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Gauss Surface Reconstruction

(a) PR (|v| = 1.4)
(t1 = 98.14)

(b) SSD (|v| = 1.2)
(t1 = 29.82)

(c) SPR (|v| = 1.3)
(t1 = 56.58; t10 = 11.48)

(d) GR (|v| = 1.4)
(t1 = 67.29; t10 = 7.92; tg = 2.78)

Figure 1: Reconstructions of the Lady model by Poisson Reconstruction (PR) [Kazhdan et al. 2006], Smoothed Signed Distance Reconstruction
(SSD) [Calakli and Taubin 2011], Screened Poisson Reconstruction (SPR) [Kazhdan and Hoppe 2013], and our Gauss Reconstruction (GR). The
Lady model is a real-world scanned data with 0.5 millions samples. |v| denotes the number of vertices in millions of the reconstructed mesh, and
t1, t10 and tg denote the running time in seconds of the reconstructions with single thread, 10 threads and GPU respectively.

Abstract1

In this paper, we introduce a surface reconstruction method that2

can perform gracefully with non-uniformly-distributed, noisy, and3

even sparse data. We reconstruct the surface by estimating an im-4

plicit function and then obtain a triangle mesh by extracting an iso-5

surface from it. Our implicit function takes advantage of both the6

indicator function and the signed distance function. It is dominated7

by the indicator function at the regions away from the surface and8

approximates (up to scaling) the signed distance function near the9

surface. On one hand, it is well defined over the entire space so that10

the extracted iso-surface must lie near the underlying true surface11

and is free of spurious sheets. On the other hand, thanks to the nice12

properties of the signed distance function, a smooth iso-surface can13

be extracted using the approach of marching cubes with simple lin-14

ear interpolations. More importantly, our implicit function can be15

estimated directly from an explicit integral formula without solv-16

ing any linear system. This direct approach leads to a simple, ac-17

curate and robust reconstruction method, which can be paralleled18

with little overhead. We call our reconstruction method Gauss sur-19

face reconstruction. We apply our method to both synthetic and20

real-world scanned data and demonstrate the accuracy, robustness21

and efficiency of our method. The performance of Gauss surface22

reconstruction is also compared with that of several state-of-the-art23

methods.24
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Keywords: Surface Reconstruction, Point Cloud, Gauss Lemma27

1 Introduction28

Surface reconstruction is a classic problem that has been studied29

for more than three decades. Many elegant methods are available,30

and in this paper, we focus on implicit methods. Indicator func-31

tion is a popular choice of implicit function [Kazhdan et al. 2006;32

Kazhdan and Hoppe 2013]. However, the indicator function is dis-33

continuous on the surface. In order to obtain a good approximation34

of surface normals, one has to apply a smoothing filter to the indica-35

tor function such as that in Poisson reconstruction [Kazhdan et al.36

2006; Kazhdan and Hoppe 2013]; otherwise, the recovered surface37

may not be smooth, as shown in Figure 2. Meanwhile, the methods38

with smooth filtering often find it difficult to control approxima-39

tion error and thus tend to overfit or over-smooth the data. Another40

widely used function in surface reconstruction is the signed distance41

function [Hoppe et al. 1992; Curless and Levoy 1996]. Unlike the42

indicator function, a signed distance function is smooth near the43

surface, which makes it easier to extract a smooth watertight sur-44

face from its zero level-set compared with other methods. How-45

ever, the signed distance function is difficult to compute in the area46

away from the surface; moreover, the resulting methods are often47

sensitive to noise and may generate spurious surface sheets. One48

natural idea is to construct a hybrid function, in which the indicator49

function dominates regions away from the surface, and the signed50

distance function controls the near-surface part.51

[Calakli and Taubin 2011] attempted to estimate such hybrid func-52

tion by minimizing some energy function. In this paper, we propose53

an explicit integral formula for constructing such function based on54

the well-known Gauss Lemma in the potential theory(e.g., [Wend-55

land 2009]). Gauss Lemma gives an integral formula for the indi-56

cator function. Here, we further modify the Gauss Lemma to give57

signed distance function near the surface while keeping the indica-58

tor function intact away from the surface. Our implicit function can59

be directly estimated from this integral formula, without solving a60

linear system as in Poisson reconstruction, or minimizing an energy61

function as in [Calakli and Taubin 2011].62

In our integral formula, the integrand is near singular at the sam-63

ple points and global over the whole computational domain, which64

introduce some difficulties to evaluate the integral accurately and65

efficiently. To overcome the singularity of the integrand, we intro-66

duce a method called disk integration to compute the integral near67

the singularity. Meanwhile, the globalness of the integral formula68

makes the algorithm quite slow. To address this issue, we use the fa-69

mous fast multipole method(FMM) [Greengard and Rokhlin 1987]70
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to accelerate the computation. By integrating all these pieces to-71

