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Abstract. We determine exact exponential asymptotics of eigenfunctions and of corre-

sponding transfer matrices of the almost Mathieu operators for all frequencies in the lo-
calization regime. This uncovers a universal structure in their behavior, governed by the

continued fraction expansion of the frequency, explaining some predictions in physics liter-

ature. In addition it proves the arithmetic version of the frequency transition conjecture.
Finally, it leads to an explicit description of several non-regularity phenomena in the cor-

responding non-uniformly hyperbolic cocycles, which is also of interest as both the first

natural example of some of those phenomena and, more generally, the first non-artificial
model where non-regularity can be explicitly studied.

1. Introduction

A very captivating question and a longstanding theoretical challenge in solid state physics
is to determine/understand the hierarchical structure of spectral features of operators describ-
ing 2D Bloch electrons in perpendicular magnetic fields, as related to the continued fraction
expansion of the magnetic flux. Such structure was first predicted in the work of Azbel in 1964
[11]. It was numerically confirmed through the famous butterfly plot and further argued for
by Hofstadter in [29], for the spectrum of the almost Mathieu operator. This was even before
this model was linked to the integer quantum Hall effect [48] and other important phenom-
ena. Mathematically, it is known that the spectrum is a Cantor set for all irrational fluxes
[5], and moreover, even all gaps predicted by the gap labeling are open in the non-critical
case [6, 8]. Both were very important challenges in themselves, even though these results,
while strongly indicate, do not describe or explain the hierarchical structure, and the problem
of its description/explanation remains open, even in physics. As for the understanding the
hierarchical behavior of the eigenfunctions, despite significant numerical studies and even a
discovery of Bethe Ansatz solutions [1, 49] it has also remained an important open challenge
even at the physics level. Certain results indicating the hierarchical structure in the corre-
sponding semi-classical/perturbative regimes were previously obtained in the works of Sinai,
Helffer-Sjostrand, and Buslaev-Fedotov (see [22, 28, 47], and also [52] for a different model ).

In this paper we address the latter problem by describing the universal self-similar expo-
nential structure of eigenfunctions throughout the entire localization regime. We determine
explicit universal functions f(k) and g(k), depending only on the Lyapunov exponent and the
position of k in the hierarchy defined by the denominators qn of the continued fraction ap-
proximants of the flux α, that completely define the exponential behavior of, correspondingly,
eigenfunctions and norms of the transfer matrices of the almost Mathieu operators, for all
eigenvalues corresponding to a.e. phase , see Theorem 2.1. 1 Our result holds for all frequency

Key words and phrases. Anderson localization, spectral transition, universal hierarchical structure.

2010 Mathematics Subject Classification. Primary: 47B36. Secondary: 37C55, 82B26.
1 This paper supplants our earlier preprint entitled “Asymptotics of quasiperiodic eigenfunctions”. The

latter preprint is not intended for publication.

1



2 SVETLANA JITOMIRSKAYA AND WENCAI LIU

and coupling pairs in the localization regime. Since the behavior is fully determined by the
frequency and does not depend on the phase, it is the same, eventually, around any starting
point, so is also seen unfolding at different scales when magnified around local eigenfunction
maxima, thus describing the exponential universality in the hierarchical structure, see, for
example, Theorems 2.2,2.4.

While the almost Mathieu family is precisely the one of main interest in physics literature,
it also presents the simplest case of analytic quasiperiodic operator, so a natural question is
which features discovered for the almost Mathieu would hold for this more general class. Not
all do, in particular, the ones that exploit the self-dual nature of the family Hλ,α,θ often cannot
be expected to hold in general. In case of Theorems 2.1 and 2.2, we conjecture that they should
in fact hold for general analytic (or even more general) potentials, for a.e. phase and with
ln |λ| replaced by the Lyapunov exponent L(E) (see Footnote 4), but with otherwise the same
or very similar statements. The hierarchical structure theorems 2.2 and 2.4 are also expected
to hold universally for most (albeit not all, as in the present paper) appropriate local maxima.
Some of our qualitative corollaries may hold in even higher generality. Establishing this fully
would require certain new ideas since so far even an arithmetic version of localization for the
Diophantine case has not been established for the general analytic family, the current state-of-
the-art result by Bourgain-Goldstein [18] being measure theoretic in α. However, some ideas
of our method can already be transferred to general trigonometric polynomials [35]. Moreover,
our method was used recently in [27] to show that the same f and g govern the asymptotics
of eigenfunctions and universality around the local maxima throughout the a.e. localization
regime in another popular object, the Maryland model.

Since we are interested in exponential growth/decay, the behavior of f and g becomes most
interesting in case of frequencies with exponential rate of approximation by the rationals. In
general, localization for quasiperiodic operators is a classical case of a small denominator prob-
lem, and has been traditionally approached in a perturbative way: through KAM-type schemes
for large couplings [21, 24, 47] (which, being KAM-type schemes, all required Diophantine
conditions on frequencies) or through perturbation of periodic operators (Liouville frequen-
cy). Unlike the random case, where, in dimension one, localization holds for all couplings, a
distinctive feature of quasiperiodic operators is the presence of metal-insulator transitions as
couplings increase. Even when non-perturbative methods, for the almost Mathieu and then
for general analytic potentials, were developed in the 90s [18, 31], allowing to obtain local-
ization for a.e. frequency throughout the regime of positive Lyapunov exponents, they still
required Diophantine conditions, and exponentially approximated frequencies that are neither
far from nor close enough to rationals remained a challenge, as for them there was nothing
left to perturb about or to remove. Moreover, it has become clear that for all frequencies, the
true localization threshold should be arithmetically determined and happen precisely where
the exponential growth provided by the Lyapunov exponent beats the exponential strength of
the small denominators. Thus the most interesting regime - the neighborhood of the transition
- required dealing with the exponential frequencies not amenable to perturbations/parameter
removals, adding a strong number theoretic flavor to the problem. The precise second transi-
tion conjecture was stated for the almost Mathieu operator [30]. Our analysis provides also a
(constructive) solution to the full arithmetic version of the transition in frequency and explains
the role of frequency resonances in the phenomenon of localization, in a sharp way.

The almost Mathieu operator (AMO) is the (discrete) quasiperiodic Schrödinger operator
on `2(Z):

(Hλ,α,θu)(n) = u(n+ 1) + u(n− 1) + 2λ cos 2π(θ + nα)u(n),

where λ is the coupling, α is the frequency, and θ is the phase.
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It is the central quasiperiodic model due to coming from physics and attracting continued
interest there. First appearing in Peierls [44], it arises as related, in two different ways, to a
two-dimensional electron subject to a perpendicular magnetic field and plays a central role in
the Thouless et al theory of the integer quantum Hall effect. For further background, history,
and surveys of results see [20, 32, 39, 43] and references therein.

Almost Mathieu operator has a transition from zero to positive Lyapunov exponents on the
spectrum at |λ| = 1 (the critical coupling) leading to the conjecture, dating back to [2], that
it induces a transition from absolutely continuous to pure point spectrum. For Diophantine α
this was proved in [31]. The result was extended to all α, θ for |λ| < 1 (the subcritical regime)
in [4], solving one of the Simon’s problems [46]. For the supercritical regime (|λ| > 1) it is
known however that the nature of the spectrum should depend on the arithmetic properties
of α [10, 26].

Set

(1) β = β(α) = lim sup
n→∞

ln qn+1

qn
,

where pn
qn

are the continued fraction approximants of α.

For any irrational number α, we say that phase θ ∈ (0, 1) is Diophantine with respect to α,
if there exist κ > 0 and ν > 0 such that

(2) ||2θ + kα||R/Z >
κ

|k|ν
,

for any k ∈ Z\{0}, where ||x||R/Z = dist(x,Z). Clearly, for any irrational number α, the set of
phases which are Diophantine with respect to α is of full Lebesgue measure. The conjecture in
[30] states that for α-Diophantine (thus almost every) θ, Hλ,α,θ satisfies Anderson localization
(i.e., has only pure point spectrum with exponentially decaying eigenfunctions) if |λ| > eβ ,
and has, for all θ, purely singular continuous spectrum for 1 < |λ| < eβ .2

For β = 0 this follows from [31]. A progress towards the localization side of the above

conjecture was made in [5] (localization for |λ| > e
16
9 β , as a step in solving the Ten Martini

problem) and in [50] (in a limited sense, for |λ| > Ceβ). The method developed in [5] that
allowed to approach exponentially small denominators on the localization side was brought to
its technical limits in [41], where the result for |λ| > e

3
2β was obtained.

Lately, with the development of Avila’s global theory and the proof of the almost reducibility
conjecture [3], it has become possible to obtain non-perturbative reducibility directly, allowing
to potentially argue localization for the dual model by duality, as was first done, in a pertur-
bative regime in [14], avoiding the localization method completely. This was done recently
by Avila-You-Zhou [9] who proved the full singular continuous part of the conjecture and a
measure-theoretic (i.e. almost all θ) version of the pure point part (see also [33] where a simple
alternative way to argue completeness in the duality argument was presented). The measure-
theoretic (in phase) nature of the pure point result of [9] is, in fact, inherent in the duality
argument. In contrast, our analysis provides a direct constructive proof for an arithmetically
defined set of α-Diophantine θ, thus proving the full arithmetic version of the conjecture.

Our method can be used to also obtain precise asymptotics of arbitrary solutions ofHλ,α,θϕ =
Eϕ where E is an eigenvalue. Combined with the arguments of Last-Simon [40], this allows

2 The original conjecture is slightly stronger in that it allows for not just polynomial, but any subexponential

approximation of 2θ by kα. The same goes for our proof, with obvious modifications. We choose to present
the result, and thus also present the conjecture, for a slightly stronger Diophantine case in order to slightly

simplify the argument.
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us to find precise asymptotics of the norms of the transfer-matrices, providing the first exam-
ple of this sort for non-uniformly hyperbolic dynamics. Since those norms sometimes differ
significantly from the reciprocals of the eigenfunctions, this leads to further interesting and
unusual consequencies, for example exponential tangencies between contracted and expanded
directions at the resonant sites.

From this point of view, our analysis also provides, as far as we know, the first study
of the dynamics of Lyapunov-Perron non-regular points, in a natural setting. An artificial
example of irregular dynamics can be found in [12], p.23, however it is not even a cocycle
over an ergodic transformation, and we are not aware of other such, even artificial, ergodic
examples where the dynamics has been studied. Loosely, for a cocycle A over a transformation
f acting on a space X (Lyapunov-Perron) non-regular points x ∈ X are the ones at which
Oseledets multiplicative ergodic theorem does not hold coherently in both directions. They
therefore form a measure zero set with respect to any invariant measure on X.3 Yet, it is
precisely the non-regular points that are of interest in the study of Schrödinger cocycles in the
non-uniformly hyperbolic (positive Lyapunov exponent) regime, since spectral measures, for
every fixed phase, are always supported on energies where there exists a solution polynomially
bounded in both directions, so the (hyperbolic) cocycle defined at such energies is always non-
regular at precisely the relevant phases. Thus the non-regular points capture the entire action
from the point of view of spectral theory, so become the most important ones to study. One can
also discuss stronger non-regularity notions: absence of forward regularity and, even stronger,
non-exactness of the Lyapunov exponent [12]. While it is not difficult to see that energies in
the support of singular continuous spectral measure in the non-uniformly hyperbolic regime
always provide examples of non-exactness, our analysis gives the first non-trivial example of
non-exactness with non-zero upper limit (Corollary 2.13). Finally, as we understand, this
work provides also the first natural example of an even stronger manifestation of the lack
of regularity, the exponential tangencies (Corollary 2.14). Tangencies between contracted and
expanded directions are a characteristic feature of nonuniform hyperbolicity (and, in particular,
always happen at the maxima of the eigenfunctions). They complicate proofs of positivity of
the Lyapunov exponents and are viewed as a difficulty to avoid through e.g. the parameter
exclusion [15, 17, 51]. However, when the tangencies are only subexponentially deep they
do not in themselves lead to non-exactness. Here we observe the first natural example of
exponentially strong tangencies (with the rate determined by the arithmetics of α and the
positions precisely along the sequence of resonances.)

The localization-for-the-exponential-regime method of [5] consists of different arguments
for non-resonant (meaning sufficiently far from jqn on the corresponding scale) sites and for
the resonant ones (the rest). It is the resonant sites that lead to dealing with the smallest

denominators and that necessitate the |λ| > e
16
9 β requirement in [5]. Here we start with the

same basic setup, and only technically modify the non-resonant statement of [5]. However
we develop a completely new bootstrap technique to handle the resonant sites, allowing us to
get to the transition and obtain the fine estimates. The estimates from below (that coincide
with our estimates from above) are also new. In general, the statements that are technically
similar to the ones in the existing literature are collected in the Appendices, while all the
results/proofs in the body of the paper are, in their pivotal parts, not like anything that has
appeared before.

The key elements of the technique developed in this paper are robust and have made it
possible to approach other scenarios. As such, in the upcoming work we prove the sharp phase

3 Although in the uniformly hyperbolic situations this set can be of full Hausdorff dimension [13].
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transition for Diophantine α and all θ and establish sharp exponential asymptotics of eigen-
functions and transfer matrices in the corresponding pure point regime [36]. Moreover, our
analysis reveals there a universal reflective-hierarchical structure in the entire regime of phase-
induced resonances, a phenomenon not even previously discovered in physics literature. Thus
while in this paper we develop a complete understanding of frequency induced resonances, in
[36] we develop new methods motivated by the ideas of this manuscript to obtain a complete
understanding of phase induced resonances. In other follow-up works we determine the ex-
act exponent of the exponential decay rate in expectation for the Diophantine case [34] and
study delicate properties of the singular continuous regime, obtaining upper bounds on fractal
dimensions of the spectral measure and quantum dynamics for the almost Mathieu operator
[37], as well as potentials defined by general trigonometric polynomials [35].

Except for a few standard, general (e.g. uniform upper semicontinuity) or very simple to
verify statements, this paper is entirely self contained. The only technically involved fact that
we use without proving it in the paper is Lemma 3.1 [19] but this is not even necessary if we
replace ln |λ| by the Lyapunov exponent L(E) throughout the manuscript. 4

2. Main results

Let

(3) Ak(θ) =

0∏
j=k−1

A(θ + jα) = A(θ + (k − 1)α)A(θ + (k − 2)α) · · ·A(θ)

and

(4) A−k(θ) = A−1
k (θ − kα)

for k ≥ 1, where A(θ) =

(
E − 2λ cos 2πθ −1

1 0

)
. Ak is called the (k-step) transfer matrix.

