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A variation of Kublanovskaya’s nonlinear QR method for solving banded nonlinear eigenvalue problems is
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an algorithm is presented for computing several nearby nonlinear eigenvalues to already-computed ones.
Finally, numerical examples are given to show the efficacy of the new methods, and the source code has been
made publicly available.
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1. INTRODUCTION

Given an n × n (complex) matrix-valued function H(λ), the associated nonlinear
eigenvalue problem (NLEVP) is to determine nonzero n-vectors x and y and a scalar μ
such that

H(μ)x = 0, y∗H(μ) = 0. (1.1)

When this equation holds, we call μ a nonlinear eigenvalue, x an associated right
eigenvector (or simply eigenvector), and y an associated left eigenvector. The cases
H(λ) = A− λI, A− λB, and a matrix polynomial correspond to the linear, generalized,
and polynomial eigenvalue problems, respectively.
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4:2 C. K. Garrett et al.

Recent demands from various applications have been reigniting interest in the nu-
merical analysis and scientific computing community to seek efficient solutions to
certain nonlinear eigenvalue problems, as manifested by the establishment of the col-
lection [Betcke et al. 2013] and the survey articles [Mehrmann and Voss 2004; Tisseur
and Meerbergen 2001].

Kublanovskaya [1970] proposed an iterative method for finding a nonlinear eigen-
value and associated eigenvector. The method requires one QR decomposition with
column pivoting per iteration step. Thus, generally, it is very expensive because each
QR decomposition usually costs O(n3) flops. Also column pivoting makes it very nearly
impossible to take advantage of any additional structure in H(λ). Consequently, the
method as is is not suitable for H(λ) of large size.

This article presents a variation of Kublanovskaya’s method [Kublanovskaya 1970]
for efficiently computing solutions of the nonlinear eigenvalue problem for which either
H(λ) is banded with narrow bandwidths relative to n or can be reduced to such a
banded matrix. The new method works not only for regularly banded H(λ) but also
unstructurally banded H(λ), by which we mean each row may have a different left and
right bandwidth from another.

The methods presented in this article basically use the Newton method, which is
known to usually converge quadratically. A recent work on the convergence analysis
of Newton-type methods for general nonlinear eigenvalue problems can be found in
Szyld and Xue [2013]. To use Newton-type methods, the only important parameter
is the choice of initial guess. This simplicity makes them particularly easy to use
and flexible in adaptation into large computational tasks that need to solve certain
nonlinear eigenvalue problems.

Recently, two MATLAB software projects were developed for nonlinear eigenvalue
problems, namely NLEIGS [Güttel et al. 2014] for a class of rational Krylov methods
and CORK [Van Beeumen et al. 2015] for a compact rational Krylov method. These are
Krylov subspace projection based methods and are capable of exploiting the underlying
problem structure via matrix-vector products. To use these methods, it is necessary to
carefully choose a number of critical parameters for fast convergence and high accu-
racy. However, such methods have the potential to find multiple nonlinear eigenvalues
simultaneously. Although a comparison of Krylov type methods such as implemented
in NLEIGS and CORK and the Newton-type methods such as the nonlinear QR al-
gorithms presented in this article is a subject of further study, a brief comparison is
presented in the results section.

Throughout this article we assume that H(λ) is (at least) twice differentiable at the
desired nonlinear eigenvalues. The n × n identity matrix will be denoted In (or simply
I if its dimension is clear from the context) with e j denoting its jth column. We shall
also adopt the MATLAB-like convention to access the entries of vectors and matrices.
Let i : j be the set of integers from i to j inclusive. For a vector u and a matrix X, u( j)
is u’s jth entry, X(i, j) is X’s (i, j)th entry; and X’s submatrices X(k:�,i: j), X(k:�,:), and X(:,i: j)
consist of intersections of row k to row � and column i to column j, row k to row �,
and column i to column j, respectively. XT and X∗ are the transpose and the complex
conjugate transpose of the matrix/vector X, respectively; ‖ · ‖2 denotes the �2 vector
norm or the matrix spectral norm, ‖A‖F the Frobenius norm of matrix A; σmin(X) is
the smallest singular value of X. Finally, the term nonlinear eigenvalue will be used
throughout to refer to any solution μ to Equation (1.1). This is in contrast to using the
term eigenvalue, which will be used to denote the classical definition of an eigenvalue
for a matrix. The authors note the term nonlinear eigenvalue is not standard, but given
the term’s frequency of use in this article, it was chosen as a slightly less cumbersome
variant of other options.
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2. KUBLANOVSKAYA’S METHOD AND RANK REVEALING

2.1. Kublanovskaya’s Method

The basic idea of Kublanovskaya’s method is to apply Newton’s method to the last
diagonal entry in the R-factor of H(λ)’s QR decomposition with column pivoting [Golub
and Van Loan 1996, p. 258]:

H(λ)�(λ) = Q(λ)R(λ),

where �(λ) is a permutation matrix.1 Rigorously speaking, the decomposition is not
continuous because �(λ) is not continuous. But this does not pose any numerical diffi-
culty because the role of �(λ), as the result of the column pivoting, is to make sure the
last diagonal entry rnn(λ) of R(λ) becomes zero before any other diagonal entry does.
Therefore, at any given λ0, we can keep �(λ) constant in a small neighborhood of λ0
and then Newton’s method can be applied to drive H(λ) towards being more singular,
provided rnn(λ) is differentiable at λ0.

