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Abstract. In this paper, we consider the harmonic extension problem, which is widely used in
many applications of machine learning. We formulate the harmonic extension as solving a Laplace-
Beltrami equation with Dirichlet boundary condition. We use the point integral method (PIM)
proposed in [14, 18, 13]. The basic idea of the PIM method is to approximate the Laplace equation
using an integral equation, which is easy to be discretized from points. Based on the integral equation,
we found that traditional graph Laplacian method (GLM) may fail to approximate the harmonic
functions in the classical sense. For the Laplace-Beltrami equation with Dirichlet boundary, we can
prove the convergence of the point integral method. The point integral method is also very easy
to implement, which only requires a minor modification of the graph Laplacian. One important
application of the harmonic extension in machine learning is semi-supervised learning. We run a
popular semi-supervised learning algorithm by Zhu et al. [23] over a couple of well-known datasets
and compare the performance of the aforementioned approaches. Our experiments show the PIM
performs the best. We also apply PIM to an image recovery problem and show it outperforms GLM.
Finally, on a model problem of Laplace-Beltrami equation with Dirichlet boundary, we prove the
convergence of the point integral method.

Keywords: harmonic extension; point cloud; point integral method; Laplace-Beltrami
operator; Dirichlet boundary.

1. Introduction. In this paper, we consider interpolation on a point cloud in
high dimensional space. The problem is described as follows. Let P = {p1, · · · ,pn}
be a set of points in R

d and S = {s1, · · · , sm} be a subset of P . Let u be a function
on the point set P and the value of u on S ⊂ P is given as a function g over S, i.e.
u(s) = g(s), ∀s ∈ S. In this paper, S is called the labelled set. From the given value
on S, we want to refer the value of u on the whole data set P . This is a fundamental
mathematical model in many data analysis and machine learning problem.

This is an ill-posed problem. The function of u can be any value on P\S, if we do
not have any assumption on u. To make this problem well-posed, usually, we assume
that the point cloud P sample a smooth manifold M embedded in R

d and u is a
smooth function on M. Based on this assumption, one idea is to find the smoothest
u such that u(s) = g(s), ∀s ∈ S. One of the simplest measurement of the smoothness
of a function u is the L2 norm of the gradient of u, which gives following objective
function to minimize:

(1.1) JM(u) =
1

2

∫

M
‖∇Mu(x)‖2dx.

where M is the underlying manifold, P is a sample of M, ∇M is the gradient on M.

The classical harmonic extension problem, also known as the Dirichlet problem
for Laplace equation, has been studied by mathematicians for more than a century
and has many applications in mathematics. The discrete harmonicity has also been
extensively studied in the graph theory [5]. For instance, it is closely related to random
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walk and electric networks on graphs [6]. In machine learning, the discrete harmonic
extension and its variants have been used for semi-supervised learning [23, 21].

One method which is widely used in many applications in image processing and
data analysis is using the nonlocal gradient to discretize the gradient in (1.1), which
gives following discrete objective function:

(1.2) JP (u) =
1

2

∑

x,y∈P

w(x,y)(u(x)− u(y))2,

Here w(x,y) is a given weight function. One often used weight is the Gaussian weight,

w(x,y) = exp(−‖x−y‖2

σ2 ), σ is a parameter, ‖ · ‖ is the Euclidean norm in R
d.

Based on the nonlocal gradient, the interpolation on point cloud is formulated as
an optimization problem:

(1.3) min
u

1

2

∑

x,y∈P

w(x,y)(u(x)− u(y))2,

with the constraint

(1.4) u(x) = g(x), x ∈ S.

The optimal solution of above optimization problem is given by solving a linear
system:















∑

y∈P

(w(x,y) + w(y,x))(u(x)− u(y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

(1.5)

This is the well known graph Laplacian [5, 23] which has been used widely in many
problems.

Much of research has been done on the theoretical analysis of the graph Laplacian.
When the manifold has no boundary, the pointwise convergence of the graph Laplacian
to the manifold Laplacian was shown in [1, 12, 11, 19], and the spectral convergence
of the graph Laplacian was shown in [2]. When there are boundaries, Singer and
Wu [20] and independently Shi and Sun [17] have shown that the spectra of the
graph Laplacian converge to that of manifold Laplacian with Neumann boundary.
However, for the graph Laplacian with Dirichlet type boundary, such as (1.5), the
graph Laplacian approach has inconsisitent problem. In other word, the solution
given by the graph Laplacian is not continuous on the labeled set. This inconsistency
can be seen clearly in a simple example.

