The poles, if they exist, are the 
resonances, also called quantum resonances or scattering poles, of Δ.

The basic questions concern the existence of the meromorphic extension of the re-
solvent, the distribution and counting properties of the resonances, the rank and inter-
pretation of the so-called residue operators associated with the resonances. Resonances 
are linked to interesting geometric, dynamical, and analytic objects. As a consequence, 
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they are intensively studied, in many different settings, using a variety of techniques and 
different viewpoints. Standard references for the introduction of resonances are [1,2]. 
A recent overview, also containing an extensive list of references, is [52]. Riemannian 
symmetric spaces of the non-compact type are important geometrical settings to study 
resonances of the Laplacian. Besides being intrinsically interesting objects, they play 
the role of model spaces to understand phenomena on more complicated or less regular 
geometries.

Let us introduce some notations. A Riemannian symmetric space of the non-compact 
type is a homogeneous space of the form X := G/K where G is a connected non-compact 
real semisimple Lie group with finite centre and K is a maximal compact subgroup of G. 
The basic examples are the n-dimensional real hyperbolic spaces Hn. In this case, the Lie 
group G is the Lorentz group SOe(n, 1) and K = SO(n). A Riemannian symmetric space 
of the non-compact type X has maximal flat subspaces, all of the same dimension, called 
the (real) rank of X. For instance, the rank of Hn is 1. Since X is a symmetric space of 
the Lie group G, all natural operators acting on X, like the Laplacian and its resolvent, 
are G-invariant. They can therefore be studied using the representation theory of G. The 
analytic study of the resolvent of the Laplacian acting on functions on Hn, in particular 
its meromorphic continuation across its spectrum, is classical and well-understood. It 
plays a central role when studying the resolvent on more general complete Riemannian 
manifolds for which the hyperbolic spaces are models. Still in the case of functions on a 
more general Riemannian symmetric space X, the study of resonances can in principle 
be done using an adapted harmonic analysis, the so called Helgason-Fourier analysis, 
which provides a diagonalization of the Laplacian and hence an explicit formula for its 
resolvent as a singular integral operator over the spectrum. This formula allowed Hilgert 
and Pasquale [23] to determine and study the resonances for an arbitrary X of rank 
one. The results in the rank-one case have been obtained by Miatello and Will [37] by 
a different method, in the context of Damek-Ricci spaces. The general higher-rank case 
is still open. Relevant works in this context are [36] and [44]. Complete answers to the 
basic problems concerning the existence and location of the resonances of the Laplacian, 
as well as the representation-theoretic interpretation of the so-called residue operators 
at the resonances, are available only for (most of the) Riemannian symmetric spaces of 
rank 2. These results appeared in joint articles by Hilgert, Pasquale and Przebinda; see 
[24–26].

All the articles mentioned above consider the Laplacian acting on scalar functions 
on X. A more general question is to consider the Laplacian acting on sections of a 
homogeneous vector bundle on X. Such a bundle is determined by a finite-dimensional 
representation τ of K. Let us denote this bundle by Eτ . The sections of Eτ can be seen 
as vector-valued functions on G, with values in the space of the representation τ , such 
that

f(xk) = τ(k−1)f(x) for all x ∈ G and k ∈ K .



4 S. Roby / Advances in Mathematics 408 (2022) 108555
The space of such functions which are smooth and compactly supported is denoted 
by C∞

c (G, τ). This means that we are replacing complex-valued functions on X with 
vector-valued functions which have specific transformation properties on the orbits of 
the compact subgroup K. Examples of sections of homogeneous vector bundles on X are 
the differential forms, the vector fields, and more generally the tensor fields on X: all 
these objects naturally arise in physical models, and it is therefore natural to look for 
resonances of the Laplacian in these settings.

The resolvent of the Laplacian of forms on a rank-one Riemannian symmetric space 
of the non-compact type has been studied by several authors; see [3,8–11,15,41]. In 
particular, [15] gives (for the differential forms on rank 1) the list of resonances and the 
Riemann surface on which the resolvent admits meromorphic extension. Nevertheless, to 
our knowledge, there is only one article studying the resonances and the residue operators 
of the Laplacian acting on the sections of a homogeneous vector bundle over X, namely 
[50], where X is a complex hyperbolic space and the fibres have dimension one.

The goal of the present paper is to study the resonances of the Laplacian acting 
on the sections of a homogeneous vector bundle over a Riemannian symmetric space 
of the non-compact type X. The symmetric space is assumed to have rank one but 
the representation of K is arbitrary. Since every finite-dimensional representation of K
decomposes into irreducibles, we restrict our attention to irreducible representations. As 
in the case of functions, the basic problems are to determine the existence, the localisation 
of the resonances and study the residue operators associated with them.

This paper is organised as follows. In section 1, we introduce the notation and recall 
some basic facts about the structure of Riemannian symmetric spaces of the non-compact 
type and real rank one. There are four cases, listed in the following table:

G K X = G/K

Spin(n, 1) Spin(n) real hyperbolic space
SU(n, 1) S(U(n) × U(1)) complex hyperbolic space
Sp(n, 1) Sp(n) quaternionic hyperbolic space
F4 Spin(9) octonion hyperbolic space

We set a to be a maximal flat subspace in p = TeK(X) the tangent space of X at the 
base point eK, and M the centraliser of a in K. In section 2, we recall some facts on 
the generalisation of the Helgason-Fourier transform to homogeneous vector bundles. 
They are principally due to Camporesi [8]. In particular, the Plancherel Theorem for L2

sections of the homogeneous vector bundles is given there. Denote the decomposition of 
τ over M as follows:

τ =
⊕

σ∈M̂(τ)

dσσ (1)

where M̂(τ) is the set of irreducible unitary representations of M which occur in the 
restriction of τ to M , dσ is the degree of σ. We need some properties of the generalised 
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spherical functions ϕσ,λ
τ associated with the irreducible representations σ ∈ M̂(τ), which 

is detailed in section 2. The explicit formula for the Plancherel density pσ corresponding 
to these σ ∈ M̂ is given in Proposition 3.1 (see also Appendix A). Corollary 2.1 proves 
the convergence of the singular integral operator providing an explicit formula for the 
resolvent R of the Laplacian using the inversion formula of vector-valued Helgason-
Fourier transform. In section 3, we compute the resonances, which is the first main goal 
of this paper. The holomorphic function e �→ R(z) is meromorphically extended from the 
complex upper half-plane to the whole space, using the residue theorem. The extended 
resolvent is a meromorphic function with simple poles on the imaginary axis: these poles 
are the resonances. This leads to our first theorem:

Theorem 1. Let G be a connected non-compact semisimple Lie group with finite centre
and with Iwasawa decomposition G = KAN , where K be a fixed maximal compact sub-
group of G. Suppose dimA = 1. Let M denote the centraliser of A in K. Let (τ, Vτ ) be 
an irreducible unitary representation of K, and let Eτ be the homogeneous vector bundle 
over G associated with τ . For each σ ∈ M̂(τ), let Nσ be the set of k ∈ Z such that

λk := −i(ρσ + k)

is a pole of the Plancherel density (see (33) for the formula) and ρσ + k ≥ 0. Here ρσ is 
a nonnegative constant depending only on G and σ. We refer to (35), (36) and (38) for 
the precise definition.

In this setting, the meromorphic continuation of the resolvent R of the Laplace op-
erator acting on the smooth compactly supported sections of Eτ can be written as the 
sum

R =
∑

σ∈M̂(τ)

dσRσ , (2)

where Rσ is given for all f ∈ C∞
c (G, τ) and for all N ∈ N by the following formula:

(Rσ(ζσ)f) (x) = 1
|α|

∫
R−i(N+1/4)

1
λ|α| − ζσ

(
ϕσ,λα
τ ∗ f

)
(x) pσ(λα)

λ
dλ

+ 2iπ
|α|

∑
k∈Nσ

ρσ+k>N+1/4

(λk|α| − ζσ)
(
ϕσ,λkα
τ ∗ f

)
(x) Res

λ=λk

pσ(λα)
λ

(3)

In (3), α is the longest restricted root, ϕλ,σ
τ is a spherical function of type σ and

ζσ :=
√

z − 〈ρ, ρ〉+ 〈μσ + ρM , μσ + ρM 〉 (4)

with z ∈ C such that 
(ζσ) > −(N + 1/4). Here 
√· denotes the single-valued branch of 

the square root function determined on C \ [0, +∞[ by the condition 
√
−1 = −i.
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The resonances of the Laplace operator acting on the sections of Eτ appear in families 
parametrized by the elements of M̂(τ). Let

Sσ =
{
(z, ζ) ∈ C2 | ζ2 := z − 〈ρ, ρ〉+ 〈μσ + ρM , μσ + ρM 〉)

}
.

Then the resolvent Rσ extends meromorphically from S+
σ = {(z, ζ) ∈ S | 
(ζ) > 0} to 

Sσ. The (simple) poles of this extension are the pairs

(zσ,k, ζσ,k) =
(
(ρσ + k)2|α|2 − 〈ρ, ρ〉+ 〈μσ + ρM , μσ + ρM 〉 ,−i(ρσ + k)|α|

)
(5)

where μσ is the highest weight of the representation σ, the numbers k are in Nσ and ρM
is half sum of roots for M .

We refer to section 1 for the definitions of the various objects appearing in this theorem 
and to section 3 for its proof.

The second problem we address in this article is the representation theoretic interpre-
tation of the resonances. More precisely, consider the residual part of the meromorphic 
continuation of the resolvent in (3). For each pole λk of the Plancherel density for 
σ ∈ M̂(τ), one can introduce an operator, called the residue operator at λkα, defined as 
follows:

Rσ
k : C∞

c (G, τ) −→ C∞(G, τ)
f �−→ ϕσ,λkα

τ ∗ f (6)

Since the convolution product is on the left, it seems that it does not commute with the 
left translation of f . But it does, as we shall see in (24). As G acts on the image of Rσ

k

by the left translations, we get a representation of G, called the residue representation 
at λkα.

In section 4 we restrict our attention to the representations τ which contains the 
trivial representation of M . In this case the structure of the principal series is well 
known [27–29]. The complexity of the general case (see [14]) is formidable and might 
lead to much less pleasing results, thus we avoid it. We consider the family of resonances 
corresponding to σ = triv. To simplify the notation, we write Rk instead of Rtriv

k . Let Ek

be the residue representation at λkα. We show that the Ek’s are irreducible and equivalent 
to a subquotient of a spherical principal series representation of G. We determine which 
of them are unitary and which are finite-dimensional. Also, we identify their Langlands 
parameters and compute their wave front sets. The Langlands parameters are of the form 
(MA, δ, λ) and denote the induced representation IndG

MAN (δ⊗eiλ⊗ triv) for a nilradical 
N . A lowest K-type of the induced representation with highest weight μmin identifies a 
unique irreducible subquotient of that induced representation (see [45]). The wave front 
set of a representation has been introduced by Howe (see [22]). When G is semisimple, 
it is a closed set consisting of nilpotents orbits. For Ek it turns out to be the closure of 
a single nilpotent orbit. In the following theorem, α is the longest restricted root as in 
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Theorem 1 and for each restricted root β, the corresponding root space in g is denoted 
by grβ . The minimal K-type of Ek is given in the proof the theorem in each case: they 
can be found in Tables 1, 2, 3 and 4 respectively for the real, complex, quaternionic and 
octonionic hyperbolic spaces.

Theorem 2. Suppose that the representation τ contains the trivial representation of M . 
The residue representations Ek are then irreducible.

(1) If G = Spin(2n, 1), then τ has highest weight of the form (N, 0, . . . , 0), where N is 
a nonnegative integer.
• If N ≥ k+1, then Ek has Langlands parameters 

(
MA,H k+1(R2n−1),

(
n− 3

2
)
α
)

with (k+1, 0, . . . , 0) as a lowest K-type’s highest weight. Here H k+1(R2n−1) are 
harmonics of degree k+1 on R2n−1. This representation is unitary. Its wave front 
set is the nilpotent orbit generated by grα.

• If N < k + 1, then Ek has Langlands parameters 
(
MA, triv, (ρα + k)α

)
with 

the trivial representation as a lowest K-type. It is finite-dimensional. Also, it is 
non-unitary if k 
= 0.

(2) If G = SU(n, 1), then τ has highest weight of the form (a1, 0, . . . , 0, −a2, −b), where 
a1 and a2 are positive integers such that a1 ≥ a2 ≥ 0, b ∈ Z and a1 + a2 + b is even.
• If a1 + a2 ≥ 2k + 2 and |b| ≤ −2k − 2 + a1 + a2, then Ek is unitary.

– If n > 2, then Ek has minimal K-type of highest weight 
(
(k+1), 0, . . . , 0, −(k+

1), 0). Its Langlands parameters are
(
MA, δ, 

(
n
2 − 1

)
α
)

where the highest 
weight of δ is 

(
(k + 1), 0, . . . , 0, −(k + 1), 0

)
. Its wave front set is the nilpo-

tent orbit generated by grα/2.
– If n = 2, this representation is the discrete series with Blattner parameter 

((k + 1),−(k + 1), 0, . . . , 0). Its wave front set is the nilpotent orbit generated 
by grα/2.

• If b ≥ | − 2k − 1 + a1 + a2| + 1, then Ek is the representation with Lang-
lands parameters 

(
MA, δ, 

(
k
2 + n

2 −
1
2
)
α
)
, where the highest weight of δ is (

0, 0, . . . , 0,−(k + 1), (k + 1)/2
)
. This representation is non-unitary. Its wave 

front set is the nilpotent orbit generated by the element n2 of grα (see Lemma 5.4
for the definition).

• If b ≤ | − 2k − 1 + a1 + a2| − 1, then Ek is the representation with Lang-
lands parameters 

(
MA, δ, 

(
k
2 + n

2 −
1
2
)
α
)
, where the highest weight of δ is (

(k + 1), 0, . . . , 0, (k + 1)/2
)
. This representation is non-unitary. Its wave front 

set is the nilpotent orbit generated by the element n1 of grα (see Lemma 5.4 for 
the definition).

• If a1 + a2 ∈ [0, 2k + 2[ and b < |2k + 2 − a1 + a2|, then Ek is the representation 

with Langlands parameters 
(
MA, triv, (ρα + k)α

)
. It is finite-dimensional and 

non unitary (if k 
= 0).
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(3) If G = Sp(n, 1), then τ has a highest weight of the form (a1, a2, 0, . . . , 0, b), where 
a1, a2 are positive integers such that a1 ≥ a2, b = a1 − a2.
• If b ≤ a1 + a2 − 2k − 4, then Ek is the representation with Langlands parameters (

MA, δ, 
(
n− 3

2
)
α
)

with τ as a lowest K-type, where the highest weight of δ is 
(k + 2, k + 2, 0, . . . , 0). This representation is non-unitary. Its wave front set is 
the nilpotent orbit generated by grα/2.

• If b ≥ |a1 + a2 − 2k − 2| the residue representation is unitary. Its wave front set 
is the nilpotent orbit generated by grα.
– If k ≤ 2n − 4, then Ek is the representation with Langlands parameters (

MA, δ,
(
n− k

2
)
α
)

with lowest K-type (k+1, 0, . . . , 0, k+1), where the highest 
weight of δ is (k + 1, 0, . . . , 0, k+1

2 ).
– If k ≥ 2n − 3, then Ek is the discrete series representation with Blattner pa-

rameter μk = (k + 1, 0, . . . , 0, k + 1).
• If b < 2k + 2 − a1 − a2, then Ek is the representation with Langlands parameters (

MA, triv, (ρα + k)α
)
. It is finite-dimensional and non unitary (if k 
= 0).

(4) If G = F4, then τ has a highest weight of the form (a/2, b/2, b/2, b/2), where a and 
b are positive integers such that a ≥ b and a − b is even.
• If b ≤ a − 2k − 8, then Ek is the discrete series representation with Blattner 

parameter μk = (k + 4, 0, 0, 0).
• If b ≥ | − 2k− 4 +a| − 2, then Ek is the representation with Langlands parameters (

MA, δ, 12 (k + 10)α
)
, where the highest of δ is k+1

4 (3, 1, 1, 1). This representation 
is unitary. Its wave front set is the nilpotent orbit generated by grα.

• If b < 2k + 2, then Ek is the representation with Langlands parameters (
MA, triv, (ρα + k)α

)
. It is finite-dimensional and non unitary (if k 
= 0).

A nice consequence of our case-by-case results is the following.