This last condition for the applicability of Newton’s method had caused a stir in the
past. As was noticed by Jain and Singhal [1983], Kublanovskaya’s derivation of r′

nn(λ0)
is flawed for complex λ. Jain and Singhal gave a 2 × 2 example,

H(λ) =
[

λ 1
1 λ

]
, (2.1)

to claim that r′
nn(λ0) might not exist. Unfortunately, they made an error in their calcu-

lated QR decomposition of H(λ) (near λ0 = 0):

α

[ |λ|2 λ̄

λ̄ −|λ|2
]

× α

[
λ(1 + |λ|2) λ(λ + λ̄)

0 λ̄(1 − λ2)

]
, (2.2)

where α = [|λ|2(1 + |λ|2)]−1/2. It can be seen that the (1, 2) entry of the product is
α2[λ̄2 + λ3λ̄] �= 1, and thus it is an incorrect QR decomposition for H(λ). The correct QR
decomposition, however, is

H(λ) = β

[
λ 1
1 −λ̄

]
× β

[
1 + |λ|2 λ + λ̄

0 1 − λ2

]
, (2.3)

where β = (1+|λ|2)−1/2. Thus r22(λ) = β(1−λ2) = 1+ O(λ2), which yields the derivative
r′

22(0) = 0 (see Li [1989]).
Despite the flaw in Kublanovskaya’s derivation, her expression for r′

nn(λ0) was later
proved still valid [Li 1989]. Let

H(λ0)� = Q0 R0 ≡ Q0 ×
[ n−1 1

n−1 R(0)
11 r(0)

12

1 0 r(0)
nn

]
(2.4)

be the QR decomposition for H(λ0)�, where � is a permutation matrix such that R(0)
11

is nonsingular. Then, in some neighborhood of λ0, there exists a QR decomposition of
H(λ)�

H(λ)� = Q(λ) R(λ) ≡ Q(λ) ×
[ n−1 1

n−1 R11(λ) r12(λ)
1 0 rnn(λ)

]
, (2.5)

1Kublanovskaya actually did equivalently the QR decomposition for [H(λ)]∗.
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such that (from Appendix A, see also Remark 2.1.4)

rnn(λ) = r(0)
nn + (Q0en)∗ H′(λ0)�

[ −z
1

]
(λ − λ0) + O(|λ − λ0|2), (2.6)

and z is determined by R(0)
11 z = r(0)

12 . Therefore

r′
nn(λ0) = (Q0en)∗ H′(λ0)�

[ −z
1

]
. (2.7)

Consequently, the next approximation by Newton’s method is

λ1 = λ0 − rnn(λ0)
r′

nn(λ0)
= λ0 − r(0)

nn

r′
nn(λ0)

. (2.8)

This process repeats itself to generate a sequence of approximations λi until conver-
gence, which is usually recognized by, for example, checking if |rnn(λi)|/‖H(λi)‖F is less
than or equal to a given tolerance. At convergence, one can take

x = �

[ −z
1

]
, y = Qien (2.9)

as the corresponding right and left eigenvectors.

Remark 2.1. There are several remarks to be made on the preceding Newton’s
method.

(1) Iteration (2.8) is mathematically the same as the original Kublanovskaya’s for-
mula (applied to [H(λ)]∗). However, the right-hand side of Equation (2.8) does not
involve the inverse of R0 but only R(0)

11 (see Equation (2.7)), unlike Kublanovskaya’s
formulation, and thus is better suited for numerical use.

(2) The permutation matrix � does not necessarily have to come from the QR de-
composition with column pivoting. Its only role, regarding the derivations from
Equations (2.4) to (2.8), is to ensure that R(0)

11 is nonsingular. Of course, practi-
cally � that makes r(0)

nn comparable in magnitude to the smallest singular value
σmin(R0) of R0 should be preferred. This observation, though simple, is numerically
significant and what the rest of our development relies on.

(3) It is possible that for a given nonlinear eigenvalue, μ, the matrix R(μ) has a
nullspace of dimension greater than one. In this case, R(0)

11 in Equation (2.4) will
become “less and less nonsingular” as λ0 → μ and thus it may become more and
more difficult to accurately solve for z in Equations (2.6) and (2.7). In Li [1992,
Section 3], a more general algorithm is proposed where, after a set number of
iterations, rnn may be replaced by a block matrix whose size changes iteratively to
ultimately match the dimension of the nullspace of R(μ).

(4) There is a subtlety in the definition of rnn(λ) and r′
nn(λ0) from Equations (2.6) and

(2.7) that needs to be addressed since the QR decomposition is not unique. In Li
[1989], it was shown that given Q0 and R0 from Equation (2.4), there is a QR
decomposition such that H(λ)� = Q(λ)R(λ) with Q and R differentiable at λ = λ0.
This is the QR decomposition implicitly referenced in the definition of rnn(λ) and
r′

nn(λ0). However, any QR decomposition may be used when referenced in the rest
of this article. A derivation for finding the differentiable Q and R at λ = λ0 is given
in Appendix A.
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2.2. Rank Revealing

As we commented above, the role of the column pivoting is to make sure the last
diagonal entry rnn(λ) of R(λ) becomes zero before any other diagonal entry does as well
as that2 rnn(λ) has a comparable magnitude to the smallest singular value of R(λ). This
purpose can also be fulfilled by using any of the rank revealing techniques in Chan
[1987], Chandrasekaran and Ipsen [1994], Foster [1986], Gu and Eisenstat [1996], and
Hong and Pan [1992].

In what follows, we first explain the general idea of modifying Kublanovskaya’s
method with the use of a rank revealing technique and then how to efficiently adapt
the idea to banded H(λ).

The theoretical foundation of rank revealing is the following well-known theorem. A
proof is given for completeness.