Let P be the union of 200 randomly sampled points over the interval [0, 2] and
S = {0, 1, 2}. Set g = 0 at 0, 2 and g = 1 at 1. We run the above graph Laplacian
method over this example. Figure 1 (a) shows the resulting minimizer. It is well-
known that the harmonic function over the interval (0, 2) with the Dirichlet boundary
g, in the classical sense, is a piece linear function, i.e., u(x) = x for x ∈ (0, 1)
and u(x) = 2 − x for x ∈ (1, 2); Clearly, the function computed by GLM does not
approximate the harmonic function in the classical sense. In particular, the Dirichlet
boundary has not been enforced properly, and in fact the obtained function is not
even continuous near the boundary.
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Fig. 1. 1D examples. (a): interpolation given by the graph Laplacian; (b): interpolation given
by the point integral method. Note in (a), the recovered function is not continuous at the labelled
set {0, 1, 2}.

1.1. Harmonic Extension. In this paper, to derive a consistent method, we
consider the harmonic extension in the continuous form, as shown in Figure 2. Assume
M is a submanifold embedded in R

d. Consider a function u(x) defined on M and
u(x) is known in some regions Ω1 ∪ · · · ∪ Ωk ⊂ M. Now, we want to extend the
function u(x) from Ω1 ∪ · · · ∪ Ωk to the entire manifold M.

(1.6) min
u∈H1(M)

1

2

∫

M
‖∇Mu(x)‖2dx.

with the constraint

u(x) = g(x), x ∈ Ω1 ∪ · · · ∪ Ωk.

Ω1 Ω2

M

∂M

∂Ω1

∂Ω2

u(x) = g1(x), x ∈ Ω1

u(x) = g2(x), x ∈ Ω2

∆u(x) = 0

∂u
∂n
(x) = 0, x ∈ ∂M

Fig. 2. Sketch of the manifold.

It is well known that above optimization problem (1.6) is solved by a harmonic
extension problem:

(1.7)











−∆Mu(x) = 0, x ∈ M,
u(x) = g(x), x ∈ ∂MD,

∂u

∂n
(x) = 0, x ∈ ∂MN .

In the aforementioned harmonic extension problem, one can think of ∂MD as the
boundary of Ω1 ∪ · · · ∪ Ωk, and ∂MN as the actual boundary of M.

In this paper, we use the point integral method (PIM) [14, 18, 13] to solve the
harmonic extension problem (1.7). The key step in the point integral method is to
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use an integral equation to approximate the original Laplace-Beltrami equation (1.7)
with small parameter 0 < β ≪ 1:

1

t

∫

M
Rt(x,y)(u(x)− u(y))dy − 2

β

∫

∂MD

R̄t(x,y)(g(y)− u(y))dτy = 0,(1.8)

The kernel function Rt and R̄t is defined as

(1.9) Rt(x,y) = R

( |x− y|2
4t

)

, R̄t(x,y) = R̄

( |x− y|2
4t

)

where R : R+ → R
+ is a C2 function which is integrable over [0,+∞), t > 0 is a

parameter and

R̄(r) =

∫ +∞

r

R(s)ds.

When R(r) = e−r, R̄t(x,y) = Rt(x,y) = exp

(

−|x− y|2
4t

)

are the well-known Gaus-

sian.
The integral equation (1.8) is discretized over the point cloud P and the labelled

set S. We get a linear system as follows:

(1.10)
∑

y∈P

Rt(x,y)(u(x)− u(y))− µ
∑

y∈S

R̄t(x,y)(g(y)− u(y)) = 0, x ∈ P

Here µ is a parameter associated with β whose choice will be described in Section 2.
Figure 1 (b) shows the interpolation computed by the point integral method in

the simple 1D example. It is shown clearly that the solution given by the point
integral method is continuous in the labeled set S while the graph Laplacian gives an
discontinuous solution. Nevertheless, for the Laplace-Beltrami equation with Dirichlet
boundary, we prove that the point integral method converges to the true solution as
the number of sample points goes to infinity, the whole point cloud P sample the
whole manifolds and the labeled set S sample the boundary. The result is given in
Section 5.