Corollary 1. For a fixed k ∈ N, there is one-to-one correspondence between the irreducible 
subquotients of Hλkα and the (real) nilpotent orbits of g under the adjoint action. This 
correspondence maps each subquotient into the orbit whose closure is the wave front set 
of that subquotient. As we showed, Ek is equivalent to one of these subquotients. Its wave 
front set is then the closure of one nilpotent orbit in g.
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1. General notations

We shall use the standard notations N, Z, R, C and C× for the nonnegative integers, 
the integers, the real numbers, the complex numbers and the nonzero complex numbers. 
For a complex number z ∈ C, we denote by �(z) and 
(z) its real and imaginary parts. 
The positive constants in the Haar measures do not matter in our computations and 
equalities. Integrals have to be considered up to positive multiples. For a1, a2 ∈ Z, we 
denote “n ∈ �a1, a2�” for “n ∈ {a1, a1 + 1, . . . , a2}”.

Context: Let G be a connected non-compact real semisimple Lie group with finite 
centre and let B(·, ·) be the Killing form on the Lie algebra g of G. We denote by θ a 
Cartan involution on g. As a consequence, Bθ(X, Y ) := −B(X, θY ) is a positive definite 
bilinear form. We denote by k the set of fixed points of θ and by p the eigenspace of θ
for the eigenvalue −1. In other words:

k = {X ∈ g | θX = X} and p = {X ∈ g | θX = −X} .

Then k is a Lie subalgebra of g. The corresponding connected Lie subgroup of G is 
maximal compact. We denote it by K. The Cartan decomposition of the Lie algebra g
is given by: g = k ⊕ p.

Let a be a maximal abelian subspace of p and A = exp a its associated subgroup of 
G. The exponential map exp : g → G restricts to a diffeomorphism between a and A. 
The inverse map is the logarithm “log”.

Roots and restricted roots systems: Let a∗ be the vector space of linear forms on a
and a∗C its complexification. The set Σ of restricted roots of the pair (g, a) consists of all 
linear forms α ∈ a∗ for which the vector space

grα := {X ∈ g | [H,X] = α(H)X , for every H ∈ a}

contains nonzero elements. The dimension of grα is called the multiplicity of the root α
and is denoted by mα.

Let Σ+ be a fixed set of positive restricted roots and let ρ := 1
2
∑

α∈Σ+

mαα be the 

half sum of the positive roots counted with their multiplicities. Set n :=
⊕
α∈Σ+

grα and 

N the connected Lie subgroup of G having n for Lie algebra. According to the Iwasawa 
decomposition G = KAN , every element x in G can be uniquely written as

x = k(x)eH(x)n(x) (7)

where k(x) ∈ K, H(x) ∈ a and n(x) = n ∈ N . In the following, we set

aλ := exp(λ(log a)) for a ∈ A and λ ∈ a∗C . (8)
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Let M be the centraliser of a in K, m its Lie algebra and let t be a Cartan subalgebra 
of m. Then the Lie algebra h := t ⊕ a is a Cartan subalgebra of g. We denote by hC
its complexification. The set Π of roots of the pair (gC, hC) consists of all linear forms 
ε ∈ h∗C for which the vector space

gε := {X ∈ gC | [H,X] = ε(H)X , for every H ∈ hC}

contains nonzero elements.
We choose a set Π+ of positive roots in Π which is compatible with Σ+, i.e. such that 

a root ε ∈ Π is positive when ε|a ∈ Σ+. Denote by b a fixed Cartan subalgebra of k. 
Moreover let Πk ((Πk)+) be the set of (positive) roots of the pair (kC, bC).

The rank-one case: In this paper, we are restricting ourself to real rank-one groups G. 
In other words, we suppose that a is one-dimensional.

Rank-one symmetric spaces of the non-compact type are classified into three infi-
nite families – namely, the real, complex and quaternionic hyperbolic spaces – and one 
exceptional example, the octonionic hyperbolic plane.

Since G is of real rank one, the set Σ is either equal to {±α} or {±α, ±α/2}. Among 
the groups listed in the table in the introduction, only G = Spin(n, 1) has restricted 
root system {±α}. As a system of positive roots Σ+ we choose {α} and {α, α/2}. Then 
ρ = 1

2
(
mα + mα/2

2
)
α, where we set mα/2 = 0, if Σ = {±α}.

The Killing form B is positive definite on p, so 〈X, Y 〉 := B(X, Y ) defines a Euclidean 
structure on p and on a ⊂ p. For all λ ∈ a∗, let Hλ denote the unique element in a
such that 〈Hλ, H〉 = λ(H) for all H ∈ a. We extend the inner product to a∗ by setting 
〈λ, μ〉 := 〈Hλ, Hμ〉 for all λ, μ ∈ a∗. Further, we denote the C-bilinear extension of 〈·, ·〉
on a to a∗C by the same symbol. We identify a∗C to C by means of the isomorphism:

a∗C −→ C

λ �−→ λα := 〈λ,α〉
〈α,α〉

(9)

which identifies ρ with ρα := 1
2
(
mα + mα/2

2
)
.

Homogeneous vector bundles: We fix a finite-dimensional unitary representation 
(τ, Vτ ) of K. Let Eτ := X ×τ Vτ denote the homogeneous vector bundle over X. For 
the definition and properties of Eτ , we refer the reader to [48, §5.2 p. 114]. We write 
Γ∞(Eτ ) for the space of all smooth sections of Eτ . As proved in [48, §5.4 p. 119], there 
is an isomorphism between Γ∞(Eτ ) and

C∞(G, τ) := {f : G→ Vτ smooth | f(xk) = τ(k−1)f(x) for all x ∈ G and k ∈ K}

Set

C∞(G,K, τ, τ) := {F : G→ End(Vτ ) smooth | F (k1xk2) = τ(k−1
2 )F (x)τ(k−1

1 )

for all x ∈ G and k1, k2 ∈ K}
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The elements F ∈ C∞(G, K, τ, τ) are sometimes called the radial systems of sections of 
Eτ . The link with the sections comes by the fact that for every v ∈ Vτ , the function 
F (·)v is a smooth section of Eτ .

If τ is not irreducible then Eτ =
⊕
i

Eτi , where τi are the irreducible components of 

τ . Studying the sections of Eτ amounts to studying the sections of each bundle Eτi. We 
can therefore suppose without loss of generality that τ is irreducible.

We notice that if τ is the trivial representation “triv” of K on the one-dimensional 
vector space C, then the sections of Etriv are the functions on G/K. They can be seen as 
right-K-invariant functions on G. Moreover, in this case, the radial systems of sections 
agree with the K-bi-invariant functions on G. We will refer to this situation as the scalar 
case.

Principal series representations: Let M̂ be the set of all equivalence classes of irre-
ducible unitary representations of M . For (σ, Vσ) ∈ M̂ and λ ∈ a∗C, we denote by 
πσ
λ := IndG

MAN (σ ⊗ eiλ ⊗ triv) the induced representation from MAN to G by the rep-
resentation σ ⊗ eiλ ⊗ triv. We will use the same notation for its derived representation 
of g, too. The representation space H σ

λ of πσ
λ is the Hilbert space completion of

{f : G→ Vσ | f(xman) = a−iλ−ρσ(m−1)f(x) for all x ∈ G, m ∈M, a ∈ A and n ∈ N}
(10)

with respect of the L2 inner product

〈f, g〉σ :=
∫
K

〈f(k), g(k)〉Vσ
dk ,

where 〈·, ·〉Vσ
is an inner product on Vσ making σ unitary. The action of πσ

λ on H σ
λ is 

given by

πσ
λ(g)f(x) := f(g−1x)

for all g, x ∈ G and f ∈ H σ
λ . The set {πσ

λ | λ ∈ a∗C, σ ∈ M̂} is called the minimal 
principal series of G.

The compact picture of the principal series representations is obtained by restriction 
of the elements of H σ

λ to K. Its representation space, which we denote by H σ, is the 
Hilbert completion of:

{f : K → Vσ | f(km) = σ(m−1)f(k) for all k ∈ K, m ∈M}

with respect to the L2 inner product. It is independent of λ. The action is given by:

πσ
λ(g)f(k) := e−(iλ+ρ)H(g−1k)f(k(g−1k))
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for all g ∈ G, k ∈ K and f ∈ H σ. The representation πσ
λ is unitary for λ ∈ ia∗. In 

the following, when working with principal series, we actually work with their Harish-
Chandra modules. The restriction of πσ

λ to K is the representation IndK
M σ of K induced 

from σ. In particular, because of the Frobenius reciprocity theorem, for any τ ∈ K̂:

m(τ, πσ
λ |K) = m(σ, τ |M ) .

Here the symbol m(β, α) denotes the multiplicity of the irreducible representation β in 
the representation α. We say that τ is a K-type of πσ

λ if it occurs in πσ
λ |K . We say that 

τ is a minimal K-type of an admissible representation π of G if and only if its highest 
weight μ minimises the Vogan norm

‖μ‖V := 〈μ + 2ρK , μ + 2ρK〉

in the set of K-types of π. Here 2ρK is the sum of positive roots of the pair (kC, hC|kC). 
[45, Theorem 1] ensures that each minimal K-type τmin has multiplicity one in πσ

λ . 
Therefore there exists a unique irreducible subquotient J(σ, λ, μ) of πσ

λ containing τmin .

Homogeneous differential operators: A homogeneous differential operator D on Eτ is 
a linear differential operator from Γ∞(Eτ ) to itself which is invariant under the G-action 
by left translations, that is

L(g)D = DL(g) for all g ∈ G . (11)

The set of homogeneous differential operators on Eτ is an algebra with respect to com-
position. We denote it by D(Eτ ). It acts on C∞(G, τ) because of the isomorphism with 
the space smooth sections Γ∞(Eτ ). Unlike in the scalar case, i.e. when τ is the trivial 
representation, this algebra need not be commutative. Conditions equivalent to the com-
mutativity of D(Eτ ) are stated in [9, Proposition 2.2] and [43, Proposition 3.1]. In the 
rank one case, this algebra is always commutative when G is Spin(n, 1) or SU(n, 1). See 
for instance [9, Theorem 2.3]. The structure of D(Eτ ) can be found in [39, Section 2.2].

Let U(gC) be the universal enveloping algebra of the complexification gC of g. Each 
element of U(gC) induces a left-invariant differential operator on G by:

(
X1 · · ·Xk · f

)
(g) := ∂

∂t1

∂

∂t2
· · · ∂

∂tk
f(g exp t1X1 exp t2X2 · · · exp tkXk)

∣∣∣
t1=...=tk=0

(12)
for all X = X1 · · ·Xn ∈ U(gC), f ∈ C∞(G) and g ∈ G.

Let U(gC)K denote the subalgebra of the elements in U(gC) which are invariant under 
the adjoint action Ad of K. The elements of U(gC)K act on C∞(G, τ) as homogeneous 
differential operators. As K is compact, Theorem 1.3 in [34] ensures that each element of 
D(Eτ ) can be written as an element of U(gC)K . But there is no isomorphism in general.

We can extend this action to the set of radial systems of section C∞(G, K, τ, τ) by 
setting:
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(
D · φ

)
v := D · (φ · v)

for all D ∈ U(gC), φ ∈ C∞(G, K, τ, τ) and v ∈ Vτ .

The Laplace operator: Let {X1, . . . , Xdim g} be any basis of g. We denote by gij the ij-
th coefficient of the inverse of the matrix 

(
B(Xi, Xj)

)
1≤i,j≤dim g

, where B is the Killing 
form. The Casimir operator is defined by

Ω :=
∑

1≤i,j≤dim g

gijXjXi .

If 
(
Xk

)
k=1,...,dim k

and 
(
Xk

)
k=dim k+1,...,dim g

are respectively orthonormal basis of k and 
p with respect to Bθ, then:

Ω = −
dim k∑
i=1

X2
i +

dim g∑
i=dim k+1

X2
i .

In fact, Ω is in the centre of U(gC). The invariant differential operator corresponding 
−Ω is the positive Laplacian Δ.

We can extend any representation of g to gC by linearity and to a representation of 
the associative algebra U(gC). These representations will always be denoted by the same 
symbol. Since Ω is in the centre of U(gC), the linear operator πσ

λ(Ω) is an intertwining
operator of the representation πσ

λ for all λ ∈ a∗C and σ ∈ M̂ . Lemma 4.1.8 in [47] ensures 
that πσ

λ(Ω) acts by a scalar. To compute this scalar, one can use [30, Proposition 8.22 
and Lemma 12.28], and get that:

πσ
λ(Ω) =

(
− 〈λ, λ〉 − 〈ρ, ρ〉+ 〈μσ + ρm, μσ + ρm〉

)
Id . (13)

Here μσ is the highest weight of σ and ρm is the half sum of the positive roots ε ∈ Π+

such that ε|a = 0.

2. The vector-valued Helgason-Fourier transform and spherical functions of type τ

In this section we review some basic facts on Camporesi’s extension of the Helgason-
Fourier transform to homogeneous vector bundles. We refer the reader to [8] for more 
information.

We keep the notations of the introduction. In particular, since we suppose that G is of 
real rank one, in the Plancherel formula only (minimal) principal series representations, 
and if G 
= Spin(2n + 1, 1), discrete series representations occur.

Let (τ, Vτ ) be an irreducible unitary representation of K. Let

M̂(τ) := {σ ∈ M̂ | m(σ, τ |M ) ≥ 1}
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denote the set of unitary irreducible representations of M which occur in the restriction 
of τ to M . We will denote by dγ the dimension of a representation γ. For σ ∈ M̂(τ), let 
Pσ be the projection of Vτ onto the subspace of vectors of Vτ which transform under M
according to σ. Explicitly,

Pσ = dσ

∫
M

τ(m−1)χσ(m) dm , (14)

where χσ denotes the character of σ.
We denote by pσ(λ) the Plancherel density associated to the principal series repre-

sentation πσ
λ . Recall the Iwasawa decomposition (7) of x ∈ G. Let C∞

c (G, τ) be the 
space of compactly supported functions in C∞(G, τ). According to [8, Theorem 1.1], the 
vector-valued Helgason-Fourier transform of f ∈ C∞

c (G, τ) is the function from a∗C ×K

to Vτ defined by

f̃(λ, k) :=
∫
G

F iλ−ρ(x−1k)∗f(x) dx . (15)

Here, for μ ∈ aC and x ∈ G,

Fμ(x) := eμ(H(x))τ(k(x)) (16)

and ∗ denotes the Hilbert space adjoint.
In the rank-one case, the inversion formula is

f(x) = 1
dτ

∑
σ∈M̂(τ)

∫
a∗

∫
K

F iλ−ρ(x−1k) Pσ f̃(λ, k) pσ(λ) dλ dk

+
∑

γ∈DG

Cγ

∫
K

F−iμ−ρ(x−1k) Pγ′ f̃(iμ, k) dk (17)

Here μ ∈ a∗ and γ′ ∈ M̂ are chosen so that γ is infinitesimally equivalent to a subrep-
resentation of IndG

MAN (γ′ ⊗ eμ ⊗ triv). Moreover, Cγ is a suitable constant depending 
on γ. The set DG is the set of discrete series of G. It consists of all irreducible unitary 
representations of G such that all its matrix coefficients are in L2(G).

The second sum term is called the discrete part of the Plancherel formula. In the 
following, we will disregard this term. In fact, only the first term, i.e. the continuous 
part of the Plancherel formula, can contribute to the resonances, by means of the poles 
of the Plancherel density.

As a consequence not involving discrete series, Parseval’s formula for the continuous 
spectrum reads as follows: for f, h ∈ C∞

c (G, τ)



S. Roby / Advances in Mathematics 408 (2022) 108555 15
〈f, h〉c =
∑

σ∈M̂(τ)

1
dσ

∫
a∗

∫
K

〈Pσf̃(λ, k), Pσh̃(λ, k)〉 pσ(λ) dλ dk , (18)

where the index c underlines that we are only considering the contribution from the 
continuous spectrum. See [8, p. 286]. On the right hand side of (18), 〈·, ·〉 denotes the 
inner product on Vτ making τ unitary. The corresponding norm will be denoted by 
‖u‖ :=

√
〈u, u〉.

We will also need a vector-valued analogue of Harish-Chandra’s spherical functions 
on a non-compact reductive Lie group. These vector-valued functions were introduced 
by Godement [16] and Harish-Chandra [19]. They depend on the fixed representation τ
of K and on a representation of the principal series indexed by σ ∈ M̂(τ) and λ ∈ a∗C.