THEOREM 2.1. Let A ∈ C
n×n, x ∈ C

n, ‖x‖2 = 1,

k = argmax
i

|x(i)|, (2.10)

where � ∈ R
n×n is a permutation matrix such that �en = ek, and A� = QR is the QR

decomposition of A�. If ‖Ax‖2 = ε, then |R(n,n)| ≤ √
nε.

PROOF. Notice that |x(k)| = maxi |x(i)| and ‖x‖2 = 1 imply |x(k)| ≥ 1/
√

n. We have

ε = ‖Ax‖2 = ‖A��T x‖2 = ‖QR�T x‖2 = ‖R�T x‖2 ≥ |R(n,n)x(k)| ≥ |R(n,n)|/
√

n,

as expected.

How tiny can ε get in this theorem? It is known that ε ≥ σmin(A) always and ε =
σmin(A) if and only if x is A’s (right) singular vector corresponding to σmin(A). Also,
in this theorem, there is no requirement as to how the rest of the columns of A are
permuted, except its kth column has to be permuted to the last. This degree of freedom
will become handy in dealing with H(λ) with special structures, for example, being
banded.

Now we return to Kublanovskaya’s method. At λ0, we first compute the QR decompo-
sition without any column pivoting [Demmel 1997; Golub and Van Loan 1996; Stewart
1998],

H(λ0) = Q̃0 R̃0. (2.11)

Next, we seek x ∈ C
n and ‖x‖2 = 1 such that ‖R̃0x‖2 is comparable to σmin(R̃0). This

can usually be accomplished by a few steps of inverse iteration on R̃∗
0 R̃0: pick an initial

x0 ∈ C
n and normalize3 it to have ‖x0‖2 = 1, and then perform

R̃∗
0 y = xi, R̃0z = y, xi+1 = z/‖z‖2 for i = 0, 1, . . . . (2.12)

Usually, no more than five iterations are needed in our numerical examples. Each step
of Equation (2.12) is very cheap. How do we choose x0? An obvious one is a random
vector or the vector of all ones. This should be good, but as convergence begins to
emerge, a better choice will be the x from the previous Newton iteration step.

Let x = xi be the last xi from the iteration process (Equation (2.12)), and then k as in
Equation (2.10), and let

� = [e1, . . . , ek−1, ek+1, . . . , en, ek] ∈ R
n×n,

2This is not always guaranteed. One example is the Kahan matrix [Kahan 1966, p. 791].
3For computational efficiency, xi can be scaled to ‖xi‖∞ = 1 because all we need is the index of its largest
entry in magnitude, where ‖ · ‖∞ is the �∞ vector norm.
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Fig. 1. The sparsity pattern of the R-factors for the QR decompositions of H(1) for the modified loaded string
problem (3.1). Left: with standard column pivoting; right: with the rank-revealing technique in Section 3.3.

that is, � will move the kth column of R̃0 in Equation (2.13) to the last while shifting
its (k + 1)st to nth columns forward each by 1. Compute the QR decomposition

R̃0� = Q̂0 R0, (2.13)

and, finally,

H(λ0)� = Q̃0 R̃0� = (Q̃0 Q̂0)R0 ≡ Q0 R0, (2.14)

for which the last diagonal entry r(0)
nn of R0 is usually of comparable magnitude to

σmin(R0).

3. BANDED QR DECOMPOSITIONS AND RANK REVEALING

In general, computing the QR decomposition (Equation (2.4)) costs O(n3) flops, even
when H(λ) has certain favorable structure, including being banded with very small
(left and right) bandwidths. This occurs because the column pivoting can and will
destroy the structure and make ensuing computations cost O(n3) flops, and that is too
expensive. For an example of this phenomenon, we modify the loaded string problem
[Betcke et al. 2008; Huang et al. 2010] to give the following NLEVP:

H(λ)x = (
A− λB+ e−λD

)
x = 0, (3.1)

where h = 1/n and

A = 1
h

⎡⎢⎢⎢⎣
2 −1

−1
. . . . . .
. . . 2 −1

−1 1

⎤⎥⎥⎥⎦, B = h
6

⎡⎢⎢⎢⎣
4 1

1
. . . . . .
. . . 4 1

1 2

⎤⎥⎥⎥⎦, D = ene∗
n.

Figure 1 shows the sparsity pattern in the R-factors for the QR decompositions of
H(1) for n = 100. It is evident that the R-factor from the QR decomposition with
column pivoting is sufficiently dense that the QR decomposition with column pivoting
will require O(n3) flops to complete, whereas for the R-factor by the rank revealing
QR decomposition in Sections 3.2 and 3.3 below, it costs only O(n). That is where the
computational savings come from.
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3.1. Structurally Banded QR Decomposition

Write H(λ) = (hij(λ)). If

hij(λ) ≡ 0 for j < i − p or j > i + q, (3.2)

then we say that H(λ) is banded with left bandwidth p and right bandwidth q.
In principle, the following development is valid for either p = n − 1 or q = n − 1 or

both. However, it is only in the case p  n that it takes much less work than O(n3)
flops to obtain the desired QR decomposition (2.14). In the case when q  n but p � n,
we should work with the transpose of H(λ), instead.

For such H(λ), the R-factor in its QR decomposition without any column pivoting
is an upper triangular matrix with right bandwidth min{n − 1, p + q}, namely R̃0 in
Equation (2.11). But, in general, the upper triangular part as well as the p subdiagonals
of Q0 are possibly nonzero. This still makes the overall cost O(n3) if Q0 is formed
explicitly. Fortunately, Q0 does not have to be formed explicitly and it should not be,
especially when p  n. In fact, Q0 can stay in its factored form as the product of either
n − 1 Householder transformations, each of which takes p + 2 floating point numbers
of storage or n − 1 Givens rotations, each of which takes 2 floating point numbers of
storage if p = 1; see for examples Demmel [1997], Golub and Van Loan [1996], and
Stewart [1998].