One important application of the harmonic extension is semi-supervised learn-
ing [22]. We will perform the semi-supervised learning using the PIM over a couple
of well-known data sets, and compare its performance to GLM as well as the closely
related method by Zhou et al. [21]. The experimental results show that the PIM have
the best performance. We also consider the image recovery problem and harmonic
extension is used to recover the subsampled image based on the patch manifold.

The rest of the paper is organized as follows. The point integral method for the
harmonic extension is given in Section 2. The examples of the semi-supervised learning
and the image recovery are shown in Section 3 and Section 4 respectively. In Section
5, the convergence of the point integral method is proved for the Laplace-Beltrami
equation with Dirichlet boundary.

2. Point Integral Method. The key observation in the point integral method
is an integral approximation of the Laplace-Beltrami operator.

−
∫

M
∇Mu(y)R̄t(x,y)dy ≈ 1

t

∫

M
(u(x)− u(y))Rt(x,y)dy − 2

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy,

(2.1)
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Next, we give a brief derivation of the integral approximation (2.1) in the Euclidean
space R

d. For a general submanifold, the rigorous analysis of the error in (2.1) can
be found in Theorem 5.5. First, by integration by parts,

∫

M
∆u(y)R̄t(x,y)dy(2.2)

=−
∫

M
∇u(y) · ∇R̄t(x,y)dy +

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy

=
1

2t

∫

M
(y − x) · ∇u(y)Rt(x,y)dy +

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy.

The Taylor expansion of the function u gives that

u(y)− u(x) = (y − x) · ∇u(y)− 1

2
(y − x)THu(y)(y − x) +O(‖y − x‖3),(2.3)

where Hu(y) is the Hessian matrix of u at y. The second order term is derived as
follows under the assumption that u is smooth enough,

1

4t

∫

M
(y − x)THu(y)(y − x)Rt(x,y)dy

(2.4)

=
1

4t

d
∑

i,j=1

∫

M
(yi − xi)(yj − xj)∂iju(y)Rt(x,y)dy

=− 1

2

d
∑

i,j=1

∫

M
(yi − xi)∂iju(y)∂j

(

R̄t(x,y)
)

dy

=
1

2

d
∑

i,j=1

∫

M
∂j(yi − xi)∂iju(y)R̄t(x,y)dy +

1

2

d
∑

i,j=1

∫

M
(yi − xi)∂ijju(y)R̄t(y,x)dy

− 1

2

d
∑

i,j=1

∫

∂M
(yi − xi)nj∂iju(y)R̄t(x,y)dτy

=
1

2

∫

M
∆u(y)R̄t(x,y)dy − 1

2

d
∑

i,j=1

∫

∂M
(yi − xi)nj∂iju(y)R̄t(x,y)dτy +O(t1/2).

Then the integral approximation (2.1) is obtained following from the equations (2.2),
(2.3) and (2.4).

Using the integral equation (2.1) and the boundary condition of (1.7), we know
the Laplace equation with the mixed boundary condition can be approximated by the
following integral equation:

1

t

∫

M
(u(x)− u(y))Rt(x,y)dy − 2

∫

∂MD

∂u(y)

∂n
R̄t(x,y)dτy = 0,(2.5)

However, on ∂MD, ∂u
∂n is not known. To address this issue, we use the Robin boundary

condition to approximate the original Dirichlet boundary condition on ∂MD. Then,
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we consider the following Robin/Neumann mixed boundary problem.

(2.6)



















−∆Mu(x) = 0, x ∈ M,

u(x) + β
∂u(x)

∂n
= g(x), x ∈ ∂MD,

∂u

∂n
(x) = 0, x ∈ ∂MN .

where β > 0 is a parameter. It is easy to prove that the solution of the above
Robin/Neumann problem (2.6) converges to the solution of the Dirichlet/Neumann
problem (1.7) as β goes to 0 (see Theorem 5.3).

By substituting the Robin boundary ∂u(x)
∂n = 1

β (g(x)−u(x)) in the integral equa-

tion (2.5), we get an integral equation to solve the Robin/Neumann problem.

1

t

∫

M
(u(x)− u(y))wt(x,y)dy − 2

β

∫

∂MD

(g(y)− u(y))wt(x,y)dτy = 0,(2.7)

When β > 0 is small enough, this integral equation also gives a good approximation
to the original harmonic extension problem (1.7).

Assume that the point set P = {p1, · · · ,pn} samples the submanifold M and it
is uniformly distributed, then the integral

∫

M(u(x) − u(y))Rt(x,y)dy is discretized
and well approximated by

|M|
n

∑

y∈P

Rt(x,y)(u(x)− u(y)),

|M|
n is the volume weight of the point cloud P .