As is clear from the definition, it also depends on θ and E but since those parameters will be
usually fixed, we omit this from the notation.

Given α ∈ R\Q we define functions f, g : Z+ → R+ in the following way. Let pn
qn

be the

continued fraction approximants to α. For any qn
2 ≤ k <

qn+1

2 , define f(k), g(k) as follows:

Case 1: q
8
9
n+1 ≥

qn
2 or k ≥ qn.

If `qn ≤ k < (`+ 1)qn with ` ≥ 1, set

(5) f(k) = e−|k−`qn| ln |λ|r̄n` + e−|k−(`+1)qn| ln |λ|r̄n`+1,

and

(6) g(k) = e−|k−`qn| ln |λ|
qn+1

r̄n`
+ e−|k−(`+1)qn| ln |λ| qn+1

r̄n`+1

,

where for ` ≥ 1,

r̄n` = e−(ln |λ|− ln qn+1
qn

+ ln `
qn

)`qn .

Set also r̄n0 = 1 for convenience.
If qn

2 ≤ k < qn, set

(7) f(k) = e−k ln |λ| + e−|k−qn| ln |λ|r̄n1 ,

and

(8) g(k) = ek ln |λ|.

4 In fact, ln |λ| is being used in this paper as a shortcut for L(E).
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Case 2: q
8
9
n+1 <

qn
2 and qn

2 ≤ k ≤ min{qn, qn+1

2 }.
Set

(9) f(k) = e−k ln |λ|,

and

(10) g(k) = ek ln |λ|.

Notice that f, g only depend on α and λ but not on θ or E. f(k) decays and g(k) grows
exponentially, globally, at varying rates that depend on the position of k in the hierarchy
defined by the continued fraction expansion of α, see Fig.1 and Fig.2.

We say that φ is a generalized eigenfunction of H with generalized eigenvalue E, if

(11) Hφ = Eφ, and |φ(k)| ≤ Ĉ(1 + |k|).

Our first main result is that in the entire regime |λ| > eβ , the exponential asymptotics of the
generalized eigenfunctions and norms of transfer matrices at the generalized eigenvalues are
completely determined by f(k), g(k).

Theorem 2.1. Let α ∈ R\Q be such that |λ| > eβ(α). Suppose θ is Diophantine with respect
to α, E is a generalized eigenvalue of Hλ,α,θ and φ is the generalized eigenfunction. Let

U(k) =

(
φ(k)

φ(k − 1)

)
. Then for any ε > 0, there exists K (depending on λ, α, Ĉ, ε and

Diophantine constants κ, ν) such that for any |k| ≥ K, U(k) and Ak satisfy

(12) f(|k|)e−ε|k| ≤ ||U(k)|| ≤ f(|k|)eε|k|,

and

(13) g(|k|)e−ε|k| ≤ ||Ak|| ≤ g(|k|)eε|k|.

r̄n`

r̄n`+2

r̄n`+4

`qn (`+ 1)qn (`+ 2)qn (`+ 3)qn (`+ 4)qn kqn+1

2
qn
2

f(k)

Fig.1
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qn+1

r̄n`

qn+1

r̄n`+2

qn+1

r̄n`+4

`qn (`+ 1)qn (`+ 2)qn (`+ 3)qn (`+ 4)qn kqn+1

2
qn
2

g(k)

Fig.2

Certainly, there is nothing special about k = 0, so the behavior described in Theorem 2.1
happens around arbitrary point k = k0. This implies the self-similar nature of the eigenfunc-
tions): U(k) behave as described at scale qn but when looked at in windows of size qk, qk < qn−1

will demonstrate the same universal behavior around appropriate local maxima/minima.

To make the above precise, let φ be an eigenfunction, and U(k) =

(
φ(k)

φ(k − 1)

)
. Let

Ijς1,ς2 = [−ς1qj , ς2qj ], for some 0 < ς1, ς2 ≤ 1. We will say k0 is a local j-maximum of φ

if ||U(k0)|| ≥ ||U(k)|| for k − k0 ∈ Ijς1,ς2 . Occasionally, we will also use terminology (j, ς)-

maximum for a local j-maximum on an interval Ijς,ς .
We will say a local j-maximum k0 is nonresonant if

||2θ + (2k0 + k)α||R/Z >
κ

qj−1
ν
,

for all |k| ≤ 2qj−1 and

(14) ||2θ + (2k0 + k)α||R/Z >
κ

|k|ν
,

for all 2qj−1 < |k| ≤ 2qj .
We will say a local j-maximum is strongly nonresonant if

(15) ||2θ + (2k0 + k)α||R/Z >
κ

|k|ν
,

for all 0 < |k| ≤ 2qj .
An immediate corollary of Theorem 2.1 is the universality of behavior at all (strongly)

nonresonant local maxima.

Theorem 2.2. Given ε > 0, there exists j(ε) < ∞ such that if k0 is a local j-maximum for
j > j(ε), then the following two statements hold:

If k0 is nonresonant, then

(16) f(|s|)e−ε|s| ≤ ||U(k0 + s)||
||U(k0)||

≤ f(|s|)eε|s|,
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for all 2s ∈ Ijς1,ς2 , |s| >
qj−1

2 .
If k0 is strongly nonresonant, then

(17) f(|s|)e−ε|s| ≤ ||U(k0 + s)||
||U(k0)||

≤ f(|s|)eε|s|,

for all 2s ∈ Ijς1,ς2 .

Remark 2.3. (1) For the neighborhood of a local j-maximum described in the Theorem
2.2 only the behavior of f(s) for qj−1/2 < |s| ≤ qj/2 is relevant. Thus f implicitly
depends on j but through the scale-independent mechanism described in (5),(7) and
(9).

(2) Actually, a modification in our proof allows to formulate (16) in Theorem 2.2 with
non-resonant condition (14) only required for 2qj−1 < |k| ≤ qj rather than for 2qj−1 <
|k| ≤ 2qj .

In case β(α) > 0, Theorem 2.1 also guarantees an abundance (and a hierarchical structure)
of local maxima of each eigenfunction. Let k0 be a global maximum5 .

Universal hierarchical structure of an eigenfunction

b1 b2b−1b−2 k0

Local maximum of depth 1Local maximum of depth 1

Global maximum

Fig.3

b2,2b2,1

b1,−1

b1,1
b1,2

Window I

5If there are several, what follows is true for each.
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Window I

b1,1 b1,2b1,−1b1,−2 b1
Local maximum of depth 2Local maximum of depth 2

Local maximum of depth 1

Fig.4

b1,2,2b1,2,1

b1,1,−1

b1,1,1
b1,1,2

We first describe the hierarchical structure of local maxima informally. We will say that a
scale nj0 is exponential if ln qnj0+1 > cqnj0 . Then there is a constant scale n̂0 thus a constant
C := qn̂0+1, such that for any exponential scale nj and any eigenfunction there are local nj-
maxima within distance C of k0 + sqnj0 for each 0 < |s| < e

cqnj0 . Moreover, these are all the

local nj0-maxima in [k0− ecqnj0 , k0 + e
cqnj0 ]. The exponential behavior of the eigenfunction in

the local neighborhood (of size ˜qnj0 ) of each such local maximum, normalized by the value at
the local maximum is given by f . Note that only exponential behavior at the corresponding
scale is determined by f and fluctuations of much smaller size are invisible. Now, let nj1 < nj0
be another exponential scale. Denoting “depth 1” local maximum located near k0+anj0 qnj0 by
banj0

we then have a similar picture around banj0
: there are local nj1-maxima in the vicinity

of banj0
+ sqnj1 for each 0 < |s| < e

cqnj1 . Again, this describes all the local qnj1 -maxima

within an exponentially large interval. And again, the exponential (for the nj1 scale) behavior
in the local neighborhood (of size ˜qnj1 ) of each such local maximum, normalized by the value
at the local maximum is given by f . Denoting those “depth 2” local maxima located near
banj0

+anj1 qnj1 , by banj0 ,anj1
we then get the same picture taking the magnifying glass another

level deeper and so on. At the end we obtain a complete hierarchical structure of local maxima
that we denote by banj0 ,anj1 ,...,anjs

with each “depth s + 1” local maximum banj0 ,anj1 ,...,anjs
being in the corresponding vicinity of the “depth s” local maximum banj0 ,anj1 ,...,anjs−1

and with
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universal behavior at the corresponding scale around each. The quality of the approximation
of the position of the next maximum gets lower with each level of depth, yet the depth of the
hierarchy that can be so achieved is at least j/2− C, see Corollary 2.7. Fig. 3 schematically
illustrates the structure of local maxima of depth one and two, and Fig. 4 illustrates that
the the neighborhood of a local maximum appropriately magnified looks like a picture of the
global maximum.

We now describe the hierarchical structure precisely. Suppose

(18) ||2(θ + k0α) + kα||R/Z >
κ

|k|ν
,

for any k ∈ Z\{0}. Fix 0 < ς, ε with ς + 2ε < 1. Let nj → ∞ be such that ln qnj+1 ≥ (ς +

2ε) ln |λ|qnj . Let cj = (ln qnj+1− ln |anj |)/ ln |λ|qnj−ε. We have cj > ε for 0 < anj < eς ln |λ|qnj .
Then we have

Theorem 2.4. There exists n̂0(α, λ, κ, ν, ε) < ∞ such that for any j0 > j1 > · · · > jk,

njk ≥ n̂0 + k, and 0 < anji < e
ς ln |λ|qnji , i = 0, 1, . . . , k, for all 0 ≤ s ≤ k there exists a local

njs-maximum banj0 ,anj1 ,...,anjs
on the interval banj0 ,anj1 ,...,anjs

+ I
njs
cjs ,1

for all 0 ≤ s ≤ k such

that the following holds:

I: |banj0 − (k0 + anj0 qnj0 )| ≤ qn̂0+1,

II: For any 1 ≤ s ≤ k, |banj0 ,anj1 ,...,anjs − (banj0 ,anj1 ,...,anjs−1
+ anjs qnjs )| ≤ qn̂0+s+1.

III: if 2(x− banj0 ,anj1 ,...,anjk ) ∈ Injkcjk ,1
and |x− banj0 ,anj1 ,...,anjk | ≥ qn̂0+k, then for each

s = 0, 1, ..., k,

(19) f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|,

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Moreover, every local njs-maximum on the interval banj ,anj1 ,...,anjs−1
+ [−eε lnλqnjs , eε lnλqnjs ]

is of the form banj0 ,anj1 ,...,anjs
for some anjs .

Remark 2.5. By I of Theorem 2.4, the local maximum can be determined up to a constant
K0 = qn̂0+1. Actually, if k0 is only a local nj + 1-maximum, we can still make sure that I, II
and III of Theorem 2.4 hold. This is the local version of Theorem 2.4, see Theorem 7.3.

Remark 2.6. qn̂0+1 is the scale at which phase resonances of θ+k0α still can appear. Notably,
it determines the precision of pinpointing local nj0-maxima in a (exponentially large in qnj0 )
neighborhood of k0, for any j0. When we go down the hierarchy, the precision decreases, but
note that except for the very last scale it stays at least iterated logarithmically 6 small in the
corresponding scale qnjs

Thus for x ∈ banj0 ,anj1 ,...,anjs + [− cjs2 qnjs ,
1
2qnjs ], the behavior of φ(x) is described by the

same universal f in each qnjs -window around the corresponding local maximum banj0 ,anj1 ,...,anjs
,s =

0, 1, ..., k. We call such a structure hierarchical, and we will say that a local j-maximum is k-
hierarchical if the complete hierarchy goes down at least k levels (for a precise definition see
Section 7). We then have an immediate corollary

Corollary 2.7. There exists C = C(α, λ, κ, ν, ε) such that every local nj-maximum in [k0 −
eς ln |λ|qnj , k0 + eς ln |λ|qnj ] is at least (j/2− C)-hierarchical.

6for most scales even much less
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Remark 2.8. The estimate on the depth of the hierarchy in the corollary assumes the worst
case scenario when all scales after n̂0 are Liouville. Otherwise the hierarchical structure will
go even much deeper. Note that a local nj-maximum that is not an nj+1-maximum cannot
be k-hierarchical for k > j.

Another interesting corollary of Theorem 2.1 is

Theorem 2.9. Let α ∈ R\Q be such that |λ| > eβ(α) and θ is Diophantine with respect to α.
Then Hλ,α,θ has Anderson localization, with eigenfunctions decaying at the rate ln |λ| − β.

This solves the arithmetic version of the second transition conjecture in that it establishes
localization throughout the entire regime of (α, λ) where localization may hold for any θ (see
the discussion in the introduction), for an arithmetically defined full measure set of θ.

We note that Theorem 2.9 cannot be upgraded to all θ in the regime |λ| > eβ [38] so exclusion
of a certain arithmetically defined set where the spectrum must be singular continuous is
necessary. There is a conjecture of where in this regime the transition in θ happens [30]
but we do not explore it in this work. The sharp transition in θ for Diophantine α will be
established in the follow-up work [36]. Also, it could be added that, for all θ, Hλ,α,θ has no
localization (i.e., no exponentially decaying eigenfunctions) if |λ| = eβ (see Appendix A.1).

Remark 2.10. Theorems 2.1, 2.9 cover the optimal range of (α, λ) for a.e. θ. For Theorem
2.9, even though some θ have to be excluded [38], we do not claim the Diophantine condition
on θ is optimal. At the same time, exponentially strong θ-resonances (exponentially small
lower bound in (2) instead of a polynomial) will make Theorem 2.1 false as stated, no matter
how small the exponent, and would require differently defined f and g. In [36] we obtain f ′

and g′ that govern the exponential behavior of eigenfunctions and transfermatrices for all θ
throughout the entire pure point regime corresponding to Diophantine α.

Let ψ(k) denote any solution to Hλ,α,θψ = Eψ that is linearly independent with respect to

φ(k). Let Ũ(k) =

(
ψ(k)

ψ(k − 1)

)
. An immediate counterpart of (13) is the following

Corollary 2.11. Under the conditions of Theorem 2.1 for large k vectors Ũ(k) satisfy

(20) g(|k|)e−ε|k| ≤ ||Ũ(k)|| ≤ g(|k|)eε|k|.

Thus every solution is expanding at the rate g(k) except for one that is exponentially
decaying at the rate f(k).