Specifically, in Equation (2.11) we have

Q̃0 = U ∗
1 U ∗

2 · · ·U ∗
n−1, Ui =

[ Ii−1
Wi

In−p−i

]
,

where Ij with j ≤ 0 is understood as an empty matrix, Wi ∈ C
(p+1)×(p+1) is either a

Householder matrix (when p > 1) or a Givens rotation (when p = 1). Each Wi can be
recorded by no more than p + 2 floating point numbers. In Equation (2.13),

Q̂0 = V ∗
k V ∗

k+1 · · · V ∗
n−1, Vi =

[ Ii−1
Zi

In−i−1

]
,

where Zi ∈ C
2×2 is a Givens rotation. Finally, Equation (2.14) holds with

Q0 = Q̃0 Q̂0 = U ∗
1 U ∗

2 · · ·U ∗
n−1 V ∗

k V ∗
k+1 · · · V ∗

n−1,

which will be used to compute Q0en. The matrix R0 in Equation (2.13) is very well
structured: Its first n−1 columns are upper triangular with the right bandwidth p+q,
and its last column has possible nonzero entries from the min{k − p − q, 1} position to
the last position.

3.2. Unstructurally Banded QR Decomposition

In this subsection, we shall consider an unstructurally banded QR decomposition by
which we mean H(λ) = (hij(λ)) in Equation (1.1) characterized by two sets of integers,

∂U = {
�U

1 , �U
2 , . . . , �U

n

}
(upper column boundaries), (3.3a)

∂L = {
�L

1 , �L
2 , . . . , �L

n

}
(lower column boundaries), (3.3b)

in such a way that

hij(λ) ≡ 0 for i > �L
j or i < �U

j . (3.4)

For convenience, we will assume

�U
j ≤ j ≤ �L

j . (3.5)
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All (structurally) banded H(λ) as defined in Section 3 are examples of unstructurally
banded matrices. For example, for tridiagonal H(λ),

∂U = {1, 1, 2, . . . , n − 1}, ∂L = {2, 3, . . . , n, n}.
On the other hand, an unstructurally banded H(λ) with upper and lower column
boundaries (Equations (3.3)) is a (structurally) banded NLEVP with left bandwidth
and right bandwidth given by

p = max
j

{
�L

j − j
}
, q = max

j

{
j − �U

j

}
.

For ease of implementation, the third set of integers:

∂R = {
�R

1 , �R
2 , . . . , �R

n

}
(right row boundaries), (3.6)

should also be made available, where ∂R is defined by

hij(λ) ≡ 0 for j > �R
i . (3.7)

The right row boundary can be computed from the upper column boundary ∂U in
Equation (3.3a) as follows:

1 �R

i := i for i = 1 : n;
2 For j = 2 : n
3 �R

i := max{ j, �R

i} for i = �U

j : j − 1;
4 EndFor.

In what follows, we will explain how to efficiently compute the QR decomposition of an
unstructurally banded matrix with upper and lower column boundaries (Equation (3.3))
and right row boundary (Equation (3.6)).

Suppose that T = (tij) ∈ C
n×n is unstructurally banded with the upper column, lower

column, and right row boundaries

∂U = {
�U

1 , �U
2 , . . . , �U

n

}
, ∂L = {

�L
1 , �L

2 , . . . , �L
n

}
, ∂R = {

�R
1 , �R

2 , . . . , �R
n

}
, (3.8)

that is,

tij = 0 for i > �L
j or i < �U

j or j > �R
i .

We are interested in efficient ways to compute T ’s QR decomposition: T = QR. The
interesting case is when max j{�L

j − �U
j }  n, and thus T is very sparse.

As in the (structurally) banded case, the QR decomposition T = QR can still be
computed as

Q = U ∗
1 U ∗

2 · · ·U ∗
n−1, Ui =

⎡⎢⎣ Ii−1
Wi

. . .

⎤⎥⎦, (3.9)

where Wi is either the scalar 1 or a Householder transformation whose dimension will
be determined at runtime4 and can be seen to be no more than

m̂ = max
j

{
�L

j − j
} + 1

at the beginning. At the same time, R is upper triangular (so its lower column boundary
must be {1, 2, . . . , n}) and unstructurally banded with its upper column boundary to be

4If p = 1, then Givens rotations can be used.
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determined at runtime but with the guarantee that each column has no more than

m = m̂+ max
j

{
j − �U

j

}
nontrivial consecutive entries starting at the diagonal entry upwards.

Each Householder transformation W = I − 2uu∗ ∈ C
i×i that transforms x to αe1 can

be represented by i + 1 complex values as:

u = x − αe1

‖x − αe1‖2
, if x �= αe1,

where α is chosen so |α| = ‖x‖2 (since W is unitary) and |x(1) − α| = |x(1)| + |α| (to avoid
possible cancellation in x(1) − α), and then

w = x − αe1, β = 2
‖x − αe1‖2

2

= 1
‖x‖2(‖x‖2 + |x(1)|)

to give W = I − βww∗. If, however, x = αe1 for some α ∈ C, including the cases x = 0 or
x of dimension 1, then simply taking β = 0 will do the job.

Based on the above discussion, we propose to store T into an m × n array T wk to
begin with in such a way that the nontrivial entries of T ’s jth column are stored as the
first �L

j − �U
j + 1 entries of T wk’s jth column:

T wk
(1:�L

j −�U
j +1, j) = T(�U

j :�L
j , j). (3.10)

For an example of the sparse storage and indexing, consider the 5 × 5 matrix

T =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 2 4 0 0
0 3 5 7 0
0 0 6 8 9
0 0 0 0 10

⎞⎟⎟⎟⎠.