gether, explicit integral formula, disk integration and FMM, we ob-72

tain an accurate, efficient and robust surface reconstruction method.73

We call this method Gauss surface reconstruction, as the integral74

formula comes from the Gauss Lemma.75

Our proposed Gauss reconstruction algorithm inherits many nice76

properties such as robustness against noise and missing data,77

free of spurious surface sheets away from the input samples and78

easy to recover iso-surface from indicator function- and signed79

distance- based reconstruction methods. Thus, our method per-80

forms gracefully even with poor quality data, including non-81

uniformly-distributed, noisy, and even sparse data. Furthermore,82

our direct approach makes the reconstruction algorithm simple and83

accurate. More importantly, our Gauss reconstruction has a natural84

parallel implementation and an overhead that is almost negligible.85

Figure 1 shows the comparison of our Gauss reconstruction with86

several state-of-the-art methods on the real-world scanned Lady87

model. All reconstructions are computed using an octree with a88

maximum depth of 10. From Figure 1, we can see that our Gauss89

reconstruction generates a high quality reconstruction of the Lady90

model: it preserves the details well while avoiding overfitting the91

input samples. The parallel implementation of our Gauss recon-92

struction almost achieves a perfect linear speed up, and with the93

GPU implementation, our method greatly outperforms other meth-94

ods in speed.95

2 Related Works96

Surface reconstruction Surface reconstruction from point cloud97

has attracted great attention in the past thirty years, both in theory98

and in practice. Many related algorithms have been proposed. We99

give a brief review to those relevant to our work. There are two100

main categories: combinatorial algorithms and implicit algorithms.101

Combinatorial methods take (part of) input sample points as ver-102

tices and reconstruct output meshes by determining the connec-103

tivity of input samples. Many of these methods are based on104

the Voronoi diagram or its dual Delaunay triangulation, includ-105

ing Crust [Amenta et al. 1998], Power Crust [Amenta et al. 2001],106

Cocone [Amenta et al. 2002], Robust Cocone [Dey and Goswami107

2004], Wrap [Edelsbrunner 2003] and flow complex [Giesen and108

John 2008]. These methods have shown good theoretical results,109

in practice, however, they are usually sensitive to noise and may110

produce jagged surfaces. In [Kolluri et al. 2004], a spectral based111

approach is proposed to smooth the surface. In [Xiong et al. 2014],112

a learning approach is proposed to treat geometry and connectivity113

reconstruction as one joint optimization to improve reconstruction114

quality.115

Implicit methods attempt to estimate implicit functions from input116

samples and extract iso-surfaces to generate triangle meshes. Pois-117

son reconstruction and its variant [Kazhdan et al. 2006; Kazhdan118

and Hoppe 2013] are most relevant to our work, which estimate119

indicator functions of unknown models. In [Muraki 1991; Walder120

et al. 2005], Radial Basis Functions (RBFs) are used as bases for121

defining implicit functions, where coefficients of bases are deter-122

mined by fitting input data. Since RBFs are global, FMM is em-123

ployed to improve the efficiency [Carr et al. 2001]. The signed dis-124

tance function is a natural choice as an implicit function for surface125

reconstruction, where implicit function can be estimated either lo-126

cally as distances to tangent planes of nearby samples [Hoppe et al.127

1992; Curless and Levoy 1996] or globally by minimizing the fit-128

ting error [Calakli and Taubin 2011]. In [Amenta and Kil 2004; Dey129

and Sun 2005; Levin 1998], moving least squares (MLS) is used to130

define implicit surfaces, which are extremal sets of certain energy.131

MLS is associated with a nice projection operator that can be used132

for surface smoothing. Unlike our method, the implicity function in133

MLS is often only meaningful near the surface and thus the recon-134

struction of MLS may generate spurious surface sheets away from135

the surface. Finally, [Fuhrmann and Goesele 2014] defined the im-136

plicit function as the sum of compactly supported basis functions.137

By leveraging the extra scale information input, it performs well on138

large, redundant and potentially noisy datasets. The surfaces recon-139

structed by implicit methods often do not interpolate input samples;140

therefore, they are smoother than those reconstructed by combina-141

torial methods.142

As stated in [Berger et al. 2014], surface normal plays an important143

role in surface reconstruction, however, challenging to obtain when144

certain information not present. Therefore, surface reconstruction145

based on unoriented point cloud is also drawing much attention.146

[Chen et al. 2013] computed the higher-order local approximations147

of non-oriented input gradients based on a MLS formulation. In148

[Alliez et al. 2007], a Voronoi-PCA estimation is performed, which149

results in a tensor field encoding normal information, and then com-150

putes the implicit function to recover the surface. To process the151

unoriented data, we just use the “compute normals for point sets152

function” in meshlab with default parameters to estimate the nor-153

mal as a preprocess. Experiments show that our method is quite154

robust to point normal. The accurate estimation of normal is not a155

mandatory requirement.156

Solution to the Laplace equation The solution to the Laplace157

equation varies from one method to another. For example, [Kazh-158

dan et al. 2006; Kazhdan and Hoppe 2013] turned it into a linear159

system defined on the B-spline basis and solved the sparse linear160

system to get a solution with explicitly defined Dirichlet/Neumann161

boundary constraints. The boundary element method (BEM), as162

applied in our method, is another mathematically beautiful tool163

for evaluating the solution to the Laplace equation, which is also164

widely used in different areas (e.g., mesh segmentation [Jacobson165

et al. 2013]). One advantage of the BEM based solution is that no166

boundary conditions should be explicitly imposed. Unlike the di-167

rect usage of BEM kernel in [Jacobson et al. 2013], we make some168

modifications to the original kernel for easy interpolation in the cur-169

rent work. In addition, the BEM-based solution is easy to accelerate170

by using an accurate hierarchical estimation introduced by [Jacob-171

son et al. 2013] or an approximated FMM method. In our Gauss172

reconstruction, we apply the FMM method for faster performance.173

Meanwhile, the accuracy near the surface, which is very important174

to our method, is guaranteed by an innovative scheme called disk175

integration.176

Iso-surface extraction For the iso-surface extraction, marching177

cubes [Lorensen and Cline 1987] and its adaptation to octree [Wil-178

helms and Van Gelder 1992] are the most popular methods. Many179

efficient variants or extensions have been proposed. Primal MC180

methods, such as that proposed by [Kazhdan et al. 2007] extract181

a watertight mesh by means of edge trees where the positions of182

the iso-value-crossings are defined. [Schaefer and Warren 2004]183

extracted the iso-surface with sharp features by aligning dual grid184

vertices with implicit function features. Delaunay refinement-based185

methods [Boissonnat and Oudot 2005] produce good quality trian-186

gle meshes, although they are less efficient and are difficult to par-187

allelize.188

3 Gauss Reconstruction189

Our problem can be stated as follows: the input data S is a set of190

oriented points S = {s1, s2, ..., sn}, each consisting of a position191

s.p and an outward normal s. ~N , sampling the boundary ∂Σ of an192
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Figure 2: Left column: The reconstruction from the indicator func-
tion. The top shows the resulting mesh and the bottom shows the
indicator function around the north pole restricted to the diameter
passing the north pole. Right column: The reconstruction from the
Gauss reconstruction function. The top shows the resulting mesh
and the bottom shows the Gauss reconstruction function around the
north pole restricted to the diameter passing the north pole.

