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Abstract. In this paper we integrate semi-local patches and the weighted graph Laplacian [17]
into the framework of the low dimensional manifold model [12]. This approach is much faster than
the original LDMM algorithm. The number of iterations is typically reduced from 100 to 10 and the
equations in each step are much easier to solve. This new approach is tested in image inpainting and
denoising and the results are better than the original LDMM and competitive with state-of-the-art
methods.

1. Introduction. In the past decade patch-based methods have achieved great
success in image denoising, inpainting and other image processing problems [6, 2,
1, 4, 8, 22, 7, 24]. Among different patch-based nonlocal methods, the manifold
model is attracting more and more attention, along with the development of manifold
learning algorithms. The basic assumption in the manifold model is that the patches
concentrate around a low dimensional smooth manifold. This assumption is verified
in studies in image processing and computer vision [14, 15, 16, 9, 3, 13].

Recently the low dimensional manifold model (LDMM) was proposed for image
processing [12], explicitly using the dimension of the patch manifold as a regular-
ization to reconstruct the image. Using an elegant formula in differential geometry,
LDMM is formulated as an optimization problem of minimizing the H1 norm of the
coordinate functions of the patch manifold. The key step in the algorithm is to solve
a Laplace-Beltrami equation on the patch set. This equation is solved by the point
integral method [10, 11, 18, 19]. LDMM has been shown to have very good perfor-
mance in image processing, especially in inpainting problems. On the other hand,
the computational cost of the original LDMM in [12] is relatively high. There are
mainly two flaws which increase the computational load. First, the linear systems
to be solved from the point integral method are usually not symmetric and not very
efficient to solve numerically. Secondly, in LDMM, the image is recovered iteratively.
To get a good reconstruction, the number of iterations is usually over 100. In this pa-
per we use semi-local patches to replace nonlocal patches and use the weighted graph
Laplacian to replace the point integral method. Based on these two improvements,
the computational cost is reduced significantly and the results in image inpainting
and denoising become even better.

The semi-local patches are combinations of nonlocal patches and local coordinates,

(P̄u)(x) = [(Pu)(x), λx],

where u ∈ R
m×n is an image, x ∈ Ω = {1, 2, . . . ,m}×{1, 2, . . . , n} is the index of the

pixel, Pu(x) is the patch at x which is defined precisely in Section 2. The weight λ
is used to get different locality in the semi-local patch. The semi-local patches have
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been applied to many image processing problems [14, 23, 20, 21, 5]. They give a way
to balance the local and nonlocal effect. We find that with the proper choice of weight
λ, semi-local patches could significantly decrease the number of iterations in LDMM
and give better results.

In the image inpainting problem, we use the weighted graph Laplacian instead
of the point integral method to discretize the optimization problem. The weighted
graph Laplacian (WGL) is a method to compute smooth interpolation on a point
cloud, which was recently developed in [17]. The key idea in the weighted graph
Laplacian is to separate the energy function into two parts: one in the labeled set and
the other in the unlabeled set. In WGL, we put a weight in front of the labeled set
to correctly enforce the constraints on the labeled set.

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2



+
|P |

|S|

∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2



 ,

(1.1)

with the constraint

u(x) = g(x), x ∈ S,

where P is the point cloud and S is the labeled set, w(x,y) is a given weight function
and g is the given values on S. The equation in WGL is symmetric and positive
definite, which is much easier to solve than that in the point integral method.

Using the semi-local patches and WGL, we can reduce the number of iterations
in LDMM from 100 to 10. In each step, the linear system is easier to solve. Thus,
the total computational time is reduced tremendously. Also the result is better than
those in [12] in both image inpainting and denoising.

The rest of the paper is organized as follows. For the completeness of this paper,
we briefly introduce LDMM and WGL in Sections 2 and 3 respectively. The semi-
local patches are discussed in Section 4. We apply the new LDMM method to image
inpainting and denoising in Section 5 and Section 6. Finally, some conclusions are
made in Section 7.

2. Low Dimensional Manifold Model. Recently, the low dimensional mani-
fold model (LDMM) was proposed for image processing, which gives very good results
especially for subsampled image reconstruction [12]. The main idea in LDMM is using
the dimension of the patch manifold associated with the image as a regularization to
recover the image such that the associated patch manifold has the lowest dimension.