Then

∂U = {1, 2, 2, 3, 4}, ∂L = {1, 3, 4, 4, 5}, ∂R = {1, 3, 4, 5, 5},
and

T wk =
( 1 2 4 7 9

0 3 5 8 10
0 0 6 0 0

)
.

During the process of computing T = QR,

(1) ∂U = {�U
1, �

U
2, . . . , �

U
n} and ∂R = {�R

1, �
R
2, . . . , �

R
n} are updated to be the upper column and

right row boundaries of the R-factor, respectively;
(2) T wk is updated to contain the R-factor in such a way that

T wk
(1: j−�U

j +1, j) = R(�U
j : j, j);

(3) ∂L = {�L
1, �

L
2, . . . , �

L
n} is updated to yield the dimensions of the n − 1 Householder

transformations Wj in Equation (3.9): �L
j − j + 1;

(4) The Householder transformations Wj are compactly stored as an (m̂+ 1) × (n − 1)
array Qwk in such a way that

Wj = I�L
j − j+1 − β jw jw

∗
j , Qwk

(1:�L
j − j+2, j) =

[
β j
w j

]
.
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3.3. Rank-Revealing of the R-Factor

Suppose that R = (rij) ∈ C
n×n is unstructurally banded and upper triangular, typically

as the result of unstructurally banded QR decomposition, with upper column and right
row boundaries

∂U = {
�U

1, �
U
2, . . . , �

U
n}, ∂R = {�R

1, �
R
2, . . . , �

R
n

}
, (3.11)

that is,

rij = 0 for i < �U
j or j > �R

i .

Since R is upper triangular, its lower column boundary is ∂L = {1, 2, . . . , n}. Performing
a rank-revealing QR decomposition as outlined in Subsection 2.2 requires efficient
ways to

(1) solve linear systems Rx = b and R∗x = b, and
(2) compute the QR decomposition of the matrix [R(:,1:k−1), R(:,k+1:n), R(:,k)] permuted

from R by moving its kth column to the last and shifting columns k + 1 to n one to
the left.

Assume that R is compactly stored as an m× n array Rwk in such a way that

Rwk
(1: j−�U

j +1, j) = R(�U
j : j, j).

The triangular linear system Rx = b can be solved by a column-oriented version of
backward substitution [Golub and Van Loan 1996, Section 3.1] to overwrite b in place:

0 Solve Rx = b.
1 For i = n : −1 : 2
2 b(i) = b(i)/Rwk

(i−�U
i +1,i); (3.12)

3 b(�U
i :i−1) = b(�U

i :i−1) − b(i) Rwk
(1:i−�U

i ,i);
4 EndFor
5 b(1) = b(1)/Rwk

(1,1).

The key point is to update the relevant portion of b after each new entry of the solution is
computed. The same idea is applicable to solving R∗x = b, except, in this case, we use a
row-oriented version of forward substitution. Here is an outline of the implementation:

0 Solve R∗x = b.
1 b(1) = b(1)/ conj(Rwk

(1,1));
2 For i = 2 : n
3 b(i) = b(i) − conj(Rwk

(1:i−�U
i ,i))

Tb(�U
i :i−1); (3.13)

4 b(i) = b(i)/ conj(Rwk
(i−�U

i +1,i));
5 EndFor.

Next, we consider computing the QR decomposition of the matrix[
R(:,1:k−1), R(:,k+1:n), R(:,k)

] = Q̃R̃ (3.14)

for a given k, where R is stored as Rwk. As in the (structurally) banded case, this can
be done by n − k Givens rotations

Q̃ = V ∗
k V ∗

k+1 · · · V ∗
n−1, Vi =

[ Ii−1
Zi

In−i−1

]
, Zj =

[
c j sj

−s∗
j c j

]
, (3.15)

where c j ∈ R and sj ∈ C, c2
j + |sj |2 = 1. At its completion,
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ALGORITHM 1: Nonlinear QR Algorithm for Unstructurally Banded NLEVP
Given unstructurally banded H(λ) and its upper column boundary ∂ (0)

U , lower column boundary
∂ (0)

L , and (optionally) right row boundary ∂ (0)
R , initial guess λ0 ∈ C, and a relative tolerance rtol,

this algorithm computes a nonlinear eigenvalue μ of H(λ), and optionally (left and/or right)
eigenvectors x and y as in (1.1).
1: for i = 0, 1, . . . do
2: if i > 0 and |rnn(λi)|/‖H(λi)‖F ≤ rtol then
3: break;
4: else
5: ∂U = ∂ (0)

U , ∂L = ∂ (0)
L , ∂R = ∂ (0)

R ;
6: T = H(λi) but compactly stored as T wk to satisfy (3.10);
7: compute T = QR as outlined at the end of Section 3.2;
8: compute a rank-revealing QR of R as in Section 3.3;
9: compute λi+1 according to (2.7) and (2.8), as outlined in Section 4;
10: end if
11: end for
12: (optionally) compute right and/or left eigenvectors x and y as by (2.9);
13: return λi+1 as an approximate nonlinear eigenvalue to μ, and optionally x and/or y as

approximate right and/or left eigenvectors.

(1) the first n − 1 columns in Rwk compactly store the first n − 1 columns of R̃;
(2) �U

j is updated to yield the upper column boundary for the first n − 1 columns of R̃;
(3) Q̃ is stored in the product form of n − k Givens rotations in an array of 2 × (n − k);
(4) r ∈ C

n is the last column of R̃.