unknown region Σ ∈ R3, i.e., s.p lies on or near the surface, and193

s. ~N approximates the surface normal near the position s.p. Our194

goal is to reconstruct a triangle mesh approximating the boundary195

∂Σ.196

3.1 Reconstruction function197

Our method reconstructs the surface by estimating an implicit re-198

construction function χ̃ combining a near-surface signed distance199

function and an off-surface indicator function, which makes it200

easy to extract the level-set while enjoying robustness of indicator201

function-based methods. In this section, we will introduce an ex-202

plicit integral formula to estimate the implicit reconstruction func-203

tion. First, we have that the indicator function χ of the region Σ204

has an explicit integral formula, which is given in the well-known205

Gauss Lemma in the potential theory [Wendland 2009].206

Lemma 3.1 (Gauss Lemma). Let Σ be an open region in R3. Con-207

sider the following double layer potential: for any x ∈ R3
208

χ(x) =

∫
∂Σ

∂G

∂ny
(x, y)dτ(y), (1)

where ny is the outward normal of ∂Σ at y, dτ(y) is the surface209

area form of ∂Σ at y, and G is the fundamental solution of the210

Laplace equation in R3, which can be written explicitly as:211

G(x, y) = − 1

4π‖x− y‖ . (2)

Then, χ(x) is the indicator function of Σ, i.e.212

χ(x) =


0 x ∈ R3 \ Σ̄

1/2 x ∈ ∂Σ̄

1 x ∈ Σ

(3)

Note that213

∂G

∂ny
(x, y) = − 1

4π

(x− y) · ny
‖x− y‖3 ,
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Figure 3: Choice of width coefficient. The first row shows vi-
sual effects; the second row shows the average position error
(Dist) and the average angle error using the reconstruction bench-
mark [Berger et al. 2013].

which we call the kernel function, and denoted by K(x, y).214

The integral formula (1) has many good properties. Nevertheless,215

given the indicator function χ, the resultant triangle mesh by iso-216

surfacing χ, denoted by M , lies in a small tubular neighborhood of217

the surface ∂Σ, namely the Hausdorff distance between M and ∂Σ218

is small. However, given that the function χ is discontinuous at ∂Σ,219

the normal of a triangle in M may not approximate the normals of220

∂Σ at the points close to the triangle, see Figure 2. Furthermore, the221

kernel function K(x, y) becomes singular when x is approaching222

y. To accurately evaluate the indicator function χ at the points close223

to the surface ∂Σ, one needs a very dense sampling of the surface,224

which becomes practically implausible.225

To address these two issues, our strategy is to modify the indicator226

kernel function K. For a point x ∈ R3, we associate a width x.w227

and modify the kernel function K(x, y) for any y ∈ ∂Σ as:228

K̃(x, y) =

 K(x, y), ‖x− y‖ ≥ x.w,

0, ‖x− y‖ < x.w.
(4)

The reconstruction function can be stated as:229

χ̃(x) =

∫
∂Σ

K̃(x, y)dτ(y). (5)

Note that K̃(x, y) remains the same as K(x, y) for any y ∈ ∂Σ230

with ‖x − y‖ ≥ x.w, and hence χ̃(x) = χ(x) for any x with231

d(x, ∂Σ) ≥ x.w.232

At a point x with d(x, ∂Σ) < x.w,233

3
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χ̃(x) =

∫
∂Σ

K(x, y)dτ(y)−
∫
Bx(x.w)∩∂Σ

K(x, y)dτ(y).,

where Bx(r) is the ball in R3 centered at x and of radius r. Notice234

that x.w is always a small number, which means Bx(x.w) ∩ ∂Σ235

is a small piece of Σ. Under the assumption that the surface Σ236

is smooth, Bx(x.w) ∩ ∂Σ can be well approximated by a disk.237

Therefore, this approximation implies that238

χ̃(x) ≈ χ(x) +
1

4π

∫ 2π

0

∫ √x.w2−d(x)2

0

d(x)

(d(x)2 + r2)
3
2

rdrdθ

=
1

2
+

d(x)

2(x.w)
(6)

where d(x) is the signed distance from x to ∂Σ. As Figure 2 shows,239

χ̃(x) is strictly a signed distance function near the surface, which is240

very desirable for extracting iso-surface [Calakli and Taubin 2011].241

The integral formula (5) is direct and very simple. Note that the esti-242

mation of the implicit function χ̃ at different points x is completely243

independent from each other, which leads to a natural parallel algo-244

rithm.245

Next, we move to the specification of width x.w. Note that we only246

need to specify the width for the grid vertices V . For a grid vertex247

v ∈ V , let v.B be the set of the leaf nodes in O having v as one of248

their vertices. Set v.w to be β times the side length of the smallest249

cube in v.B, where β is a constant, which we call width coefficient.250

Then, we define the neighboring vertices v.V of v in the octree so251

that a grid vertex u is in v.V if u and v are connected by an edge of252

a cube in v.B. Here, it is highly possible that v.w and u.w differ253

significantly even when u and v are neighbors, and the resultant254

function χ̃ may become rough. To address this issue, we further255

smooth v.w by averaging the widths over the neighbors, namely set256

v.w =

∑
u∈v.V u.w

|v.V| ,

and repeat this averaging step for k times. In the paper, we set257

k = 20.258

The width coefficient provides a way to control the trade-off be-259

tween the position accuracy and the smoothness of the reconstruc-260

tion. See Figure 3. The larger the β is, the smoother the recon-261

structed surface, but with a less accurate position. Of course, if β is262

chosen too big, both position accuracy and angle accuracy decrease.263

A typical value of β is practically set to be 0.7.264

3.2 Disk integration265

Note that although the kernel function K̃ is not singular, there may266

still exist some near-singularity problems owing to the specification267

of the small width coefficient. To address this issue, we propose268

an approach called disk integration. Recall that the input data S269

samples the surface ∂Σ. Imagine that each sample point s ∈ S270

represents a neighboring region on ∂Σ, denoted as s.V , such that271

the set {s.V }s∈S decomposes the surface ∂Σ. One can think of272

s.V as the Voronoi region of s on ∂Σ. Then χ̃(x) =
∑
s∈S C(x, s)273

where274

C(x, s) =

∫
s.V

K̃(x, y)dτ(y). (7)

