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Abstract Inspired by the nonlocal methods in image processing and the point
integral method, we introduce a novel weighted nonlocal Laplacian method
to compute a continuous interpolation function on a point cloud in high di-
mensional space. The numerical results in semi-supervised learning and image
inpainting show that the weighted nonlocal Laplacian is a reliable and efficient
interpolation method. In addition, it is fast and easy to implement.
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1 Introduction

In this paper, we consider interpolation on a point cloud in high dimensional
space. This is a fundamental problem in many data analysis problems and
machine learning. Let P = {p1, · · · ,pn} be a set of points in R

d and S =
{s1, · · · , sm} be a subset of P . Let u be a function on the point set P and the
value of u on S ⊂ P is given as a function g over S, i.e. u(s) = g(s), ∀s ∈ S.
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The goal of the interpolation is to find the function u on P with the given
values on S.

Since the point set P is unstructured in high dimensional space, traditional
interpolation methods do not apply. One model which is widely used in many
applications is to minimize the following energy functional,

J (u) =
1

2

∑

x,y∈P

w(x,y)(u(x)− u(y))2, (1.1)

with the constraint
u(x) = g(x), x ∈ S. (1.2)

Here w(x,y) is a given weight function. One often used weight is the Gaussian

weight, w(x,y) = exp(−‖x−y‖2

σ2 ), σ is a parameter, ‖ · ‖ is the Euclidean norm
in R

d.
It is easy to derive the Euler-Lagrange equation of the above optimization

problem, which is given as follows,














∑

y∈P

(w(x,y) + w(y,x))(u(x)− u(y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

(1.3)

If the weight function w(x,y) is symmetric, above equation can be simplified
further to be

∑

y∈P

w(x,y)(u(x)− u(y)) = 0.

This is just the well known nonlocal Laplacian which is widely used in nonlocal
methods of image processing [1,2,7,8]. It is also called graph Laplacian in
graph and machine learning literature [4,19]. In the rest of the paper, we use
the abbreviation, GL, to denote this approach.

Recently, it was observed that the solution given by the graph Laplacian
is not continuous at the sample points, S, especially when the sample rate,
|S|/|P |, is low [15]. Consider a simple 1D example. Let P be the union of 5000
randomly sampled points over the interval (0, 2) and we label 6 points in P .
Points 0, 1, 2 are in the labeled set S and the other 3 points are selected at
random. The solution given by the graph Laplacian,(1.3) is shown in Fig. 1.
Clearly, the labeled points are not consistent with the function computed by
the graph Laplacian. In other words, the graph Laplacian actually does not
interpolate the given values.

It was also shown that the discontinuity is due to the fact that one im-
portant boundary term is dropped in evaluating the graph Laplacian. Con-
sider the harmonic extension in the continuous form which is formulated as a
Laplace-Beltrami equation with Dirichlet boundary condition on manifold M,

{

∆Mu(x) = 0, x ∈ M,
u(x) = g(x), x ∈ ∂M,

(1.4)
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Fig. 1 Solution given by graph Laplacian in 1D examples. Blue line: interpolation function
given by graph Laplacian; red circles: given values at label set S.

In the point integral method [9,10,13,14], it is observed that the Laplace-
Beltrami equation ∆Mu(x) = 0 can be approximated by the following integral
equation.

1

t

∫

M

(u(x)− u(y))Rt(x,y)dy − 2

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy = 0, (1.5)

where Rt(x,y) = R(− |x−y|2

4t ), R̄t(x,y) = R̄(− |x−y|2

4t ) and d
ds R̄(s) = −R(s).

If R(s) = exp(−s), R̄ = R and Rt(x,y) becomes a Gaussian weight function.
n is the outwards normal of the boundary ∂M.