4. BANDED KUBLANOVSKAYA’S METHOD

An application of Kublanovskaya’s method (Equation (2.8)) to the banded H(λ) now
critically relies on computing z and the last column of the Q-factor in the final QR
decomposition computed as described in Sections 3.2 and 3.3.

The final R-factor as in Section 3.3 is stored as two pieces: the first n − 1 columns
in Rwk and a vector r. Then, z can be computed similarly to Equation (3.12). The last
column of the Q-factor is

U ∗
1 U ∗

2 · · ·U ∗
n−1V ∗

k V ∗
k+1 · · · V ∗

n−1en,

where Ui and Vj are from Equations (3.9) and (3.15), respectively. Given Ui and Vj are
compactly stored, this vector is easily and efficiently computed.

Algorithm 1 summarizes our variant of Kublanovskaya’s method for an unstruc-
turally banded nonlinear eigenvalue problem.

4.1. Some Convertible Cases

There are several examples in the collection [Betcke et al. 2013] that have banded H(λ)
to begin with. This section discusses how to convert H(λ) of the following form:

H(λ) = A+
k∑

i=1

φi(λ)uiv
∗
i + ψ(λ)B, (4.1)

into the banded case (including the possibility of the right bandwidth being q = n − 1)
at O(n3) cost, where A, B ∈ C

n×n, ui, vi ∈ C
n, and φi and ψ are scalar functions of λ. The

cost O(n3) makes the conversions feasible for small to medium sized H(λ) in the form
of Equation (4.1).
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Case 1: A = A∗, B = αIn, and ui = vi for 1 ≤ i ≤ k. Possibly α = 0 or, equivalently, the
last term ψ(λ)B in Equation (4.1) drops out. First, we find U0 ∈ C

n×n as the product of
k Householder transformations such that

U ∗
0 [u1, u2, . . . , uk] = [w1, w2, . . . , wk] (4.2)

is upper triangular in the sense that (wi)( j) = 0 for all j > i. Next, similarly to the
standard technique for reducing a Hermitian matrix to a real symmetric tridiagonal
matrix, we find U1 ∈ C

n×n as the product of n − k Householder transformations such
that

U ∗
1 (U ∗

0 AU0)U1 = T

is a banded Hermitian matrix with its left and right bandwidth k. Finally, with U =
U0U1,

U ∗H(λ)U = T +
k∑

i=1

φi(λ)wiw
∗
i + αψ(λ)In,

which is also banded with left and right bandwidth k.
It is possible that the rank � of [u1, u2, . . . , uk] is less than k. Then, in Equation (4.2),

we will have (wi)( j) = 0 for all i and j > �. Consequently U1 is now the product of n− �
Householder transformations, and finally U ∗H(λ)U has left and right bandwidth �.

Case 2: A = A∗, B = B∗, ui = vi for 1 ≤ i ≤ k, and one of A and B is positive definite.
Suppose B is positive definite and has the Cholesky factorization

B = LL∗.

Then

L−1 H(λ)L−∗ = L−1 AL−∗ +
k∑

i=1

φi(λ)wiw
∗
i + ψ(λ)In

becomes Case 1 above, where Lwi = ui.

Case 3: B = αIn. Now A is not necessarily Hermitian, and possibly α = 0. First, we
find unitary U0 ∈ C

n×n such that

U ∗
0 [u1, u2, . . . , uk, v1, v2, . . . , vk] = [x1, x2, . . . , xk, y1, y2, . . . , yk] (4.3)

with (xi)( j) = (yi)( j) = 0 for 1 ≤ i ≤ k and j > �, where � is the (numerical) rank
of [u1, u2, . . . , uk, v1, v2, . . . , vk]. Next, similarly to the standard technique for reducing
a non-Hermitian matrix to an upper Hessenberg matrix, we find U1 ∈ C

n×n as the
product of n − � Householder transformations such that

U ∗
1 (U ∗

0 AU0)U1 = T

is banded with its left bandwidth � and right bandwidth n−1. Finally, with U = U0U1,

U ∗H(λ)U = T +
k∑

i=1

φi(λ)xi y∗
i + αψ(λ)In,

which is also banded with its left bandwidth � and right bandwidth n − 1.

4.2. Computation of Several Nearby Nonlinear Eigenvalues

We have presented a variation of Kublanovskaya’s method with the goal of making it
efficient for (structurally/unstructurally) banded nonlinear eigenvalue problems. Like
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the application of any Newton method, it starts at an initial guess μ0 and ends at
an approximate nonlinear eigenvalue if the process converges. Often all nonlinear
eigenvalues near a particular point or within a region are sought. A straightforward
way would be to repeat the Newton process at various initial points μ0 near the point
or the region. Sometimes starting at different initial points μ0 does not lead to different
approximate nonlinear eigenvalues, and in general it is hard, if not impossible, to know
in advance how to pick initial points to avoid such repeated convergence to the same
approximate nonlinear eigenvalue.

In what follows, we will explain a method to deflate out any known nearby nonlinear
eigenvalues as in Wilkinson [1965, Section 7.48]. Consider solving f (t) = 0 for t near
a given point t0 ∈ C, where f (t) is a nonlinear scalar function and, for our purpose,
differentiable. Suppose we know or have computed m zeros ri (i = 1 : m) of f (t) near t0,
each of multiplicity mi,

f (ri) = 0.

Usually mi = 1. The simple idea is just to apply the underlying root finder to

g(t) := f (t)∏m
i=1(t − ri)mi

. (4.4)

In the case of Newton’s method,

g(t)
g′(t)

= f (t)
f ′(t) − f (t)

∑m
i=1

mi
t−ri

. (4.5)

So for our nonlinear QR algorithm, it is simple to modify Equation (2.8) to

λ1 = λ0 − rnn(λ0)
r′

nn(λ0) − rnn(λ0)
∑m

i=1
mi

λ0−μi

, (4.6)

where μi for 1 ≤ i ≤ m are known or already computed zeros with multiplicity mi,
respectively, although usually mi = 1. This idea works rather well in our numerical
examples later.