The boundary term Itu(x) is actually corresponding to the labeled set S =
{s1, · · · , sm} ⊂ P where the values of function u are given. From the continuous
point of view, for each point si ∈ S, in a small area around it, the value of u is given.
In this sense, each si actually stands for one part of the boundary ∂MD. Based
on the above discussion, the boundary term

∫

∂MD
(g(y) − u(y))R̄t(x,y)dτy can be

discretized as
∑

y∈S

R̄t(x,y)(g(y)− u(y))

up to the surface area weight |∂MD|
m .

Therefore, the complete discretization is given by

(2.8)
∑

y∈P

Rt(x,y)(u(x)− u(y))− µ
∑

y∈S

R̄t(x,y)(g(y)− u(y)) = 0, x ∈ P

where µ = 2
β

n|∂MD|
m|M| . The parameter µ seems to be very complicated. However, in

the computation of the harmonic extension, we give µ directly instead of using above
formula of µ. One typical choice of µ is |P |/|S|, which is the inverse of the sample
rate.

Remark 2.1. Based on the discussion in this section, we can see clearly the rea-
son that the traditional graph Laplacian may fail to approximate the classic harmonic
functions. The reason is that in the graph Laplacian approach, the boundary term is
dropped. However, this boundary term is not small. Without this term, the boundary
condition may not be enforced correctly. This effect has been shown in Figure 1 and
more evidence will be given in the example section.
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Algorithm 1 Semi-Supervised Learning

Require: A point set P = {p1, · · · ,pm,pm+1, · · · ,pn} ⊂ R
d and a partial label

assignment L : S = {p1, · · · ,pm} → {1, 2, · · · , l}
Ensure: A complete label assignment L : P → {1, 2, · · · , l}
for i = 1 : l do

for j = 1 : m do
For any pj ∈ S, set gi(pj) = 1 if L(pj) = i, and otherwise set gi(pj) = 0.

end for
Compute the harmonic extension ui of gi by solving

(3.1)
∑

y∈P

Rt(x,y)(ui(x)− ui(y))− µ
∑

y∈S

R̄t(x,y)(gi(y)− ui(y)) = 0, x ∈ P.

end for
for j = m+ 1 : n do

L(pj) = k where k = argmax
i≤l

ui(pj).

end for

3. Semi-supervised Learning. In this section, we briefly describe the algo-
rithm of semi-supervised learning based on the harmonic extension proposed by Zhu
et al. [23]. We plug into the algorithm the aforementioned approach for harmonic
extension, and apply them to several well-known data sets, and compare their perfor-
mance.

Assume we are given a point set P = {p1, · · · ,pm,pm+1, · · · ,pn} ⊂ R
d, and a la-

bel set {1, 2, · · · , l}, and the label assignment on the firstm points L : {p1, · · · ,pm} →
{1, 2, · · · , l}. In a typical setting, m is much smaller than n. The purpose of the semi-
supervised learning is to extend the label assignment L to the entire P , namely, infer
the labels for the unlabeled points.

Think of the label points as the boundary S = {p1, · · · ,pm}. For the label
i ∈ {1, 2, · · · , l}, we set up the Dirichlet boundary gi as follows. If a point pj ∈ S
is labeled as i, set gi(pj) = 1, and otherwise set gi(pj) = 0. Then we compute
the harmonic extension ui of gi using the aforementioned approaches. In this way,
we obtain a set of l harmonic functions u1, u2, · · · , ul. We label pj using k where
k = argmax

i≤l
ui(pj). The algorithm is summarized in Algorithm 1. Note that this

algorithm is slightly different from the original algorithm by Zhu et al. [23] where
only one harmonic extension was computed by setting gi(pj) = k if pj has a label k.

3.1. Experiments. We now apply the above semi-supervised learning algorithm
to a couple of well-known data sets: MNIST and 20 Newsgroups. We do not claim
the state of the art performance on these datasets. The purpose of these experiments
is to compare the performance of different approaches of harmonic extension. We
also compare to the closely related method of local and global consistency by Zhou
et al. [21].

In the computations, the kernel function is chosen to be Gaussian, such that
R̄t(x,y) = Rt(x,y) and

Rt(x,y) = exp

(

−‖x− y‖2
4t

)

.