Keep the above notation for the principal series. Let Pτ denote the projection of H σ
λ

onto its subspace of vectors which transform under K according to τ , that is,

Pτ := dτ

∫
K

πσ
λ(k)χτ (k−1) dk . (19)

Definition 2.1. The spherical function ϕσ,λ
τ is defined as the End(Vτ )-valued function on 

G given by

ϕσ,λ
τ (x) := ϕ

πσ
λ

τ (x) := dτ

∫
K

τ(k)ψσ,λ
τ (xk−1) dk , (20)

where

ψσ,λ
τ (x) := Tr

(
Pτπ

σ
λ(x)Pτ

)
. (21)

Let HomK(H σ
λ , Vτ ) be the space of K-intertwining operators between πσ

λ|K and τ . 
We equip this space with the scalar product 〈P, Q〉 := 1

dτ
Tr(PQ∗), where ∗ denotes the 

adjoint. We fix an orthonormal basis {Pξ}ξ=1,...,m(σ,τ |M ) of this space. Then

ϕσ,λ
τ (g) =

m(σ,τ |M )∑
ξ=1

Pξ πσ
λ(g) P ∗

ξ . (22)

See pp. 268–269 and 273 in [8].

Lemma 2.1. The spherical functions ϕσ,λ
τ are even functions of λ ∈ a∗ for all σ.

Proof. Due to Lemma 3.1 in [9], the spherical functions ϕσ,λ
τ are in one-to-one corre-

spondence with their traces. Now Tr(ϕσ,λ
τ ) = m(σ, τ |M ) χτ ∗ Θσ

λ, where χτ and Θσ
λ

are the respective characters of τ and πσ
λ . Lemma 4, page 162, in [18] gives us that 

Θσ
λ = Θ−σ

−λ because −1 is in the Weyl group. As −1 acts trivially on M (so on σ), the 
lemma follows. �
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The spherical function ϕσ,λ
τ can be described as an Eisenstein integral (see [8, Lemma 

3.2]),

ϕσ,λ
τ (x) = dτ

dσ

∫
K

τ(k(xk)) Pσ τ(k−1) e(iλ−ρ)(H(xk)) dk . (23)

Notice that ϕσ,λ
τ satisfies ϕσ,λ

τ (k1xk2) = τ(k1)ϕσ,λ
τ (x)τ(k2) for every x ∈ G and k1, k2 ∈

K. The convolution with a function f ∈ C∞
c (G, τ) is defined by:

(ϕσ,λ
τ ∗ f)(x) := dτ

dσ

∫
G

ϕσ,λ
τ (x−1g)f(g) dg . (24)

According to [8, Proposition 3.3], it can be expressed in terms of the vector-valued 
Helgason-Fourier transform of f :

(ϕσ,λ
τ ∗ f)(x) = dτ

dσ

∫
K

F iλ−ρ(x−1k) Pσ f̃(λ, k) dk . (25)

Lemma 2.2. The spherical functions ϕσ,λ
τ are joint eigenfunctions of the homogeneous 

differential operators on Eτ . Moreover, for all z ∈ Z(gC), the centre of U(gC), we have

z · ϕσ,λ
τ = γ(z)(iλ− μσ − ρm) ϕσ,λ

τ . (26)

Here γ is the Harish-Chandra homomorphism described in [30, Chapter VIII, paragraph 
5] and μσ is the highest weight of σ.

Proof. In fact, the function Ψλ defined in [51] by

Ψλ(nak) := τ(k−1)aλ+ρ, with k ∈ K, a ∈ A, n ∈ N,

is nothing but the function x �→ F−λ−ρ(x−1) defined in (16). Hence [51, Proposition 1.3, 
Corollary 1.4 and Theorem 1.6] allows us to prove (26). �
Remark. For the Casimir operator, the eigenvalue is given by (13):

γ(Ω)(iλ− μσ − ρm) = −〈λ, λ〉 − 〈ρ, ρ〉+ 〈μσ + ρm, μσ + ρm〉 (27)

To compute the resonances of the Laplacian, we need to describe the vector-valued 
Helgason-Fourier transform of functions on C∞

c (G, τ).
By the Cartan decomposition, we can uniquely write an element x ∈ G as x = k expX, 

with k ∈ K and X ∈ p. For X ∈ p, we write |X| := B(X, X)1/2. Define the open ball 
centred at 0 and of radius R > 0 in a ⊂ p by
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Ba
R := {X ∈ a

∣∣ |X| < R} .

Moreover, we denote the geodesic distance between o = eK in xK by d(o, xK). Let

BR := {x ∈ G
∣∣ d(o, xK) ≤ R} .

We fix an orthonormal basis {e1, . . . , edτ
} of Vτ , then we define

||f̃(λ, k)||2 :=
dτ∑
i=1
〈f̃(λ, k), ei〉2 .

The direct implication of the Paley-Wiener theorem for C∞
c (G, τ) is given by the follow-

ing lemma.

Lemma 2.3. Let f be in C∞
c (G, τ) and R > 0. If supp f ⊂ BR, then f̃(λ, k) is an entire 

function of λ ∈ a∗C for all N ∈ N:

sup
λ∈a∗

C,k∈K
e−R |	(λ)|(1 + |λ|)N ||f̃(λ, k)|| <∞ (∗)

Proof. Using the integration formula with respect to the Iwasawa decomposition G =
ANK (for example in [20, Ch. I §5 Corollary 5.3]), one can prove that for all f ∈
C∞

c (G, τ)

f̃(λ, k) = Fa

(
Lk−1 f̂

)
. (28)

Here λ ∈ a∗ and k ∈ K,

f̂(g) := eρ(H(g))
∫
N

f(gn)dn

is called the Radon transform of f and

Fa(φ)(λ) =
∫
a

φ(X)eiλ(X) dX (29)

the Fourier transform on a for φ ∈ C∞
c (a) and λ ∈ a∗. Recall that the Euclidean Paley-

Wiener theorem ensures that Fa(φ) is an entire function of exponential type and rapidly 
decreasing, i.e. if suppφ ⊂ Ba

R then

∀N ∈ N, ∃CN ≥ 0, so that |Fa(φ)(λ)| ≤ CN (1 + |λ|)−NeR |	(λ)|

Define f̂i(·) := 〈f̂(·), ei〉. Then f̂i is an smooth function.
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The idea of the proof is as follows:

supp f ⊂ BR

2
=⇒ suppLk−1 f̂i ⊂ Ba

R

1
⇐⇒ (∗)

1 Since sup
i=1,...,dτ

|〈 · , ei〉| is a norm on Vτ and since all norms on Vτ are equivalent, 

(∗) is equivalent to

sup
λ∈a∗

C, k∈K, i=1,...,dτ

e−R|	λ|(1 + |λ|)N |〈f̃(λ, k), ei〉| <∞ .

Moreover, by (28), this is also equivalent to

sup
λ∈a∗

C, k∈K, i=1,...,dτ

e−R|	λ|(1 + |λ|)N |FA

(
Lk−1 f̂i

)
(λ)| <∞ .

In turn, by the Paley-Wiener theorem for the Fourier transform on a, this is equiv-
alent to suppLk−1 f̂i ⊂ Ba

R as a function on a for every i and for every k ∈ K.
2 Suppose supp f ⊂ BR and let X /∈ Ba

R. For all k ∈ K and n ∈ N , due to [20, 
Chapter IV, (13)]:

d(o, keXnK) >
∣∣H(keXn)

∣∣ = |X| ≥ R

So keXn /∈ BR ⊃ supp f and then f̂i(keX) = 0 for every i which implies that 
X /∈ suppLk−1 f̂i. �

From Lemma 2.3 using (25) and the fact that K is compact, we obtain the following 
corollary.

Corollary 2.1. For every function f ∈ Cc(G, τ), the convolution product ϕσ,λ
τ ∗ f is an 

even entire function of λ ∈ a∗C with the property that there exists a constant r > 0 such 
that for all N ∈ N the following inequality holds:

sup
λ∈a∗

C

e−r|	λ|(1 + |λ|)N ||ϕσ,λ
τ ∗ f || <∞ . (30)

3. Computation of the resonances

In this section, we prove Theorem 1. We recall that the resonances of the positive 
Laplace operator Δ are defined as the poles of the meromorphic continuation of its 
resolvent (Δ − z)−1 considered as an operator defined on C∞

c (G, τ). We know thanks 
to Lemma 2.2 that the spherical functions ϕσ,λ

τ are eigenfunctions of Δ for eigenvalue 
M(σ, λ) := 〈λ, λ〉 + 〈ρ, ρ〉 − 〈μσ + ρm, μσ + ρm〉. The Plancherel theorem (17) gives us a 
decomposition of L2(G, τ) into a continuous and, possibly, a discrete part:
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L2(G, τ) = L2
cont(G, τ)⊕ L2

discr(G, τ)

By a slight abuse of notation, we identify R(z) with its restriction to the set L2
cont(G, τ) ∩

C∞
c (G, τ). The reader will notice that the discrete part we are omitting brings no addi-

tional resonances.

Lemma 3.1. Let z ∈ C \ [〈ρ, ρ〉, +∞[. The function R(z) can be written

R(z) = 1
dτ

∑
σ∈M̂(τ)

Rσ(ζσ) (31)

for all f ∈ C∞
c (G, τ) where

Rσ(ζσ)f(x) = 1
|α|

∫
R

1
λ|α| − ζσ

(
ϕσ,λα
τ ∗ f

)
(x) pσ(λα)

λ
dλ (32)

and ζσ is defined in (4).

Proof. Let f ∈ C∞
c (G, τ). Due to the inversion of the vector-valued Helgason-Fourier 

transform (17) and the formula (25) for the convolution product between ϕσ,λ
τ and f ∈

L2
cont(G, τ) ∩ C∞

c (G, τ), we have

f(x) = 1
dτ

∑
σ∈M̂(τ)

∫
a∗

(
ϕσ,λ
τ ∗ f

)
(x) pσ(λ) dλ

Because of Lemma 2.3, we know that ϕσ,λ
τ ∗ f is a rapidly decreasing smooth function. 

So by Lemma 2.2,

R(z)f = 1
dτ

∑
σ∈M̂(τ)

∫
a∗

(
(Δ− z)−1ϕσ,λ

τ ∗ f
)
(x) pσ(λ) dλ

= 1
dτ

∑
σ∈M̂(τ)

∫
a∗

(M(σ, λ)− z)−1
(
ϕσ,λ
τ ∗ f

)
(x) pσ(λ) dλ .

Computing R(z) is then equivalent to compute for each σ ∈ M̂(τ)

Rσ(z) :=
∫
a∗

(M(σ, λ)− z)−1
(
ϕσ,λ
τ ∗ f

)
(x) pσ(λ) dλ

As the values of μσ, ρ and ρM are constant we can introduce the variable ζσ defined in 
(4). Finally, changing the variable with the isomorphism (9) between a∗C and C:

Rσ(ζσ)f(x) :=
∫

(ζ2
σ − λ2|α|2)−1

(
ϕσ,λα
τ ∗ f

)
(x) pσ(λα) dλ
R
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Notice that we are using the same symbol λ for the variable in a∗ and the corresponding 
value λα ∈ R. Since the function ϕσ,λ

τ is even in λ the same computation as in [23, 
Lemma 2.4] yields the formula (32). �

Morera’s theorem ensures that the function Rσ( · )f(x) is holomorphic in ζσ ∈ C \R. 
We want to extend meromorphically Rσ( · )f(x) from one half-plane to the other. 
To fix notation, we will consider Rσ( · )f(x) as a function defined on the upper half 
plane 
(ζ) > 0. We will find the meromorphic continuation of this function to C by 
shifting the contour of integration in the direction of the negative imaginary axis and 
by applying the residue theorem. The poles of the Plancherel density give then poles 
of the meromorphic continuation. That is why, if the Plancherel density has no poles, 
so does the meromorphic continuation, and the Laplacian has no resonances (as for 
G = Spin(2n + 1, 1)).

The formula of Plancherel density is given in Appendix A (equations (69), (70), (72)
and (73)) for each of the rank-one groups G. The following proposition unifies the case-
by-case formulas found in the literature. The proof is a direct computation.

Proposition 3.1. Let G be of real rank-one. Set

mα := 1
2(mα/2 + mα − 1) .

Then the Plancherel density is given by the following formula:

pσ(λα) = (−1)s λ tanh
(
πλ + 3πsi

2

) mα∏
j=1

(
λ2 +

(
b̃j + ρα − j

)2
)

(33)

where

s :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2b1 if G = Spin(2n, 1)

2b0 + n− 1 if G = SU(n, 1)

2b0 if G = Sp(n, 1)

2b1 if G = F4

(34)

and

b̃j :=

⎧⎪⎪⎨⎪⎪⎩
bj if G = Spin(2n, 1)

bj+1 − b0 if G = SU(n, 1)

−b0 − 1 + sign(n− j)b if G = Sp(n, 1)

(35)
n+1−|j−n|
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−i(b̃1 + ρα − 1)•
−i(b̃2 + ρα − 2)•

•
−i(b̃3 + ρα − 3)•

−i(b̃mα−2 + ρα −mα + 2)•
−i(b̃mα−1 + ρα −mα + 1)•
−i(b̃mα + ρα −mα)•

•
•
•

poles

Fig. 1. Example of poles with b̃2 = b̃3 + 1 for SO(2n, 1).

If G = F4 the exceptional case, then

(̃b1, . . . , b̃7) := (b1+b2+b3, b1+b2−b3, b1/2, b2/2, b3/2, −b1+b2+b3, −b1+b2−b3)
(36)

Here the bj ’s are the coefficients of the highest weight of σ. We refer the reader to 
Appendix A to see the computations.

Remark. To make the computations in each of the four cases, one needs the following 
table:

G K Σ+ mα/2 mα ρα mα

Spin(2n, 1) Spin(2n) {α} 0 2n − 1 n − 1
2 n − 1

SU(n, 1) S(U(n) × U(1)) {α/2, α} 2n − 2 1 n
2 n − 1

Sp(n, 1) Sp(n) {α/2, α} 4n − 4 3 n + 1
2 2n − 1

F4 Spin(9) {α/2, α} 8 7 11
2 7

Suppose s even: The formula (33) contains tanh(πλ), which has first order poles at 
λ ∈ i 

(
Z+ 1

2
)
. Since s is even, the b̃j + ρα − j are in Z + 1

2 . Hence the zeros of the 

polynomial part of pσ(λα)
λ are the elements

{
±i(̃bj + ρα − j) | j = 1, . . . ,mα

}
. (37)

Thus the Plancherel density has simples poles in the complement of this set in i(Z + 1
2 )

(Fig. 1).

Suppose s odd: The formula (33) contains coth(πλ), with simple poles at λ ∈ iZ. 
Since s is odd, the b̃j + ρα − j are in Z. Thus the poles of the Plancherel density are 
simple and located in the complement of the set (37) in iZ (Fig. 1).
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−i(b̃1 + ρα − 1)•
−i(b̃2 + ρα − 2)•

•©
−i(b̃3 + ρα − 3)•

−i(b̃mα−2 + ρα −mα + 2)•
−i(b̃mα−1 + ρα −mα + 1)•
−i(b̃mα + ρα −mα))•

•©
•©
•©

R•−R•

−i(N + 1
4 )

•© poles

Fig. 2. Shift of contour and residue theorem for SO(2n, 1).

Let

ρσ := max(|̃b1 + ρα − 1|, |̃bmα + ρα −mα|) . (38)

All the values of the form −i(ρσ+k), with k ∈ N, are poles of the Plancherel density. Let 
us view Rσ as the D′(X)-valued holomorphic function on 
(ζσ) > 0 defined in (32). We 
want determine the meromorphic continuation of this function through the real axis. For 
this we are shifting the contour of integration in the direction of the negative imaginary 
axis as in Fig. 2 above. Due to Corollary 2.1, the convolution product is rapidly decreasing 
in λ. Then we just need to bound the expression 

∣∣∣(λ|α| − ζσ)−1 pσ(λα)
λ

∣∣∣ from above by 

a polynomial in |λ|, to make the two integrals along the vertical segments between −R
and −R − i(N + 1

4 ) and between R and R − i(N + 1
4 ) tend to 0 when R goes near 

infinity. For |�(λ)| near to infinity and 
(ζσ) > 0, we have 
∣∣(λ|α| − ζσ)−1

∣∣ < 
(ζσ)−1

and 
∣∣∣pσ(λα)

λ

∣∣∣ < (1 + |λ|)deg(pα)+1, where pα is the polynomial part of pσ. So the shift is 
allowed for all N ∈ N.