It is well known that for E in the spectrum the dynamics of the transfer-matrix cocycle
Ak is nonuniformly hyperbolic. Moreover, E being a generalized eigenvalue of Hλ,α,θ already
implies that the behavior of Ak is non-regular. Theorem 2.1 provides precise information on
how the non-regular behavior unfolds in this case. Previously, a study of some features of the
non-regular behavior for the almost Mathieu operator was made in [23]. We are not aware
though of other non-artificially constructed examples of non-uniformly hyperbolic systems
where non-regular behavior can be described with such precision as in the present work.

The information provided by Theorem 2.1 leads to many interesting corollaries which will
be explored elsewhere. Here we only want to list a few immediate sharp consequences.

Corollary 2.12. Under the condition of Theorem 2.1, we have

i)

lim sup
k→∞

ln ||Ak||
k

= lim sup
k→∞

ln ||Ũ(k)||
k

= ln |λ|,
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ii)

lim inf
k→∞

ln ||Ak||
k

= lim inf
k→∞

ln ||Ũ(k)||
k

= ln |λ| − β.

iii) Outside an explicit sequence of lower density zero, 7

lim
k→∞

ln ||Ak||
k

= lim
k→∞

ln ||Ũ(k)||
k

= ln |λ|.

Therefore the Lyapunov behavior for the norm fails to hold only along a sequence of density
zero. It is interesting that the situation is different for the eigenfunctions. While, just like
the overall growth of ‖Ak‖ is ln |λ| − β, the overall rate of decay of the eigenfunctions is also
ln |λ| − β, they however decay at the Lyapunov rate only outside a sequence of positive upper
density. That is

Corollary 2.13. Under the condition of Theorem 2.1, we have

i)

lim sup
k→∞

− ln ||U(k)||
k

= ln |λ|,

ii)

lim inf
k→∞

− ln ||U(k)||
k

= ln |λ| − β.

iii) There is an explicit sequence of upper density 1− 1
2

β
ln |λ| ,

8, along which

lim
k→∞

− ln ||U(k)||
k

= ln |λ|.

iv) There is an explicit sequence of upper density 1
2

β
ln |λ| ,

9along which

lim sup
k→∞

− ln ||U(k)||
k

< ln |λ|.

The fact that g is not always the reciprocal of f leads also to another interesting phenom-
enon.

Let 0 ≤ δk ≤ π
2 be the angle between vectors U(k) and Ũ(k).

Corollary 2.14. We have

(21) lim sup
k→∞

ln δk
k

= 0,

and

(22) lim inf
k→∞

ln δk
k

= −β.

7It will be clear from the proof that the sequence with convergence to the Lyapunov exponent contains

qn, n = 1, · · · .
8It will be clear from the proof that the sequence contains b qn

2
c, n = 1, · · · .

9As will be clear from the proof, this sequence can have lower density ranging from 0 to 1
2

β
ln |λ| depending

on finer continued fraction properties of α.
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As becomes clear from the proof, neighborhoods of resonances qn are the places of expo-
nential tangencies between contracted and expanded directions, with the rate approaching −β
along a subsequence.10 Exponential tangencies also happen around points of the form jqn but
at lower strength. This means, in particular, that Ak with k ∼ qn is exponentially close to a
matrix with the trace e(ln |λ|−β)k.

The rest of this paper is organized in the following way. We list the definitions and standard
preliminaries in Section 3. We also include there the non-resonant regularity statement. While
similar to the corresponding statements in [5, 41, 42], it differs in enough technical details that
a proof is needed for completeness. We present this proof in Appendix B. Section 4 is devoted
to the bootstrap localization argument, establishing sharp upper bounds for the resonant
case. Section 5 is devoted to the lower bounds. In Section 6 we prove the statements about
eigenfunctions: (12) of Theorem 2.1, Theorems 2.2 and 2.9. In Section 7, we will prove the
hierarchical structure Theorem 2.4 and Corollary 2.7. In Section 8, we study the growth of
transfer matrices and prove (13) of Theorem 2.1. The remaining Corollaries are proved in
Section 9.

3. Preliminaries

Fix α ∈ R\Q such that β(α) < ∞. Unless stated otherwise, we always assume λ > eβ

(for λ < −eβ , notice that Hλ,α,θ = H−λ,α,θ+ 1
2
), θ is Diophantine with respect to α and E is

a generalized eigenvalue. We also assume φ is the corresponding generalized eigenfunction of
Hλ,α,θ. Without loss of generality assume |φ(0)|2 + |φ(−1)|2 = 1. Let ψ be any solution to
Hλ,α,θψ = Eψ linear independent with respect to φ, i.e., |ψ(0)|2 + |ψ(−1)|2 = 1 and

(23) φ(−1)ψ(0)− φ(0)ψ(−1) = c,

where c 6= 0.
Then by the constancy of the Wronskian, one has

(24) φ(k + 1)ψ(k)− φ(k)ψ(k + 1) = c.

We also will denote by ϕ an arbitrary solution, so either ψ or φ. Thus for any k,m, one has

(25)

(
ϕ(k +m)

ϕ(k +m− 1)

)
= Ak(θ +mα)

(
ϕ(m)

ϕ(m− 1)

)
.

The Lyapunov exponent is given by

(26) L(E) = lim
k→∞

1

k

∫
R/Z

ln ‖Ak(θ)‖dθ.

The Lyapunov exponent can be computed precisely for E in the spectrum of Hλ,α,θ. We
denote the spectrum by Σλ,α (it does not depend on θ).

Lemma 3.1. [19] For E ∈ Σλ,α and λ > 1, we have L(E) = lnλ.

Recall that we always assume E ∈ Σλ,α so by upper semicontinuity and unique ergodicity
(e.g. [25]) one has

(27) lnλ = lim
k→∞

sup
θ∈R/Z

1

k
ln ‖Ak(θ)‖,

that is, the convergence in (27) is uniform with respect to θ ∈ R. Precisely, ∀ε > 0,

(28) ‖Ak(θ)‖ ≤ e(lnλ+ε)k, for k large enough.

10In fact the rate is close to − ln qn+1

qn
for any large n.
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We start with the basic setup going back to [31]. Let us denote

Pk(θ) = det(R[0,k−1](Hλ,α,θ − E)R[0,k−1]).

It is easy to check that

(29) Ak(θ) =

(
Pk(θ) −Pk−1(θ + α)
Pk−1(θ) −Pk−2(θ + α)

)
.

By Cramer’s rule for given x1 and x2 = x1 + k − 1, with y ∈ I = [x1, x2] ⊂ Z, one has

|GI(x1, y)| =

∣∣∣∣Px2−y(θ + (y + 1)α)

Pk(θ + x1α)

∣∣∣∣ ,(30)

|GI(y, x2)| =

∣∣∣∣Py−x1(θ + x1α)

Pk(θ + x1α)

∣∣∣∣ .(31)

By (28) and (29), the numerators in (30) and (31) can be bounded uniformly with respect to
θ. Namely, for any ε > 0,

(32) |Pk(θ)| ≤ e(lnλ+ε)k

for k large enough.

Definition 3.2. Fix τ > 0, 0 < δ < 1/2. A point y ∈ Z will be called (τ, k) regular with δ if
there exists an interval [x1, x2] containing y, where x2 = x1 + k − 1, such that

|G[x1,x2](y, xi)| < e−τ |y−xi| and |y − xi| ≥ δk for i = 1, 2.

It is easy to check that

(33) ϕ(x) = −G[x1,x2](x1, x)ϕ(x1 − 1)−G[x1,x2](x, x2)ϕ(x2 + 1),

where x ∈ I = [x1, x2] ⊂ Z.

Definition 3.3. We say that the set {θ1, · · · , θk+1} is ε-uniform if

(34) max
x∈[−1,1]

max
i=1,··· ,k+1

k+1∏
j=1,j 6=i

|x− cos 2πθj |
| cos 2πθi − cos 2πθj |

< ekε.

Let Ak,r = {θ ∈ R | Pk(cos 2π(θ − 1
2 (k − 1)α))| ≤ e(k+1)r} with k ∈ N and r > 0. We have

the following Lemma.

Lemma 3.4. (Lemma 9.3 ,[5]) Suppose {θ1, · · · , θk+1} is ε1-uniform. Then there exists some
θi in set {θ1, · · · , θk+1} such that θi /∈ Ak,lnλ−ε if ε > ε1 and k is sufficiently large.

Proof. Straightforward calculation. �

We say θ is n-Diophantine with respect to α, if for some κ > 0, ν > 1 the following hold

(35) ||2θ + kα||R/Z >
κ

qnν
,

for all |k| ≤ 2qn and

(36) ||2θ + kα||R/Z >
κ

|k|ν
,

for all 2qn < |k| ≤ 2qn+1.
Define bn = qtn with 8

9 ≤ t < 1 (t will be defined later). For any k > 0, we will distinguish
two cases with respect to n:

(i) |k − `qn| ≤ bn for some ` ≥ 1, called n−resonance.
(ii) |k − `qn| > bn for all ` ≥ 0, called n−nonresonance.
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For the n−nonresonant y, let n0 be the least positive integer such that 4qn−n0
≤ dist(y, qnZ).

Let s be the largest positive integer such that 4sqn−n0 ≤ dist(y, qnZ). Notice that n0 ≤ C(α).
The following theorem is similar to a statement appearing in[5] with modifications in [41, 42].

We present a proof in Appendix B.

Theorem 3.5. Assume λ > eβ(α). Suppose either
i) bn ≤ |y| < Cbn+1, where C > 1 is a fixed constant, and θ is n-Diophantine with respect

to α
or
ii) 0 ≤ |y| < qn and θ satisfies (35)
Then for any ε > 0 and n large enough, if y is n−nonresonant, we have y is (lnλ +

8 ln(sqn−n0
/qn−n0+1)/qn−n0

− ε, 4sqn−n0
− 1) regular with δ = 1

4 .

Remark 3.6. If θ is n− 1-Diophantine with respect to α, then (35) holds.

Remark 3.7. In the nonresonant case, for any ε > 0, 8
9 ≤ t < 1, one has lnλ+8 ln(sqn−n0/qn−n0+1)/qn−n0 ≥

lnλ − 8(1 − t)β − ε > 0. In addition, we have lnλ + 8 ln(sqn−n0
/qn−n0+1)/qn−n0

≥ lnλ − 2ε
if t is close to 1.

Remark 3.8. In the present paper, we only use Theorem 3.5 with C = 50C?, where C? is
given by (37) (see the next section).

4. Bootstrap resonant localization

In this section we assume θ is n−Diophantine with respect to α. Clearly, it is enough
to consider k > 0. In this section we study the resonant case. Suppose there exists some
k ∈ [bn, bn+1] such that k is n−resonant. Then we have bn+1 ≥ qn

2 . For any ε > 0, choose
η = ε

C , where C is a large constant (depending on λ, α).
Let

(37) C∗ = 2(1 + b lnλ

lnλ− β
c),

where bmc denotes the smallest integer not exceeding m.
For an arbitrary solution ϕ satisfying Hϕ = Eϕ, let

rn,ϕj = sup
|r|≤10η

|ϕ(jqn + rqn)|,

where |j| ≤ 50C∗
bn+1

qn
.

Fix ψ satisfying (23) and denote by

Rnj = rn,ψj ,

and

rnj = rn,φj .

Since we keep n fixed in this section we omit the dependence on n from the notation and write
rϕj , Rj , and rj .

Note that below we always assume n is large enough.11In the next Lemma and its variant,
Lemma 4.2, we establish exponential decay of the eigenfunctions at non-resonant points, at
the nearly Lyapunov rate, with respect to the distance to the resonances.

11 The required largeness of n will depend on α, θ, Ĉ in (11) and ε whenever ε is (implicitly) present in the
statement.
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Lemma 4.1. Let k ∈ [jqn, (j + 1)qn] with dist(k, qnZ) ≥ 10ηqn. Suppose either

i) |j| ≤ 48C∗
bn+1

qn
and bn+1 ≥ qn

2 ,
or
ii) j = 0,
then for sufficiently large n,

(38) |ϕ(k)| ≤ max{rϕj exp{−(lnλ− 2η)(dj − 3ηqn)}, rϕj+1 exp{−(lnλ− 2η)(dj+1 − 3ηqn)}},

where dj = |k − jqn| and dj+1 = |k − jqn − qn|.

Proof. The proof builds on the ideas used in the proof of Lemma 9.11 in [5] and Lemma 3.2
in [41]. However it requires a more careful approach.

We first prove the case i).
For any y ∈ [jqn + ηqn, (j + 1)qn − ηqn], apply i) of Theorem 3.5 with C = 50C?. Notice

that in this case, we have

lnλ+ 8 ln(sqn−n0/qn−n0+1)/qn−n0 − η ≥ lnλ− 2η.

Thus y is regular with τ = lnλ − 2η. Therefore there exists an interval I(y) = [x1, x2] ⊂
[jqn, (j + 1)qn] such that y ∈ I(y) and

(39) dist(y, ∂I(y)) ≥ 1

4
|I(y)| ≥ qn−n0

and

(40) |GI(y)(y, xi)| ≤ e−(lnλ−2η)|y−xi|, i = 1, 2,

where ∂I(y) is the boundary of the interval I(y), i.e.,{x1, x2}, and |I(y)| is the size of I(y)∩Z,
i.e., |I(y)| = x2 − x1 + 1. For z ∈ ∂I(y), let z′ be the neighbor of z, (i.e., |z − z′| = 1) not
belonging to I(y).

If x2 + 1 ≤ (j + 1)qn − ηqn or x1 − 1 ≥ jqn + ηqn, we can expand ϕ(x2 + 1) or ϕ(x1 − 1)
using (33). We can continue this process until we arrive to z such that z+ 1 > (j+ 1)qn− ηqn
or z − 1 < jqn + ηqn, or the iterating number reaches b 2qn

qn−n0
c. Thus, by (33)

(41) ϕ(k) =
∑

s;zi+1∈∂I(z′i)

GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1),

where in each term of the summation one has jqn + ηqn + 1 ≤ zi ≤ (j + 1)qn − ηqn − 1,
i = 1, · · · , s, and either zs+1 /∈ [jqn + ηqn + 1, (j + 1)qn − ηqn − 1], s + 1 < b 2qn

qn−n0
c; or

s+ 1 = b 2qn
qn−n0

c. We should mention that zs+1 ∈ [jqn, (j + 1)qn].

If zs+1 ∈ [jqn, jqn + ηqn], s+ 1 < b 2qn
qn−n0

c, this implies

|ϕ(z′s+1)| ≤ rϕj .