The parameter t will be given later.
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MNIST : In this experiment, we use the MNIST of dataset of handwritten digits [4],
which contains 60k 28×28 gray scale digit images with labels. We view digits 0 ∼ 9 as
ten classes. Each digit can be seen as a point in a common 784-dimensional Euclidean
space. We randomly choose 16k images. Specifically, there are 1606, 1808, 1555, 1663,
1552, 1416, 1590, 1692, 1521 and 1597 digits in 0 ∼ 9 class respectively.

To set the parameter t, we build a graph by connecting a point xi to its 10
nearest neighbors under the standard Euclidean distance. We compute the average of
the distances for xi to its neighbors on the graph, denoted hi. Let h be the average
of hi’s over all points and set t = h2. The distance |xi−xj | is computed as the graph
distance between xi and xj . In the method of local and global consistency, we follow
the paper [21] and set the width of the RBF kernel to be 0.3 and the parameter α in
the iteration process to be 0.3.

For a particular trial, we choose k (k = 1, 2, · · · , 10) images randomly from each
class to assemble the labeled set B and assume all the other images are unlabeled. For
each fixed k, we do 100 trials. The error bar of the tests is presented in Figure 3 (a).
It is quite clear that the PIM has the best performance when there are more than 5
labeled points in each class, and the GLM has the worst performance.

Newsgroup: In this experiment, we use the 20-newsgroups dataset, which is a classic
dataset in text classification. We only choose the articles from topic rec containing four
classes from the version 20-news-18828. We use Rainbow (version:20020213) to pre-
process the dataset and finally vectorize them. The following command-line options
are required1: (1)- -skip-header : to avoid lexing headers; (2)- -use-stemming : to mod-
ify lexed words with the ‘Porter’ stemmer; (3)- -use-stoplist : to toss lexed words that
appear in the SMART stoplist; (4)- -prune-vocab-by-doc-count=5 : to remove words
that occur in 5 or fewer documents; Then, we use TF-IDF algorithm to normalize
the word count matrix. Finally, we obtain 3970 documents (990 from rec.autos, 994
from rec.motorcycles, 994 from rec.sport.baseball and 999 from rec.sport.hockey) and
a list of 8014 words. Each document will be treated as a point in a 8014-dimensional
space.

To deal with text-kind data, we define a new distance introduced by Zhu et al. [23]:
the distance between xi and xj is d(xi, xj) = 1− cosα, where α is the angle between
xi and xj in Euclidean space. Under this new distance, we ran the same experiment
with the same parameter as we process the above MNIST dataset. The error bar
of the tests for 20-newsgroups is presented in Figure 3 (b). A similar pattern result
is observed, namely the PIM has the best performance when there are more than 2
labeled points in each class, and the GLM has the worst performance.

4. Image Recovery. In this example, we consider an image recovery problem.
The original image is the well known image of Barbara (256 × 256) which is shown
in Figure 4(a). Then, we subsample the image and only retain 1% of the pixels. The
positions of the retained pixels are selected at random. The subsampled image is
shown in Figure 4(b). Now, we want to recover the original image from the subsam-
pled image. This is a classical problem in image processing which has been studied
extensively. Here, we only use this example to demonstrate the difference between
PIM method and the Graph Laplacian approach, rather than presenting an image
recovery method.

First, we construct a point cloud from the original image, denoted by f , by using
so called patch approach which is widely used in image processing [3, 10]. For each

1all the following options are offered by Rainbow
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Fig. 3. (a) the error rates of digit recognition with a 16000-size subset of MNIST dataset;
(b) the error rates of text classification with 20-newsgroups.rec(a 8014-dimensional space with 3970
data points).

pixel xi in the image f , we extract a patch around it of size 9× 9 which is denoted as
pxi

(f). Here i = 1, · · · , 2562. For the pixels on the boundary, the patch is obtained
by extending the image symmetrically. Then, we can get 2562 patches and each patch
is 9 × 9. These patches consist of a point cloud in R

81. Denote this point cloud as
P = {pxi

(f) : i = 1, · · · , 2562}. And function u on P is defined as u(pxi
(f)) = f(xi),

f(xi) is the value of image f at pixel xi. Using this definition, at some patches which
around the retained pixels, the value of u is known. The collection of these patches
is denoted as S which is a subset of P .

Here, we recover the whole function u by harmonic extension, i.e. solving following
linear system

(4.1)
∑

y∈P

Rt(x,y)(u(x)− u(y))− µ
∑

y∈S

R̄t(x,y)(g(y)− u(y)) = 0, x ∈ P.