Let Nσ be the set of k ∈ Z such that

λk := −i(ρσ + k) (39)

is a pole of the Plancherel density (33) and ρσ + k ≥ 0. The residue theorem ensures us 
that for all N ∈ N and ζσ with 
(ζ) > 0:

(Rσ(ζσ)f) (x) = 1
|α|

∫
R−i(N+1/4)

1
λ|α| − ζσ

(
ϕσ,λα
τ ∗ f

)
(x) pσ(λα)

λ
dλ

+ 2iπ
|α|

∑
k∈Nσ

ρσ+k>N+1/4

1
λk|α| − ζσ

(
ϕσ,λkα
τ ∗ f

)
(x) Res

λ=λk

pσ(λα)
λ

(40)
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The right-hand side of this formula yields a meromorphic continuation of the resolvent 
of the Laplace operator on 
(ζ) > −(N + 1/4). The singular values of the Plancherel 
density induce then poles of the meromorphic continuation of the resolvent of the Laplace 
operator. If we resume the notation in the expression (4): z = ζ2

σ +〈ρ, ρ〉 −〈μσ +ρM , μσ +
ρM 〉. This proves Theorem 1.

4. Residue representations

We consider C∞(G, τ) as a G-module by left-translations. One can see that for each 
σ ∈ M̂(τ) and for each k ∈ Nσ, the residues at λk in the meromorphic continuation (40)
span a G-invariant subspace of C∞(G, τ) if f ∈ C∞

c (G, τ). This is exactly the image of 
the G-intertwining map:

Rσ
k : C∞

c (G, τ) −→ C∞(G, τ)
f �−→ ϕσ,λk

τ ∗ f (41)

We denote this space by

E σ
k := {ϕσ,λk

τ ∗ f | f ∈ C∞
c (G, τ)} . (42)

We want to identify these representations in terms of Langlands parameters, decide which 
of them are unitarizable and compute their wave front sets. The idea is to decompose 
Rσ

k as follows:
Recall the notation (πσ

λk
, H σ

λkα
) for the principal series representation corresponding 

to σ and λkα. The (τ, Vτ )-isotypic component of H σ
λkα

decomposes as a direct sum 
of m(σ, τ |M ) irreducibles. We parameterised by index l = 1, . . . , m(σ, τ |M ). We denote 
by Pl, for l = 1, . . . , m(σ, τ |M ), the projection of H σ

λkα
on the l-th K-type, which we 

identify with (τ, Vτ ). In other words, {Pl}l=1,...,m(σ,τ |M ) is a basis of HomK(H σ
λkα

, Vτ ). 
We get the following decomposition of the residue operator Rσ

k as a composition of two 
G-intertwining map:

Rσ
k : C∞

c (G, τ) →H σ
λkα

→ C∞(G, τ)
f �→ Tl(f) �→

∑
l

Pl π
σ
λkα

( · −1)
(
Tl(f)

) (43)

where Tl is the map from C∞
c (G, τ) to H σ

λkα
defined by

Tl(f) :=
∫
G

πσ
λk

(g)
(
P ∗
l f(g)

)
dg . (44)

Here ∗ denotes the Hermitian adjoint. Hence, P ∗
l maps Vτ into the principal series and 

is K-equivariant.
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Lemma 4.1. Tl is an intertwining operator between the left regular representation on 
C∞

c (G, τ) and the principal series representation (πσ
λk
, H σ

λkα
). Moreover, for each l the 

range of the map Tl is the closed subspace of H σ
λkα

spanned by the left translates of P ∗
l Vτ . 

We will denote this space by 〈πσ
λk

(G)P ∗
l Vτ 〉.

Proof. First of all, by definition, Tl

(
C∞

c (G, τ)
)

is contained in 〈πσ
λk

(G)P ∗
l Vτ 〉. Fix an 

element g0 of G and a vector v0 in Vτ . Let Cc(G)′ the space of distribution on G and let 
δg0 ∈ Cc(G)′ be the (scalar) Dirac delta at g0. Set δg0,v0 := δg0v0. Consider the operator 
on C∞

c (G, τ) defined by as the distribution f �→
∫
G

∫
K
τ(k)δg0,v0(gk)dk f(g)dg. Since 

P ∗
l is a K-intertwining operator between τ and πλk

|K , calculations show that

Tl

⎛⎝∫
K

τ(k)δg0,v0( · k) dk

⎞⎠ = πσ
λk

(g0)P ∗
l v0 .

Since the Dirac delta can be approximated by smooth compactly supported functions, 
each element of πσ

λk
(G)
(
P ∗
l Vτ

)
can be written as limit of elements of Tl

(
C∞

c (G, τ)
)
. This 

proves the lemma. �
Remark. Each map from H σ

λkα
to C∞

c (G, τ) defined by φ �→ Plπ
σ
λk

( · −1)φ is a 
G-intertwining operator between (πσ

λk
, H σ

λkα
) and the left regular representation on 

C∞
c (G, τ). It is known as the Poisson transform (see [39,51]).

The idea how to identify E σ
k is to compute the range of the map Tl, for each l, 

using Lemma 4.1. Knowing the composition series of H σ
λkα

, we can identify this range 
in this principal series and then project back with the Poisson transform, the second 
part of the map in (43). The main issue is that, even in rank-one the structure of the 
principal series representations is very complicated in general. See [14]. In this paper we 
will consider only the case when σ is the trivial representation of M . In this case the 
composition series is more transparent and the results have a pleasant uniform form. For 
example, τ occurs in πσ

λk
with multiplicity one. So, from now on, we fix an irreducible 

representation τ ∈ K̂ which contains the trivial representation of M . We study only the 
residue representations which arise from σ = trivM and we will denote it Ek := E trivM

k . 
Similarly, we set Rk := Rtriv

k and write T and P instead of Tl and Pl, respectively. The 
map in (43) becomes:

Rk : C∞
c (G, τ) → H triv

λkα
→ C∞(G, τ)

f �→ T (f) �→ P πtriv
λkα

( · −1)
(
T (f)

) (45)

where P is the projection onto the τ -isotypic component. The structure of the spherical 
principal series representations (πλ, Hλ) := (πtriv

λ , H triv
λ ) of our groups G has been 

studied by different authors (see e.g. [27–29,35]) for every G we are studying. Our main 
reference will be the paper of Howe and Tan [27] which provides an explicit description 
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of the subquotients of this principal series representation. We will treat the residue 
representations case by case. For each case, we compute the Langlands parameters of 
Ek, k ∈ Nσ.

Note on Langlands parameters: Let P = MPAPNP be the Langlands decomposi-
tion of a parabolic subgroup of G. Let σ be an irreducible tempered representation 
of MP and let ν ∈ a∗C such that �(ν) is in the open positive Weyl chamber. Then 
IndG

MPAPNP
(σ⊗eν⊗ triv), as a Harish-Chandra module, has unique irreducible quotient 

J(P, σ, ν). J(P, σ, ν) is called the Langlands quotient of the representation of the princi-
pal series, and each irreducible Harish-Chandra module is equivalent with a Langlands 
quotient. The parameters (P, σ, ν) are called the Langlands parameters. Suppose now 
that G is of real rank-one. Then up to conjugation there are just two parabolic sub-
groups containing the minimal parabolic subgroup MAN : G and MAN . Then for any 
irreducible admissible representation π of G, π belongs to the discrete series (when the 
parabolic subgroup is G) or there exists a pair (δ, ν) as follows. Let τmin be a minimal 
K-type in π. Then there exists δ such that τmin is also the minimal K-type in the in-
duced representation of δ to K. The parameter ν is the element of a∗C with a positive 
real part such that π is infinitesimally equivalent to J(MAN, δ, ν) in the principal series 
IndG

MAN (δ⊗ eν ⊗ triv). Of course, the two principal series IndG
MAN (δ⊗ e±ν ⊗ triv) have 

the same infinitesimal character and both contain π. J(MAN, δ, ν) is also the unique 
irreducible subquotient containing τmin as lowest K-type. For more explanations the 
reader can follow [47, Sections 4.1, 4.2, 6.5, 6.6].

4.1. Case of SO(2n, 1), n > 1

Let G = SO(2n, 1). The K-types of the spherical principal series representations are 
parametrised by m ∈ N and known as the space of spherical harmonics on R2n of 
homogeneous degree m, denoted by H m(R2n). Their highest weight is of the form mε1
with respect to the fundamental weights described in section A.1. Any representation τ
containing the trivial representations of M is of this form. From now on, let τ act on the 
harmonic polynomials on R2n of fixed homogeneous degree N :

Vτ �H N (R2n) .

As σ is trivial the poles in (39) of the Plancherel density ptrivM
inducing a residue 

representation are the λk = −i(ρα + k) = −i(n + k− 1/2) with k ∈ N. The composition 
series of Hλkα described in [27] is the following:

Hλkα �

1︷ ︸︸ ︷
k∑

P ∗
m

(
H m(R2n)

)
⊕

2︷ ︸︸ ︷∑
P ∗
m

(
H m(R2n)

)
(46)
m=0 m>k



26 S. Roby / Advances in Mathematics 408 (2022) 108555
where Pm is the projection of Hλkα onto the K-isotypic component isomorphic to 
H m(R2n). The action of g cannot send a K-type from the second summand to the 
first one.

Langlands parameters of Ek. In Fig. 3 below, each bullet corresponds to one K-type of 
the representation Hλkα, the abscissa of the bullet being the coefficient appearing in the 
highest weight of the K-type. The figure describes the two cases N ≥ k and N < k. The 
barrier at k + 1 and the arrows mean that the action of g cannot send a K-type which 
is on the right of k + 1 to a K-type which is on the left of k + 1.

Suppose that N ≥ k + 1: The image of T is the space spanned by the action of g on 
P ∗
m

(
H N (R2n)

)
. Since that action cannot cross the barrier at k + 1, the image of T is 

the infinite-dimensional irreducible representation∑
m>k

P ∗
m

(
H m(R2n)

)
The second map in (43) (the Poisson transform) is an intertwining operator. So its kernel 
is either 0 or the entire representation. Choosing a nonzero h ∈H N (R2n), the function 
PN πλkα( · −1)P ∗

m

(
h
)

has value h at eG. So the kernel of the Poisson transform is not 
the entire space, thus it is 0. Consequently Ek is 2 in (46).

Suppose that N ≤ k: Here the image of T is the entire representation Hλkα because 
the action of g can cross the barrier at k+1. The kernel of the second intertwining map in 
(45) is 2 in (46) by the same argument as before. It follows that Ek is the subquotient 
isomorphic to 1 in (46).

0
trivK • • • • • • • • •

k + 1

• • •••©

N

•••••••

Image of T

trivK • • • • •© • • • •

k + 1

• • ••••••••••

Image of TN0

Kernel of the
Poisson transform

Fig. 3. K-types in Hλkα and composition series for k = 7.
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Table 1
Langlands parameters of Ek when G = SO(2n, 1).

Case Minimal K-type δ Values of ν

N ≥ k + 1 H k+1(R2n) H k+1(R2n−1) ±
(
n − 3

2
)
α

N ≤ k trivK trivM iλk

The unitarity is given in [27, Diagram 3.15]. To identify the representations we deter-
mined, we compute their Langlands parameters. They are collected in Table 1.

The entries of Table 1 are computed as follows. Let μl be the highest weight of 
H l(R2n). A minimal K-type minimises the Vogan norm of the highest weight in Ek:

‖μl‖V = 〈μl + 2ρK , μl + 2ρK〉

where ρK is the half sum of positive roots in (Πk)+ (see Appendix A.1 for the definition). 
One can check that ‖μl‖V is minimal when l is minimal. This yields the first column of 
the table.

To find δ, one can use [4, Theorem 3.4]. The M -types in H l(R2n) have highest weight

μδ(a) := aε1

where a ∈ �0, k + 1�. We compare then the minimal K-type of IndK
M (μδ(a)) with that 

H l(R2n). They are the same if 
{

a = 0 , for 1
a = k + 1 , for 2

.

To find ν one has to compare the infinitesimal character of IndG
MAN (triv⊗eiλkα⊗triv)

and IndG
MAN (δ ⊗ eiν ⊗ triv). They have to agree up to the action of the Weyl group of 

(gC, hC). Theorem 2, 1., follows from these computations. By definition, the positive ν
corresponds to the a∗ part of Langlands parameters. �
4.2. Case of SU(n, 1), n > 1

Let now G = SU(n, 1). The structure of the spherical principal series is described for 
U(n, 1) in [27] but Molchanov finds the same result for SU(n, 1) in [35]. Consider the 
polynomial algebra in the variables {z1, . . . , zn, zn+1} ∈ Cn+1 as a real vector space. 
We choose the complex coordinates {z1, . . . , zn, zn+1, z1, . . . , zn, zn+1} as generators of 
this algebra over R. The K-types of the spherical principal series representations are the 
spaces

H m1,m2(Cn)⊗H l(C)

where H m1,m2(Cn) are the spherical harmonics on C2n of homogeneous degree m1 and 
m2 in the variables z1, . . . , zn+1 and z1, . . . , zn, zn+1, respectively. Moreover, the space 
H l(C) is defined for all integer l by:



28 S. Roby / Advances in Mathematics 408 (2022) 108555
H l(C) :=
{

H l,0(C) if l ≥ 0
H 0,−l(C) if l ≤ 0

Their highest weights are of the form m1ε1−m2εn−lεn+1 with respect to the fundamental 
weights described in section A.2. From now on, let

Vτ �H a1,a2(Cn)⊗H b(C) , (47)

so the highest weight of τ is

μτ = a1ε1 − a2εn − bεn+1 (48)

for fixed nonnegative integers a1, a2, a fixed integer b. From now on we call this represen-
tation τa1,a2,b. As σ is trivial the poles in (39) of the Plancherel density ptrivM

inducing 
a residue representation are the λk = −i(n2 +k) where k is a non-negative integer. Hence

Hλkα �
∑
l∈Z

m1,m2≥0
m1−m2+l=0

P ∗(H m1,m2(Cn)⊗H l(C)
)

(49)

where P := Pm1,m2,l is the projection of Hλkα onto the K-isotypic component isomorphic 
to the K-type H m1,m2(Cn) ⊗H l(C). One can see that the conditions in the sum in 
(49) imply that the pair (m1 +m2, l) determines the triple (m1, m2, l) and since m1 and 
m2 are nonnegative, −l ≤ m1 + m2 ≤ l for all l ∈ Z.

Langlands parameters of Ek. In Fig. 4, each bullet corresponds to one K-type of Hλkα, 
the coordinates of the point being the pair (m1 + m2, l) for the K-type H m1,m2(Cn) ⊗
H l(C). [27, Lemma 4.4] ensures us that the action of G cannot send a K-type to another 
constituent if it doesn’t follow the sense of the arrows. Thus the space is separated in 
four constituents. We denote these constituents North - East - South - West depending 
on their position. The figure describes the four cases when the K-type τa1,a2,b is in 
each constituent and is represented by the bullet (a1 + a2, b). The reader should recall 
Lemma 4.1 and (45).

Case 1 : a1 + a2 ≥ 2k + 2 and |b| ≤ −2k − 2 + a1 + a2
Since the action of G on the K-types cannot cross the barriers from the side out, the 
image of T is the entire East-constituent∑

m1,m2≥0, m1+m2≥2k+2
l∈Z, |l|≤−2k−2+m1+m2

m1−m2+l=0

P ∗(H m1,m2(Cn)⊗H l(C)
)
.

The Poisson transform is an intertwining operator. Hence its kernel, contained in 
an irreducible representation, is either 0 or the entire representation. Choosing a 
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Fig. 4. K-types in Hλkα and composition series for k = 1.

nonzero h ∈ H N (R2n), the function Pτa1,a2,b
πλkα( · −1)P ∗(h) has value h at eG. 

Thus Ek is equivalent as a representation to the image T .
Case 2 : b ≥ | − 2k − 1 + a1 + a2| + 1
From the North-constituent, the action of G can cross the barrier l = −2k − 2 + m

but not the barrier l = 2k + 2 −m. Thus the image of T is composed of two North 
and East-components:

∑
m1,m2≥0

l∈Z, l>2k+2−m1−m2

P ∗(H m1,m2(Cn)⊗H l(C)
)
.

m1−m2+l=0
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Table 2
Langlands parameters of Ek when G = SU(n, 1).