By (40), we have

|GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1)|

≤ rϕj e
−(lnλ−2η)(|k−z1|+

∑s
i=1 |z

′
i−zi+1|)

≤ rϕj e
−(lnλ−2η)(|k−zs+1|−(s+1))

≤ rϕj e
−(lnλ−2η)(dj−2ηqn−4− 2qn

qn−n0
)
.(42)



17

If zs+1 ∈ [(j + 1)qn − ηqn, (j + 1)qn], s+ 1 < b 2qn
qn−n0

c, by the same arguments, we have

(43)

|GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1)| ≤ rϕj+1e

−(lnλ−2η)(dj+1−2ηqn−4− 2qn
qn−n0

)
.

If s+ 1 = b 2qn
qn−n0

c, using (39) and (40), we obtain

(44)

|GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1)| ≤ e−(lnλ−2η)qn−n0

b 2qn
qn−n0

c|ϕ(z′s+1)|.

Notice that the total number of terms in (41) is at most 2
b 2qn
qn−n0

c
and dj , dj+1 ≥ 10ηqn. By

(42), (43) and (44), we have
(45)

|ϕ(k)| ≤ max{rϕj e
−(lnλ−2η)(dj−3ηqn), rϕj+1e

−(lnλ−2η)(dj+1−3ηqn), max
p∈[jqn,(j+1)qn]

{e−(lnλ−2η)qn |ϕ(p)|}}.

Now we will show that for any p ∈ [jqn, (j+ 1)qn], one has |ϕ(p)| ≤ max{rϕj , r
ϕ
j+1}. Then (45)

implies case i) of Lemma 4.1. Otherwise, by the definition of rϕj , if |ϕ(p′)| is the largest one

of |ϕ(z)|, z ∈ [jqn + 10ηqn + 1, (j + 1)qn − 10ηqn − 1], then |ϕ(p′)| > max{rϕj , r
ϕ
j+1}. Applying

(45) to ϕ(p′) and noticing that dist(p′, qnZ) ≥ 10ηqn, we get

|ϕ(p′)| ≤ e−7(lnλ−2η)ηqn max{rϕj , r
ϕ
j+1, |ϕ(p′)|}.

This is impossible because |ϕ(p′)| > max{rϕj , r
ϕ
j+1}.

Now we turn to the proof of case ii). Notice that in proving case i) of Lemma 4.1, we only
used case i) of Theorem 3.5. Using case ii) of Theorem 3.5 instead we can prove case ii) of
Lemma 4.1 by the same reasoning. In order to avoid repetition, we omit the details. �

Lemma 4.1 is sufficient for our current purposes, but for the purposes of Section 7 we will
need a similar statement that allows for shifts and reflections. For B ∈ Z, let rn,ϕj,± (B) =

sup|r|≤10η |ϕ(B ± (jqn + rqn))|. For y ∈ [B ± jqn ± ηqn, B ± (j + 1)qn ∓ ηqn], let n0 be the

least positive integer such that 4qn−n0
≤ dist(y−B, qnZ) and s be the largest positive integer

such that 4sqn−n0
≤ dist(y − B, qnZ). Since we only used the appropriate regularity of the

non-resonant y, the proof of Lemma 4.1 also establishes the following Lemma

Lemma 4.2. Suppose for any y ∈ [B ± jqn ± ηqn, B ± (j + 1)qn ∓ ηqn], y is (lnλ +
8 ln(sqn−n0

/qn−n0+1)/qn−n0
−ε, 4sqn−n0

−1) regular with δ = 1
4 . Let k−B ∈ ±[jqn, (j+1)qn]

with dist(k −B, qnZ) ≥ 10ηqn. Suppose either

i) |j| ≤ 48C∗
bn+1

qn
and bn+1 ≥ qn

2 ,
or
ii) j = 0,
then for sufficiently large n,
Then we have

(46)
|ϕ(k)| ≤ max{rϕj,±(B) exp{−(lnλ−2η)(dj−3ηqn)}, rϕj+1,±(B) exp{−(lnλ−2η)(dj+1−3ηqn)}}.
where dj = |k −B ∓ jqn| and dj+1 = |k −B ∓ (j + 1)qn|.

By Theorem 3.5 , Lemma 4.1 is a particular case of Lemma 4.2, when B = 0 and the sign
is a +. Going back to this case, we will prove

Lemma 4.3. For 1 ≤ j ≤ 46C?
bn+1

qn
with bn+1 ≥ qn

2 , the following holds

(47) rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn}}.
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Proof. Fix j with 1 ≤ j ≤ 46C∗
bn+1

qn
and |r| ≤ 10ηqn. Set I1, I2 ⊂ Z as follows

I1 = [−b1
2
qnc, qn − b

1

2
qnc − 1],

I2 = [jqn − b
1

2
qnc, (j + 1)qn − b

1

2
qnc − 1].

Let θm = θ +mα for m ∈ I1 ∪ I2. The set {θm}m∈I1∪I2 consists of 2qn elements.
By arguments similar to those in Lemma 9.13 in [5] or Theorem 3.1 in [41], one has {θm} is

ln qn+1−ln j
2qn

+ε uniform for any ε > 0. Since our case is slightly different we prove it as Theorem

B.5 in Appendix B. Combining with Lemma 3.4, there exists some j0 with j0 ∈ I1 ∪ I2 such
that θj0 /∈ A2qn−1,lnλ− ln qn+1−ln j

2qn
−η.

First, we assume j0 ∈ I2.
Set I = [j0 − qn + 1, j0 + qn − 1] = [x1, x2]. In (32), let ε = η. Combining with (30) and

(31), it is easy to verify

|GI(jqn + r, xi)| ≤ e(lnλ+η)(2qn−1−|jqn+r−xi|)−(2qn−1)(lnλ− ln qn+1−ln j

2qn
−η).

Using (33), we obtain

(48) |ϕ(jqn + r)| ≤
∑
i=1,2

qn+1

j
e5ηqn |ϕ(x′i)|e−|jqn+r−xi| lnλ,

where x′1 = x1 − 1 and x′2 = x2 + 1.
Let dij = |xi − jqn|, i = 1, 2. It is easy to check that

(49) |jqn + r − xi|+ dij , |jqn + r − xi|+ dij±1 ≥ qn − |r|,
and

(50) |jqn + r − xi|+ dij±2 ≥ 2qn − |r|.
If dist(xi, qnZ) ≥ 10ηqn, then we bound ϕ(xi) in (48) using (38). If dist(xi, qnZ) ≤ 10ηqn,
then we bound ϕ(xi) in (48) by some proper rj . Combining with (49), (50), we have

rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ−Cη)qn}, rϕj

qn+1

j
exp{−(lnλ−Cη)qn}, rϕj±2

qn+1

j
exp{−2(lnλ−Cη)qn}}.

However

rϕj ≤ rϕj
qn+1

j
exp{−(lnλ− Cη)qn}

≤ rϕj exp{−(lnλ− β − Cη)qn}
cannot happen, so we must have

(51) rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn}, rϕj±2

qn+1

j
exp{−2(lnλ− Cη)qn}}.

In particular,

(52) rϕj ≤ exp{−(lnλ− β − Cη)qn}max{rϕj±1 r
ϕ
j±2}.

If j0 ∈ I1, then (52) holds for j = 0. Let ϕ = φ in (52). We get

|φ(0)|, |φ(−1)| ≤ exp{−(lnλ− β − Cη)qn},
this is in contradiction with |φ(0)|2 + |φ(−1)|2 = 1. Therefore j0 ∈ I2, so (51) holds for any ϕ.

By (25) and (28), we have

(53) ||
(

ϕ(k1)
ϕ(k1 − 1)

)
|| ≥ Ce−(lnλ+ε)|k1−k2|||

(
ϕ(k2)

ϕ(k2 − 1)

)
||.
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This implies

rϕj±2 ≤ r
ϕ
j±1 exp{(lnλ+ Cη)qn},

thus (51) becomes

(54) rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn}},

for any 1 ≤ j ≤ 46C∗
bn+1

qn
. �

For solution φ and ψ we can also get a more subtle estimate.

Theorem 4.4. For 1 ≤ j ≤ 10 bn+1

qn
with bn+1 ≥ qn

2 , the following holds

(55) rj ≤ rj−1 exp{−(lnλ− Cη)qn}
qn+1

j
.

Proof. Let ϕ = φ in Lemma 4.3. We must have

(56) rj ≤ max{rj±1
qn+1

j
exp{−(lnλ− Cη)qn}},

for any 1 ≤ j ≤ 46C∗
bn+1

qn
.

Suppose for some 1 ≤ j ≤ 10 bn+1

qn
, the following holds,

(57) rj ≤ rj+1
qn+1

j
exp{−(lnλ− Cη)qn} ≤ rj+1 exp{−(lnλ− β − Cη)qn}.

Applying (56) to j + 1, we obtain

(58) rj+1 ≤ max{rj , rj+2}
qn+1

j + 1
exp{−(lnλ− Cη)qn}.

Combining with (57), we must have

(59) rj+1 ≤ rj+2 exp{−(lnλ− β − Cη)qn}.

Generally, for any 0 < p ≤ (C∗ + 1)j − 1, we obtain

(60) rj+p ≤ rj+p+1 exp{−(lnλ− β − Cη)qn}.

Thus

(61) r(C∗+1)j ≥ rj exp{(lnλ− β − Cη)C∗jqn}.

Clearly, by (53), one has

rj ≥ exp{−(lnλ+ Cη)jqn}.
Then

(62) r(C∗+1)j ≥ exp{((C∗ − 1) lnλ− C∗β − Cη)jqn}.

By the definition of C∗, one has

(C∗ − 1) lnλ− C∗β > 0.

Thus (62) is in contradiction with the fact that |φ(k)| ≤ 1 + |k|.
Now that (57) can not happen, from (56), we must have

(63) rj ≤ rj−1
qn+1

j
exp{−(lnλ− Cη)qn}.

�
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Theorem 4.5. For 0 ≤ j ≤ 8 bn+1

qn
with bn+1 ≥ qn

2 , the following holds

(64) Rj ≤ Rj+1 exp{−(lnλ− Cη)qn}
qn+1

j + 1
.

Proof. If j = 0, (64) holds directly by (55) (applying it with j = 1) and (24). Now we consider
j ≥ 1. Let ϕ = ψ in Lemma 4.3. Then (54) also holds for Rj with j ≥ 1, that is

(65) Rj ≤ max{Rj±1
qn+1

j + 1
exp{−(lnλ− Cη)qn}}.

Suppose for some j ≥ 1

(66) Rj ≤ Rj−1
qn+1

j + 1
exp{−(lnλ− Cη)qn}.

Applying (65) to j − 1 and taking into account (66), one has

(67) Rj−1 ≤ Rj−2
qn+1

j
exp{−(lnλ− Cη)qn}.

Iterating j times, we must have

(68) Rj ≤ R0

qjn+1

(j + 1)!
exp{−(lnλ− Cη)jqn} ≤ R0 exp{−(lnλ− β − Cη)jqn}.

Similarly, iterating (55) j times, we have

(69) rj ≤ r0 exp{−(lnλ− β − Cη)jqn}.

(68) and (69) contradict (24). This implies (66) can not happen, thus we must have (64). �

5. Lower bounds on decaying solution in the resonant case

In this section we assume θ is n−Diophantine with respect to α. We will study the lower
bound on φ for the resonant sites. Recall that bn+1 ≥ qn

2 in this case.

Theorem 5.1. Let r̃j = ||
(

φ(jqn)
φ(jqn − 1)

)
||. Suppose 1 ≤ j ≤ 8 bn+1

qn
with bn+1 ≥ qn

2 , then

we must have

(70) r̃j ≥
qn+1

j
e−(lnλ+ε)qn r̃j−1.

We first list two standard facts.

Lemma 5.2. ([45] ) Let A1, A2, · · · , An and B1, B2, · · · , Bn be 2×2 matrices with ||
∏`−1
m=0A

j+m|| ≤
Ced` for some constant C and d. Then

||(An +Bn) · · · (A1 +B1)−An · · ·A1|| ≤ Cedn(

n∏
j=1

(1 + Ce−d||Bj ||)− 1).

Lemma 5.3. For any ε > 0 and large n the following hold,

(71) ||Aqn(θ + qnα)−Aqn(θ)|| ≤ 1

qn+1
e(lnλ+ε)qn ,

and

(72) ||A−1
qn (θ + qnα)−A−1

qn (θ)|| ≤ 1

qn+1
e(lnλ+ε)qn .
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Proof. We only prove (71) for simplicity. By the DC approximation(or see (150) in Appendix),
we have

||qnα||R/Z ≤
1

qn+1
.

This implies

||A(θ + qnα)−A(θ)|| ≤ C

qn+1
.

Applying Lemma 5.2 and (28), one has

(73) ||Aqn(θ + qnα)−Aqn(θ)|| ≤ e(lnλ+ε)qn((1 +
C

qn+1
)qn − 1).

Using the fact |ey − 1| ≤ yey for y > 0, we obtain

(1 +
C

qn+1
)qn − 1 ≤ qn(1 +

C

qn+1
)qn ln(1 +

C

qn+1
)

≤ C
qn
qn+1

.

Combining this with (73) completes the proof. �

Lemma 5.4. For any 0 ≤ j ≤ 8 bn+1

qn
− 1, one of the following two estimates must hold,

(74) r̃j+1 ≥
qn+1

j + 1
e−(lnλ+ε)qn r̃j ,

or

(75) r̃j+1r̃j−1 ≥ (1− 1

10(j + 1)
)2(1− 1

10(j + 1)2
)r̃2
j .

Proof. Suppose

(76) r̃j+1 ≤
qn+1

j + 1
e−(lnλ+ε)qn r̃j .

Let Uj =

(
φ(jqn)

φ(jqn − 1)

)
, then for n > 0, one has

Uj = Aqn(θ + (j − 1)qnα)Uj−1.

Denote B = Aqn(θ + jqnα). Notice that detB = 1. We have

(77) B2 + (TrB)B + I = 0.

Case 1: TrB ≤ r̃j
γr̃j+1

, where

1− 1

γ
=

1

10(j + 1)
.

Applying (77) to Uj , one has

(78) B2Uj + (TrB)BUj + Uj = 0.

Notice that Uj+1 = BUj , thus

||(TrB)BUj || ≤
1

γ
r̃j .