Considering a discrete image u ∈ R
m×n, for any x ∈ Ω = {1, 2, . . . ,m} ×

{1, 2, . . . , n}, we define a patch (Pu)(x) as a 2D rectangle of size s1×s2 of the original
image u, and the pixel x is the top-left corner of that rectangle. The collection of all
patches is called the patch set of image u and is denoted as P (u):

(2.1) P (u) = {(Pu)(x) : x ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}} ⊂ R
d, d = s1 × s2.

For a given image u, the patch set P (u) gives a point cloud in R
d. It is observed

that this point cloud is usually close to a smooth manifold embedded in R
d. This

underlying smooth manifold is called the patch manifold associated with u, denoted
as M(u). Many studies have revealed that for many natural images, the dimension
of the patch manifold is usually very low [14, 15, 16, 9, 3, 13]. Thus we can use the
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dimension of the patch manifold as a regularization to recover the image:

min
u∈Rm×n,

M⊂Rd

dim(M), subject to: b = Φu+ ε, P (u) ⊂M,(2.2)

where dim(M) is the dimension of the manifold M, b is the observation, Φ is a
measurement operator, ε represents the noise perturbation.

In LDMM, the dimension of the patch manifold is calculated using the following
formula:

Proposition 2.1. Let M be a smooth submanifold isometrically embedded in

R
d. For any x = (x1, x2, · · · , xd) ∈M,

dim(M) =

d
∑

j=1

‖∇Mαj(x)‖
2,

where αi(x) = xi is the coordinate function.

Using the above proposition, the optimization problem (2.2) can be rewritten as

min
u∈Rm×n,

M⊂Rd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + µ‖b−Φu‖22, subject to: P (u) ⊂M.(2.3)

where µ is a parameter in the penalty term.
In [12], the above optimization problem is solved iteratively as follows:

• With a guess of the manifold Mk and a guess of the image uk satisfying
P (uk) ⊂Mk, compute the coordinate functions αk+1

i , i = 1, · · · , d and uk+1,

(uk+1, αk+1
1 , · · · , αk+1

d ) = arg min
u∈Rm×n,

α1,··· ,αd∈H1(Mk)

d
∑

i=1

‖∇Mkαi‖
2
L2(Mk) + µ‖b−Φu‖22,

(2.4)

subject to: αi((Pu
k)(x)) = (Piu)(x), x ∈ Ω,

where (Piu)(x) is the ith element of patch (Pu)(x).
• UpdateM by setting

Mk+1 =
{

(αk+1
1 (x), · · · , αk+1

d (x)) : x ∈Mk
}

.(2.5)

• repeat these two steps until convergence.

Based on Bregman iteration and a standard variational approach, the key step to
solve (2.4) is solving a Poisson equation on a point cloud. in [12], this equation is solved
by the point integral method [10, 11, 18, 19]. LDMM using the point integral method
has been shown to be very effective especially in image inpainting [12]. However, the
computational cost of the original LDMM in [12] is relatively high. First, the linear
system arising from the point integral method is usually not symmetric. It is not
efficient to solve numerically. Secondly, in LDMM, we recover the image iteratively,
based on completely nonlocal patches. We need many iterations, typically over 100, to
get good reconstruction. To reduce the computational cost of LDMM, we propose two
procedures in this paper. First, we use the weighted graph Laplacian [17] to replace
the point integral method. The linear system given by WGL is symmetric and positive
definite which is much easier to solve. Secondly, we use semi-local patches instead
of nonlocal patches. Our numerical experiments show that semi-local patches could
reduce the number of iterations tremendously, from over 100 to around 10.

3



3. Weighted Graph Laplacian. The weighted graph Laplacian (WGL) is a
method to compute smooth interpolation on a point cloud, which was recently de-
veloped in [17]. The key idea in the weighted graph Laplacian is to separate the
energy function in the graph Laplacian into two parts: one in the labeled set and the
other in the unlabeled set. When the sample rate is low, the term in the unlabeled
set overwhelms the other term, so that the continuity in the labeled set is sacrificed.
To assure the continuity, one simple method is to add a weight to balance these two
terms. One natural choice of the weight is the inverse of the sample rate, which gives
the following optimization problem

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2



+
|P |

|S|

∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2



 ,

(3.1)

with the constraint

u(x) = g(x), x ∈ S,

where P is the point cloud and S is the labeled set, w(x,y) is a given weight function
and g is the given values on S.

The corresponding Euler-Lagrange equation of (3.1) is a linear system

∑

y∈P

(w(x,y) + w(y,x)) (u(x)− u(y))

+

(

|P |

|S|
− 1

)

∑

y∈S

w(y,x)(u(x)− u(y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

This linear system is symmetric and positive definite. In addition, in WGL, a large
positive term is added to the diagonal of the coefficient matrix, which makes the
conjugate gradient method converge in fewer step.