Case Minimal K-type δ Values of ν

1 (k + 1, 0, . . . , 0,−(k + 1), 0)

(
(k + 1), 0, . . . , 0,−(k + 1), 0

)
if n > 2

∅ if n = 2

±
(
n
2 − 1

)
α

if n > 2

2

(0, . . . , 0,−(k + 1), k + 1)
if k + 1 ≤ n − 1

(
⌊
k+2−n

2
⌋
, 0, . . . , 0,−(k + 1),

⌈
k+n

2
⌉
)

if k + 1 > n − 1

(
0, 0, . . . , 0,−(k + 1), (k + 1)/2

)
±
(
k
2 + n

2 − 1
2
)
α

3

((k + 1), 0, . . . , 0, k + 1)
if k + 1 ≤ n − 1

((k + 1), 0, . . . , 0,−
⌊
k+2−n

2
⌋
,
⌈
k+n

2
⌉
)

if k + 1 > n − 1

(
(k + 1), 0, . . . , 0, (k + 1)/2

)
±
(
k
2 + n

2 − 1
2
)
α

4 trivK trivM iλk

Following the proof in the previous case, one can conclude that the image of the 
Poisson transform is nonzero and that the North-constituent, where τa1,a2,b is, is not 
in the kernel of this map. Because of the barrier l = −2k − 2 + m the action of G
cannot bring a K-type from the East-constituent into the North-constituent. Thus 
the East-constituent is the kernel of the Poisson transform and Ek is equivalent to 
the subquotient of the North-East constituents modulo the East-constituent.
Case 3 : b ≤ | − 2k − 1 + a1 + a2| − 1
This case is completely symmetric to the previous one. The figure explains the result.
Case 4 : a1 + a2 ∈ [0, 2k + 2[ and b < |2k + 2 − a1 + a2|
τa1,a2,b is in the finite-dimensional West-constituent. From there, the action of G can 
send a K-type onto any other K-type in Hλkα. Thus the image of T is the entire 
spherical principal series representation. As in the previous cases, one can prove that 
the image of the Poisson transform is nonzero and that the West-constituent, where 
τa1,a2,b is, is not in the kernel of this map. Because of the two barriers, the action 
of g cannot bring a K-type from the others constituents into the West-constituent. 
This means that the image of the Poisson transform is the quotient

Hλkα

/ ∑
m1,m2≥0

l∈Z, |l|≥+2k+2−m1−m2
m1−m2+l=0

j−k−n

(
H m1,m2(Cn)⊗H l(C)

)

The four representations Ek we have found above are irreducible subquotients of Hλkα. 
Their unitarity is given in [27, Diagram 3.15]. We list their Langlands parameters in 
Table 2.

To compute the entries of Table 2, let μm1,m2,l be the highest weight of H m1,m2(Cn) ⊗
H l(C). The minimal K-type is obtained after minimising the Vogan norm of their 
highest weight in Ek:
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‖μm1,m2,l‖V = 〈μm1,m2,l + 2ρK , μm1,m2,l + 2ρK〉

where ρk is the half sum of positive roots in S+
kC

(see Appendix A.2 for the definition). 
Computations show that ‖μm1,m2,l‖V is minimal when (m1 +n −1)2 +(m2 +n −1)2 + l2

is minimal.
To find δ, one can use [4, Theorem 4.4]. We show the reasoning in case 1 . The 

minimal K-type τmin has highest weight

(k + 1)ε1 − (k + 1)εn

Suppose n > 2: The branching rules imply that

δ ∈ M̂(τmin )⇔ μδ = aε2 + bεn −
a + b

2 (εn+1 + ε1) ,

where 0 ≤ a ≤ k + 1 and 0 ≤ −b ≤ k + 1. But the minimal K-type of IndK
M (δ) is 

τmin only when a = k + 1 and b = −k − 1. So

μδ = (k + 1)ε2 + (k + 1)εn

Suppose n = 2: The difference with the case n > 2 is that there is no integer between 
1 and n. Here

δ ∈ M̂(τmin )⇔ μδ = aε2 + −a2 (ε1 + ε3) ,

where −(k+1) ≤ a ≤ k+1. One can prove that μ′ = aε1− aε3 is always the highest 
weight of a K-type in IndK

M (δ) with a smaller Vogan norm than τmin . So we get then 
discrete series representation. The Blattner parameter of the discrete series is the 
highest weight μτmin of its minimal K-type τmin . Its Harish-Chandra parameter is

Λk := μτmin + 2ρk − ρg = (k + 1)ε1 − kε2 − ε3 .

To find ν, one has to compare the infinitesimal characters of IndG
MAN (triv⊗eiλkα⊗ triv)

and of IndG
MAN (δ⊗ eiν ⊗ triv). They have to coincide up to the action of the Weyl group 

of (gC, hC). For Case 1 , one gets respectively the infinitesimal characters

(n
2 + k

)
(ε1 − εn+1) + 1

2

n∑
j=2

(n− 2i + 2)εi

and

να(ε1 − εn+1) +
(n

2 + k
)
ε2 + 1

2

n−1∑
(n− 2i + 2)εi +

(
−n

2 − k
)
εn
j=3
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The (complex) Weyl group permutes the εi’s, so ν = ± 
(
n
2 − 1

)
α. The theorem follows 

from similar computations in other cases. By definition, the positive ν corresponds to 
the a∗ part of Langlands parameters. �

Remark. Since the multiplicity of τ in H δ
ν is 1 (see for instance [32]) for these two first 

cases, the residue representation can be identified as the unique irreducible subquotient 
of H δ

ν containing τ .

4.3. Case of Sp(n, 1), n > 1

Let G = Sp(n, 1). We recall that K = Sp(1) ×Sp(n). Up to equivalence there a unique 
representation of Sp(1) = SU(2) of dimension j + 1 for all nonnegative integer j. Denote 
this representation by θj , acting on the space V j

1 . Denote by V m1,m2
n the irreducible 

representation of Sp(n) with highest weight (m1, m2, 0, . . . , 0) where m1 ≥ m2 ≥ 0 (see 
[53, Theorem 6 page 327]).

As σ is trivial the poles in (39) of the Plancherel density ptrivM
inducing a residue 

representation are the λk = −i(n + 1
2 + k) with k ∈ N. The spherical principal series 

representation decomposes over K as follows:

Hλkα �
∑

m1≥m2≥0,
l=m1−m2

P ∗(V m1,m2
n ⊗ V m1−m2

)
(50)

where P := Pm1,m2 is the projector in Hλkα on the K-irreducible representation iso-
morphic to V m1,m2

n ⊗ V m1−m2
1 . These conditions imply that a fixed pair (m, l) =

(m1 + m2, m1 − m2) represents a K-type V m1,m2
n ⊗ V m1−m2

1 . The highest weight of 
V m1,m2
n ⊗V l

1 can be computed as m1ε1 +m2ε2 + |l|εn+1 with respect to the sets of roots 
in (A.3). Let τ be V a1,a2

n ⊗ V b
1 . From now on we call this representation τa,b, where 

a = a1 + a2.

Langlands parameters of Ek. To understand the composition series of the representation 
Ek, we have now to know how p acts on its K-types. This action is given in [27, Lemma 
5.3]. The diagram 5.18 in that paper give us the different cases.

We can follow the method used for G = SO(2n, 1) or SU(n, 1) putting the K-types 
of Hλkα in the same two-dimensional space corresponding to the points of coordinates 
(m, l) = (m1 + m2, m1 − m2). Notice that here each point in Fig. 5 corresponds then 
to a fibre of K-types. We refer to [27, Lemma 5.4] for more details. Fig. 5 illustrates 
the computation of the residue representation Ek. Two barriers cross the set of K-types. 
These separate the space Hλkα in three constituent. The figure shows the three cases
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Fig. 5. K-types in Hλkα and composition series for k = 1.

where the K-type τa,b is in each constituent. The arguments are the same as in the case 
of SU(n, 1). Naming the constituent North, West ant East according to their position, 
one gets the following equivalences:

Ek �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
East-constituent if b ≤ −2k − 4 + a

North-East-constituents
/

East-constituent if b ≥ | − 2k − 2 + a|

Hλkα

/
North-East-constituents if b < 2k + 2− a

(51)

The three representations Ek we have found above are irreducible subquotients of 
Hλkα. Their unitarity is given in [27, Diagram 3.15]. We find the following results using 
Proposition 3.1 in [5]:

Table 3
Langlands parameters of Ek when G = Sp(n, 1).

Case Minimal K-type δ Values of ν

1 (k + 2)ε1 + (k + 2)ε2 (k + 2)e3 + (k + 2)e4 ±
(
n − 3

2
)
α

2 (k + 1)ε1 + (k + 1)εn+1
(k + 1)e3 + k+1

2 (e1 − e2) if k ≤ 2n − 4
∅ if k > 2n − 4

±
(
k
2 + n

)
α

if k ≤ 2n − 4

3 trivK trivM iλk

We indicate how to compute the entries of this table. By definition, the positive ν
corresponds to the a∗ part of Langlands parameters. In case 2 , for k > 2n − 4, one 
cannot find a representation δ following the conditions of the Langlands parameters. 
We conclude that Ek is in the discrete series in these cases. Their Blattner parameter 
is the highest weight of the minimal K-type, which is (k + 1)ε1 + (k + 1)εn+1. The 
Harish-Chandra parameter of the discrete series is
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(k + n)ε1 + (k + 3− n)εn+1 +
n∑

j=2
2(n− i + 1)εi . �

Remark. One can verify that Theorem 1 in [40] gives the same conclusion as ours: there 
are discrete series representations in case 2 for k > 2n − 4.

4.4. Case of F4

The paper of Johnson [28] gives the results we need in this case. Let G be the excep-
tional Lie group F4. We recall that here K = Spin(9) and M = Spin(7). As σ is trivial 
the poles in (39) of the Plancherel density ptrivM

inducing a residue representation are 
the λk = −i(11

2 + k) with k ∈ N.
The K-types of Hλkα are the V p,q with p ≥ q ≥ 0 and p + q ∈ 2Z (see [28, Theorem 

3.1]), with highest weight

μp,q = p

2ε1 + q

2ε2 + q

2ε3 + q

2ε4

with respect to the sets of roots in Appendix A.3. Let τ be V a,b, for a ≥ b ≥ 0 and 
a + b ∈ 2Z. In the following, we call this representation τa,b.

We can follow the method of the cases G = SO(2n, 1) or SU(n, 1), putting the K-types 
of Hλkα in the same two-dimensional space corresponding to the points of coordinates 
(p, q). Fig. 6 illustrates the computations of Ek. There are again two barriers. They 
separate the space Hλkα in three constituents. The figure describes the three cases 
where the K-type τp,q is in different constituents. The arguments are the same as in the 
complex case.

Naming the constituent North, West ant East according to their position, one gets 
the following equivalences:

Ek �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
East-constituent if b ≤ −2k − 8 + a

North-East-constituents
/

East-constituent if b ≥ | − 2k − 4 + a| − 2

Hλkα

/
North-East-constituents if b < 2k + 2− a

(52)

The three representations Ek we have found above are irreducible subquotients of 
Hλkα. We find the following results using [4, Theorem 3.4]:
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Fig. 6. K-types in Hλkα and composition series for k = 0.

Table 4
Langlands parameters of Ek when G = F4.

Case Minimal K-type δ Values of ν

1 (k + 4)ε1 ∅

2 � 3k+5
2

�
2 ε1 + � k−1

2
�

2 (ε2 + ε3 + ε4) (k+4)
4 (3ε1 + ε2 + ε3 + ε4) 1

2 (k + 10)α

3 trivK trivM iλk

In the table �·� denotes the integer part and �·� is the upper integer part. Recall that, 
by definition, the positive ν corresponds to the a∗ part of Langlands parameters. Here 
the method is exactly the same as when G = Spin(2n, 1). One has just to take care of 
the embedding of M in K which is not standard (see [4, section 6]). We used [12] to 
know how the (complex) Weyl group acts on the infinitesimal characters of the principal 
series. For the Case 1 , we get discrete series representations. In fact, the M -types δ(j)
of τa,b have a highest weight of the form:

3j
4 ε1 + j

4ε2 + j

4ε3 + j

4ε4

with j ∈ �0, k+4�. For instance, for k even, one can verify that the K-type with highest 
weight

3k + 14
4 ε1 + k + 2

4 (ε2 + ε3 + ε4)

is in IndK
M (δ(j)) and has a smaller Vogan norm than the minimal K-type of highest 

weight (k + 4)ε1. As in the previous cases, no δ ∈ M̂(τa,b) fits, so the Langlands param-
eters come from the other parabolic subgroup (instead of MAN), namely G.



36 S. Roby / Advances in Mathematics 408 (2022) 108555
5. Wave front set of the residue representations

In this section, we continue to assume that (τ, Vτ ) contains the trivial representation 
of M . The residue representations Ek are those listed in Theorem 2 and defined in 
section 4. The purpose of this part is to compute the wave front set WF(Ek) of these 
representations. Their computations need some additional results about Gelfand-Kirillov 
dimension [46, Theorem 1.2] and on nilpotent orbits in semisimple Lie algebras [13]. 
Proposition 2.4 in [22] tells us that the wave front set of Ek is equal to a closed union 
of nilpotent orbits of g. To know which occurs, we use the Gelfand-Kirillov dimension of 
Ek, computed by [46, Theorem 1.2] in terms of K-types. This dimension is the half of 
the dimension of the wave front set seen as a nilpotent orbit (see [7,42,46]). Combining 
this information with the list of nilpotent orbits in semisimple Lie algebra and their 
dimensions in [13], we get the results.

5.1. Generalities

The definition of the wave front set of a representation can be found in [22, page 118]. 
The wave front sets are closed conical sets in T ∗G. For Lie groups, they can be seen as 
invariant sets of g∗ under the coadjoint action Ad∗ of G. For semisimple Lie groups, g
and g∗ can be identified by the Killing form. Then Ad∗ invariant subsets of g∗ can be 
seen as Ad invariant subsets of g. More precisely, the wave front set of a representation 
can be identified with the closure of a union of nilpotent orbits under the adjoint action 
in g (see [22, Proposition 2.4]). It will be denoted by WF(π).

5.2. Case of SO(2n, 1), n > 1

In this section, we prove the results about wave front set stated in Theorem 2 for 
G = SO(2n, 1). First we compute the Gelfand-Kirillov dimension of the Harish-Chandra 
module of Ek defined in section 4.

Lemma 5.1. The Gelfand-Kirillov dimension of the residue representation Ek is

{
0 if N ≤ k

2n− 1 if N > k

Proof. First of all, if N ≤ k, the residue representation is finite-dimensional, so the 
Gelfand-Kirillov dimension is 0. For the case N > k, the residue representation is infinite-
dimensional. One can compute the eigenvalue of each K-type τm in Hλkα for the Casimir 
operator Ωk of k (using for example [17, Proposition 10.6]):

τm(Ωk) =
(
(m + n− 1)2 − (n− 1)2

)
Id (53)
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Knowing that the dimension of the space of harmonic polynomials of homogeneous degree 
m is dm =

(
m+2n−1

2n−1
)
−
(
m+2n−3

2n−1
)

(see [53] for example), we compute the sum NEk
(t) of 

the dimensions dm of τm until its eigenvalue exceed a fixed real number t2. This sum 
depends on t as follows:

NEk
(t) =

Nt∑
m=k+1

dm =
(
Nt + 2n− 1

2n− 1

)
+
(
Nt + 2n− 2

2n− 1

)
−
(
k + 2n− 2

2n− 1

)
−
(
k + 2n− 1

2n− 1

)
(54)

where Nt + n − 1 = �t� and if t goes to infinity, we have:

NEk
(t) ∞∼ (Nt + 2n− 1)!

Nt!
∞∼ t2n−1 (55)

Hence the Gelfand-Kirillov dimension is equal to 2n − 1 (see [46, Theorem 1.2]). �
Lemma 5.2. Let

g = m⊕ a⊕ grα ⊕ gr−α (56)

be the restricted root space decomposition of g. Then there are 2 nilpotent orbits in g, 
namely the zero orbit and the orbit generated by any non-zero element of grα.

Proof. The non-zero elements of grα are conjugated by the elements of MA. Moreover, 
gr−α = θ(grα) = Ad(kθ)(grα) for a suitable element kθ ∈ K. Then all nilpotent elements in 
the restricted root spaces above are conjugate, except 0 which forms an orbit alone.

This can also be found using Theorem 9.3.4 in [13]. The two only possible Young 
diagrams for so(2n, 1) are:

+
+
+
...
+
−

+ − +
+
+
+
...
+

with 2n ‘+’, which correspond respectively to the 0 orbit and the orbit generated by 
grα. �

We are now able to prove the results about the wave front set of Ek in Theorem 2 for 
G = SO(2n, 1).