Thus we have

(79) ||B2Uj || ≥ (1− 1

γ
)r̃j =

1

10(j + 1)
r̃j .
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This is impossible. Indeed, from the following estimate

||Uj+2 −B2Uj || ≤ ||Aqn(θ + (j + 1)qnα)−Aqn(θ + jqnα)|| ||Uj+1||

≤ e(lnλ+ 1
2 ε)qn

1

qn+1
r̃j+1

≤ 1

100(j + 1)
r̃j ,

where the second inequality holds by (71) and the third inequality holds by assumption (76),
combining with (79), one has

(80) ||Uj+2|| = r̃j+2 ≥
9

100(j + 1)
r̃j .

However, by (55) and (53),

r̃j+2 ≤
q2
n+1

(j + 1)(j + 2)
e−2(lnλ−Cη)qn r̃j .

This is in contradiction with (80).
Case 2: It remains to consider

(81) TrB ≥ r̃j
γr̃j+1

.

From (77),

(82) BUj + (TrB)Uj +B−1Uj = 0.

First by assumption (76), one has

r̃j+1 ≤
1

10(j + 1)
r̃j ,

then

||BUj || = r̃j+1 ≤ r̃j
γr̃j+1

r̃j
10(j + 1)2

≤ ||(TrB)Uj ||
1

10(j + 1)2
.

Thus by (82), we have

||B−1Uj || ≥ (1− 1

10(j + 1)2
)||(TrB)Uj ||

≥ (1− 1

10(j + 1)2
)
r̃2
j

γr̃j+1
(83)

≥ (1− 1

10(j + 1)2
)
1

γ

j + 1

qn+1
e(lnλ+ε)qn r̃j ,(84)

where the second inequality holds by (81) and the third inequality hold by (76).
By (72), the following holds

||Uj−1 −B−1Uj || ≤ ||A−1
qn (θ + (j − 1)qnα)−A−1

qn (θ + jqnα)|| ||Uj ||

≤ e(lnλ+ 1
2 ε)qn

1

qn+1
r̃j

≤ 1

10(j + 1)
||B−1Uj ||,(85)
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where the third inequality holds by (84).
Putting (83) and (85) together, we have

r̃j−1 = ||Uj−1|| ≥ (1− 1

10(j + 1)
)||B−1Uj ||

≥ (1− 1

10(j + 1)
)2(1− 1

10(j + 1)2
)
r̃2
j

r̃j+1
.

This implies (75). �

Proof of Theorem 5.1.

Proof. We can proceed by induction.
Set j = 0 in Lemma 5.4. By (55), the second case (75) can not happen, thus Theorem 5.1

holds for j = 1.
Suppose (70) holds for p = j − 1, that is

(86) r̃j−1 ≥
qn+1

j − 1
e−(lnλ+ε)qn r̃j−2.

We will show (70) holds for p = j. Let us apply Lemma 5.4 to p = j − 1. If (74) holds for
p = j − 1, the result follows. Otherwise by (75), we have

r̃j ≥ (1− 1

10j
)2(1− 1

10j2
)r̃j−1

r̃j−1

r̃j−2

≥ (1− 1

10j
)2(1− 1

10j2
)r̃j−1

qn+1

j − 1
e−(lnλ+ε)qn

≥ r̃j−1
qn+1

j
e−(lnλ+ε)qn ,

where the second inequality holds by (86).
�

6. Decaying solutions. Proof of (12), Theorems 2.2, 2.4 and 2.9

In this section the dependence on n will play a role, so we go back to the rnj , r̃
n
j notation.

We first give a series of auxiliary facts. Recall footnote 11.

Theorem 6.1. Assume θ is n−Diophantine with respect to α. For any 1 ≤ j ≤ 10 bn+1

qn
with

bn+1 ≥ qn
2 , we have

r̄nj e
−εjqn ≤ rnj ≤ r̄nj eεjqn

and

r̄nj e
−εjqn ≤ r̃nj ≤ r̄nj eεjqn .

Proof. For any ε > 0, we choose η small enough.Using (55) j times, we have

rnj ≤
qjn+1

j!
exp{−(lnλ− ε)jqn}.

Similarly, using (70) j times, we have

r̃nj ≥
qjn+1

j!
exp{−(lnλ+ ε)jqn}.

By Stirling formula and (53), we obtain the theorem. �
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Theorem 6.2. Assume θ is n−Diophantine with respect to α. Assume jqn ≤ k < (j + 1)qn
with 0 ≤ j ≤ 8 bn+1

qn
, bn+1 ≥ qn

2 and k ≥ qn
4 . We have

(87) ||U(k)|| ≤ max{e−|k−jqn| lnλr̃nj , e−|k−(j+1)qn| lnλr̃nj+1}eεqn ,

(88) ||U(k)|| ≥ max{e−|k−jqn| lnλr̃nj , e−|k−(j+1)qn| lnλr̃nj+1}e−εqn .
In particular, we have

(89) ||U(k)|| ≤ max{e−|k−jqn| lnλr̄nj , e−|k−(j+1)qn| lnλr̄nj+1}eε|k|,

(90) ||U(k)|| ≥ max{e−|k−jqn| lnλr̄nj , e−|k−(j+1)qn| lnλr̄nj+1}e−ε|k|.

Proof. (89) and (90) just follows from (87), (88) and Theorem 6.1. Thus it suffices to prove
(87), (88). Clearly, by (53), one has

||U(k)|| ≥ max{e−|k−jqn| lnλr̃nj , e−|k−(j+1)qn| lnλr̃nj+1}e−εqn .
This implies (90) by Theorem 6.1.

We now turn to (89). If |k − jqn| ≤ 10ηqn or |k − (j + 1)qn| ≤ 10ηqn, the result follows
from Theorem 6.1 and (53). If |k − jqn| ≥ 10ηqn and |k − (j + 1)qn| ≥ 10ηqn, it follows from
Lemma 4.1, Theorem 6.1 and (53). �

Theorem 6.3. For q
8
9
n ≤ k ≤ qn

2 , let n0 be the smallest positive integer such that qn−n0 ≤ k <
qn−n0+1. Suppose jqn−n0

≤ k < (j + 1)qn−n0
with j ≥ 1. If θ is k−Diophantine with respect

to α for k = n− n0 and k = n− 1,then

(91) ||U(k)|| ≤ max{e−|k−jqn−n0
| lnλr̄n−n0

j , e−|k−(j+1)qn−n0
| lnλr̄n−n0

j+1 }e
εk,

and

(92) ||U(k)|| ≥ max{e−|k−jqn−n0
| lnλr̄n−n0

j , e−|k−(j+1)qn−n0
| lnλr̄n−n0

j+1 }e
−εk.

Proof. Set t0 = 1− ε
8β . Let t = t0 in the definition of resonance, i.e. bn = qt0n .

Case 1: k ≤ qt0n−n0+1. In this case, one has

qn−n0
≤ k ≤ qt0n−n0+1.

The result holds by Theorem 6.2.
Case 2: k ≥ qt0n−n0+1. Then

r̄n−n0
j ≤ exp{−(lnλ− ln qn−n0+1

qn−n0

+
ln qt0n−n0+1

qn−n0

− ε)jqn−n0
}

≤ exp{−(lnλ− (1− t0)β − ε)jqn−n0}
≤ exp{−(lnλ− 2ε)jqn−n0},

where the third inequality holds by the definition of t0. Noting that k ≤ qn−n0+1, one has

r̄n−n0
j ≥ exp{−jqn−n0

(lnλ+ ε)}.
Similarly,

exp{−(j + 1)qn−n0(lnλ+ ε)} ≤ r̄n−n0
j+1 ≤ exp{−(j + 1)qn−n0(lnλ− ε)}.

Thus in order to prove case 2, it suffices to show

(93) e−(lnλ+ε)k ≤ ||U(k)|| ≤ e−(lnλ−ε)k.

The left inequality holds by (53).
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We start to prove the right inequality. For any y ∈ [εk, k] or y ∈ [qn − k, qn − εk], let n′0 be
the least positive integer such that 4qn−n′0 ≤ dist(y, qnZ), thus n′0 ≥ n0. Let s be the largest
positive integer such that 4sqn−n′0 ≤ dist(y, qnZ).

Set I1, I2 ⊂ Z as follows

I1 = [−sqn−n′0 , sqn−n′0 − 1],

I2 = [y − sqn−n′0 , y + sqn−n′0 − 1],

and let θj = θ + jα for j ∈ I1 ∪ I2. The set {θj}j∈I1∪I2 consists of 4sqn−n′0 elements. By
case ii) of Theorem 3.5, y is (lnλ+ 8 ln(sqn−n′0/qn−n′0+1)/qn−n′0 − ε, 4sqn−n′0 − 1) regular with

δ = 1
4 . Notice that

(s+ 1)qn−n′0 ≥ εq
t0
n−n0+1 ≥ εq

t0
n−n′0+1,

thus we have

lnλ+ 8 ln(sqn−n′0/qn−n′0+1)/qn−n′0 ≥ lnλ− 8(1− t0)β − ε
≥ lnλ− 2ε.

This implies for any y ∈ [εk, k] or y ∈ [qn−k, qn−εk], there exists an interval I(y) = [x1, x2] ⊂
[0, qn] with y ∈ I(y) such that

dist(y, ∂I(y)) ≥ 1

2
qn−n′0(94)

and

(95) |GI(y)(y, xi)| ≤ e−(lnλ−ε)|y−xi|, i = 1, 2.

For any y ∈ (k, qn − k), let s be the largest positive integer such that sqn−n0
≤ dist(y, qnZ)

and set I1, I2 ⊂ Z as follows:

I1 = [−bsqn−n0

2
c, sqn−n0

− bsqn−n0

2
c − 1],

I2 = [y − bsqn−n0

2
c, y + sqn−n0

− bsqn−n0

2
c − 1].

By the same reason, (94) and (95) also hold for n′0 = n0.
Arguing exactly as in the proof of Lemma 4.1, with (39) replaced with (94) and (40) with

(95), we obtain

(96) ||U(k)|| ≤ max{r̂0 exp{−(lnλ− 2ε)(k − 3εk)}, r̂n1 exp{−(lnλ− 2ε)(qn − k − 3εk)}},
where r̂j = max|r|≤10ε ||U(jqn + rk)|| with j = 0, 1. Using that k ≤ qn

2 , one has

||U(k)|| ≤ e−(lnλ−ε)k,

this implies (93) and thus the theorem.
�

Remark 6.4. The assumption that θ is n− n0 Diophantine with respect to α is sufficient for
the proof of case 1. The assumption that θ satisfies (35) is sufficient for the proof of case ii)
of Theorem 3.5, and therefore for the proof of case 2. Then by Remark 3.6, the assumption
that θ is n− 1 Diophantine with respect to α is sufficient for the proof of case 2.

Remark 6.5. Suppose we only consider q
8
9
n ≤ k ≤ cqn with c ≤ 1

2 in Theorem 6.3. Theorem
6.3 still holds if we only have (11) for function φ(k) on [−cqn, 2cqn] for some c > 0.

In order to prove (12), it suffices to prove the following Theorem, which is a stronger local
version of (12).



26 SVETLANA JITOMIRSKAYA AND WENCAI LIU

Theorem 6.6. Let α ∈ R\Q be such that |λ| > eβ(α). Suppose E is a generalized eigenvalue

of Hλ,α,θ and φ is the generalized eigenfunction. Let U(k) =

(
φ(k)

φ(k − 1)

)
. Then for any

ε > 0, κ > 0, ν > 1, there exists n̂0 (depending on α,E, κ, ν, ε12 )such that, if θ is n-Diophantine
with respect to α with Diophantine constants κ, ν for some n ≥ n̂0, we have U(k) satisfy

(97) f(|k|)e−ε|k| ≤ ||U(k)|| ≤ f(|k|)eε|k|,

for qn
2 ≤ |k| ≤

qn+1

2 .

Proof. It remains to collect several already proved statements that cover different scenarios.

Case i: qn
2 ≤ q

8
9
n+1.

For qn
2 ≤ k ≤ 4q

8
9
n+1 the result follows from Theorem 6.2.

For 4q
8
9
n+1 ≤ k ≤

qn+1

2 , (97) follows from Theorem 6.3 (notice that now k ≥ 2qn, so n0 = 1).

Case ii: q
8
9
n+1 ≤

qn
2 .

Case ii.1: qn
2 ≤ k ≤ min{qn, qn+1

2 }.
If qn = qn−1 +qn−2, then qn−1 ≥ qn

2 . By the proof of case 2 in Theorem 6.3 (by Remark 6.4,
the assumption that θ is n-Diophantine is enough), one has for any qn−1 ≤ k ≤ min{qn, qn+1

2 }

|φ(k)| ≤ e−(lnλ−ε)k.

This leads to

|φ(k)| ≤ e−(lnλ−ε)k.

for qn
2 ≤ k ≤ min{qn, qn+1

2 }. This also implies (12).
If qn = jqn−1 + qn−2 with j ≥ 2, we have qn

2 ≥ qn−1. By case 2 in Theorem 6.3 (by Remark
6.4, the assumption that θ is n-Diophantine is enough) again (with n + 1 − n0 = n − 1), we
obtain (97).

Case ii.2: qn ≤ k ≤ qn+1

2
In this case (97) follows directly from Theorem 6.3 (with n+ 1− n0 = n), because n0 = 1

so that the fact θ is n Diophantine can guarantee both cases 1 and 2 of Theorem 6.3.
�

Proof of Theorem 2.2

Proof. The proof follows that of (97) by shifting by k0 units, and Remark 6.5. �

Proof of Theorem 2.9.

Proof. Assume θ is Diophantine with respect to α. First by the definition of β(α), one has for
any large n and any `

r̄n` ≤ e−(lnλ−β−ε)`qn .

Combining with the definition of f(k) and (12), we have

(98) |φ(k)| ≤ e−(lnλ−β−ε)k.

We therefore established that every generalized eigenfunction decays exponentially, which by
Schnol’s Theorem [16] implies the localization statement.

By the definition of β(α) again, there exists a subsequence qnk of qn such that

(99) qnk+1 ≥ e(β−ε)qnk .

12The dependence on E is through the constant Ĉ in (11).
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By Theorem 2.1 (or 6.1) and the definition of r̄nj we have for any k > 0

(100) ||U(qnk)|| ≥ e−(lnλ−β+ε)qnk .