5. NUMERICAL EXAMPLES

Our variant of Kublanovskaya’s method in combination with the unstructurally banded
data storage format is indices intensive. It is hard to take advantage of MATLAB’s
built-in pre-compiled functions, and thus, not surprisingly, the algorithm runs slowly if
coded in MATLAB for n in the thousands or larger because MATLAB is an interpreted
language. So we also provide an implementation in the C++ programming language.
Both implementations may be found at Garrett and Li [2013].

Example 5.1. This is a problem from a finite-element model of a vibrating structure
with nonproportional damping [Voss 2004]. The λ-matrix H(λ) takes the form

H(λ) = λ2M + K − 1
1 + βλ

�K,

where K, M, and �K are 9376 × 9376 real matrices and the parameter β is set to be
β = 2 × 10−5.

The matrix H(λ) is not an unstructurally banded matrix function to begin with, but it
becomes one after a symmetric row and column permutation computed by MATLAB’s
symrcm as perm=symrcm(A), where A = |K| + |M| + |�K| and the absolute value of
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Fig. 2. Sparsity patterns of K, M, and �K before and after the permutation for Example 5.1. Top row:
before permutation; bottom row: after permutation. NZ below each figure stands for the number of non-zero
elements in the matrix.

Table I. Data for Example 5.1 with an Initial Guess of λ0 = − 1 − 10i

iteration permuting iterations permuted column residual eigenvalue
0 2 7 1.1e-05 -1.000000e0 - i1.000000e1

1 3 2455 8.9e-05 -1.578073e3 - i2.145839e4

2 2 2787 2.4e-05 -1.374332e3 - i2.143317e4

3 2 2787 2.1e-05 -1.410348e3 - i2.153883e4

4 1 2787 1.5e-06 -1.405421e3 - i2.149456e4

5 1 2787 1.4e-08 -1.408698e3 - i2.149333e4

6 1 2787 1.0e-12 -1.408685e3 - i2.149336e4

7 1 2787 1.5e-17 -1.408685e3 - i2.149336e4

a matrix is understood in the entrywise sense.5 Figure 2 shows plots of the sparsity
patterns of these matrices before and after the permutation. With the permutation,
H(λ) becomes unstructurally banded with maximum left and right bandwidths p =
q = 212, but the bandwidths for most rows are much smaller than 212.

In Table I, we show data for finding one nonlinear eigenvalue starting with an initial
guess of λ0 = −1 − 10i. The table shows at each iteration:

—permuting iterations: the number of iterations used to compute the column index, k
as in Equation (2.10), to be permuted,

—permuted column: the column index, k as in Equation (2.10), of the column to be
permuted to the end of the matrix,

5We actually used Octave’s implementation of symrcm, which gives a permutation that differs from the
MATLAB implementation.
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Fig. 3. Figure containing the residuals at each iteration and each nonlinear eigenvalue for Example 5.1 with
an initial guess of λ0 = -1408.0 - i21493. The different lines represent the different nonlinear eigenvalues.

Table II. Left and Right Normalized Residuals with the Corresponding
Computed Nonlinear Eigenvalue for Example 5.1 with an Initial Guess

of λ0 = -1408 - 21493i

index left residual right residual eigenvalue
1 8.4e-18 5.5e-17 -1.408685e3 - i2.149336e4

2 8.4e-18 5.2e-17 -1.337498e3 - i2.122305e4

3 8.5e-18 5.7e-17 -1.304014e3 - i2.175030e4

4 8.2e-18 5.0e-17 -1.330369e3 - i2.043782e4

5 8.3e-18 4.2e-17 -4.711966e3 - i4.539375e4

—residual: |rnn(λi)|/‖H(λi)‖F, where λi is the ith iteration’s approximation of the non-
linear eigenvalue,

—eigenvalue: the nonlinear eigenvalue approximation of the ith iteration.

The final left and right normalized residuals ‖y∗H(λ)‖2/‖H(λ)‖F and ‖H(μ)x‖2/‖H(μ)‖F
were 8.5e-18 and 5.4e-17, respectively.

Our current implementation attempts to solve for a nonlinear eigenvalue within a
preset maximum number of iterations (default is 10), and, if successful, it deflates the
computed nonlinear eigenvalue as described in Section 4.2 and continues to seek the
next nonlinear eigenvalue with the same initial guess. The process continues until it
fails to find a nonlinear eigenvalue within the preset maximum number of iterations.
With the initial guess -1408 - 21493i (chosen because it is close to the nonlinear eigen-
value previously computed), our code is able to find five nonlinear eigenvalues before
the maximum number of iterations is surpassed in searching for the sixth nonlinear
eigenvalue. Figure 3 shows the residuals for each iteration of the five computed non-
linear eigenvalues. The final left and right normalized residuals for each computed
nonlinear eigenvalue, as well as each computed nonlinear eigenvalue, are shown in
Table II.

Remark 5.1. In this example, raising the maximum number of iterations does not
yield more nonlinear eigenvalues. However, after reaching the maximum number of
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Fig. 4. Sparsity patterns of K, M, W1, and W2 for Example 5.2. NZ below each figure stands for the number
of non-zero elements in the matrix.

iterations, we tried new starting guesses by randomly choosing a point in

[Re(λ0) − 1000, Re(λ0) + 1000] + i[Im(λ0) − 1000, Im(λ0) + 1000].