Wave front set of Ek. We have just two cases. When N ≤ k, Ek is finite-dimensional so 
the wave front set is the zero orbit. If N > k, as Ek is infinite-dimensional, only the 
nilpotent orbit generated by grα can correspond.



38 S. Roby / Advances in Mathematics 408 (2022) 108555
1

2

3

4

Fig. 7. Cases for Ek - SU(n, 1).

This can be checked using the formula for the dimension of nilpotent orbits in gC, 
the complexification of g ([13, Corollary 6.1.4]). In fact if N > k, the Gelfand-Kirillov 
dimension is 2n − 1 because of Lemma 5.1. The dimension of the wave front set is then 
4n − 2. Because of the corollary cited above, we have:

4n− 2 = dim WF(Ek) = (2n + 1)2 − 1
2
∑

s2
i −

1
2
∑
odd

ri (57)

where si := |{j | dj ≥ i}| and ri := |{j | dj = i}| in a partition [d1, . . . , dk] of 2n + 1.
Thus, only one complex nilpotent orbit has this dimension: the one matching to the 

partition [3, 1, 1, . . . , 1] of 2n + 1. This corresponds indeed to the Young diagram of the 
(real) nilpotent orbit generated by grα. �
5.3. Case of SU(n, 1), n > 1

In this section, we prove the results about wave front set in Theorem 2 for G =
SU(n, 1). First of all, we compute the Gelfand-Kirillov dimension of the Harish-Chandra 
module of Ek defined in section 4. Recall that there are 4 possibilities for the residue 
representation (see 4.2). We label each case as in Fig. 7.

Lemma 5.3. The Gelfand-Kirillov dimension of the residue representation Ek is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2n− 1 in case 1

n in case 2
n in case 3
0 in case 4

.

Proof. In case 4 , the representation Ek is finite-dimensional. The Gelfand-Kirillov di-
mension is then 0. For the three other cases, we need some computations.
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First of all, one can compute the eigenvalue of each K-type τm,l in Hλkα for the 
Casimir operator Ωk of k (using for example [17, Proposition 10.6]). Recall from 4.2 that

τm,l �H
m−l

2 ,m+l
2 (Cn)×H l(C) (58)

with highest weight μm,l := m−l
2 ε1 − m+l

2 εn + lεn+1. Then one finds:

τm,l(Ωk) = 1
2

(
(m + n− 1)2 − (n− 1)2 + 3l2

)
Id (59)

The dimension of the space of τm,l follows for example from the Weyl dimension formula 
[31, Theorem 5.84]:

dm,l =
(m−l

2 + n− 1
n− 1

)(m+l
2 + n− 1
n− 1

)
−
(m−l

2 + n− 2
n− 1

)(m+l
2 + n− 2
n− 1

)

Let δ(m, l,N) :=
(m−l

2 +N−1
n−1

)(m+l
2 +N−1
n−1

)
. So

dm,l = δ(m, l, n)− δ(m, l, n− 1) . (60)

We compute the sum NEk
(t) of the dimensions dm of τm until the eigenvalue (59) exceeds 

a fixed real number t2. This sum depends on t. We want to find which power of t is growing 
like NEk

(t), when t is near infinity, to use [46, Theorem 1.2]. First one can see, that for 
a fixed l, the sum between two values mmin and mmax of m is telescopic:

mmax∑
m=mmin

dm,l = δ(mmax , l, n)− δ(mmin , l, n− 1) (61)

The inequality given by the eigenvalue of the Casimir operator (59) limits the area of 
points of K-types by an ellipsis. The goal is to know the behaviour in t of the sum over 
the K-types inside the ellipsis when this t-ellipsis is going to infinity.
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Case 1 : The sum (61) is telescopic on ev-
ery (gray) line for a fixed l, so it is just the 
difference δ(mmax , l, n) − δ(mmin , l, n− 1)
where mmin and mmax are respectively the 
abscissa of the first (circled) and the last 
(squared) point on the line. Let lmax be 
the maximal l-coordinate of the K-types 
that are indexed by the points in this area. 
This number is roughly equal to the coor-
dinate of the intersection between the ellip-
sis and the line “limiting” the representa-
tion. Computing the intersection, we have 
lmax (t) is asymptotic at infinity to t

2 . As 
mmax (l, t) is roughly on the ellipsis, we also 
have that mmax (l, t) is asymptotic at in-
finity to t2 − 3l2 on the line with ordinate 
l. We can forget the term δ(mmin , l, n− 1)
because it is a constant in t so it will bring 
strictly lower powers of t than δ(mmax , l, n)
in the sum. We get then (the symbol ∞∼
means that both sides have the same high-
est power of t)

t2 = 1
2

(
(m+n−1)2−(n−1)2+3l2

)
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NEk
(t) ∞∼

lmax (t)∑
l=−lmax (t)

δ(mmax (l, t), l, n) ∞∼
∑

|l|≤t/2

∏n−1
j=1

(
(mmax (l,t)+n−1−j)2

4 − l2

4

)
(n− 1)!

And replacing mmax :

NEk
(t) ∞∼

∑
0≤l≤t/2

(t2 − 4l2)n−1 ∞∼ t2n−1

The Gelfand-Kirillov dimension follows from Theorem 1.2 in [46].
For the cases 2 and 3 (which are symmetric), the reasoning is exactly the same 

and gives

NEk

∞∼ tn . �
The following lemma gives us the different nilpotent orbits in the nilradical of g.

Lemma 5.4. There are four nilpotent orbits in SU(n, 1):

(1) the trivial orbit,
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(2) the one generated by grα/2, of dimension 4n − 2,

(3) the one generated by n1 = i 

(1 0 −1
0 0 0
1 0 −1

)
, of dimension 2n,

(4) the one generated by n2 = i 

(1 0 −1
0 0 0
1 0 −1

)
, of dimension 2n.

Here the 0 in the centre of the matrix is the (n − 1) × (n − 1) zero matrix.

Proof. Using Theorem 9.3.3 in [13], one finds that there are four possible Young diagrams 
corresponding to the nilpotent orbit for su(n, 1):

+
+
+
...
+
−

+ − +
+
+
+
...
+

+ −
+
+
+
...
+

− +
+
+
+
...
+

The first one corresponds to the zero orbit. The second one is the only one which is 
nilpotent of degree 2. It corresponds to the orbit generated by any element of grα/2. In 
fact, the proof of the fact that grα/2 and gr−α/2 are in the same orbit is exactly the same 
as the one in Lemma 5.2.

The two last ones are nilpotent of degree 1. Computations show that n1 and n2
(defined in the lemma) cannot be conjugated by an element of K. In particular, K
cannot change the last number on the last line and the last column. The conjugation by 
A is a multiplication by a positive factor and the conjugation by N doesn’t affect n1 or 
n2. So n1 and n2 are each representative of one nilpotent orbit of degree 1.

The dimensions are given by Corollary 6.1.4 in [13]. Recall that the partition of the 
complex nilpotent orbit coming from a real nilpotent orbit is given by the boxes of the 
corresponding Young diagram. �

We are now able to prove the results about the wave front set of Ek in Theorem 2 for 
SU(n, 1).

Wave front set of Ek. The two lemmas above conclude the cases 1 and 4 . Now we 

have to know which the cases 2 and 3 correspond to the nilpotent orbit generated 
by n1 or the one generated by n2. They have the same dimension, so we need to have 
more information about the wave front set. We will use the projection over K to figure 
it out. In fact, [22, Proposition 2.3] ensures us that

WF(Ek|K) = Ad∗(K)
(
−AC(suppEk)

)
(62)
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1

2

3

Fig. 8. Cases for Ek - Sp(n, 1).

where AC the asymptotic cone and supp ρ is the set of highest weights of Ek. [22, Propo-
sition 2.5] gives us:

WF(Ek|K) = q(WFEk) (63)

where q is the projection from g∗ onto k∗. We write E 2
k or E 3

k if Ek is respectively in case 
2 or in case 3 (see Fig. 7). We have:

−AC(suppE 2
k ) ! −μ1,1 = εn − εn+1 and −AC(suppE 3

k ) ! μ1,−1 = −ε1 + εn+1

Moreover,

q ◦B : n1 �→ (2n + 2)(−ε1 + εn+1)

n2 �→ (2n + 2)(ε1 − εn+1)

This gives the result, as K sends by the coadjoint action εn − εn+1 to ε1 − εn+1. �
5.4. Case of Sp(n, 1), n > 1

In this section, we prove the results about wave front set in Theorem 2 for G =
Sp(n, 1). First of all, we compute the Gelfand-Kirillov dimension of the Harish-Chandra 
module of Ek defined in section 4. Recall that there are 3 possibilities of residue repre-
sentation (see 4.3). We label each case as in Fig. 8. The proofs are very similar to the 
complex case. So we will be less specific.

Lemma 5.5. The Gelfand-Kirillov dimension of the residue representation Ek is⎧⎪⎨⎪⎩
4n− 1 in case 1
2n + 1 in case 2

0 in case 3
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Proof. First of all, one can compute the eigenvalue on each K-type τm,l in Hλkα for the 
Casimir operator Ωk of k (using for example [17, Proposition 10.6]). Recall from 4.3 that 
τm,l has highest weight μm,l = m+l

2 ε1 − m−l
2 εn + lεn+1. Then one finds:

τm,l(Ωk) = 1
2

(
(m + 2n− 1)2 − (2n− 1)2 + 3(l + 1)2 − 1

)
Id (64)

The dimension of the space of τm,l follows for example from the Weyl dimension formula 
[31, Theorem 5.84]:

dm,l=
(l + 1)2

2n− 1

((m−l
2 + 2n− 2

2n− 2

)(m+l
2 + 2n− 1

2n− 2

)
−
(m−l

2 + 2n− 3
2n− 2

)(m+l
2 + 2n− 2

2n− 2

))

Setting δ(m, l,N) :=
(m−l

2 +N
2n−2

)(m+l
2 +N+1
2n−2

)
we have

dm,l = (l + 1)2

2n− 1
(
δ(m, l, 2n− 2)− δ(m, l, 2n− 1)

)
(65)

As before, for a fixed l, the sum of dm,l between the values mmin and mmax of m is 
telescopic:

mmax∑
m=mmin

dm,l = (l + 1)2

2n− 1
(
δ(mmax , l, n)− δ(mmin , l, n− 1)

)
(66)

The inequality given by the eigenvalue of the Casimir operator (59) limits the area of 
points of K-types by an ellipsis. The goal is to know the behaviour in t of the sum over 
the K-types delimited by this ellipsis when this ellipsis is going to infinity. The method 
to compute the NEk

(t) out of [46, Theorem 1.2] is exactly the same as the SU(n, 1) case 
and left to the reader. �

The following lemma gives us the different nilpotent orbits in the nilradical of g.

Lemma 5.6. There are three nilpotent orbits in sp(n, 1):

(1) the trivial orbit,
(2) the orbit generated by grα/2, of dimension 8n − 2,
(3) the orbit generated by grα, of dimension 4n + 2.

Proof. Using Theorem 9.3.5 in [13], one finds that there are three possible Young dia-
grams corresponding to the nilpotent orbits for sp(n, 1):



44 S. Roby / Advances in Mathematics 408 (2022) 108555
1

2

3

Fig. 9. Cases for Ek - F4.

+
+
+
...
+
−

+ − +
+
+
+
...
+

+ −
+
+
+
...
+

The first one corresponds to the zero orbit. The second is the only one which is 
nilpotent of degree 2. It corresponds to the orbit generated by any element of grα/2. The 
last one is the only one nilpotent of degree 1. So it is generated by any element of grα.

The dimensions are given by Corollary 6.1.4 in [13]. Also here we have to recall that 
the partition of the complex nilpotent orbit coming from a real nilpotent orbit is given 
by the boxes of the corresponding Young diagram. �

The combination of the two lemmas is sufficient to conclude the results about wave 
front set of Ek in Theorem 2 for Sp(n, 1).

5.5. Case of F4

In this section, we prove the results about wave front set in Theorem 2 for G = F4. 
We first compute the Gelfand-Kirillov dimension of the Harish-Chandra module of Ek

defined in section 4. Recall that there are three possible residue representations (see 4.4) 
which we label as in Fig. 9. The proofs are very similar to the complex case.

Lemma 5.7. The Gelfand-Kirillov dimension of the residue representation Ek is

⎧⎪⎨⎪⎩
15 in case 1
11 in case 2
0 in case 3

.
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Proof. As in the complex case, one can compute the eigenvalue on each K-type τp,q in 
Hλkα for the Casimir operator Ωk of k (using for example [17, Proposition 10.6]). Recall 
from 4.4 that τp,q has highest weight μp,q = p

2 ε1 + q
2 (ε2 + ε3 + ε4). Then one finds:

τp,q(Ωk) =
((

p + 7
2

)2

+ 3(q + 3)2

4 − 19
)

Id (67)

The dimension of the space of τp,q follows from the Weyl dimension formula [31, Theorem 
5.84]:

dp,q = C(q)(δ(p + 2, q)− δ(p, q))

where δ(p, q) :=
(
p+q
2 +6

)
!(

p+q
2 +2

)
!

(
p−q
2 +3

)
!(

p−q
2 )−1

)
!

and C(q) := (q+1)(q+3)(q+5)(2q+8)(2q+6)(2q+4)
212 34 52 7 . For a 

fixed q, the sum of dp,q between 2 values pmin and pmax of p is telescopic:

pmax∑
p=pmin

dp,q = C(q)
(
δ(pmax + 2, q)− δ(pmin , q)

)
(68)

The inequality given by the eigenvalue of the Casimir operator (67) bounds a region of 
K-types by an ellipsis. As in the previous case, we need to know the behaviour in t of 
the sum limited by this ellipsis when the ellipsis goes to infinity. The method to compute 
the NEk

(t) of the [46, Theorem 1.2] is exactly the same as the SU(n, 1) case and is left 
to the reader. �

The following lemma gives us the different nilpotent orbits in the nilradical of g.

Lemma 5.8. There are three nilpotent orbits in g:

(1) the trivial orbit,
(2) the orbit generated by grα/2, of dimension 30,
(3) the orbit generated by grα, of dimension 22.

Proof. The table on page 151 in [13] ensures us that there are three possible Dynkin 
diagrams corresponding to the nilpotent orbits. Relating these diagrams to the table on 
page 128 allows us to find the dimensions associated to these (real) nilpotent orbit. Now 
we want to relate the orbits generated respectively by grα and grα/2 and the two nilpotent 
orbits of g. First choose an element Xα/2 in grα/2 such that B

(
Xα/2, θ(Xα/2)

)

= 0. 

Lemma 3.2 in [21, Chapter IX] proves that for all Xα ∈ grα,

[
Xα/2, [θ(Xα/2), Xα]

]
= 2〈α, α〉 B

(
Xα/2, θ(Xα/2)

)
Xα .
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This proves that

grα = [grα/2, grα/2] .

The Jacobi identity allows us to conclude that Z(grα/2) ⊂ Z(grα). This proves that the 
(nilpotent) orbit generated by grα has lower dimension than that of grα/2. �

The combination of the two lemmas above proves the results for F4 about wave front 
set of Ek in Theorem 2.

Appendix A. The Plancherel densities

Recall that to determine the resolvent of the Laplacian, we use the inversion formula 
(17) for vector-valued Helgason-Fourier transform. The resonances arise from the sin-
gularities of the Plancherel measure. To find them, we need an explicit formula for the 
Plancherel density pσ. Even if such an explicit formula is not known for an arbitrary 
group G, in the rank-one case, several authors have computed it ([38], [33]; see also [49, 
Epilogue, pp. 414 ff.]). Our reference in the following is Miatello’s article [33]. The for-
mula depends on the group G and on the highest weight of σ. According to this formula, 
pσ is the product of two factors. The first one is a polynomial function in λ, denoted 
qσ. The second factor is either a hyperbolic tangent or a hyperbolic cotangent (or 1 if 
G = Spin(2n + 1, 1)). We denote it by φσ. The goal of this section is to explain how one 
can compute pσ with σ ∈ M̂(τ), where τ ∈ K̂ is arbitrarily fixed. For this, we are going 
to use the branching rules given by Baldoni Silva in [4]. One just needs the Plancherel 
formula for all four groups listed in the table in the introduction. In fact, Remark 1.3 
in [33] ensures us that one can derive from them the Plancherel formula for the other 
rank-one groups with the same Lie algebras. As we do not care about the constants in 
our computations in this paper, pσ is given up to a constant.