Thus (98) and (100) imply that the decay rate is just lnλ− β. �

7. Hierarchical structure

As we have already established Theorem 2.9 we know that each generalized eigenfunction
decays exponentially so has a global maximum. Assume its global maximum (see Footnote

2) is at 0 and φ is normalized by ‖φ‖∞ = 1. Note that then Ĉ in (11) is equal to 1 so all
dependence of the largeness of n on E (see Footnote 12) disappears. Theorem 2.1 provides,
for sufficiently large n plenty of local n-maxima in the vicinity of aqn, but determined only
with εqn precision. In the next theorem we show that this precision can be improved all the
way to an n-independent constant. We have

Theorem 7.1. Fix κ, ν, ε. Then for sufficiently small ε there exists n̂0(κ, ν, λ, α, ε, ε) such that

if θ is k-Diophantine for all n̂0 ≤ k ≤ n with Diophantine constants κ, ν and ln qn+1−ln j
qn

> ε lnλ

with ε > 0, then

(101) sup
k∈[jqn−εqn+εqn,jqn]

||U(k)|| = sup
k∈[jqn−K0,jqn]

||U(k)||,

and

(102) sup
k∈[jqn,jqn+εqn−εqn]

||U(k)|| = sup
k∈[jqn,jqn+K0]

||U(k)||,

where K0 = qn̂0+1.

Proof. We first give the proof of (101).
Let k0 ∈ [jqn − εqn, jqn] be such that

||U(k0)|| = sup
k∈[jqn−εqn,jqn]

||U(k)||.

By (55), (70),(87) and (88), one has

||U(k0)|| = sup
k∈[jqn−εqn+εqn,jqn]

||U(k)||.

Suppose (101) does not hold, i.e., k0 ∈ [jqn − εqn, jqn −K0].

Now we will reflect the elements in [jqn − εqn, jqn] at j
2qn. That is for any element k ∈

[jqn − εqn, jqn], let k′ = jqn − k. Then k′ ∈ [0, εqn].
Choose n′ such that bn′ ≤ k′0 < bn′+1 (where k′0 = jqn − k0). Then n′ ≥ n̂0.
Case 1. k′0 is n′-nonresonant, i.e., dist(k′0, qn′Z) ≥ bn′ .
Let n′0 be the least positive integer such that 4qn′−n′0 ≤ dist(k

′
0, qn′Z). Let s be the largest

positive integer such that 4sqn′−n′0 ≤ dist(k
′
0, qn′Z). Set I1, I2, I

′
2 ⊂ Z as follows

I1 = [−sqn′−n′0 , sqn′−n′0 − 1],

I2 = [k0 − sqn′−n′0 + 1, k0 + sqn′−n′0 ],

I ′2 = [k′0 − sqn′−n′0 , k
′
0 + sqn′−n′0 − 1],

Notice that I ′2 and I2 are reflections of each other about j
2qn.
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By the Diophantine condition on θ with respect to α, for any k2 ∈ I2(k′2 ∈ I ′2) and k1 ∈ I1,
we have

||2θ + (k1 + k2)α||R/Z = ||2θ − k′2α+ jqnα+ k1α||R/Z
≥ ||2θ + (k1 − k′2)α||R/Z − ||jqnα||R/Z

≥ ||2θ + (k1 − k′2)α||R/Z −
j

qn+1

≥ ||2θ + (k1 − k′2)α||R/Z − e−ε lnλqn

≥ 1

2
||2θ + (k1 − k′2)α||R/Z ≥

C

qCn′
,(103)

where the last inequality holds by the fact |k1|, |k′2| ≤ C?bn′+1 so that we can apply Lemma
B.2.

For any k2 ∈ I2 and k1 ∈ I1 (k1 + k′2 6= 0 by the construction of I1, I2), we also have

||(k2 − k1)α||R/Z = || − k′2α+ jqnα− k1||R/Z
≥ ||(−k1 − k′2)α||R/Z − ||jqnα||R/Z
≥ ||(k1 + k′2)α||R/Z − e−ε lnλqn

≥ 1

2
||(k1 + k′2)α||R/Z ≥

C

qCn′
,(104)

where the last inequality holds by the fact |k1|, |k′2| ≤ C?bn′+1 and k1 − k′2 6= qn′Z so that we
can apply Lemma B.3.

By Theorem B.4, (103) and (104), we have k0 is (k̂0, lnλ − β − ε) regular, where k̂0 =
4sqn′−n′0 − 1. Let I2 = [x1, x2] ⊂ [jqn − 2εqn, jqn].

By (33), we have

|φ(k0)| ≤ e−(lnλ−β−ε) k̂010 (|φ(x1)|+ |φ(x0)|) ≤ e−(lnλ−β−ε) k̂010 ||U(k0)||.
Similarly,

|φ(k0 − 1)| ≤ e−(lnλ−β−ε) k̂010 ||U(k0)||.
The last two inequalities imply that

||U(k0)|| ≤ e−(lnλ−β−ε) k̂010 ||U(k0)||.
This is impossible.

Case 2. k′0 is n-resonant, i.e., |k′0 − `qn′ | ≤ bn′ for some `.
From (103) and (104), we know that the small divisor condition does not change under

reflection at j
2qn. Following the proof of (54) and replacing Lemma 4.1 with a combination of

Lemma 4.2 and Theorem B.4, we have

r
n′,φ
` ≤ exp{−(lnλ− β − ε)qn′}max{rn

′,φ
`±1 },

where

r
n′,φ
` = sup

|r|≤10ε

|φ(jqn − (`qn′ + rqn′))|.

This is contradicted to the fact that k0 is the maximal point because |k′0 − `qn′ | ≤ bn′ .
This completes the proof of (101).
Now we turn to the proof of (102). Let kr0 ∈ [jqn, jqn + εqn] be such that

||U(kr0)|| = sup
k∈[jqn,jqn+εqn]

||U(k)||.
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Suppose the Theorem does not hold, i.e., kr0 ∈ [jqn +K0, jqn + εqn].
In this case we shift the elements in [jqn, jqn + εqn] by −jqn. That is for any element

k ∈ [jqn, jqn + εqn], let kr,′ = k − jqn. Then kr,′ ∈ [0, εqn]. Then (102) holds by the same
proof, only replacing all k′ with kr,′.

�

We restate the result of Theorem 7.1 as a more convenient

Theorem 7.2. Fix κ, ν, ε. Then for sufficiently small ε there exists n̂0(κ, ν, λ, α, ε, ε) such
that if k0 is a local (n+ 1)-maximum, θ is k-Diophantine for all n̂0 ≤ k ≤ n with Diophantine
constants κ, ν, and

ln qn+1 − ln j

qn
> ε lnλ.

Then

(105) sup
k∈[k0+jqn−εqn+εqn,k0+(j+1)qn]

||U(k)|| = sup
k∈[k0+jqn−K0,k0+jqn+K0]

||U(k)||,

where K0 = qn̂0+1.

Proof. By shifting the operator by k0 units, we can assume k0 = 0. Theorem 7.1 still holds if
0 is a local (n+ 1)-maximum by Remark 6.5.

�

We will now formulate a local version of the hierarchical structure Theorem 2.4.
Fix 0 < ς, ε with ς + 2ε < 1. Let nj → ∞ be such that ln qnj+1 ≥ (ς + 2ε) ln |λ|qnj . Let

cj = (ln qnj+1 − ln |anj |)/ ln |λ|qnj − ε. cj > ε for 0 < anj < eς ln |λ|qnj .

Theorem 7.3. Suppose k0 is a local (nj0 +1)-maximum. Suppose θ+k0α is Diophantine with
respect to α (with Diophantine constants κ, ν). Then there exists n̂0(α, λ, κ, ν, ε) <∞ such that

for any j0 > j1 > · · · > jk, njk ≥ n̂0 + k, and 0 < anji < e
ς ln |λ|qnji , i = 0, 1, . . . , k for all 0 ≤

s ≤ k there exists a local njs-maximum banj0 ,anj1 ,...,anjs
on the interval banj0 ,anj1 ,...,anjs

+I
njs
cjs ,1

for all 0 ≤ s ≤ k such that the following holds:

I: |banj0 − (k0 + anj0 qnj0 )| ≤ qn̂0+1,

II: For any 1 ≤ s ≤ k, |banj0 ,anj1 ,...,anjs − (banj0 ,anj1 ,...,anjs−1
+ anjs qnjs )| ≤ qn̂0+s+1.

III: if 2(x− banj0 ,anj1 ,...,anjk ) ∈ Injkcjk ,1
, then for each s = 0, 1, ..., k,

(106) f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|,

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Moreover, every local njs-maximum on the interval

banj0 ,anj1 ,...,anjs−1
+ [−eε lnλqnjs , eε lnλqnjs ]

is of the form banj0 ,anj1 ,...,anjs
for some anjs .

Proof. Let n̂0 = n̂0(κ, 3ν, λ, α, ε, ε/10) be given by Theorem 7.2 .13

As long as

(107) (ln qn+1 − ln |an|)/qn ≥ 2ε ln |λ|

133ν here can be easily relaxed to (1 + ε)ν.
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with 0 < ς, ε < 1, where 0 < |an| ≤ qn+1

2qn
, Theorem 7.2 (upon shifting by k0 units) implies that

there exists a local n-maximum ban on interval ban + Inε,1 such that

(108) |ban − (anqn + k0)| ≤ K0 = qn̂0+1.

Now let ni be such that ln qni+1 ≥ (ς + 2ε) ln |λ|qni , i = t0, t0 + 1, · · · , j for some 0 < ς, ε < 1.

By (108), one has that there exists a local nj0 maximum banj0
= anj0 qnj0 + k0 + K̂nj0

with

|K̂nj0
| ≤ K0.

Now we will prove that for 0 ≤ s ≤ k, there exists

|banj0 ,anj1 ,...,anjs − anjs qnjs − banj0 ,anj1 ,...,anjs−1
| ≤ Ks = qn̂0+s+1.

Notice that
∑k
i=0Ki ≤ 4Kk. We will now prove Theorem 2.4 by induction on s.

By the assumption, one has

(109) ||2θ + 2k0 + kα||R/Z >
κ

|k|ν
,

for any k ∈ Z\{0}.
First we prove the case s = 1. By the Diophantine condition on θ (109), we have for

|`| ≤ qnj1+1, the following holds

||2θ + (2banj0
+ `)α||R/Z ≥ ||2θ + (2k0 + `+ 2Knj0

)α||R/Z − ||2anj0 qnj0α||R/Z

≥ κ

(2K0 + |`|)ν
−

2anj0
qnj0+1

≥ κ

|max{K0, `}|2ν
− e−ε lnλqnj0

≥ κ

|max{K0, `}|3ν
.(110)

Therefore θ+ banj0
α is n̂0 + 1-Diophantine with respect to α with parameters 3ν, κ, and by

Theorem 7.2 again, there exists a local nj1-maximum such that banj0 ,anj1
= anj1 qnj1 + banj0

+

K̂nj1
with |K̂nj1

| ≤ K1 = qn̂0+2. This completes the first step.
Assume Theorem holds for s = k − 1. It suffices to show it holds for s = k. By the

Diophantine condition on θ (109) again, we have for |`| ≤ qnjk+1, the following holds,

||2θ + (2banj0 ,anj1 ,··· ,anjk−1

+ `)α||R/Z ≥ ||2θ + (2k0 + `+ 2

k−1∑
s=0

Ks)α||R/Z −
k−1∑
s=0

||2anjs qnjsα||R/Z

≥ κ

(8Kk−1 + |`|)ν
−
k−1∑
s=0

||2anjs qnjsα||R/Z

≥ κ

|max{Kk−1, `}2ν
−
k−1∑
s=0

e−εqnjs

≥ κ

|max{Kk−1, `}|3ν
.

Thus θ+banj0 ,anj1 ,··· ,anjk−1

α is n̂0 + k-Diophantine with respect to α with parameters 3ν, κ,

and by Theorem 7.2 again, there exists a local nj−k-maximum such that banj0 ,anj1 ,··· ,anjk
=

anjk qnjk + banj0 ,anj1 ,··· ,anjk−1
+ K̂njk

with |K̂njk
| ≤ Kk = qn̂0+k+1. This implies II holds for

s = k. Thus we complete the proof of I and II.
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III, as well as the moreover part, follow from Theorem 2.2 directly. �

Proof of Theorem 2.4

Proof. Since k0 is a local nj0 + 1-maximum for every j, Theorem 2.4 follows from Theorem 7.3
directly. �

Theorem 7.3 describes a hierarchical structure around every local (nj0 + 1)-maximum.
We will say that a local nj0-maximum is k-hierarchical if there exists ε > 0, j0 > j1 >

· · · > jk with nji+1 > eεnji and, for each s = 0, 1, . . . , k, a collection of local njs-maxima,
{banj0 ,anj1 ,...,anjs } such that

I: All local (njs , ε)-maxima in [banj0 ,anj1 ,...,anjs −e
εqnjs ,banj0

,anj1
,··· ,anjs−1

+e
εqnjs ] are given

by {banj0 ,anj1 ,··· ,anjs−1
,anjs
} with all possible choices of anjs .

II: if 2(x− banj0 ,anj1 ,...,anjk ) ∈ Injkε,ε , then for each s = 0, 1, ..., k,

(111) f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|,

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Proof of Corollary 2.7. Clearly, ban1 ,...,ans
of Theorem 7.3 form the collection required

for the definition of k-hierarchy, so it remains to estimate the number of levels of the hierarchy,
that is find k such that njk ≥ n̂0 + k. Clearly, k = j/2− bn̂0/2c works. �

8. Growth of transfer matrices. Proof of (13)

Assume θ is Diophantine with respect to α in this and the following section.

Theorem 8.1. Let A(j) = ||Ajqn ||. Assume jqn ≤ k < (j + 1)qn with 0 ≤ j ≤ 48C?
bn+1

qn
,

bn+1 ≥ qn
2 and k ≥ qn

4 . We have

(112) ||Ak|| ≤ max{e−|k−jqn| lnλA(j), e−|k−(j+1)qn| lnλA(j + 1)}eεk,

(113) ||Ak|| ≥ max{e−|k−jqn| lnλA(j), e−|k−(j+1)qn| lnλA(j + 1)}e−εk.

Proof. Let Ũ(k) =

(
ψ(k)

ψ(k − 1)

)
. By Last-Simon’s arguments ((8.6) in [40]), one has

(114) ||Ak|| ≥ ||AkŨ(0)|| ≥ c||Ak||.
Then (112) holds by (114),(53) and (38).

(113) holds directly by (28). �

Theorem 8.2. Assume 1 ≤ j ≤ 8 bn+1

qn
and bn+1 ≥ qn

2 . Then

(115)
qn+1

r̄nj
e−εjqn ≤ A(j) ≤ qn+1

r̄nj
eεjqn .