x′
θi

ri
ri−1

x′
θi

ri
ri−1

Figure 4: Illustration of integral domain (shaded region) of disk
integration.

Note that s.V is unknown and we use a disk perpendicular to s. ~N to275

approximate s.V . The radius of this disk is estimated as the average276

distance to the k-nearest samples in S. In this paper, we fix k = 10277

for all samples. We denote this disk s.D, its radius s.r, and take278

the area of s.D as the surface area s.A.279

We approximate C(x, s) using
∫
s.D

K̃(x, y)dy. Note that even280

over the simple domain s.D, the above integration cannot be cal-281

culated explicitly. Our strategy is to approximate s.D using k lay-282

ers of partial annuli (see the shaded regions in Figure 4), and over283

each layer the integration of the kernel function K̃(x, y) can be284

calculated analytically. Let x′ be the projection of x on the plane285

containing s.D. Denote C(r) as the circle centered at x′ of the286

radius r, and A(r,R) as the annulus centered at x′ of the inner ra-287

dius r and the outer radius R. Let r0 = miny∈s.D ‖x′ − y‖ and288

rk = maxy∈s.D ‖x′ − y‖, and ri = r0 + i(rk−r0)
k

, for 0 ≤ i ≤ k.289

Here, r0 is 0 if x′ is in the disk. Let θi be the central angle of the arc290

C(ri)∩s.D, and Fi be the fan spanned by the same arc. The partial291

annulus at the ith layer is Fi∩A(ri−1, ri). Set d = ‖x−x′‖. Then292

C(x, s) is approximated by DI(x, s) =
∑

1≤i≤k ci where293

ci =

∫
Fi∩A(ri−1,ri)

K̃(x, y)dy

= − 1

4π

∫ θi

0

∫ ri

ri−1

d

(d2 + r2)3/2
rdrdθ

=
θid

4π

 1√
d2 + r2

i−1

− 1√
d2 + r2

i



In the paper, we fix the number of layers k = 20.294

Furthermore, notice that if the point x is far away from the sam-295

ple s so that the integral function K̃(x, y) over s.D becomes well-296

approximated by the constant K̃(x, s), then C(x, s) can simply be297

evaluated by DC(x, s) = K̃(x, s)s.A. Set R(x, s) = ‖x−s‖+s.r
‖x−s‖−s.r .298

One can verify that the larger R(x, s) is, the closer the function299

K̃(x, y) over s.D is to the constant K̃(x, s). In this paper, when300

R(x, s) > 2, we approximate C(x, s) using DC(x, s).301

Using the disk integration, we can achieve high accuracy in com-302

puting the integral. Figure 2 (left column) shows the indicator func-303

tion of the unit sphere restricted to points passing the center, which304

were estimated using the above approach from 1000 random sam-305

ples. The Hausdorff distance between the reconstructed triangle306

mesh and the original sphere is less than 5× 10−3. Another advan-307

tage of disk integration is that it naturally handles the missing data.308

The holes resulting from the missing data are covered by disks, and309
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Bk+1
i′

Bk
i

Bl
j

Figure 5: The cubes O at depth k may not cover the entire domain
due to the adaptivity of O. The red cube Bk+1

i′ is a subcube of the
pink cube Bki . The blue dots in Bki form set of grid vertices Vki in
Bki .