4. Semi-local Patches. The semi-local patches are obtained by adding local
coordinates to the nonlocal patches in Section 2 with a weight λ, i.e.

(P̄u)(x) = [(Pu)(x), λx] ∈ R
d+2,(4.1)

and the semi-local patch set is

P̄u = {(P̄u)(x) : x ∈ Ω = {1, 2, . . . ,m} × {1, 2, . . . , n}}.(4.2)

where u ∈ R
m×n is an image, x ∈ Ω = {1, 2, . . . ,m} × {1, 2, . . . , n} is the index of

the pixel. The weight λ is used to get different locality in the semi-local patch. If
λ = 0, the semi-local patch is same as the nonlocal patch. If λ→∞, the patches are
completely determined by local coordinates.

The semi-local patches have been successfully applied in many image processing
problems [14, 23, 20, 21, 5]. In the geometrical point of view, if λ→∞, the patch set
P̄ (f) is parametrized by a local 2D coordinate, x 7→ P̄(u)(x). However, this parame-
terization is globally not injective and typically leads to high curvature variations and
self-intersections. With this parametrization, the dimension of the manifold is very
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MP

Fig. 1. Diagram of patch set P (black points), local 2D parameterization (red curve) and global
patch manifold parameterization.

low, while the regularity is poor. If λ = 0, the underlying patch manifold may have
higher dimension, however the manifold becomes smoother. Fig. 1 gives a diagram
which shows these two different parameterizations. The idea in this paper is to find
a good compromise between the dimension and the regularity of the patch manifold
by choosing a proper weight λ. With a proper λ, our experiments show that LDMM
is accelerateed significantly.

5. Image Inpainting. In this section, we apply LDMM with semi-local patches
to image inpainting problems. In image inpainting we want to recover the image
u ∈ R

m×n from its subsamples u|Ω, where Ω ⊂ Ω = {1, 2, . . . ,m} × {1, 2, . . . , n} is
the subsampled domain. In this paper we consider the noise free case. Basically, we
follow the algorithm in Section 2. The difference is that we use semi-local patches
to construct weight functions w and the weighted graph Laplacian to discretize the
optimization problem.

The key step in the algorithm of LDMM, as shown in Section 2, is to solve the
following optimization problem:

min
u∈Rm×n

d
∑

i=1

‖∇Mαi‖
2
L2(M),(5.1)

subject to: αi(P̄(u
k)(x)) = (Piu)(x), x ∈ Ω, i = 1, · · · , d,

u(x) = b(x), x ∈ Ω ⊂ Ω.

where P̄(uk)(x) is the semi-local patch of uk at x, (Piu)(x) is the ith element of patch
(Pu)(x).

Based on the weighted graph Laplacian, to get a correct solution, we need to put
an extra weight on the sampled set. Notice that the sample set is different for different
αi. Applying WGL, we get the following discretized optimization problem:

min
u∈Rm×n

d
∑

i=1





∑

x∈Ω\Ωi

∑

y∈Ω

w(x, y)((Piu)(x)− (Piu)(y))
2(5.2)

+
mn

|Ω|

∑

x∈Ωi

∑

y∈Ω

w(x, y)((Piu)(x)− (Piu)(y))
2



 ,
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Algorithm 1 Image Inpainting

Require: A subsample image u|Ω.
Ensure: A recovered image u.

Generate initial image u0.

while not converge do

1. Generate semi-local patch set P̄ (uk) from current image uk with the weight
λ in the semi-local patch.

2. Compute the weight function

wk(x, y) = w((P̄uk)(x), (P̄uk)(y)), x, y ∈ Ω.

3. Update the image uk+1 by solving equation (5.4) with wk(x, y).
4. k ← k + 1.

end while

u = uk.

with the constraints

u(x) = b(x), x ∈ Ω ⊂ Ω.

Ωi = {x ∈ Ω : (Piu)(x) is sampled} is the sampled set of αi and

w(x, y) = w((P̄u)(x), (P̄u)(y)),(5.3)

where w is the given weight function.
Using a standard variational approach, we get the Euler-Lagrange equation of the

above optimization problem:

d
∑

i=1

P∗
i





∑

y∈Ω

(w(x, y) + w(y, x)) ((Piu)(x)− (Piu)(y))



(5.4)

+ β

d
∑

i=1

P∗
i





∑

y∈Ωi

w(y, x) ((Piu)(x)− (Piu)(y))



 = 0, x ∈ Ω\Ω,

u(x) = b(x), x ∈ Ω,

where P∗
i is the adjoint operator of Pi and β = mn

|Ω| − 1.