Comparing the above integral equation (1.5) and the equation in the graph
Laplacian (1.3), we can clearly see that the boundary term in (1.5) is dropped
in the graph Laplacian. However, this boundary term is not small and neglect-
ing it causes trouble. To get an reasonable interpolation, we need to include the
boundary term. This is the idea of the point integral method. To deal with the
boundary term in (1.5), a Robin boundary condition is used to approximate
the Dirichlet boundary condition,

u(x) + µ
∂u(x)

∂n
= g(x), x ∈ ∂M, (1.6)

where 0 < µ ≪ 1 is a small parameter.
Substituting above Robin boundary condition to the integral equation

(1.5), we get an integral equation to approximate the Dirichlet problem (1.4),

1

t

∫

M

(u(x)− u(y))Rt(x,y)dy −
2

µ

∫

∂M

R̄t(x,y)(g(y)− u(y))dτy = 0.
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The corresponding discrete equations are

∑

y∈P

Rt(x,y)(u(x)− u(y)) +
2

µ

∑

y∈S

R̄t(x,y)(u(y)− g(y)) = 0, x ∈ P,

(1.7)

The point integral method has been shown to give consistent solutions [15,14,
9]. The interpolation algorithm based on the point integral method has been
applied to image processing problems and gives promising results [12].

Equation (1.7) is not symmetric, which makes the numerical solver not very
efficient. The main contribution of this paper is to propose a novel interpolation
algorithm, the weighted nonlocal Laplacian, which preserves the symmetry of
the original Laplace operator. The key observation in the weighted nonlocal
Laplacian is that we need to modify the energy function (1.1) to add a weight
to balance the energy on the labeled and unlabeled sets.

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2



+
|P |

|S|

∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2



 ,

with the constraint

u(x) = g(x), x ∈ S.

|P |, |S| are the number of points in P and S, respectively. When the sample
rate, |S|/|P |, is high, the weighted nonlocal Laplacian becomes the classical
graph Laplacian. When the sample rate is low, the large weight in weighted
nonlocal Laplacian forces the solution close to the given values near the labeled
set, such that the inconsistent phenomenon is removed.

We test the weighted nonlocal Laplacian on MNIST dataset and image
inpainting problems. The results show that the weighted nonlocal Laplacian
gives better results than the graph Laplacian, especially when the sample
rate is low. The weighted nonlocal Laplacian provides a reliable and efficient
method to find reasonable interpolation on a point cloud in high dimensional
space.

The rest of the paper is organized as follows. The weighted nonlocal Lapla-
cian is introduced in Section 2. The tests of the weighted nonlocal Laplacian
on MNIST and image inpainting are presented in Section 3 and Section 4
respectively. Some conclusions are made in Section 5.

2 Weighted Nonlocal Laplacian

First, we split the objective function in (1.1) to two terms, one is over the
unlabeled set and the other over the labeled set.

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2



+
∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2



 ,
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If we substitute the optimal solution into above optimization problem, for
instance the solution in the 1D example (Fig. 1), it is easy to check that the
summation over the labeled set is actually pretty large due to the discontinuity
on the labeled set. However, when the sample rate is low, the summation over
the unlabeled set actually overwhelms the summation over the labeled set. So
the continuity on the labeled set is sacrificed. One simple idea to assure the
continuity on the labeled set is to put a weight ahead of the summation over
the labeled set.

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2



+ µ
∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2



 ,

This is the basic idea of our approach. Since this method is obtained by modi-
fying the nonlocal Laplacian to add a weight, we call this method the weighted
nonlocal Laplacian, WNLL for short.

To balance these two terms, one natural choice of the weight µ is the
inverse of the sample rate, |P |/|S|. Based on this observation, we get following
optimization problem

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2



+
|P |

|S|

∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2



 ,

(2.1)

with the constraint

u(x) = g(x), x ∈ S.

The optimal solution of (2.1) can be obtained by solving a linear system
∑

y∈P

(w(x,y) + w(y,x)) (u(x)− u(y))

+

(

|P |

|S|
− 1

)

∑

y∈S

w(y,x)(u(x)− u(y)) = 0, x ∈ P\S, (2.2)

u(x) = g(x), x ∈ S.