A.1. Case of Spin(n, 1), n > 2

Here G/K is the real hyperbolic space. Recall that K is Spin(n) and M is Spin(n −1). 
In this case, the parity of n plays a role in the Plancherel measure. In fact, when n is 
odd, φσ(λ) = 1 (see [33, page 7]). So it is non-singular and there are no resonances. 
In the following we therefore disregard the case of Spin(2n + 1, 1) and suppose that 
G = Spin(2n, 1).

Let us recall some Lie algebraic structure. Our reference is [4, Section 3]. The Lie 
algebra of G is g = so(2n, 1). Its complexification is gC = so(2n + 1, C). We have also 
Lie(K)C = kC = so(2n, C) and Lie(M)C = mC = so(2n − 1, C).
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We choose the following Cartan subalgebra of gC:

hC=
{
H∈so(2n+1,C) | H=diag

[(
0 ih1
−ih1 0

)
,

(
0 ih2
−ih2 0

)
, . . . ,

(
0 ihn

−ihn 0

)
, 0
]}

Let {εj}j=1,...,n be the elementary weights defined by εj(H) = hj . We recall that Π
and Π0 respectively the set of roots, positive roots and simple roots of (gC, hC). For the 
set of roots of kC or mC we let the corresponding real Lie algebra in index.

Π =
{
± εi ± εj | i 
= j

}
∪
{
± εk | k ∈ �1, n�

}
;

Π0 =
{
αi = εi − εi+1 | i ∈ �1, n− 1�

}
∪
{
αn = εn

}
Πk =

{
± εi ± εj | 1 ≤ i < j ≤ n

}
;

Πm =
{
± εi ± εj | 1 ≤ i < j ≤ n− 1

}
∪
{
± εk | k ∈ �1, n− 1�

}
(Πk)0 =

{
εi − εi+1 | i ∈ �1, n− 1�

}
∪
{
εn−1 + εn

}
;

(Πm)0 =
{
εi − εi+1 | i ∈ �1, n− 2�

}
∪
{
εn−1

}
Notice that, unlike [4, Theorem 3.4], we keep the same notation for the εj’s and their 
projections on mC. As in [4, Lemma 3.2], the fixed (τ, Vτ ) ∈ K̂ has highest weight μτ of 
the form:

μτ =
n∑

j=1
ajεj

where a1 ≥ . . . ≥ an−1 ≥ | an | ≥ 0, ai − aj ∈ Z and 2aj ∈ Z for all i, j = 1, . . . , n.
Let σ ∈ M̂(τ). According to [4, Theorem 3.4], the highest weight μσ of a representation 

σ ∈ M̂(τ) has the form:

μσ =
n−1∑
i=1

bjεj

where for all i, j = 1, . . . , n − 1 we have aj − bi ∈ Z and a1 ≥ b1 ≥ a2 ≥ . . . ≥ an−1 ≥
bn−1 ≥ | an | ≥ 0. Furthermore, m(σ, τ |M ) = 1 for every σ ∈ M̂(τ).

For σ ∈ M̂(τ), the Plancherel density is given in [33, pp. 256-257]:

pσ(λ) =
{

tanh(πλα) , if bj ∈ Z
coth(πλα) , if bj ∈ 1

2 + Z

}
λα

n−1∏
j=1

(
λ2
α + (ρ + bj − j)2

)
(69)

We recall that λα is the complex number associated to λ ∈ a∗C by (9).
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Remark. The above formula agrees with the Plancherel density for the real hyperbolic 
space for τ = trivK (and thus σ = trivM ). See e.g. [23]. It also gives the different 
irreducible continuous constituents of the Plancherel density for the p-forms on the real 
hyperbolic space, as computed in [41].

A.2. Case of SU(n, 1), n > 1

Here G/K is the complex hyperbolic space. Recall that K is S(U(n) × U(1)) and M
is S(U(1) × U(n − 1) × U(1)). Our notations follow [4, Section 4]. The Lie algebra of G
is g = su(n, 1). Its complexification is gC = sl(n + 1, C). We have also Lie(K)C = kC =
sl(n, C) and Lie(M)C = mC = sl(n − 1, C).

The elliptic Cartan subalgebra hC of gC consists of the diagonal matrices in sl(n +
1, C).

Let {εj}j=1,...,n be the elementary weights defined by εj(H) = hj where H =
diag(h1, h2, . . . , hn+1) described the elements of hC. We recall that Π and Π0 respec-
tively the set of roots, positive roots and simple roots of (gC, hC). For the set of roots 
of kC or mC we let the corresponding real Lie algebra in index.

Π =
{
± (εi − εj) | 1 ≤ i < j ≤ n + 1

}
; Π0 =

{
αi = εi − εi+1 | i ∈ �1, n�}

Πk =
{
± (εi − εj) | 1 ≤ i < j ≤ n

}
; Πm =

{
± (εi − εj) | 2 ≤ i < j ≤ n

}
(Πk)0 =

{
αi = εi − εi+1 | i ∈ �1, n− 1�} ; (Πm)0 =

{
αi = εi − εi+1 | i ∈ �2, n− 1�

}
As in [4, Lemma 4.2], the fixed (τ, Vτ ) ∈ K̂ has highest weight of the form

μτ =
n+1∑
j=1

ajεj

where a1 ≥ . . . ≥ an−1 ≥ an and ai ∈ Z for all i = 1, . . . , n + 1.
Let σ ∈ M̂(τ). By [4, Theorem 4.4]. The highest weight μσ of σ ∈ M̂(τ) has the form

μσ = b0(ε1 + εn+1) +
n∑

j=2
bjεj

where for all j, we have bj ∈ Z, a1 ≥ b2 ≥ a2 ≥ . . . ≥ an−1 ≥ bn ≥ an and b0 =∑n+1
j=1 aj−

∑n
j=2 bj

2 .
The fact that we are working with zero trace matrices implies that 

∑n+1
j=1 εj = 0. Thus 

we can relate to Miatello’s form for the weights. We get the same formula as in [33, p. 
258]:

μσ =
n−1∑

(bj − bn)εj + (bn − b0)
n∑

εj

j=2 j=2
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Miatello gives this following Plancherel density:

pσ(λ) =
{

tanh(πλα) , if 2b0 + n is odd
coth(πλα) , if 2b0 + n is even

}
λα

n−1∏
j=1

(
λ2
α + (bj+1 − b0 + n

2 − j)2
)

(70)

We recall that λα is the complex number associated to λ ∈ a∗C by (9).

A.3. Case of Sp(n, 1), n > 1

Here G/K is the quaternionic hyperbolic space. In this case, K is Sp(n) × Sp(1) and 
M is Sp(1) × Sp(n − 1) × Sp(1).

Let us recall some Lie algebraic structure. The Lie algebra of G is g = sp(n, 1). Its 
complexification is gC = sp(n + 1, C). We have also Lie(K)C = kC = sp(n, C) and 
Lie(M)C = mC = sp(n − 1, C).

Let t denote the set of diagonal matrices in g. So tC is the elliptic Cartan subalgebra of 
gC. Let h− be a maximal abelian algebra of m. Then h := h− + a is a Cartan subalgebra 
of g, and hC is a Cartan subalgebra of gC.

Let {εj}j=1,...,n be the elementary weights defined by εj(H) = hj , where H =
diag(h1, h2, . . . , hn+1) ∈ tC. We recall that Π and Π0 respectively the set of roots, pos-
itive roots and simple roots of (gC, hC). For the set of roots of kC or mC we let the 
corresponding real Lie algebra in index.

Π =
{
± εi ± εj | 1 ≤ i < j ≤ n + 1

}
∪
{
± 2εi | i ∈ �1, n + 1�

}
;

Π0 =
{
εi − εi+1 | i ∈ �1, n�

}
∪
{
2εn+1

}
;

Πk =
{
± εi ± εj | 1 ≤ i < j ≤ n

}
∪
{
± 2εi | i ∈ �1, n�

}
;

(Πk)0 =
{
εi − εi+1 | i ∈ �1, n− 1�

}
∪
{
2εn
}

;
Πm =

{
± (εi − εj) | 1 ≤ i < j ≤ n− 1

}
∪
{
± 2εi | i ∈ �1, n− 1�

}
;

(Πm)0 =
{
εi − εi+1 | i ∈ �1, n− 2�

}
∪
{
2εn−1

}
The fixed (τ, Vτ ) ∈ K̂ has highest weight of the form:

μτ =
n+1∑
j=1

ajεj

where a1 ≥ . . . ≥ an−1 ≥ an ≥ 0, an+1 ≥ 0 and ai ∈ Z for all i = 1, . . . , n + 1.
See [4, Lemma 5.2]. Theorem 5.5 in [4] gives us the form of the highest weight μσ of 

σ ∈ M̂(τ) as follows:

μσ = b0(ε1 + εn+1) +
n∑

j=2
bjεj (71)
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where we have:

(1) aj ≥ bj+1, for all j = 1, . . . , n − 1
(2) bj ≥ aj+1, for all j = 2, . . . , n − 1
(3) b0 = an+1+b1−2j

2 , for some j = 0, . . . , min(an+1, b1)

and b1 satisfies b1 ∈ Z+ and 
∑n

j=1(aj − bj) ∈ 2Z.
We want to use the Plancherel formula given by Miatello [33]. But the Cartan subalge-

bra hC used in this paper is not the same as the Cartan algebra tC used by Baldoni-Silva 
for the branching rules. So we have to use a Cayley transform to find the highest 
weight of σ relative to hC. This computation was already done in [6]. Namely (see 
[21, pp. 155-156]) one know that for each β ∈ S we can select a root vector Xβ such 
that B(Xa, X−a) = 2

〈β,β〉 and θXβ = −Xβ . Choose β = ε1 − εn+1. Then if we denote by 
e1, . . . , en+1 the fundamental weights of the root system Δ(gC, hC), we have:

e1 = ε1 ◦ Adu−1
β , e2 = −εn+1 ◦ Adu−1

β , ei = εi−1 ◦ Adu−1
β , for all i ∈ �3, n + 1�

where uβ = exp(π/4)(Xβ −X−β).
So μσ is written in the root system Δ(gC, hC) as:

μσ = b0(e1 − e2) +
n+1∑
j=3

bj−1ej

and [33] gives the following Plancherel density:

pσ(λ) =
{

tanh(πλα) , if b0 ∈ Z
coth(πλα) , if b0 ∈ Z+ 1

2

}
λα

(
λ2
α + (b0 + 1

2)2
)

n+1∏
j=3

(
λ2
α + (bj−1 − b0 + n− j + 3

2)2
)(

λ2
α + (bj−1 − b0 + n− j + 5

2)2
)

(72)

We recall that λα is the complex number associated to λ ∈ a∗C by (9).

A.4. Case of F4

Here, G = F4. We recall g = f−20
4 , K is Spin(9) and its Lie algebra is k = so(9). Let 

t ⊂ k be the compact Cartan subalgebra for both g and k. The branching rules for the 
fixed τ are determined in [4, Paragraph 6]. For a maximal abelian subspace a of p its 
centraliser in k is m = so(7). The problem is that this Lie algebra m is not contained in 
the standard way in k. So, we cannot use twice the branching rules for SO(n) directly. 
Let K1 = Spin(8) a subgroup of K contained in the standard way. We denote by k1 its 
Lie algebra.
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Let {εj}j=1,...,n be the elementary weights in Δ(gC, tC). We recall that Π, and Π0

respectively the set of roots, positive roots and simple roots of (gC, hC). For the set of 
roots of kC, (k1)C or mC we let the corresponding real Lie algebra in index.

Π =
{
± εi ± εj | 1 ≤ i < j ≤ 4

}
∪
{
± εi | 1 ≤ i ≤ 4

}
∪
{1

2(±ε1 ± ε2 ± ε3 ± ε4)
}

Π0 =
{
α1 = ε2 − ε3 , α2 = ε3 − ε4 , α3 = ε4 , α4 = 1

2(ε1 − ε2 − ε3 − ε4)
}

Πk =
{
±εi±εj | 1 ≤ i < j ≤ 4

}
∪
{
±εi | 1 ≤ i ≤ 4

}
Πk1 =

{
±(εi±εj) | 1 ≤ i < j ≤ 4

}
(Πk)0 =

{
α1 , α2 , α3 , α2+2α3+2α4 = ε1−ε2

}
(Πk1)0 =

{
ε1−ε2 , ε2−ε3, ε3−ε4, ε3+ε4

}
Let Hα4 be the unique element of a such that α4 = B(Hα4 , · ). Choose the root 

vectors Xα4 and X−α4 such that [Xα4 , X−α4 ] = Hα4 and Xα4 + X−α4 ∈ p. Define a to 
be the one-dimensional space spanned by Xα4 + X−α4 . Let h = h− ⊕ a where h− is a 
Cartan subalgebra of m. Then the Cayley transform Ad

(
exp π

4 (Xα4 −X−α4

)
) maps tC

onto hC. The set of roots Δ(gC, hC) is the following root system on m

(Φm)0 =
{
α1 , α2 , α2 + 2α3 + α4 = 1

2(ε1 − ε2 + ε3 + ε4)
}

As said before, m is not contained in the standard way in k1. Let φ be the automor-
phism of k1 which keeps the roots and such that φ(M) is contained in the standard way 
in φ(K1). This automorphism is given by

φ(ε1 − ε2) = ε3 − ε4 , φ(ε3 − ε4) = ε1 − ε2
φ(ε2 − ε3) = ε2 − ε3 , φ(ε3 + ε4) = ε3 + ε4

The fixed K-type τ has highest weight of the form:

μτ = a1ε1 + a2ε2 + a3ε3 + a4ε4

where a1 ≥ . . . ≥ a4 ≥ 0, 2ai ∈ Z and ai − aj ∈ Z for all i, j = 1, . . . , 4.
Because of the branching rules of Spin(9) to Spin(8), the representations of K1 which 

are contained in the restriction of τ to K1 have the following highest weights:

c1ε1 + c2ε2 + c3ε3 + c4ε4

where a1 ≥ c1 . . . ≥ a4 ≥ | c4 |, 2ci ∈ Z and ai − cj ∈ Z for all i, j = 1, . . . , 4.
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We have now to apply φ to this highest weight to use the branching rules of so(n). 
We get a highest weight of the form

d1ε1 + d2ε2 + d3ε3 + d4ε4 := 1
2(c1 + c2 + c3 − c4)ε1 + 1

2(c1 + c2 − c3 + c4)ε2

+ 1
2(c1 − c2 + c3 + c4)ε3 + 1

2(−c1 + c2 + c3 + c4)ε4

A representation of ̂φ(M) is of the form σ ◦ φ where σ ∈ M̂ . The φ(M)-types which 
appear in the restriction of K1-type (d1, d2, d3, d4) to φ(M) have highest weight of the 
form:

μσ◦φ = b1ε1 + b2ε2 + b3ε3

where d1 ≥ b1 . . . ≥ b3 ≥ |d4|, 2ci ∈ Z and ai − cj ∈ Z for all i, j = 1, . . . , 4. Applying φ, 
one gets

μσ = b1α2 + (b1 + b2)α1 + 1
2(b1 + b2 + b3)(α2 + 2α3 + α4)

The Cartan subalgebra used in [33] is neither t nor h because the maximal abelian 
subalgebra of p is not the same a here. Define the map

Ψ : α1 �→ α2
α2 �→ α1

α2 + 2α3 + α4 �→ α3
α3 �→ −(α2 + 2α3 + α4)

This map Ψ sends α4 on −ε1, so a onto the maximal abelian subspace used in [33]. The 
Cartan subalgebra Ψ(h) is that used in that paper. Applying Ψ we get

μσ◦Ψ = b1ε1 + b2ε2 + b3ε3

and ε1 becomes the real root, i.e. ε1|Ψ(a) = −α◦Ψ where α is the longest restricted root. 
Now we can apply the Plancherel formula from [33] and get
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pσ(λ) =
{

tanh(πλα) , if bi ∈ Z
coth(πλα) , if bi ∈ Z+ 1

2

}
λα

(
λ2
α + (b3 + 1

2 )2
) (

λ2
α + (b2 + 3

2 )2
)

(
λ2
α + (b1 + 5

2 )2
) (

λ2
α + (b1 − b2 − b3 + 1

2)2
)

(
λ2
α + (b1 − b2 + b3 + 3

2)2
) (

λ2
α + (b1 + b2 − b3 + 7

2)2
) (

λ2
α + (b1 + b2 + b3 + 9

2)2
)

(73)

We recall that λα is the complex number associated to λ ∈ a∗C by (9).