Proof. We first show the left inequality. Clearly

(116) ||Ak|| ≥ ||U(k)||−1,

thus by (89) and (112), we must have for any jqn ≤ k < (j + 1)qn with j ≥ 0 and k ≥ qn
4 ,

(117)

max{e−|k−jqn| lnλA(j), e−|k−(j+1)qn| lnλA(j+1)}eεk ≥ (max{e−|k−jqn| lnλr̄nj , e−|k−(j+1)qn| lnλr̄nj+1})−1e−εk.
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Let

k0 = (j + 1)qn −
ln qn+1 − ln(j + 1)

2 lnλ
.

One has k0 ≥ qn
4 , thus

max{e−|k0−jqn| lnλr̄nj , e−|k0−(j+1)qn| lnλr̄nj+1} ≤ r̄nj+1(
j + 1

qn+1
)

1
2 eεk0 .

Combining with (117), we have

(118) max{e−|k0−jqn| lnλA(j), e−|k0−(j+1)qn| lnλA(j + 1)} ≥
q

1
2
n+1

(j + 1)
1
2

(r̄nj+1)−1e−εk0 .

This implies that either

(119) A(j) ≥ elnλqn(r̄nj+1)−1e−εk0 ,

or

(120) A(j + 1) ≥ qn+1

j + 1
(r̄nj+1)−1e−εk0 .

Notice that by (64) and (114), we have

(121) A(j + 1) ≥ A(j)e(lnλ−ε)qn j + 1

qn+1
.

By (119),(120) and (121), we obtain the left inequality of (115).
Now we turn to the proof of the right inequality of (115). By (8.5) and (8.7) in [40] we have

(122) ||AkU(0)||2 ≤ ||Ak||2m(k)2 + ||Ak||−2,

where

(123) m(k) ≤ C
∞∑
p=k

1

||Ap||2
.

If k ≥ C?jqn with j ≥ 1, by (98) we have

||Ak|| ≥ ||U(k)||−1

≥ e(lnλ−β−ε)k

and by (28) we have

A(j) ≤ e(lnλ+ε)jqn .

This implies

(124) ||Ak|| ≥ A(j)e
lnλ−β

2 k.

If jqn ≤ k ≤ C?jqn with j ≥ 1, let j0qn ≤ k < (j0 + 1)qn with j ≤ j0 ≤ C?j. By (113) and
(121), we have

||Ak|| ≥ A(j0) max{e−|k−j0qn| lnλ, e−|k−(j0+1)qn| lnλeqn lnλ j0 + 1

qn+1
}e−εj0qn

≥ (
j0 + 1

qn+1
)

1
2A(j0)e−εj0qn

≥ (
j + 1

qn+1
)

1
2A(j)e−εjqn .(125)
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Thus by (124) and (125), we have

(126) m(jqn) ≤ qn+1

jA(j)2
eεjqn .

Let k = jqn in (122). One has

r̃2
j ≤

q2
n+1

j2A(j)2
eεjqn .

Thus by (6.1), we obtain

(127) A(j) ≤ qn+1

jr̄nj
eεjqn .

This implies the right inequality of (115). �

Theorems 8.1 and 8.2 imply the following theorem directly.

Theorem 8.3. Assume jqn ≤ k < (j + 1)qn with 0 ≤ j ≤ 6 bn+1

qn
, bn+1 ≥ qn

2 . We have, for

k ≥ qn,

(128) ||Ak|| ≤ max{e−|k−jqn| lnλ qn+1

r̄nj
, e−|k−(j+1)qn| lnλ qn+1

r̄nj+1

}eε|k|,

and

(129) ||Ak|| ≥ max{e−|k−jqn| lnλ qn+1

jr̄nj
, e−|k−(j+1)qn| lnλ qn+1

(j + 1)r̄nj+1

}e−ε|k|.

and for qn
4 ≤ k < qn,

(130) ||Ak|| ≤ max{e−|k| lnλ, e−|k−qn| lnλ qn+1

r̄n1
}eε|k|,

and

(131) ||Ak|| ≥ max{e−|k| lnλ, e−|k−qn| lnλ qn+1

r̄n1
}e−ε|k|.

Theorem 8.4. For any q
8
9
n ≤ k ≤ qn

2 , let n0 be the smallest positive integer such that qn−n0 ≤
k < qn−n0+1. Suppose jqn−n0 ≤ k < (j + 1)qn−n0+1 with j ≥ 1, then the following holds,

(132) ||Ak|| ≤ max{e−|k−jqn−n0 | lnλ
qn−n0+1

r̄n−n0
j

, e−|k−(j+1)qn−n0 | lnλ
qn−n0+1

r̄n−n0
j+1

}eε|k|,

and

(133) ||Ak|| ≥ max{e−|k−jqn−n0
| lnλ qn−n0+1

r̄n−n0
j

, e−|k−(j+1)qn−n0
| lnλ qn−n0+1

r̄n−n0
j+1

}e−ε|k|.

Proof. As in the proof of Theorem 6.3, we split into the same two cases: 1 and 2. Case 1
can be done directly by Theorem 8.3. For case 2, as in the proof of case 2 of Theorem 6.3, it
suffices to show

(134) e(lnλ−ε)k ≤ ||Ak|| ≤ e(lnλ+ε)k,

which follows directly from (93),(116) and (28). �

Proof of (13)
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Proof. The arguments are similar to the proof of (12) and consist of collecting the already
proved facts, with the same cases.

Case i: qn
2 ≤ q

8
9
n+1.

For qn
2 ≤ k ≤ 4q

8
9
n+1, the result follows from Theorem 8.3.

For 4q
8
9
n+1 ≤ k ≤ qn+1

2 , (13) follows from Theorem 8.4 (notice that now k ≥ 2qn, thus
n0 = 1).

Case ii: q
8
9
n+1 ≤

qn
2 .

Case ii.1: qn
2 ≤ k ≤ min{qn, qn+1

2 }.
If qn = qn−1 + qn−2, then qn−1 ≥ qn

2 . This is the case 2 of Theorem 8.4. By (134), one has
for any qn−1 ≤ k ≤ min{qn, qn+1

2 }

||Ak|| ≥ e(lnλ−ε)k.

This leads to

||Ak|| ≥ e(lnλ−ε)k.

for qn
2 ≤ k ≤ min{qn, qn+1

2 }. This also implies (13).
If qn = jqn−1 + qn−2 with j ≥ 2, then qn

2 ≥ qn−1. (13) follows directly from Theorem 8.4
(notice that now n+ 1− n0 = n− 1).

Case ii.2 qn ≤ k ≤ qn+1

2
In this case (13) follows directly from Theorem 8.4 (notice that now n+ 1− n0 = n).

�

9. Proof of the corollaries

Proof of Corollary 2.12

Proof. Due to (28), i) follows from iii). By Theorem 2.1 to prove iii), it is enough to show that
for any ε > 0, sufficiently large n and εqn < k < qn, we have

(135) e(lnλ−Cε)k ≤ g(k) ≤ e(lnλ+Cε)k.

Let m ≤ n+ 1 be such that qm/2 ≤ k < qm+1/2. If qm ≤ k, we are in Case 1 of the definition

of g with m ≤ n − 1. Notice that `qm ≥ εqn ≥ εqm+1, which leads to
ln
qm+1
`

qm
being small.

Then (135) follows from (6). If qm/2 < k < qm (135) is automatic by the definition of g.
It remains to establish ii).
First by (98), we must have

(136) lim inf
k→∞

ln ||Ak||
k

≥ lnλ− β.

Let jk = bqεnk+1c, where sequence qnk is given by (99). Then

g(jkqnk) =
qnk+1

r̄nkjk

= e
(lnλ−

ln qnk+1

qnk
+

ln jk
qnk

)jkqnk qnk+1

≤ e(lnλ−β+Cε)jkqnk .

Combining with Theorem 2.1, we must have

(137) lim inf
k→∞

ln ||Ak||
k

≤ lnλ− β.

ii) holds by (136) and (137). �
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Proof of Corollary 2.13

Proof. i) follows from iii) and ii) follows from (98) and (100). To establish iii), we only need

to show that for any εqn ≤ k ≤ qn − β
2 lnλqn − εqn,

e−(lnλ+Cε)k ≤ ||U(k)|| ≤ e−(lnλ−Cε)k.

Let m ≤ n+ 1 be such that qm/2 ≤ k < qm+1/2.
Case 1: m ≤ n− 1.
Then by Theorem 2.1, the statement is not immediate only in case 1, but then it follows

from (5) and (7) since in that case r̄m` ≤ e−(lnλ−ε)`qm .
Case 2: m = n or m = n+ 1.
In this case we have qm

2 ≤ k ≤ qm−
β

2 lnλqm−εqm and qm
2 ≤ k <

qm+1

2 . Then the statement
holds by Theorem 2.1 and, in case 1, (7).

To prove iv) it suffices to show that for any qnj −
β

2 lnλqnj + εqnj ≤ k ≤ qnj − εqnj ,we have

||U(k)|| ≥ e−(lnλ−cε)k

where qnj is a subsequence satisfying (99).Indeed, under this assumption we are in Case 1 of
the definition of f and the second addend dominates in (7) leading to the statement. �

Remarks

• If we take for qnk a subsequence with any bounded away from zero exponential growth,
we still get non-Lyapunov behavior on intervals of the form [qnk−cqnk+εqnk , qnk−εqnk ]

for some c < β
2 lnλ .

• In fact, in all the arguments β can be replaced with ln qn+1/qn.

Proof of Corollary 2.14

Proof. First by (24), one has

(138) ||U(k)||||Ũ(k)|| sin δk =
1

2
.

Combining with (114), we have

(139)
1

2||U(k)||||Ak||
≤ sin δk ≤

1

||U(k)||||Ak||
.

We first prove (21). Clearly, it suffices to show

(140) lim sup
k→∞

ln δk
k
≥ 0.

Let kj = b 1
4qnj+1c where sequence qnj is given by (99). By Theorem 2.1, we must have

||U(kj)|| ≤ e−(lnλ−ε)kj ,

and

||Akj || ≤ e(lnλ+ε)kj .

Combining with (139), we must have

(141) δkn ≥ e−εkn .

This implies (140) and also implies (21).
Now we verify (22). By the definition of f(k), g(k), for any large k, we have

(142) f(k)g(k) ≤ e(β+ε)k.
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Then by (139) and Theorem 2.1 again, one has

(143) lim inf
k→∞

ln δk
k
≥ −β.

Let kj = qnj . One has

(144) f(kj)g(kj) = qnj+1.

Combining with (139) and Theorem 2.1 again, we get

(145) lim
j→∞

ln δkj
kj

= −β.

(22) follows directly from (143) and (145). �

Proof of Corollary 2.11

Proof. This Corollary follows directly from (13) and (114). �

Appendix A. Gordon arguments for λ ≤ eβ

Proposition A.1. The almost Mathieu operator

(Hλ,α,θu)(n) = u(n+ 1) + u(n− 1) + 2λ cos 2π(θ + nα)u(n),

has no localized eigenfunctions if |λ| ≤ eβ.14

Proof. Otherwise, there exists a solution {u(n)}n∈Z of Hλ,α,θu = Eu such that

(146) |u(n)| ≤ Ce−5c|n|,

where c > 0. Without loss of generality, assume the vector

(
u(0)
u(−1)

)
is unit.

Let ϕ(n) =

(
u(n)

u(n− 1)

)
. For simplicity, denote ϕ = ϕ(0). By the definition of β(α), there

exists a subsequence q̃k of qn such that

(147) ||q̃kα||R/Z ≤ e−(β− c4 )q̃k .

Denote B = Aq̃k(θ). Then we have

(148) B2 + (TrB)B + I = 0.

Case 1: if TrB ≤ e2cq̃k , one has either ||B2ϕ|| ≥ 1
2 or ||Bϕ|| ≥ 1

2e
−2cq̃k . By (146), we must

have ||B2ϕ|| ≥ 1
2 . This is impossible. Indeed, from the following estimate

||ϕ(2q̃k)−B2ϕ|| = ||Aq̃k(θ + q̃kα)−Aq̃k(θ)|| ||ϕ(q̃k)||
≤ Ce

3
2 cq̃ke−5cq̃k

≤ e−3cq̃k ,

where the first inequality holds by (71). Then

||ϕ(2q̃k)|| ≥ 1

4
,

contradicting ||ϕ(2q̃k)|| ≤ Ce−10cq̃k .

14Localized here means exponentially decaying. One can exclude any decaying solutions for |λ| < eβ [9] but
not for |λ| = eβ [7].
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Case 2: if TrB ≥ e2cq̃k , from (148), it is easy to see that either ||Bϕ|| ≥ 1
2e

2cq̃k or

||B−1ϕ|| ≥ 1
2e

2cq̃k holds. By (146) again, we must have ||B−1ϕ|| ≥ 1
2e

2cq̃k . By (72), the
following holds

||ϕ(−q̃k)−B−1ϕ|| = ||A−1
q̃k

(θ − q̃kα)−A−1
q̃k

(θ)|| ||ϕ||

≤ e
3
2 cq̃k .

Thus

||ϕ(−q̃k)|| ≥ 1

4
e2cq̃k .

This is also impossible.
�

Appendix B. Uniformity

We start with some basic facts.
Let pn

qn
be the continued fraction approximants to α. Then

(149) ∀1 ≤ k < qn+1,dist(kα,Z) ≥ |qnα− pn|,

and

(150)
1

2qn+1
≤ ∆n := |qnα− pn| ≤

1

qn+1
.

Lemma B.1. (Lemma 9.7, [5]) Let α ∈ R\Q, x ∈ R and 0 ≤ `0 ≤ qn − 1 be such that
| sinπ(x+ `0α)| = inf0≤`≤qn−1 | sinπ(x+ `α)|, then for some absolute constant C > 0,

(151) − C ln qn ≤
qn−1∑

`=0, 6̀=`0

ln | sinπ(x+ `α)|+ (qn − 1) ln 2 ≤ C ln qn.

We now prove

Lemma B.2. For any |i|, |j| ≤ 50C∗bn+1, if θ is n-Diophantine with respect to α, then the
following estimate holds,

(152) ln | sinπ(2θ + (j + i)α)| ≥ −C ln qn.

Proof. By the Diophatine condition on θ, (2), one has that there exist κ > 0 and ν > 0 such
that

(153) min
j,i∈[−qn,qn]

| sinπ(2θ + (j + i)α)| ≥ κ

qνn
.

Let `i, `j ∈ Z be such that dist(i, qnZ) = |i − `iqn| and dist(j, qnZ) = |j − `jqn|. Then

|`i|, |`j | ≤ 50C∗
bn+1

qn
+ 1. Let i′ = i− `iqn and j′ = j − `jqn, then i′, j′ ∈ [−qn, qn].