the integral formula integrates all the disks together to give a water-310

tight surface automatically.311

The disk integration is a specific strategy to address the singularity312

problem in our integral formula (5). However, this strategy does313

not apply to other reconstruction methods that do not have integral314

formula.315

3.3 Fast Multipole Method316

Given that the the estimation of χ̃(x) using the integral formula (1)317

is global, one has to integrate the kernel function K̃(x, y) over the318

entire surface ∂Σ to obtain a correct estimation of χ̃(x). In particu-319

lar, one can not perform thresholding based on the value of K̃(x, y)320

and skip integrating the region where K̃(x, y) is small. To see this,321

imagine Σ is a ball of radius r, and x is the center of the ball. For322

y ∈ ∂Σ, K̃(x, y) can be made arbitrarily small by choosing the323

radius r that is large enough. However, χ̃(x) remains as the con-324

stant 1, independent of r. Therefore, to estimate χ̃ at m different325

locations, a native implementation requires at least O(mn) oper-326

ations. Recall that n is the number of samples in S. Fortunately,327

the kernel function K̃(x, y) over two distant regions can be well-328

approximated by a constant function. This enables us to speed up329

the estimation of χ by using the well-known fast multipole method330

(FMM), which improves the complexity to O(m+ n logn).331

In this subsection, we describe an implementation of FMM for the332

estimation of the Gauss reconstruction function χ̃. An octree is333

employed as the multi-resolution data structure in FMM, and the334

same octree is also used for isosurfacing χ̃.335

Given a set of samples S and a maximum tree depth D, the octree336

is the minimal octree so that each sample falls into a leaf node of337

depth D. For a non-uniform sampling, we follow [Kazhdan et al.338

2006] and reduce the depth for the samples in the sparse regions.339

We denoteO as the resultant octree, and V as the set of grid vertices340

of the octree O. Our goal is to evaluate the Gauss reconstruction341

function at V . Now consider the cubes {Bki }i of O at depth k, see342

Figure 5. A cube Bki may be half open, i.e., does not contain the343

faces with the maximum x, or y, or z coordinate, unless they are344

on the boundary. See the pink cube in Figure 5. Let Vki = V ∩Bki345

(See the blue dots in Bki in Figure 5), and Ski = S ∩ Bki . For a set346

X , we denote |X| the cardinality ofX . Let v̄ki be the representative347

grid of Bki defined by348

v̄ki =

∑
v∈Vk

i
v

|Vki |
,

and s̄ki be the representative sample of Bki defined by349

s̄ki .p =

∑
s∈Sk

i
s.A · s.p∑

s∈Sk
i
s.A

,

s̄ki . ~N =

∑
s∈Sk

i
s.A · s. ~N∑

s∈Sk
i
s.A

, and

s̄ki .A =
∑
s∈Sk

i

s.A.

The disk s̄ki .D is centered at s̄ki , perpendicular to s̄ki . ~N , and of350

the area s̄ki .A. Let ak be the side length of the cubes at depth k.351

The basic idea of our implementation of FMM is as follows. We352

start with the cube at depth 1. In general, consider two cubes Bki353

and Blj at depth l and depth k, respectively. Note that Bki and Blj354

may be the same cube. If ‖s̄ki − v̄lj‖ ≥ cak, then for any grid355

vertex v ∈ V lj , we approximate
∑
s∈Sk

i
C(v, s) using C(v̄lj , s̄

k
i ).356

Otherwise, we repeat the above procedure for any pairs of subcubes,357

one in Bki and the other in Blj until both are leaf nodes. Only when358

both are leaf nodes do we estimateC(v, s) for an individual sample359

s ∈ Ski and an individual grid vertex v ∈ V lj . Moreover, when we360

invoke the estimation of C(v̄, s̄) for a representative grid vertex361

v̄ and a representative sample s̄, we assume that v̄ and s̄ are far362

away from each other and compute DI(v̄, s̄) or DC(v̄, s̄) using363

the kernel function K̃. Therefore, there is no need to associate a364

width to a representative grid vertex v̄. In the paper, we fix the365

constant c =
√

2. Pseudocode 1 shows our FMM implementation.366

1: function FMM(Bki , Blj , f : V → R)
2: if ‖s̄ki − v̄lj‖ ≥ cak then
3: evaluate e ≈ C(v̄lj , s̄

k
i )

4: f(v) = f(v) + e for any v ∈ V lj .
5: else
6: if both Bki and Blj are leaves then
7: for all s ∈ Ski and v ∈ V lj do
8: evaluate e ≈ C(v, s)
9: f(v) = f(v) + e;

10: end for
11: else if Neither Bki nor Blj is a leaf then
12: for all Bk+1

i′ ⊂ Bki and Bl+1
j′ ⊂ B

l
j do

13: FMM(Bk+1
i′ , Bl+1

j′ , f)
14: end for
15: else if Bki is a leaf and Blj is not a leaf then
16: for all Bl+1

j′ ⊂ B
l
j do

17: FMM(Bki , Bl+1
j′ , f)

18: end for
19: else
20: for all Bk+1

i′ ⊂ Bki do
21: FMM(Bk+1

i′ , Blj , f)
22: end for
23: end if
24: end if
25: end function

Pseudocode 1: FMM.

3.4 Iso-surface extraction367

In this subsection, we introduce a way to calculate the iso-value and368

perform the interpolation.369
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To make the samples locate uniformly inside and outside the surface370

∂Σ, we simply set iso-value γ to the median of χ̃ values at sample371

positions.372

Concerning the way to interpolate, we assume two adjacent vertices373

vi ∈ V and vj ∈ V that come across the iso-surface, with (χ̃(vi)−374

γ) · (χ̃(vj) − γ) < 0. From Equation (6), we observe that given375

the signed distance d(v), the function value χ̃(v) − 1
2

is inversely376

proportional to its associated width v.w, where 1
2

is the ideal iso-377

value. Then, the location of crossing point ṽij ∈ ∂Σ can be stated378

as the linear interpolation of (χ̃(v)− γ) · v.w given by:379

ṽij − vi
vj − vi

=
0− (χ̃(vi)− γ) · vi.w

(χ̃(vj)− γ) · vj .w − (χ̃(vi)− γ) · vi.x
. (8)

Finally, marching cubes [Lorensen and Cline 1987] is applied to380

extract the iso-surface.381

In the end, we summarize our Gauss reconstruction in Pseu-382

docode 2.383

1: function GAUSSRECON(S: samples, D: maximum depth,
β: width coefficient)

2: Estimate s.r for each sample s ∈ S
3: Given D, construct an adaptive octree O
4: Compute representative samples s̄ for all cubes in O.
5: Compute representative grid vertices v̄ for all cubes in O.
6: Given β, estimate v.w for each grid vertex v ∈ V
7: Initialize f : V → R to be zero.
8: Call FMM(B1

1 , B
1
1 , f ).