Next, we will alpply Algorithm 1 to some image inpainting problems and show
some results. In our calculations below, we take the weight w(x,y) as following:

w(x,y) = exp

(

−
‖x− y‖2

σ(x)2

)

.(5.5)

where x,y ∈ R
d+2 are semi-local patches, σ(x) is chosen to be the distance between

x and its 20th nearest neighbor, To make the weight matrix sparse, we truncate
the weight to the 50 nearest neighbors. The patch size is 10 × 10. For each patch,
the nearest neighbors are obtained by using an approximate nearest neighbor (ANN)
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search algorithm. We use a k-d tree approach as well as an ANN search algorithm
to reduce the computational cost. The linear system in Algorithm 1 is solved by the
conjugate gradient method.

In the semi-local patches, the local coordinate is normalized to have the same
amplitude as the image intensity,

(P̄u)(x) = [(Pu)(x), λx̄]

with

x̄ =

(

x1‖(f |Ω)‖∞
m

,
x2‖(f |Ω)‖∞

n

)

,

x = (x1, x2) and m,n are the sizes of the image.
Large λ makes it easier to compute the weight function w, because the searching

of the nearest neighbors is confined to a local area. On the other hand, small λ
gives more accurate results, since more global information is used. Based on this
observation, in the computation with 10% subsamples, we gradually reduce λ in the
iteration, more specially, λ is determined in the following way,

λk+1 = max(λk − 1, 3),

and the initial λ is set to be 10. In the computation with 5% subsamples, we fix λ to
be 3, since more global information is required to get good reconstruction with lower
sample rate. In all the computations, the number of iterations is fixed to be 10.

PSNR defined as follows is used to measure the accuracy of the results

PSNR(f, f∗) = −20 log10(‖f − f∗‖/255),(5.6)

where f∗ is the ground truth.
Fig. 2 displays the results with 10% subsamples. GL and WGL are the methods

presented in [17]. In all the examples, LDMM gives the best results. Comparing
with WGL, the improvement in PSNR is not significant. However, we can see more
differences visually. In the results of WGL, some times, there exist some spurious
structures. As shown in Fig. 3, near the garlic, in the reconstruction of WGL, there
is a white line which does not exist in the original image. In the result of LDMM,
this white line is removed. We can also see this phenomenon in the other examples:
for instance, the right-top corner in the image of boat, the sky near the roof in the
image of castle.

In the results with 5% subsamples, the improvement of LDMM is more significant
as shown in Fig. 4. We also study the effect of the weight λ in the semi-local patches.
In Fig. 5, we show the reconstructions from 5% subsamples with different λ, λ = 3, 10
respectively. It turns out that different images have different preferences. As shown
in Fig. 5, the image of Barbara prefers smaller λ, while the image of boat likes larger
λ. This also makes sense intuitively. There is a large area with repeated patterns in
the image of Barbara. This suggests the existence of a global structure, and we need
more global information to reconstruct the image. Contrary to the image of Barbara,
there is no repeated pattern in the image of boat. Too much global information may
introduce some artificially repeated patterns which would corrupt the image. So far,
we do not have a very precise procedure to select λ. In principle, reconstruction of
repeated patterns prefers small λ, while reconstruction of local structures likes large
λ.
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original image 10% subsample GL WGL LDMM

 

 

256× 256 23.99 dB 25.78 dB 25.85 dB

256× 256 22.02 dB 24.99 dB 25.53 dB

384× 512 28.29 dB 31.29 dB 31.52 dB

481× 321 21.57 dB 23.11 dB 23.59 dB

512× 512 24.16 dB 26.02 dB 26.34 dB

Fig. 2. Results of subsample image restoration from 10% subsamples.

With the weighted graph Laplacian and the semi-local patches, we reduce the
computational time of LDMM significantly. For instance, to reconstruct the image
of Barbara, 256× 256 from 10% subsamples, the original LDMM in [12] takes about
20 minutes, while the new algorithm takes about 5 minutes. In addition, we found
that in the new algorithm, over 60% of computational time is spent in assembling the
coefficient matrix in (5.4). There are many loops in assembling the coefficient matrix
and our code is written in matlab. We may be able to reduce the computational time
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WGL LDMM

Fig. 3. Reconstruction of the image of peppers in WGL and LDMM.

further after optimizing this part of the code.