If q1−t
n+1 >

100C∗
κ qν+2

n , it is easy to verify that |`k∆n| < κ
qν+1
n

. Combining with (153), we

have for any |i|, |j| ≤ 50C∗bn+1

| sinπ(2θ + (j + i)α)|

= | sinπ(2θ + (j′ + i′)α) cosπ(`i + `j)∆n ± cosπ(2θ + (j′ + i′)α) sinπ(`i + `j)∆n|

≥ κ

100qνn
(the choice of ± depends on the sign of qnα− pn).
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If q1−t
n+1 ≤ 100C∗

κ qν+2
n , we also have for any |i|, |j| ≤ 50C∗bn+1

| sinπ(2θ + (j + i)α)| ≥ κ1+ tν
1−t

(100C∗)
ν

1−t q
νt(ν+2)

1−t
n

.

Thus in both cases, we have

(154) min
|i|,|j|≤50C∗bn+1

ln | sinπ(2θ + (j + i)α)| ≥ −C ln qn.

�

Lemma B.3. Assume |i|, |j| ≤ 50C∗bn+1, and i− j 6= qnZ. Then

(155) ln | sinπ(j − i)α| ≥ −C ln qn.

Proof. By assumption, |j − i| = `qn + r with 0 ≤ ` ≤ 100C∗
bn+1

qn
and 0 < r < qn. Then by

(149) and (150) again, we also have

||(j − i)α||R/Z ≥ ||rα||R/Z − |`|||qnα||R/Z

≥ 1

2qn
− |`|
qn+1

≥ 1

2qn
− 100C∗

q1−t
n+1

1

qn

≥ 1

4qn
.

This implies (155). �

We are now ready to study the behavior at non-resonant points. For an n-nonresonant y, let,
as before, n0 be the least positive integer such that 4qn−n0

≤ dist(y, qnZ). Let s be the largest
positive integer such that 4sqn−n0 ≤ dist(y, qnZ). Recall that, automatically, n0 ≤ C(α). Set
I1, I2 ⊂ Z as follows

I1 = [−sqn−n0 , sqn−n0 − 1],

I2 = [y − sqn−n0 , y + sqn−n0 − 1],

We have

Theorem B.4. For an n−nonresonant y, assume that

(156) min
j,i∈I1∪I2

ln | sinπ(2θ + (j + i)α)| ≥ −C ln qn.

and

(157) min
i 6=j;i,j∈I1∪I2

ln | sinπ(j − i)α)| ≥ −C ln qn.

Then for any ε > 0 and n large enough, we have y is (lnλ + 8 ln(sqn−n0
/qn−n0+1)/qn−n0

−
ε, 4sqn−n0

− 1) regular with δ = 1
4 .

Proof. Without loss of generality assume y > 0. By the definition of s and n0, we have
4sqn−n0

≤ dist(y, qnZ) and 4qn−n0+1 > dist(y, qnZ). This leads to sqn−n0
≤ qn−n0+1. Let

θj = θ + jα for j ∈ I1 ∪ I2. The set {θj}j∈I1∪I2 consists of 4sqn−n0
elements.

In (34), let x = cos 2πa, k = 4sqn−n0
− 1 and take the logarithm, then

ln
∏

j∈I1∪I2,j 6=i

| cos 2πa− cos 2πθj |
| cos 2πθi − cos 2πθj |
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=
∑

j∈I1∪I2,j 6=i

ln | cos 2πa− cos 2πθj | −
∑

j∈I1∪I2,j 6=i

ln | cos 2πθi − cos 2πθj |.

First, we estimate
∑
j∈I1∪I2,j 6=i ln | cos 2πa− cos 2πθj |. Obviously,∑

j∈I1∪I2,j 6=i

ln | cos 2πa− cos 2πθj |

=
∑

j∈I1∪I2,j 6=i

ln | sinπ(a+ θj)|+
∑

j∈I1∪I2,j 6=i

ln | sinπ(a− θj)|+ (4sqn−n0
− 1) ln 2

= Σ+ + Σ− + (4sqn−n0
− 1) ln 2.

Both Σ+ and Σ− consist of 4s terms of the form of (151), plus 4s terms of the form

ln min
j=0,1,··· ,qn−n0

| sinπ(x+ jα)|,

minus ln | sinπ(a± θi)|. Thus, using (151) 4s times for Σ+ and Σ− respectively, one has

(158)
∑

j∈I1∪I2,j 6=i

ln | cos 2πa− cos 2πθj | ≤ −4sqn−n0
ln 2 + Cs ln qn−n0

.

If a = θi, we obtain∑
j∈I1∪I2,j 6=i

ln | cos 2πθi − cos 2πθj |

=
∑

j∈I1∪I2,j 6=i

ln | sinπ(θi + θj)|+
∑

j∈I1∪I2,j 6=i

ln | sinπ(θi − θj)|+ (4sqn−n0 − 1) ln 2

(159) = Σ+ + Σ− + (4sqn−n0
− 1) ln 2,

where

Σ+ =
∑

j∈I1∪I2,j 6=i

ln | sinπ(2θ + (i+ j)α)|,

and

Σ− =
∑

j∈I1∪I2,j 6=i

ln | sinπ(i− j)α|.

We will estimate Σ+. Set J1 = [−s, s − 1] and J2 = [s, 3s − 1], which are two adjacent
disjoint intervals of length 2s. Then I1 ∪ I2 can be represented as a disjoint union of segments
Bj , j ∈ J1 ∪ J2, each of length qn−n0

. Applying (151) to each Bj , we obtain

(160) Σ+ ≥ −4sqn−n0 ln 2 +
∑

j∈J1∪J2

ln | sinπθ̂j | − Cs ln qn−n0 − ln | sin 2π(θ + iα)|,

where

(161) | sinπθ̂j | = min
`∈Bj

| sinπ(2θ + (`+ i)α)|.

Next we estimate
∑
j∈J1 ln | sinπθ̂j |. Assume that θ̂j+1 = θ̂j+qn−n0

α for every j, j+1 ∈ J1.
In this case, for any i, j ∈ J1 and i 6= j, we have

(162) ||θ̂i − θ̂j ||R/Z ≥ ||qn−n0
α||R/Z.
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Applying the Stirling formula, (156) and (162), one has∑
j∈J1

ln | sin 2πθ̂j | > 2

s∑
j=1

ln(j∆n−n0
)− C ln qn

> 2s ln
s

qn−n0+1
− C ln qn − Cs.(163)

In the other cases, decompose J1 in maximal intervals Tκ such that for j, j + 1 ∈ Tκ
we have θ̂j+1 = θ̂j + qn−n0

α. Notice that the boundary points of an interval Tκ are either

boundary points of J1 or satisfy ‖θ̂j‖R/Z + ∆n−n0 ≥
∆n−n0−1

2 . This follows from the fact that

if 0 < |z| < qn−n0 , then ‖θ̂j + qn−n0α‖R/Z ≤ ‖θ̂j‖R/Z + ∆n−n0 , and ‖θ̂j + (z + qn−n0)α‖R/Z ≥
‖zα‖R/Z − ‖θ̂j + qn−n0

α‖R/Z ≥ ∆n−n0−1 − ‖θ̂j‖R/Z −∆n−n0
. Assuming Tκ 6= J1, then there

exists j ∈ Tκ such that ‖θ̂j‖R/Z ≥
∆n−n0−1

2 −∆n−n0
.

If Tκ contains some j with ‖θ̂j‖R/Z <
∆n−n0−1

10 , then

|Tκ| ≥
∆n−n0−1

2 −∆n−n0 −
∆n−n0−1

10

∆n−n0

≥ 1

4

∆n−n0−1

∆n−n0

− 1 ≥ s

8
− 1,(164)

since sqn−n0
≤ qn−n0+1, where |Tκ| = b− a+ 1 if Tκ = [a, b]. For such Tκ, a similar estimate

to (163) gives ∑
j∈Tκ

ln | sinπθ̂j | ≥ |Tκ| ln
|Tκ|

qn−n0+1
− Cs− C ln qn

≥ |Tκ| ln
s

qn−n0+1
− Cs− C ln qn.(165)

If Tκ does not contain any j with ‖θ̂j‖R/Z <
∆n−n0−1

10 , then by (150)∑
j∈Tκ

ln | sinπθ̂j | ≥ −|Tκ| ln qn−n0
− C|Tκ|

≥ |Tκ| ln
s

qn−n0+1
− C|Tκ|.(166)

By (165) and (166), one has

(167)
∑
j∈J1

ln | sinπθ̂j | ≥ 2s ln
s

qn−n0+1
− Cs− C ln qn.

Similarly,

(168)
∑
j∈J2

ln | sinπθ̂j | ≥ 2s ln
s

qn−n0+1
− Cs− C ln qn.

Putting (160), (167) and (168) together, we have

(169) Σ+ > −4sqn−n0
ln 2 + 4s ln

s

qn−n0+1
− Cs ln qn−n0

− C ln qn.

Now we start to estimate Σ−. Replacing (156) with (157), and following the proof of (169),
we obtain,

(170) Σ− > −4sqn−n0 ln 2 + 4s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn.
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From (159), (169) and (170), one has∑
j∈I1∪I2,j 6=i

ln | cos 2πθi − cos 2πθj |

(171) ≥ −4sqn−n0
ln 2 + 8s ln

s

qn−n0+1
− Cs ln qn−n0

− C ln qn.

By (158) and (171), we have

max
i∈I1∪I2

∏
j∈I1∪I2,j 6=i

|x− cos 2πθj |
| cos 2πθi − cos 2πθj |

< e4sqn−n0
(−2 ln(s/qn−n0+1)/qn−n0

+ε).

Combining with Lemma 3.4, there exists some j0 with j0 ∈ I1 ∪ I2 such that

θj0 /∈ A4sqn−n0
−1,lnλ+2 ln(s/qn−n0+1)/qn−n0

−ε.

First, we assume j0 ∈ I2.
Set I = [j0 − 2sqn−n0

+ 1, j0 + 2sqn−n0
− 1] = [x1, x2]. By (30), (31) and (32), it is easy to

verify

|GI(y, xi)| ≤ exp{(lnλ+ε)(4sqn−n0
−1−|y−xi|)−4sqn−n0

(lnλ+2 ln(s/qn−n0+1)/qn−n0
−ε)}.

Notice that |y − xi| ≥ sqn−n0
, so we obtain

(172) |GI(y, xi)| ≤ exp{−(lnλ+ 8 ln(s/qn−n0+1)/qn−n0 − 2ε)|y − xi|}.
If j0 ∈ I1, we may let y = 0 or y = 1 in (172). Combining with (33), we get

|φ(0)|, |φ(−1)| ≤ 6sqn−n0
exp{−(lnλ+ 8 ln(s/qn−n0+1)/qn−n0

− 2ε)sqn−n0
}.

This is in contradiction with |φ(0)|2 + |φ(−1)|2 = 1. Thus j0 ∈ I2, and the theorem follows
from (172). �

Proof of Theorem 3.5.
In case i), (156) and (157) are obtained correspondingly from Lemmas B.2 and B.3, thus

Theorem 3.5 follows from Theorem B.4. In case ii) it is easy to see that (156) and (157) also
hold, so Theorem B.4 applies as well. �

Assume bn+1 ≥ qn
2 . For any 1 ≤ j ≤ 48C∗

bn+1

qn
, we construct I1, I2 ⊂ Z as follows

I1 = [−b1
2
qnc, qn − b

1

2
qnc − 1],

I2 = [jqn − b
1

2
qnc, (j + 1)qn − b

1

2
qnc − 1],

Let θm = θ +mα for m ∈ I1 ∪ I2. Then

Theorem B.5. Suppose θ is n-Diophantine with respect to α. Then for any ε > 0, the set

{θm}m∈I1∪I2 is ln qn+1−ln j
2qn

+ ε-uniform for sufficiently large n.

Proof. In (34), let x = cos 2πa, k = 2qn − 1 and take the logarithm. Thus in order to prove
the theorem, it suffices to show that

ln
∏

m∈I1∪I2,m 6=i

| cos 2πa− cos 2πθm|
| cos 2πθi − cos 2πθm|

=
∑

m∈I1∪I2,m 6=i

ln | cos 2πa− cos 2πθm| −
∑

m∈I1∪I2,m 6=i

ln | cos 2πθi − cos 2πθm|

≤ (2qn − 1)(
ln qn+1 − ln j

2qn
+ ε).
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First, we estimate
∑
m∈I1∪I2,m 6=i ln | cos 2πa− cos 2πθm|. Obviously,∑

m∈I1∪I2,m6=i

ln | cos 2πa− cos 2πθm|

=
∑

m∈I1∪I2,m 6=i

ln | sinπ(a+ θm)|+
∑

m∈I1∪I2,m 6=i

ln | sinπ(a− θm)|+ (2qn − 1) ln 2

= Σ+ + Σ− + (2qn − 1) ln 2.

Both Σ+ and Σ− consist of 2 terms of the form of (151), plus two terms of the form

min
k=1,··· ,qn

ln | sinπ(x+ kα)|,

minus ln | sinπ(a± θi). Thus one has∑
m∈I1∪I2,m 6=i

ln | cos 2πa− cos 2πθm| ≤ −2qn ln 2 + C ln qn.

Setting a = θi and using the first inequality of (151) two times, we obtain∑
m∈I1∪I2,m6=i

ln | cos 2πθi − cos 2πθm| ≥ −2qn ln 2− C ln qn + 2 min
m,i∈I1∪I2

ln | sinπ(2θ + (m+ i)α)|

+ min
m∈I1∪I2,m 6=i

ln | sinπ(m− i)α|.(173)

By Lemma B.2, we also have

(174) min
m,i∈I1∪I2

ln | sinπ(2θ + (m+ i)α)| ≥ −C ln qn.

By (149) and (150), the corresponding minimum term of minm∈I1∪I2,m 6=i ln | sinπ((m−i)α)|
is achieved at jqn. It is easy to check that

(175) min{ln | sinπjqnα|} > − ln
qn+1

j
− C,

since ∆n ≥ 1
2qn+1

.

Putting (173), (174) and (175) together, we obtain

max
x∈[−1,1]

max
i=1,··· ,k+1

k+1∏
m=1,m 6=i

|x− cos 2πθm|
| cos 2πθi − cos 2πθm|

≤ e(2qn−1)(
ln qn+1−ln j

2qn
+ε).

�
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