9: Set the iso-value as the median of f .
10: Extract the iso-surface M using marching cubes over O.
11: Output M .
12: end function

Pseudocode 2: GaussRecon

3.5 Parallel and GPU implementation384

For the grid vertices v, the estimation of the Gauss reconstruc-385

tion function χ(v) is independent from each other, which leads a386

straightforward parallel implementation. In particular, we open new387

threads to execute the calls of FMM(Bki , B
l
j , f) with k, l ≤ c.388

The parameter c is chosen so that we have just enough threads so389

that the load on each core is balanced and the overhead of multi-390

threads is minimized simultaneously. In the paper, we set c = 5 for391

CPU parallel and c = 10 for GPU implementation.392

4 Results393

In this section, we evaluate our Gauss reconstruction (GR) in terms394

of accuracy, robustness, and efficiency, and compare its perfor-395

mance to those of the state-of-the-art methods, including Poisson396

reconstruction [Kazhdan et al. 2006] (PR) and its variant screened397

Poisson reconstruction [Kazhdan and Hoppe 2013] (SPR), smooth398

signed distance reconstruction [Calakli and Taubin 2011] (SSD)399

and the dictionary learning reconstruction [Xiong et al. 2014]. Note400

that we perform the comparison using the most recent implemen-401

tation of these methods available online. In particular, using the402

most recent implementation, the performance of SSD has greatly403

improved compared with those reported in [Kazhdan and Hoppe404

2013]. We follow [Kazhdan and Hoppe 2013], and set the weights405

for the different terms of the energy functional in SSD as 1 for406

value, 1 for gradient, 0.25 for Hessian, after which we set the data407

fitting weight α = 4 in SPR. Unless we explicitly state that we use408
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Figure 6: The average error RMS of the reconstructions by dif-
ferent methods. The sub-figure on top-right is the zoom-in on the
marked box.

other values, we by default set the maximum depth D = 10 for oc-409

tree construction in all methods and the width coefficient β = 0.7410

in our Gauss reconstruction. All the experiments are performed411

on a Windows 7 workstation with an Intel Xeon E5-2690V3 CPU412

@2.6GHz and Nvidia GeForce GTX TITAN X GPU.413

PR SSD

SPR GR

Figure 7: The reconstructed unit sphere from 1000 random sam-
ples. The color illustrates the RMS (relative to the bounding box
diaganol) error distribution: small error in blue and big error in
red.

4.1 Accuracy414

First, we consider the reconstruction of unit sphere from samples,415

in which the accurate ground truth is known. We generate 1000416

to 8000 samples according to a Gaussian mixture of eight Gaus-417

sian in R3 and then radially project them into unit sphere. We use418

the average error RMS to measure the quality of the reconstructed419

surface.420

Figure 6 shows the error statistics of the reconstructions by different421

methods. As can be seen, our GR performs the best and PR has the422

largest error. For 1000 samples, we color the RMS error (relative423

to the bounding box diagonal) for each vertex to visualize the error424

distribution. See Figure 7. In this case, the sphere obtained by PR425

is visually not round.426
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(a) Reconstructed meshes.
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(b) The RMS approximation error and the Hausdorff approximation error for the reconstructions of four point sets: Bimba, Sheep, Chinese dragon and Grog.

Figure 8: The accuracy illustration. The running time: Bimba(|v| = 0.50, PR: 62.20s, SSD: 35.04s, SPR: 73.15s, GR: 40.01s), Sheep(|v| =
0.16, PR: 31.66s, SSD: 22.38s, SPR: 24.99s, GR: 16.18s), Chinese dragon(|v| = 0.66, PR: 109.43s, SSD: 44.28s, SPR: 96.02s, GR: 74.25s),
Grog(|v| = 0.88, PR: 178.68s, SSD: 59.44s, SPR: 133.68s, GR: 112.71s). The number of samples is in millions.

Next, we consider the general models. To estimate the numerical427

accuracy of the reconstruction results, we follow the same strategy428

as that used by [Berger et al. 2013]. First, we sample points from429

a known mesh, or simply take its vertices, and then reconstruct sur-430

faces with this point set. Next, we use the Metro tool [Cignoni et al.431

1998] to compute the Hausdorff distance (measuring the worse er-432

ror) and the mean distance (measuring the average error) between433

the reconstructed mesh and the known mesh. Figure 8 shows the434

result. In general, SPR and GR have a comparable performance on435

this set of models and both outperform PR and SSD.436

We also apply the reconstruction methods to the data from the re-437

construction benchmark [Berger et al. 2013]. Due to the limited438

space, we only report the results on four data sets, namely: Anchor,439

Dancing Children, Gargoyle and Quasimodo. Following [Kazhdan440

and Hoppe 2013], we set the maximum depth D = 9 in this exper-441

iment. The error shown in Figure 9 is relative to that of PR. From442

Figure 9a, we can see that PR and GR generate visually similar re-443

sults while SPR and SSD produces extra spurious sheets near the444

surface. However, the accuracy of GR is much better than that of445

PR. Figures 9b and 9c show the average angle error and the average446

position error, respectively. For this set of examples, overall, PR447

performs the best in terms of angle accuracy but the worst in po-448

sition accuracy. In comparison, SSD performs the best in terms of449

position accuracy. However, from Figure 9a, SSD may overfit the450

data. Our GR seems to achieve a better balance between position451

accuracy and angle accuracy.452
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PR SSD SPR GR
(a) Visualization of position errors for reconstruction of the Anchor model. Errors are visualized using a blue-green-red colormap, with blue corresponding to
smaller errors and red to larger ones.
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(b) Average angle error (relative to that of PR).
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(c) Average position error (relative to that of PR).

Figure 9: Results from the reconstruction benchmark.