In addition to the computational time being reduced, the results are also better
than those of the LDMM with nonlocal patches in [12]. From a geometrical point of
view, the dimension becomes smaller in semi-local patches as explained in Section 4.

6. Image Denoising. In this section, we apply the LDMM to image denoising.
Comparing with the image inpainting, in denoising, the constraints are different,

(6.1) b(x) = u(x) + ε(x), x ∈ Ω = {1, 2, . . . ,m} × {1, 2, . . . , n},

where u ∈ R
m×n is the original image, b ∈ R

m×n is the noised image, ε is the noise.
In this paper, we assume ε is the Gaussian noise.

In image denoising, the labeled set is same as the whole patch set. The weighted
graph Laplacian reduces to the graph Laplacian. So, we go back to the original point
integral method to solve the optimization problem.

Following the algorithm of LDMM in [12], we need to solve following optimization
problem:

min
u∈Rm×n,

α1,··· ,αd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + γ

∑

x∈Ω

|b(x)− u(x)|2,(6.2)

subject to: αi(P̄(u
k)(x)) = (Piu)(x), x ∈ Ω, i = 1, · · · , d.

where γ is a penalty weight related to the variance of the noise.

Or equivalently, we can impose the penalty on the patches,

min
u∈Rm×n,

α1,··· ,αd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + γ

d
∑

i=1

∑

x∈Ω

|αi(P̄(u
k)(x))− (Pib)(x)|

2,(6.3)

subject to: αi(P̄(u
k)(x)) = (Piu)(x), x ∈ Ω, i = 1, · · · , d.

Next, we split u and α1, · · · , αd, and solve them separately.
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• Compute αk+1
i , i = 1, · · · , d by solving

min
α1,··· ,αd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + γ

d
∑

i=1

∑

x∈Ω

|αi(P̄(u
k)(x))− (Pib)(x)|

2(6.4)

• Update the image uk+1 by solving the least-squares problem

(Piu)(x) = αi(P̄(u
k)(x)), i = 1, · · · , d, x ∈ Ω.(6.5)

In (6.4), α1, · · · , αd are decoupled, we can solve them one by one. For each αi, we
need to solve following type of problem:

min
u∈H1(M)

‖∇Mu‖2L2(M) + γ
∑

y∈P

|u(y)− v(y)|2,(6.6)

where u can be any αi, P̄ = P̄ (uk) is the semi-local patch set of uk and v(y) is a
given function on P̄ (uk) corresponding to (Pib)(x).

By a standard variational approach, we know that the solution of (6.6) can be
obtained by solving the following PDE











−∆Mu(x) + γ
∑

y∈P̄

δ(x− y)(u(y)− v(y)) = 0, x ∈M

∂u

∂n
(x) = 0, x ∈ ∂M.

(6.7)

where ∂M is the boundary of M and n is the out normal of ∂M. If M has no
boundary, ∂M = ∅.

Using the point integral method, the above Laplace-Beltrami equation is dis-
cretized as follows [12],

∑

y∈P̄

w(x,y)(u(x)− u(y)) + γ̄
∑

y∈P̄

w(x,y)(u(y)− v(y)) = 0, x ∈ P̄ ,(6.8)

γ̄ is a parameter related to γ. We only need to set γ̄ in the computation.
Using this discretization, we get an iterative algorithm (Algorithm 2) for image

denoising.
In the rest of this section, we will show some results on image denoising. We use

the same weight given in (5.5). The patch size is 10 × 10. The number of iterations
is 2. The weight λ in the semi-local patches is 3. In our tests, the noise ε is Gaussian
noise with the standard deviation σ = 100. γ̄ = 0.2 in (6.8).

The results are shown in Fig. 7. BM3D is the famous method of block-matching
with 3D collaborative filtering [6], which is known to give state-of-the-art result in
image denoising. As we can see in Fig. 7, the results of BM3D is better in PSNR,
although the difference is pretty small. Visually, we can see that LDMM seems to
reconstruct the edges and textures sharper than BM3D as shown in Fig. 6. This
difference can also be found in the result of the image of the house. LDMM seems
to recover the edges of the house smoother and sharper, although the PSNR is lower
than that of BM3D.

Actually, the philosophy in LDMM and BM3D is very similar. In Algorithm 2,
there are also grouping, filtering and aggregation step as those in BM3D. The main
difference is that in LDMM, we use a Laplace-Beltrami operator as a filter directly
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Algorithm 2 Image Denoising

Require: A noisy image b.
Ensure: A denoised image u.