This linear system is symmetric and positive definite. Comparing WNLL with
the graph Laplacian, in WNLL, we see that a large positive term is added to
the diagonal of the coefficient matrix which makes the linear system easier to
solve. After solving the above linear system using some iterative method, for
instance conjugate gradient, we find out that it converges faster than graph
Laplacian. In our tests, the weighted nonlocal Laplacian is about two times
faster than graph Laplacian on average.

Figure 2 shows the comparison between WNLL and GL in the 1D example.
The result of WNLL perfectly interpolates the given values while GL fails.

We want to remark that there are other choices of the weight µ in WNLL.
|P |/|S| works in many applications. Based on our experience, |P |/|S| seems
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Fig. 2 Solution given by graph Laplacian and weighted nonlocal Laplacian in 1D examples.
Blue line: interpolation function given by graph Laplacian; red circles: given values at label
set S.

to be the lower bound of µ. In some applications, we may make µ larger to
better fit the sample points.

The weighted nonlocal Laplacian is actually closely related with the point
integral method. To see the connection, we choose the weight function to be the
Gaussian weight both in weighted nonlocal Laplacian and the point integral
method, i.e.

Rt(x,y) = R̄t(x,y) = w(x,y) = exp(−
‖x− y‖2

σ2
).

With the Gaussian weight, comparing (1.7) and (2.2), the only difference be-
tween the point integral method and the weighted nonlocal Laplacian is in the
summation over the labelled set S, u(y) is changed to u(x). After this chang-
ing, the equation becomes symmetric and positive definite which is much easier
to solve. In addition to the symmetry, it is easy to show that the weighted non-
local Laplacian also preserves the maximum principle of the original Laplace-
Beltrami operator, which is important in some applications.

3 Semi-supervised Learning

In this section, we briefly describe the algorithm of semi-supervised learning
based on that proposed by Zhu et al. [19]. We plug into the algorithm the
aforementioned approach for weighted nonlocal Laplacian, and apply them to
the well-known MNIST dataset, and compare their performances.

Assume we are given a point set P = {p1,p2, · · · ,pn} ⊂ R
d, and some

labels {1, 2, · · · , l}. A subset S ⊂ P is labeled,

S =

l
⋃

i=1

Si,
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Algorithm 1 Semi-Supervised Learning

Require: A point set P = {p1,p2, · · · ,pn} ⊂ R
d and a partial labeled set S = ∪l

i=1
Si.

Ensure: A complete label assignment L : P → {1, 2, · · · , l}
for i = 1 : l do

Compute φi on P , with the constraint

φi(x) = 1, x ∈ Si, φi(x) = 0, x ∈ S\Si,

end for

for (x ∈ P\S) do

Label x as following

L(x) = k, where k = arg max
1≤i≤l

φi(x).

end for

Si is the labeled set with label i. In a typical setting, the size of the labeled
set S is much smaller than the size of the data set P . The purpose of the
semi-supervised learning is to extend the label assignment to the entire P ,
namely, infer the labels for the unlabeled points. The algorithm is summarized
in Algorithm 1.

In Algorithm 1, we use both graph Laplacian and weighted nonlocal Lapla-
cian to compute φi respectively. In weighted nonlocal Laplacian, φi is obtained
by solving the following linear system

∑

y∈P

(w(x,y) + w(y,x)) (φi(x)− φi(y))

+

(

|P |

|S|
− 1

)

∑

y∈S

w(y,x)(φi(x)− φi(y)) = 0, x ∈ P\S,

φi(x) = 1, x ∈ Si, φi(x) = 0, x ∈ S\Si.

In graph Laplacian, we need to solve

∑

y∈P

(w(x,y) + w(y,x)) (φi(x)− φi(y)) = 0, x ∈ P\S,

φi(x) = 1, x ∈ Si, φi(x) = 0, x ∈ S\Si.