4.2 Robustness453

In this subsection, we test our GR over the noisy data, including454

both synthetic Gaussian noise and real-world scanned data with455

noise and missing data, after which we compare the performance456

of different reconstructions. In the end, we apply an incomplete457

data set on GR to test its ability of filling holes.458

Synthetic noise In this example, we add to the Armadillo model459

the different levels of noise by perturbing both positions and nor-460

mals of the samples according to Gaussian distribution of different461

variances.462

Figure 10b shows the reconstructed surfaces using the proposed GR463

from the samples perturbed by a Gaussian with variance equal to464

0.005 times the diagonal of the bounding box. Figure 10c shows465

the details of reconstructions at different noisy levels by zooming466

in the region marked in Figure 10b. As can be seen, SPR and SSD467

apparently overfit the data and are, therefore, sensitive to noise and468

reconstruct bumpy surfaces. In comparison, PR always produces469

smooth reconstructions, but its accuracy is the lowest. See Fig-470

ure 10a. The surfaces reconstructed by GR are also smooth, and471

able to preserve more details at the same time; therefore, they are472

more accurate.473

Real-world Scanned Data We apply the reconstruction meth-474

ods to the sampling obtained by scanning several real-world mod-475

els using Konica-Minolta Vivid 9i Laser Scanner. The obtained476

samplings contain both noise and missing data, and is highly non-477

uniform and unoriented. We use the “compute normals for point478

sets function” in meshlab with default parameters to estimate the479

normal as a preprocess. See the first column in Figure 11. In these480

examples, we set the width coefficient β = 1.4 in our GR. Visu-481

ally, the reconstructions generated by PR and GR are comparable,482

and have better quality than those obtained by SSD and SPR, which483

again obviously overfit the data.484

In addition, we apply our method to the well-known Merlion model485

with noise and missing data in comparison to the state-of-the-art486

explicit method [Xiong et al. 2014]. As Figure 12 shows, both487

methods reconstructed smooth and accurate models. The left col-488

umn shows the reconstruction result of GR where octree depth is489

set to 10. The right column shows the detailed logo of [Xiong et al.490

2014] and GR where octree depth is set to 9 and 10. With com-491

parable output vertices, it’s obvious that our method at depth 9 can492

achieve similar accuracy as [Xiong et al. 2014]. In addition, one493

limitation of [Xiong et al. 2014] is that the number of output ver-494

tices cannot exceed the input number, thus the output mesh cannot495

be as detailed as possible. However, in GR, the reconstructed result496

can be much more delicate. What’s more, as stated in [Xiong et al.497

2014], the running time of [Xiong et al. 2014] is a bit slower than498

that of SPR. And the speed of SPR is comparable to our method499

with single thread (See Section 4.3 for detail). It can be inferred500

that our method is faster than [Xiong et al. 2014].501

Incomplete datasets In this subsection, we test our method on502

the owl model with large parts of missing data and great noise.503

From Figure 13, we can see that our method performs quite well504

in processing the missing part. Moreover, our method is quite re-505

silient to noise and recovers the feature in detail as well.506

8



Online Submission ID: 0269

0

2.5

5

7.5

1 2 5 10

R
M

S

Noise Level

PR SSD SPR GR

(a) RMS errors

(b) Reconstructed Armadillo by GR, Variance: 0.005

V
ar

ia
nc

e:
0.

00
1

V
ar

ia
nc

e:
0.

00
2

V
ar

ia
nc

e:
0.

00
5

V
ar

ia
nc

e:
0.

01

PR SSD SPR GR
(c) Zoom-in on the left chest

Figure 10: Reconstructed surface of Armadillo from the samples perturbed by Gaussian noise of different variance. The variance is relative to
the diameter of the bounding box.
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Figure 11: The reconstructions of real-world scanned data.

4.3 Efficiency507

In this subsection, we show the efficiency of our Gauss reconstruc-508

tion, particularly its parallel implementation. The running time509

shown in Table 1 excludes the time for data input/output.510

As Table 1 shows, PR (version 3.0) is the slowest method among511

the four reconstructions. In the single thread implementation, SSD512

(version 3.0) is the fastest mainly because of the employment of513

hash octree, and our GR is comparable to that of SPR (version 8.0).514

Note that the current implementation of PR, SPR and GR does not515
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GR Result(octree depth = 10)

[Xiong et al. 2014], |v| = 0.28

GR (octree depth = 9), |v| = 0.32

GR (octree depth = 10), |v| = 1.32

Figure 12: The reconstructed model from merlion by [Xiong et al.
2014] and GR of different octree depth. |v| denotes the number of
vertices in millions of the reconstructed mesh

owl point cloud GR reconstructed model

Figure 13: The reconstructed model from owl point cloud with
large missing data.

use hash octree.516

For the multi-threads implementation, we can see from Table 1 that517

the parallel implementation of our GR has almost negligible over-518

head and achieves a nearly perfect linear speedup. In addition, the519

GPU implementation performs even better, almost 25 times quicker520

than the speed with single thread. In Table 1, we also show the run-521

ning time of the parallel implementation of SPR, which is available522

to the public. As can be seen, GR is about twice as fast as SPR.523

5 Conclusions524

We have presented a surface reconstruction method called Gauss525

surface reconstruction. Our method is based on the implicit func-526

tion that combines the near-surface signed distance function and527

off-surface indicator function. Thus, Gauss surface reconstruction528

enjoys the following benefits of both methods: resiliency against529

noise and missing data, free of spurious sheets, and easy recovery530

to the zero-level-set of the surface. Moreover, our reconstruction531

Model Cores
Time in Seconds

PR SSD SPR GR

Grog

CPU 1 core 178.68 59.44 133.68 112.71

CPU 10 cores – – 27.48 13.04

GPU – – – 3.052

Bimba

CPU 1 core 62.19 35.04 73.15 40.01

CPU 10 cores – – 15.46 4.68

GPU – – – 1.77

Pig

CPU 1 core 169.64 58.16 116.69 111.81

CPU 10 cores – – 20.93 12.79

GPU – – – 4.59

Child

CPU 1 core 135.51 50.44 105.24 82.54

CPU 10 cores – – 18.67 9.44

GPU – – – 3.47

Table 1: Running time on different models. The output mesh ver-
tices in million: Grog: PR(3.26), SSD(2.55), SPR(3.56), GR(3.28);
Bimba: PR(1.11), SSD(1.40), SPR(1.97), GR(1.11); Pig: PR(2.10),
SSD(1.96), SPR(2.64), GR(2.12); Child: PR(1.88), SSD(1.87),
SPR(2.33), GR(1.88).