Let u0 = b.

while not converge do

1. Generate semi-local patch set P̄ (uk) from current image uk with the weight
λ in the semi-local patch.

2. Compute the weight function w(x,y), x,y ∈ P̄ (uk).

3. Compute αi, i = 1, · · · , d by solving (6.8) with P = P̄ (uk), v = (Pib)(x).
3. Update the image uk+1 by

uk+1 =

(

d
∑

i=1

P∗
i Pi

)−1(
d
∑

i=1

P∗
i α

k+1
i

)

where P∗
i is the adjoint operator of Pi.

4. k ← k + 1.
end while

u = uk.

on the patches while hard thresholding and Wiener filtering is using in BM3D in the
transform domain. LDMM provides a general framework for patch-based nonlocal
methods. We can also use other operators, such as nonlocal total variation, to replace
the Laplace-Beltrami operator in LDMM. In many problems of image processing,
nonlocal TV, which corresponds to an L1 regularization, has been proven to be very
effective. In our subsequent research, we are planing to plug nonlocal TV into LDMM.
The new model should have even better performance.

7. Conclusion and Future Work. In this paper, we improve the LDMM using
the semi-local patches and the weighted graph Laplacian. The improvement is two
fold. First, the computational time is reduced significantly. Second, the results in
image inpainting and denoising are also better than those in the original LDMM.

LDMM provides a general framework for the nonlocal methods of image pro-
cessing. We are working to integrate different methods, such as nonlocal TV, ∞-
Laplacian, within the framework of LDMM. We are also trying to apply LDMM to
different kinds of image processing problem in addition to inpainting and denoising,
such as deblurring.

REFERENCES

[1] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition(CVPR), pages
60–65, 2005.

[2] A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one.
Multiscale Model. Simul., 4:490–530, 2005.

[3] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behavior of spaces
of natural images. International Journal of Computer Vision, 76:1–12, 2008.

[4] P. Chatterjee and P. Milanfar. Patch-based near-optimal image denoising. Image Processing,
IEEE Transactions on, pages 1635–1649, 2012.

11



[5] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Trans. Pattern Analysis and Machine Intelligence, 24:603–619, 2002.

[6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3d transform-
domain collaborative filtering. IEEE Trans. Image Process., 16:2080–2095, 2007.

[7] G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. Multiscale
Model. Simul., 7:1005–1028, 2008.

[8] A. Kheradmand and P. Milanfar. A general framework for regularized, similarity-based image
restoration. Image Processing, IEEE Transactions on, pages 5136–5151, 2014.

[9] A. B. Lee, K. S. Pedersen, and D. Mumford. The nonlinear statistics of high-contrast patches
in natural images. International Journal of Computer Vision, 54:83–103, 2003.

[10] Z. Li and Z. Shi. A convergent point integral method for isotropic elliptic equations on point
cloud. SIAM: Multiscale Modeling Simulation, 14:874–905, 2016.

[11] Z. Li, Z. Shi, and J. Sun. Point integral method for solving poisson-type equations on manifolds
from point clouds with convergence guarantees. arXiv:1409.2623.

[12] S. Osher, Z. Shi, and W. Zhu. Low dimensional manifold model for image processing. Technical
Report, CAM report 16-04, UCLA, 2016.

[13] J. A. Perea and G. Carlsson. A klein-bottle-based dictionary for texture representation. Inter-
national Journal of Computer Vision, 107:75–97, 2014.
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5% subsample GL WGL LDMM

21.29 dB 23.10 dB 23.50 dB

20.44 dB 22.27 dB 23.16 dB

26.18 dB 28.32 dB 28.31 dB

20.88 dB 21.31 dB 21.81 dB

22.56 dB 23.70 dB 24.23 dB

Fig. 4. Results of subsample image restoration from 5% subsamples.
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λ = 3 λ = 10

23.50 dB 22.86 dB

23.16 dB 23.84 dB

Fig. 5. Results of subsample image restoration with different weight in the semi-local patches.

LDMM BM3D

Fig. 6. Fragment of the denoised image of Barbara using LDMM and BM3D.
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original noisy image LDMM BM3D

512× 512 8.13 dB 23.46 dB 23.60 dB

512× 512 8.13 dB 23.44 dB 23.88 dB

512× 512 8.11 dB 24.54 dB 24.64 dB

256× 256 8.15 dB 25.17 dB 25.64 dB

Fig. 7. Results of image denoising.
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