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. 
Super. Pisa, Cl. Sci. (4) 2 (2) (1975) 151–218.

[2] S. Agmon, Spectral theory of Schrödinger operators on Euclidean and on non-Euclidean spaces, in: 
Frontiers of the Mathematical Sciences: 1985, New York, 1985, Commun. Pure Appl. Math. 39 (S, 
suppl.) (1986) S3–S16.

[3] U. Bunke, M. Olbrich, The spectrum of Kleinian manifolds, J. Funct. Anal. 172 (1) (2000) 76–164.
[4] M.W. Baldoni Silva, Branching theorems for semisimple Lie groups of real rank one, Rend. Semin. 

Mat. Univ. Padova 61 (1979) 229–250.
[5] M.W. Baldoni Silva, The unitary dual of Sp(n, 1), n ≥ 2, Duke Math. J. 48 (3) (1981) 549–583.
[6] M.W. Baldoni Silva, H. Kraljević, Composition factors of the principal series representations of the 

group Sp(n, 1), Trans. Am. Math. Soc. 262 (2) (1980) 447–471.
[7] D. Barbasch, D.A. Vogan Jr., The local structure of characters, J. Funct. Anal. 37 (1) (1980) 27–55.
[8] R. Camporesi, The Helgason Fourier transform for homogeneous vector bundles over Riemannian 

symmetric spaces, Pac. J. Math. 179 (2) (1997) 263–300.
[9] R. Camporesi, The spherical transform for homogeneous vector bundles over Riemannian symmetric 

spaces, J. Lie Theory 7 (1) (1997) 29–60.
[10] R. Camporesi, A generalization of the Cartan-Helgason theorem for Riemannian symmetric spaces 

of rank one, Pac. J. Math. 222 (1) (2005) 1–27.
[11] R. Camporesi, The Helgason Fourier transform for homogeneous vector bundles over compact Rie-

mannian symmetric spaces—the local theory, J. Funct. Anal. 220 (1) (2005) 97–117.
[12] P. Cahn, R. Haas, A.G. Helminck, J. Li, J. Schwartz, Permutation notations for the exceptional 

Weyl group F4, Involve 5 (1) (2012) 81–89.
[13] D.H. Collingwood, W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand 

Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
[14] D.H. Collingwood, Representations of Rank One Lie Groups, Research Notes in Mathematics, 

vol. 137, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[15] G. Carron, E. Pedon, On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. 

Super. Pisa, Cl. Sci. (5) 3 (4) (2004) 705–747.
[16] R. Godement, A theory of spherical functions. I, Trans. Am. Math. Soc. 73 (1952) 496–556.
[17] B. Hall, Lie Groups, Lie Algebras, and Representations, an Elementary Introduction, second edition, 

Graduate Texts in Mathematics, vol. 222, Springer, Cham, 2015.
[18] Harish-Chandra, Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and 

the Plancherel formula, Ann. Math. (2) 104 (1) (1976) 117–201.
[19] Harish-Chandra, Differential equations and semisimple Lie groups in collected papers III, 1959-1968, 

in: Springer Collected Works in Mathematics, Springer, 1984.
[20] S. Helgason, Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators, 

and Spherical Functions, Mathematical Surveys and Monographs, vol. 83, Amer. Math. Soc., Prov-
idence, RI, 2000, Corrected reprint of the 1984 original.

[21] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Math-
ematics, vol. 34, Amer. Math. Soc., Providence, RI, 2001, Corrected reprint of the 1978 original.

[22] R. Howe, Wave front sets of representations of Lie groups, in: Automorphic Forms, Representation 
Theory and Arithmetic, Bombay, 1979, in: Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata 
Inst. Fundamental Res, Bombay, 1981, pp. 117–140.

http://refhub.elsevier.com/S0001-8708(22)00372-3/bib9CBB96AE9E671663791C084E820DB40As1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib9CBB96AE9E671663791C084E820DB40As1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib6E5E115B83CA74C89383C002C5C91D37s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib6E5E115B83CA74C89383C002C5C91D37s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib6E5E115B83CA74C89383C002C5C91D37s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF8AC7B9D01F1A52EE3CB36C020F77016s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib85CAC560D1DE56A66B5E877654CDDE84s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib85CAC560D1DE56A66B5E877654CDDE84s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE4B04571FE1DC69DD04C71A1B4F779F1s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib76936DDD06E2B477FCC7D832FE0ADBDAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib76936DDD06E2B477FCC7D832FE0ADBDAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibCAA5707345CE722D5887E242B7F35F26s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibEA935C4D41D9C7F8A254DC3C9FA41470s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibEA935C4D41D9C7F8A254DC3C9FA41470s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC575C71B27E3EB496A4A45B0AB9B955Ds1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC575C71B27E3EB496A4A45B0AB9B955Ds1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib9CC59ADFE973F45C2762FEF437A621DAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib9CC59ADFE973F45C2762FEF437A621DAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC1D64B13B2A7FB537E47DA4ED2359072s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC1D64B13B2A7FB537E47DA4ED2359072s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibBBCCE415E9690D12EFD87C3494677946s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibBBCCE415E9690D12EFD87C3494677946s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibD89000CDEB30016903162E6DFD472EF5s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibD89000CDEB30016903162E6DFD472EF5s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib3FFAF4D346AA04E6F1A1EEF11AF5FA63s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib3FFAF4D346AA04E6F1A1EEF11AF5FA63s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE689FE8273F584F01FC2622DFCDD8955s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE689FE8273F584F01FC2622DFCDD8955s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib7B341FB2946C462BC0BB4F7E41BD14FAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib75002FE48442A02A55971F48CEBBE3E4s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib75002FE48442A02A55971F48CEBBE3E4s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2DC4576BE21B5F62BB42EBD80A5E7044s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2DC4576BE21B5F62BB42EBD80A5E7044s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib47C9AEB0CA2777756BC123D9A704173Ds1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib47C9AEB0CA2777756BC123D9A704173Ds1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib8CD9E1BF34E1A596E7436A3934439B65s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib8CD9E1BF34E1A596E7436A3934439B65s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib8CD9E1BF34E1A596E7436A3934439B65s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE2B6709F7A24205B9A814D010D38D717s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE2B6709F7A24205B9A814D010D38D717s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE2F0E962320584F4F7BC54963DE96E66s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE2F0E962320584F4F7BC54963DE96E66s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE2F0E962320584F4F7BC54963DE96E66s1


54 S. Roby / Advances in Mathematics 408 (2022) 108555
[23] J. Hilgert, A. Pasquale, Resonances and residue operators for symmetric spaces of rank one, J. 
Math. Pures Appl. 91 (5) (2009) 495–507.

[24] J. Hilgert, A. Pasquale, T. Przebinda, Resonances for the Laplacian: the cases BC2 and C2
(except SO0(p, 2) with p > 2 odd), in: Geometric Methods in Physics, in: Trends Math., 
Birkhäuser/Springer, Cham, 2016, pp. 159–182.

[25] J. Hilgert, A. Pasquale, T. Przebinda, Resonances for the Laplacian on products of two rank one 
Riemannian symmetric spaces, J. Funct. Anal. 272 (4) (2017) 1477–1523.

[26] J. Hilgert, A. Pasquale, T. Przebinda, Resonances for the Laplacian on Riemannian symmetric 
spaces: the case of SL(3, R)/SO(3), Represent. Theory 21 (2017) 416–457.

[27] R.E. Howe, E.-C. Tan, Homogeneous functions on light cones: the infinitesimal structure of some 
degenerate principal series representations, Bull. Am. Math. Soc. (N.S.) 28 (1) (1993) 1–74.

[28] K.D. Johnson, Composition series and intertwining operators for the spherical principal series. II, 
Trans. Am. Math. Soc. 215 (1976) 269–283.

[29] K.D. Johnson, N.R. Wallach, Composition series and intertwining operators for the spherical prin-
cipal series. I, Trans. Am. Math. Soc. 229 (1977) 137–173.

[30] A.W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, 
Princeton Mathematical Series, Princeton University Press, 2001.

[31] A.W. Knapp, Lie Groups Beyond an Introduction, second edition, Progress in Mathematics, vol. 140, 
Birkhäuser Boston, Inc., Boston, MA, 2002.

[32] T.H. Koornwinder, A note on the multiplicity free reduction of certain orthogonal and unitary 
groups, Ned. Akad. Wet. Indag. Math. 44 (2) (1982) 215–218.

[33] R.J. Miatello, On the Plancherel measure for linear Lie groups of rank one, Manuscr. Math. 29 (2) 
(Jun 1979) 249–276.

[34] K. Minemura, Invariant differential operators and spherical sections on a homogeneous vector bun-
dle, Tokyo J. Math. 15 (1) (1992) 231–245.

[35] V.F. Molchanov, Representations of pseudo-unitary groups associated with a cone, in: Towards 100 
Years After Sophus Lie, Kazan, 1998, Lobachevskii J. Math. 3 (1999) 221–241.

[36] R. Mazzeo, A. Vasy, Analytic continuation of the resolvent of the Laplacian on symmetric spaces 
of noncompact type, J. Funct. Anal. 228 (2) (2005) 311–368.

[37] R.J. Miatello, C.E. Will, The residues of the resolvent on Damek-Ricci spaces, Proc. Am. Math. 
Soc. 128 (4) (2000) 1221–1229.

[38] K. Okamoto, The Plancherel formula for the universal covering group of de Sitter group, Proc. Jpn. 
Acad. 41 (1) (1965) 23–28.

[39] M. Olbrich, Die Poisson–Transformation für homogene Vektorbündel Thesis, Humboldt Universität, 
Berlin, 1994.

[40] R. Parthasarathy, Classification of discrete series by minimal K-type, Represent. Theory 19 (2015) 
167–185.

[41] E. Pedon, Analyse harmonique des formes différentielles sur l’espace hyperbolique réel, Thesis, 
Université Henry Poincaré, Nancy, 1994.

[42] W. Rossmann, Picard-Lefschetz theory and characters of a semisimple Lie group, Invent. Math. 
121 (3) (1995) 579–611.

[43] F. Ricci, A. Samanta, Spherical analysis on homogeneous vector bundles, Adv. Math. 338 (2018) 
953–990.

[44] A. Strohmaier, Analytic continuation of resolvent kernels on noncompact symmetric spaces, Math. 
Z. 250 (2) (2005) 411–425.

[45] D.A. Vogan Jr., Classification of the irreducible representations of semisimple Lie groups, Proc. 
Natl. Acad. Sci. USA 74 (7) (1977) 2649–2650.

[46] D.A. Vogan Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1) 
(1978) 75–98.

[47] D.A. Vogan Jr., Representations of Real Reductive Lie Groups, Progress in Mathematics, vol. 15, 
Birkhäuser, Boston, Mass, 1981.

[48] N.R. Wallach, Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, vol. 19, 
Marcel Dekker, Inc., New York, 1973.

[49] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups. II, Die Grundlehren der Mathematischen 
Wissenschaften, Band 189, Springer-Verlag, New York-Heidelberg, 1972.

[50] C.E. Will, The meromorphic continuation of the resolvent of the Laplacian on line bundles over 
CH(n), Pac. J. Math. 209 (1) (2003) 157–173.

http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF1DC61D2AA9EBB0ABB01686665A55986s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF1DC61D2AA9EBB0ABB01686665A55986s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF34B9F1CB40BDA0097F5B4E87272DF59s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF34B9F1CB40BDA0097F5B4E87272DF59s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF34B9F1CB40BDA0097F5B4E87272DF59s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib972C726086F5257A9D6029D72FC75851s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib972C726086F5257A9D6029D72FC75851s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib24A0870B9AE6B3E30783F3BAF74E9A6As1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib24A0870B9AE6B3E30783F3BAF74E9A6As1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC8E65C94F021AA6370A8E31EB8066C03s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC8E65C94F021AA6370A8E31EB8066C03s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib1571BBE81892B37FB873E614DB951777s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib1571BBE81892B37FB873E614DB951777s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib1A84115DD9F038FB6A9150AE663EF247s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib1A84115DD9F038FB6A9150AE663EF247s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibAD9E0E4ED6AC35484DFC06D8BE6D19CBs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibAD9E0E4ED6AC35484DFC06D8BE6D19CBs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC1AA3257DB945D222F6501E4207DADCAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC1AA3257DB945D222F6501E4207DADCAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib0204ECA5282564743EFD968BC0116921s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib0204ECA5282564743EFD968BC0116921s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib46E6F8781DD60E2635430B61DB511262s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib46E6F8781DD60E2635430B61DB511262s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2876F3CBDF0C328A1EBFF264416F6976s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2876F3CBDF0C328A1EBFF264416F6976s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibAA2115A507BB685B4F88363271DCCC99s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibAA2115A507BB685B4F88363271DCCC99s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE07694EDDB5CBD531AA7EE2E40B242A5s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE07694EDDB5CBD531AA7EE2E40B242A5s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2D16AD48FCB8BAF031AC435B7F6CCDC7s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2D16AD48FCB8BAF031AC435B7F6CCDC7s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibFC2341ECDA20475B8E07127D403CC352s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibFC2341ECDA20475B8E07127D403CC352s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE9DD929741582D52ACBD9B5879318F8Ds1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE9DD929741582D52ACBD9B5879318F8Ds1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib52163AD96B97DA4745EB0FC46463C1E1s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib52163AD96B97DA4745EB0FC46463C1E1s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib3F01A9B587B4FE8736C898CD1A539543s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib3F01A9B587B4FE8736C898CD1A539543s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib8460DF3E5DC032E6B3D9569E2F254DD7s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib8460DF3E5DC032E6B3D9569E2F254DD7s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib5507059605D659FE83EF3109FCC7B9E6s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib5507059605D659FE83EF3109FCC7B9E6s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib28947B6B6D6258AE11E57517A7ACE633s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib28947B6B6D6258AE11E57517A7ACE633s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF694BE82D3084B91D862B8A58531D949s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibF694BE82D3084B91D862B8A58531D949s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibB6F74C55B5D858A4706EDD8102FC0248s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibB6F74C55B5D858A4706EDD8102FC0248s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibEAF8B2F01226156B8F5E12DF35E4F3AAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibEAF8B2F01226156B8F5E12DF35E4F3AAs1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE9533B71469E7A3175217723EE6DA295s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibE9533B71469E7A3175217723EE6DA295s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib42D2EA33A0611850C91942C1649C60B1s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib42D2EA33A0611850C91942C1649C60B1s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2B80F09163F60CE1774B438E605EB1F9s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2B80F09163F60CE1774B438E605EB1F9s1


S. Roby / Advances in Mathematics 408 (2022) 108555 55
[51] A. Yang, Poisson transforms on vector bundles, Trans. Am. Math. Soc. 350 (3) (1998) 857–887.
[52] M. Zworski, Mathematical study of scattering resonances, Bull. Math. Sci. 7 (1) (2017) 1–85.
[53] D.P. Želobenko, Compact Lie Groups and Their Representations, Translations of Mathematical 

Monographs, vol. 40, Amer. Math. Soc., Providence, R.I., 1973, Translated from the Russian by 
Israel Program for Scientific Translations.

http://refhub.elsevier.com/S0001-8708(22)00372-3/bib2422F0F0806E2D3DAFF5FCD971BE38F1s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bibC5C710046DD91D08AA827E79A3BC20A8s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib0FB251605F25CDA4AE271B53D8C21450s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib0FB251605F25CDA4AE271B53D8C21450s1
http://refhub.elsevier.com/S0001-8708(22)00372-3/bib0FB251605F25CDA4AE271B53D8C21450s1

	Resonances of the Laplace operator on homogeneous vector bundles on symmetric spaces of real rank-one
	0 Introduction
	1 General notations
	2 Vector-valued Helgason-Fourier transform
	3 Computation of the resonances
	4 Residue representations
	4.1 Case of SO(2n,1), n>1
	4.2 Case of SU(n,1), n>1
	4.3 Case of Sp(n,1), n>1
	4.4 Case of F4

	5 Wave front set of the residue representations
	5.1 Generalities
	5.2 Case of SO(2n,1), n>1
	5.3 Case of SU(n,1), n>1
	5.4 Case of Sp(n,1), n>1
	5.5 Case of F4

	Appendix A The Plancherel densities
	A.1 Case of Spin(n,1), n>2
	A.2 Case of SU(n,1), n>1
	A.3 Case of Sp(n,1), n>1
	A.4 Case of F4

	References