We test Algorithm 1 on MNIST dataset of handwritten digits [3]. MNIST
dataset contains 70, 000 28× 28 gray scale digit images. We view digits 0 ∼ 9
as ten classes. Each image can be seen as a point in 784-dimensional Euclidean
space. The weight function w(x,y) is constructed as following

w(x,y) = exp

(

−
‖x− y‖2

σ(x)2

)

(3.1)

σ(x) is chosen to be the distance between x and its 20th nearest neighbor,
To make the weight matrix sparse, the weight is truncated to the 50 nearest
neighbors.
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Fig. 3 Some images in MNIST dataset. The whole dataset contains 70, 000 28 × 28 gray
scale digit images.

100/70,000 70/70,000 50/70,000
WNLL GL WNLL GL WNLL GL
91.83% 74.56% 84.31% 29.67% 79.20% 33.93%
89.20% 58.16% 87.74% 42.29% 78.66% 21.12%
93.13% 62.98% 83.19% 37.02% 71.29% 24.50%
90.43% 41.27% 91.08% 12.57% 71.92% 29.79%
92.27% 44.57% 84.74% 35.15% 80.92% 37.50%

Table 1 Accuracy of weighted nonlocal Laplacian and graph Laplacian in the test of
MNIST.

In our test, we label 100, 70 and 50 images respectively. The labeled images
are selected at random in 70,000 images. For each case, we do 5 independent
tests and the results are shown in Table 1. It is quite clear that WNLL has a
better performance than GL. The average accuracy of WNLL is much higher
than that of GL. In addition, WNLL is more stable than GL. The fluctuation
of GL in different tests is much higher. Due to the inconsistency, in GL, the
values in the labeled points are not well spread on to the unlabeled points. On
many unlabeled points, the function φi is actually close to 1/2. This makes
the classification sensitive to the distribution of the labeled points.

As for the computational time, in our tests, WNLL takes about half the
time of GL on average, 15s vs 29s (not including the time to construct the
weight), with matlab code in a laptop equipped with CPU intel i7-4900 2.8GHz.
In WNLL, a positive term is added to the diagonal of the coefficient matrix
which makes conjugate gradient converge faster.

As a remark, in this paper, we do not intend to give a state-of-the-art
method in semi-supervised learning. We just use this example to test the
weighted nonlocal Laplacian.
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Algorithm 2 Subsample image restoration
Require: A subsample image f |Ω .
Ensure: A recovered image u.

Generate initial image u0.

while not converge do

1. Generate patch set P(un) from current image un and get corresponding labeled set
Sn ⊂ P(un).

2. Compute the weight function wn(x,y) for x, y ∈ P(un).

3. Update the image by computing un+1 on P(un), with the constraint

un+1(x) = f(x), x ∈ Sn.

4. n← n+ 1.
end while

u = un.

4 Image Inpainting

In this section, we apply the weighted nonlocal Laplacian to the reconstruction
of subsampled images. To apply the weighted nonlocal Laplacian, first, we
construct a point cloud from a given image by taking patches. We consider
a discrete image f ∈ R

m×n. For any (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}, we
define a patch pij(f) as a 2D piece of size s1 × s2 of the original image f , and
the pixel (i, j) is the center of the rectangle of size s1× s2. The patch set P(f)
is defined as the collection of all patches:

P(f) = {pij(f) : (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}} ⊂ R
d, d = s1 × s2.

To get the patches near the boundary, we extend the images by mirror reflec-
tion. For a given image f , the patch set P(f) gives a point cloud in R

d with
d = s1 × s2. We also define a function u on P(f). At each patch, the value of
u is defined to be the intensity of image f at the central pixel of the patch, i.e.

u(pij(f)) = f(i, j),

where f(i, j) is the intensity of image f at pixel (i, j).
Now, we subsample the image f in the subsample domain Ω ⊂ {(i, j) : 1 ≤

i ≤ m, 1 ≤ j ≤ n}. The problem is to recover the original image f from the
subsamples f |Ω . This problem can be transfered to interpolation of function u
in the patch set P(f) with u is given in S ⊂ P(f), S = {pij(f) : (i, j) ∈ Ω}.
Notice that the patch set P(f) is not known, we need to update the patch
set iteratively from the recovered image. Summarizing this idea, we get an
algorithm to reconstruct the subsampled image which is stated in Algorithm
2.