Using this trick, we were able to find more nonlinear eigenvalues.

Example 5.2. For this example, we use the gun problem taken from the NLEVP
collection [Betcke et al. 2013], which models a radio-frequency gun cavity. This problem
is the biggest banded problem currently available in the collection. The problem takes
the form

H(λ) = K − λM + i
(
λ − σ 2

1

)1/2W1 + i
(
λ − σ 2

2

)1/2W2,

where K, M, W1, and W2 are real symmetric 9956×9956 matrices. This H(λ) is already
an unstructurally banded matrix function, so no permutations need be done as in
Example 5.1. Figure 4 shows plots of the sparsity patterns of these matrices. The
matrices have bandwidths within p = q = 843, but the bandwidths for most rows are
much smaller than this. This is especially true for W1 and W2, which have only 57 and
293 nonzero elements, respectively.

When running this example, we set σ1 = 0.0 and σ2 = 108.8774. Setting the initial
condition, λ0, anywhere between 20,000 and 25,000 leads to convergence of the nonlin-
ear eigenvalue 2.234512e4 + i6.449986e-1. Solving for another nonlinear eigenvalue
leads to the program trying to find a nonlinear eigenvalue near zero, which makes the
Newton steps fail since H′(λ) becomes unbounded as λ → 0. In Figure 5, we show the
residuals at each iteration given various initial conditions.

Finally, to show that the unstructurally banded algorithm is much faster than the
dense Kublanovskaya algorithm, we show timings for both algorithms run on a per-
sonal workstation. The dense algorithm we use is basically the original Kublanovskaya
method without exploiting any unstructurally banded structure. The QR decomposition
with column pivoting uses LAPACK’s zgeqp3, which calculates the QR decomposition of
a matrix with column pivoting such that the diagonal elements of the upper triangular
matrix are decreasing in absolute value. Table III has the timings for computing one
nonlinear eigenvalue for both examples using both the sparse and dense algorithms.
Clearly, the dense version of the algorithm takes much longer to compute. Also, Exam-
ple 5.1 takes significantly less time than Example 5.2 for the sparse solver because the
bandwidth is considerably smaller in Example 5.1.

Remark 5.2. We compared results for the gun problem using the method described
in this article against CORK and NLEIGS referenced in the introduction, since this
problem is implemented as an example by those packages. Both packages converged
to the nonlinear eigenvalue given previously, and both took less time for the compu-
tation even when compared to our C++ implementation. At least one reason for this
is our code has not been tuned yet to take advantage of level 2 and 3 BLAS routines,
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Fig. 5. Figure containing the residuals at each iteration for computing the nonlinear eigenvalue
2.234512e4 + i6.449986e-1 in Example 5.2. The different lines represent the different initial guesses.

Table III. Timings for Finding One Nonlinear Eigenvalue for Each
Example. Sparse Indicates Using the Unstructurally Banded

Algorithm and Dense Indicates Using the Dense Matrix Algebra
with the Kublanovskaya Method

Example Initial Guess Algorithm Time (seconds)
5.1 -1408 - 21493i Sparse 20s
5.1 -1408 - 21493i Dense 1411s
5.2 22000 Sparse 283s
5.2 22000 Dense 1665s

given the complication of the unstructured nature of the algorithm. The CORK and
NLEIGS software packages implicitly take advantage of level 2 and 3 BLAS routines
in MATLAB, since their algorithms are easily written in vectorized form.

6. CONCLUDING REMARKS

We have presented new methods based on Kublanovskaya’s method for solving the
nonlinear eigenvalue problem for banded problems. In particular, new data structures
were presented for the unstructurally banded case. While the new data structures are
more complicated than most sparse or banded matrix data structures, they enable
more efficient use of memory. We also explained how to find several nearby nonlinear
eigenvalues to already calculated ones. Finally, we presented two examples to show the
capabilities of the new methods, and we have made the source code publicly available
[Garrett and Li 2013] to reproduce the results and solve other unstructurally banded
nonlinear eigenvalue problems.

A. APPENDIX ON DIFFERENTIABILITY

What follows is taken from Li [1989] for deriving a Q(λ) and R(λ) used to find rnn(λ) in
Equation (2.6), where Q(λ) and R(λ) are differentiable at λ = λ0 with Q(λ0) = Q0 and
R(λ0) = R0.

Write Q∗
0 H(λ)� = R0 + E, where

E = Q∗
0 H′(λ0)� (λ − λ0) + O(|λ − λ0|2).
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Partition R0 as in Equation (2.4) and E conformably as

E =
[ n−1 1

n−1 E11 e12
1 e21 enn

]
.

For sufficiently tiny |λ−λ0|, R(0)
11 + E11 is nonsingular. Assume that |λ−λ0| is sufficiently

tiny, and let

p = e21
[
R(0)

11 + E11
]−1

, Q∗
1 =

[
(I + p∗ p)−1/2 0

0 (1 + pp∗)−1/2

][
I p∗

−p 1

]
.

We have

Q∗
1 Q∗

0 H(λ)�

=
[

(I + p∗ p)−1/2 0
0 (1 + pp∗)−1/2

][
R(0)

11 + E11 + p∗e21 r(0)
12 + e12 + p∗(r(0)

nn + enn)

0 r(0)
nn + enn − p(r(0)

12 + e12)

]

=:
[

M11(λ) m12(λ)
0 rnn(λ)

]
.

The same procedure can now be used inductively on M11(λ) to find Q(λ) such that
H(λ)� = Q(λ)R(λ). However, it is not necessary to calculate any further, as we already
have rnn(λ), which is the one given in Equation (2.6).
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