function is estimated directly based on Gauss Lemma without solv-532

ing any linear system. This direct approach, aided by disk inte-533

gration and FMM, makes our Gauss surface reconstruction simple,534

accurate, and easy to achieve parallel implementation. Therefore,535

the proposed method is very efficient.536

In the future, we will try to further speed up the algorithm by using537

hash octree or achieve better implementation of FMM algorithm on538

GPU. In addition, we plan to study the theoretical property of Gauss539

reconstruction to particularly analyze both position approximation540

error and normal approximation error.541

References542

ALLIEZ, P., COHEN-STEINER, D., TONG, Y., AND DESBRUN,543

M. 2007. Voronoi-based variational reconstruction of unoriented544

point sets. In Symposium on Geometry processing, vol. 7, 39–48.545

AMENTA, N., AND KIL, Y. J. 2004. Defining point-set surfaces.546

ACM Trans. Graph. 23, 3 (Aug.), 264–270.547

AMENTA, N., BERN, M., AND KAMVYSSELIS, M. 1998. A new548

voronoi-based surface reconstruction algorithm. In Proceedings549

of SIGGRAPH ’98, ACM, 415–421.550

AMENTA, N., CHOI, S., AND KOLLURI, R. K. 2001. The power551

crust, unions of balls, and the medial axis transform. Computa-552

tional Geometry 19, 2, 127–153.553

AMENTA, N., CHOI, S., DEY, T. K., AND LEEKHA, N. 2002.554

A simple algorithm for homeomorphic surface reconstruction.555

Internat. J. Comput. Geom. & Applications 12, 125–141.556

BERGER, M., LEVINE, J. A., NONATO, L. G., TAUBIN, G., AND557

SILVA, C. T. 2013. A benchmark for surface reconstruction.558

ACM Trans. Graph. 32, 2 (Apr.), 20:1–20:17.559

BERGER, M., TAGLIASACCHI, A., SEVERSKY, L., ALLIEZ, P.,560

LEVINE, J., SHARF, A., AND SILVA, C. 2014. State of the art in561

surface reconstruction from point clouds. In EUROGRAPHICS562

star reports, vol. 1, 161–185.563

BOISSONNAT, J.-D., AND OUDOT, S. 2005. Provably good sam-564

10



Online Submission ID: 0269

pling and meshing of surfaces. Graph. Models 67, 5 (Sept.),565

405–451.566

CALAKLI, F., AND TAUBIN, G. 2011. Ssd: Smooth signed dis-567

tance surface reconstruction. Computer Graphics Forum 30, 7,568

1993–2002.569

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,570

T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.571

2001. Reconstruction and representation of 3d objects with ra-572

dial basis functions. In Proceedings of SIGGRAPH ’01, ACM,573

67–76.574

CHEN, J., GUENNEBAUD, G., BARLA, P., AND GRANIER, X.575

2013. Non-oriented mls gradient fields. In Computer Graphics576

Forum, vol. 32, Wiley Online Library, 98–109.577

CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro:578

measuring error on simplified surfaces. Computer Graphics Fo-579

rum 17, 2, 167–174.580

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for581

building complex models from range images. In Proceedings of582

SIGGRAPH ’96, ACM, 303–312.583

DEY, T. K., AND GOSWAMI, S. 2004. Provable surface recon-584

struction from noisy samples. In Proceedings of SCG ’04, ACM,585

330–339.586

DEY, T. K., AND SUN, J. 2005. An adaptive mls surface for587

reconstruction with guarantees. In Proceedings of SGP ’05, Eu-588

rographics Association, 43–52.589

EDELSBRUNNER, H. 2003. Surface reconstruction by wrapping590

finite sets in space. In Discrete and Computational Geometry,591

vol. 25 of Algorithms and Combinatorics. Springer Berlin Hei-592

delberg, 379–404.593

FUHRMANN, S., AND GOESELE, M. 2014. Floating scale surface594

reconstruction. ACM Trans. Graph. 33, 4 (July), 46:1–46:11.595

GIESEN, J., AND JOHN, M. 2008. The flow complex: A data596

structure for geometric modeling. Computational Geometry 39,597

3, 178–190.598

GREENGARD, L., AND ROKHLIN, V. 1987. A fast algorithm for599

particle simulations. Journal of computational physics 73, 2,600

325–348.601

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND602

STUETZLE, W. 1992. Surface reconstruction from unorganized603

points. In Proceedings of SIGGRAPH ’92, ACM, 71–78.604

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013.605

Robust inside-outside segmentation using generalized winding606

numbers. ACM Trans. Graph. 32, 4 (July), 33:1–33:12.607

KAZHDAN, M., AND HOPPE, H. 2013. Screened poisson surface608

reconstruction. ACM Trans. Graph. 32, 3 (July), 29:1–29:13.609

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson610

surface reconstruction. In Proceedings of SGP ’06, Eurographics611

Association, 61–70.612

KAZHDAN, M., KLEIN, A., DALAL, K., AND HOPPE, H. 2007.613

Unconstrained isosurface extraction on arbitrary octrees. In Sym-614

posium on Geometry Processing, vol. 7.615

KOLLURI, R., SHEWCHUK, J. R., AND O’BRIEN, J. F. 2004.616

Spectral surface reconstruction from noisy point clouds. In Pro-617

ceedings of SGP ’04, ACM, 11–21.618

LEVIN, D. 1998. The approximation power of moving least-619

squares. Math. Computation 67, 1517–1531.620

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A621

high resolution 3d surface construction algorithm. In Proceed-622

ings of SIGGRAPH ’87, ACM, 163–169.623

MURAKI, S. 1991. Volumetric shape description of range data624

using “blobby model”. In Proceedings of SIGGRAPH ’91, ACM,625

227–235.626

SCHAEFER, S., AND WARREN, J. 2004. Dual marching cubes:627

Primal contouring of dual grids. In Computer Graphics and Ap-628

plications, 2004. PG 2004. Proceedings. 12th Pacific Conference629

on, IEEE, 70–76.630

WALDER, C., CHAPELLE, O., AND SCHÖLKOPF, B. 2005. Im-631
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