There are different methods to compute un+1 on P(un) in Algorithm 2. In
this paper, we use weighted nonlocal Laplacian and graph Laplacian to com-
pute un+1. In the weighted nonlocal Laplacian, we need to solve the following
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linear system
∑

y∈P(un)

(wn(x,y) + wn(y,x))
(

un+1(x)− un+1(y)
)

+

(

mn

|Ω|
− 1

)

∑

y∈Sn

wn(y,x)(un+1(x)− un+1(y)) = 0, x ∈ P(un)\Sn,

un+1(x) = f(x), x ∈ Sn.

While in the graph Laplacian, we solve the other linear system,
∑

y∈P(un)

(wn(x,y) + wn(y,x))
(

un+1(x)− un+1(y)
)

= 0, x ∈ P(un)\Sn,

un+1(x) = f(x), x ∈ Sn.

Actually, Algorithm 2 with graph Laplacian is just a nonlocal method in image
processing[1,8]. In nonlocal methods, people try to minimize energy functions
such as

min
u

m
∑

i=1

n
∑

j=1

|∇wu(i, j)|
2,

with the constraint

u(i, j) = f(i, j), (i, j) ∈ Ω.

∇wu(i, j) is the nonlocal gradient which is defined as

∇wu(i, j) =
√

w(i, j; i′, j′)(u(i′, j′)− u(i, j)), 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n.

w(i, j; i′, j′) is the weight from pixel (i, j) to pixel (i′, j′),

w(i, j; i′, j′) = exp

(

d(f(i, j), f(i′, j′))

σ2

)

d(f(i, j), f(i′, j′)) is the patch distance in image f ,

d(f(i, j), f(i′, j′)) =

h1
∑

k=−h1

h2
∑

l=−h2

χ(k, l)|f(i+ k, j + l)− f(i′ + k, j′ + l)|2

χ is often chosen to be 1 or a Gaussian, h1, h2 are half sizes of the patch.
It is easy to check that the above nonlocal method is the same as solving
the graph Laplacian on the patch set. If the weight w is updated iteratively,
we get Algorithm 2 with the graph Laplacian. Next, we will show that this
method has inconsistent results, and we can use the weighted graph Laplacian
to address this issue.

In our calculations below, we take the weight w(x,y) as following:

w(x,y) = exp

(

−
‖x− y‖2

σ(x)2

)

.
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σ(x) is chosen to be the distance between x and its 20th nearest neighbor,
To make the weight matrix sparse, the weight is truncated to the 50 nearest
neighbors. The patch size is 11×11. For each patch, the nearest neighbors are
obtained by using an approximate nearest neighbor (ANN) search algorithm.
We use a k-d tree approach as well as an ANN search algorithm to reduce
the computational cost. The linear system in weighted nonlocal Laplacian and
graph Laplacian is solved by the conjugate gradient method.

PSNR defined as following is used to measure the accuracy of the results

PSNR(f, f∗) = −20 log10(‖f − f∗‖/255) (4.1)

where f∗ is the ground truth.
First, we run a simple test to see the performance of weighted nonlocal

Laplacian and graph Laplacian. In this test, the patch set is constructed using
the original image, Figure 4(a). The original image is subsampled at random,
only keeping 1% pixels. Since the patch set is exact, we do not update the
patch set and only run WNLL and GL once to get the recovered image.

The results of WNLL and GL are shown in Figure 4(c),(d) respectively.
Obviously, the result of WNLL is much better. To have a closer look at of
the recovery, Figure 5 shows the zoomed in image enclosed by the boxes in
Figure 4(a). In Figure 5(d), there are many pixels which are not consistent
with their neighbors. Compared with the subsample image 5(b), it is easy to
check that these pixels are actually the retained pixels. The reason is that
in graph Laplacian a non-negligible boundary term is dropped [15,14]. On
the contrary, in the result of WNLL, the inconsistency disappears and the
resultant recovery is much better and smoother as shown in Figure 4(d) and
5(d).

At the end of this section, we apply Algorithm 2 to recover the subsampled
image. In this test, we modify the patch to add the local coordinate

p̄ij(f) = [pij(f), λ1i, λ2j]

with

λ1 =
3‖(f |Ω)‖∞

m
, λ2 =

3‖(f |Ω)‖∞
n

.

This semi-local patch could accelerate the iteration and give better reconstruc-
tion. The number of iterations in our computation is fixed to be 10.

The initial image is obtained by filling the missing pixels with random
numbers which satisfy a Gaussian distribution, where µ0 is the mean of f |Ω
and σ0 is the standard deviation of f |Ω .

The results are shown in Figure 6. As we can see, WNLL gives much better
results than GL both visually and numerically in PSNR. The results are com-
parable with those in LDMM [12] while WNLL is much faster. For the image of
Barbara (256×256), WNLL needs about 1 minutes and LDMM needs about 20
minutes in a laptop equiped with CPU intel i7-4900 2.8GHz with matlab code.
In WNLL and GL, the weight update is the most computationally expensive
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(a) (b)

(c) (d)

Fig. 4 Test of image restoration on image of Barbara. (a): original image; (b): 1% subsam-
ple; (c): result of GL; (d): result of WNLL.

part in the algorithm by taking more than 90% of the entire computational
time. This part is the same in WNLL and GL. So the total time of WNLL and
GL are almost same, although the time of solving the linear system is about
half in WNLL, 1.7s vs 3.1s.

5 Conclusion and Future Work

In this paper, we introduce a novel weighted nonlocal Laplacian method. The
numerical results show that weighted nonlocal Laplacian provides a reliable
and efficient method to find reasonable interpolation on a point cloud in high
dimensional space.

On the other hand, it was found that with extremely low sample rate,
formulation of the harmonic extension may fail [11,17]. In this case, we are
considering minimizing L∞ norm of the gradient to compute the interpolation
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(a) (b)

(c) (d)

Fig. 5 Zoomed in image in the test of image restoration on image of Barbara. (a): original
image; (b): 1% subsample; (c): result of GL; (d): result of WNLL.

on point cloud, i.e. solving the following optimization problem

min
u






max
x∈P





∑

y∈P

w(x,y)(u(x)− u(y))2





1/2





,

with the constraint

u(x) = g(x), x ∈ S.

This approach is closely related with the infinity Laplacian which has been
studied a lot in the machine learning community [6,5].

Another interesting problem is the semi-supervised learning studied in Sec-
tion 3. In semi-supervised learning, ideally, the functions, φi, should be either
0 or 1, so they are piecewise constant. In this sense, minimizing the total
variation should give better results [8,16,18]. Based on the weighted nonlocal
Laplacian, we should also add a weight to correctly enforce the constraints
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original image 10% subsample GL WNLL

23.74 dB 26.13 dB

22.51 dB 25.21 dB

28.29 dB 31.29 dB

21.60 dB 23.05 dB

Fig. 6 Results of subsample image restoration.

on the labeled points. This idea implies the following weighted nonlocal TV
method,

min
u

∑

x∈P\S





∑

y∈P

w(x,y)(u(x)− u(y))2





1/2

+
|P |

|S|

∑

x∈S





∑

y∈P

w(x,y)(u(x)− u(y))2





1/2

,

with the constraint

u(x) = g(x), x ∈ S.

This seems to be a better approach than the weighted nonlocal Laplacian in
the semi-supervised learning. We will explore this approach and report its
performance in our future work.
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