We also compute the solution given by the graph Laplacian.

(4.2)







∑

y∈P

Rt(x,y)(u(x)− u(y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

We remark that in this example the point cloud P is constructed using the original
image shown in Figure 4(a). So this is not an full image recovery method since the
original image is used. However, by update the image iteratively, we can get a real
image recovery method [15].

In the computations, we take the weight Rt(x,y) as the Gaussian kernel. In this
case, R̄t(x,y) = Rt(x,y) and

Rt(x,y) = exp

(

−‖x− y‖2
t(x)

)

.

Here, we choose t adaptive to the distribution of the point cloud. More specifically,
t(x) = σ(x)2 and σ(x) is chosen to be the distance between x and its 20th nearest
neighbor, To make the weight matrix sparse, the weight is truncated to the 50 nearest
neighbors. The parameter µ in (4.1) is set to be |P |/|S|.

The solution of PIM (4.1) is given in Figure 4(c) and the solution of GLM (4.2)
is given in Figure 4(d). Obviously, the result given by PIM is much better. To get
a closer look at of the recovery, Figure 5 shows the zoom in image enclosed by the
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Fig. 4. (a) original image; (b) subsampled image (5% of the pixels are retained); (c) recovered
image by PIM; (d) recovered image by GL.

box in Figure 4(a). In Figure 5(d), there are many pixels which are not consistent
with their neighbors. Comparing with the subsampled image 5(b), it is easy to check
that these pixels are actually the retained pixels. This phenomenon suggests that
in GLM, (4.2), the values at the retained pixels are not spread to their neighbours
properly. The reason is that in GLM a non-negligible boundary term is dropped as
we pointed in this paper. On the contrary, in PIM, the boundary term is retained
and the resultant recovery is much better and smoother as shown in Figure 4(c) and
5(c).

As the sample rate grows, the inconsistency in the graph Laplacian may be allevi-
ated. Figure 6(a) gives the recovery obtained by graph Laplacian from 30% subsam-
ples. Visually, the result is much better and the inconsistent pixels disappear. This
can be explained qualitatively by the theory of volume constraint [7, 16]. When the
number of sample points increase, the sample points may accumulate together. Then
the value of function is given on some volumes rather than the discrete points. Based
on the theory of volume constraint, in this case, the Dirichlet boundary condition may
be correctly enforced as long as the volume is larger than the support of the weight
function. But the inconsistency can not completely removed in the graph Laplacian.
Figure 6(c) shows the zoom in image enclosed by the box in Figure 6(a). Comparing
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(a) (b)

(c) (d)

Fig. 5. Zoom in images. (a) original image; (b) subsampled image (5% of the pixels are
retained); (c) recovered image by PIM; (d) recovered image by GL;

with the result given by PIM, Figure 6(b)(d), the reconstruction given by PIM is
much smoother and better.

5. Convergence of the Point Integral Method. In this section, we will
establish the convergence results for the point integral method for solving the Laplace-
Beltrami equation with Dirichlet boundary (5.1). To simplify the notation and make
the proof concise, we consider the homogeneous Dirichlet boundary conditions, i.e.

(5.1)

{

−∆Mu(x) = f(x), x ∈ M
u(x) = 0, x ∈ ∂M

The analysis can be easily generalized to the non-homogeneous boundary conditions.

In this section, we assume the point cloud P samples the submanifold M and
a subset S ⊂ P samples the boundary, ∂M. List the points in P in a fixed order
P = (p1, · · · ,pn) where pi ∈ R

d, 1 ≤ i ≤ n and S = (p1, · · · ,pm) ⊂ P with m < n.
In addition, assume we are given two vectors V = (V1, · · · , Vn) where Vi is an volume
weight of pi in M, and A = (A1, · · · , Am) where Ai is an area weight of pi in ∂M.

The discretization of (5.1) in the point integral method over the point cloud

11



(a) (b)

(c) (d)

Fig. 6. Recovered image by graph Laplacian from 30% subsamples. (a) recovered image by GL;
(b) recovered image by PIM; (c) zoom in of the image reconstructed by GL; (c) zoom in of the image
reconstructed by PIM.

(P, S,V,A) is

(5.2)
1

t

n
∑

j=1

Rt(pi,pj)(ui − uj)Vj +
2

β

m
∑

j=1

R̄t(pi,pj)ujAj =

n
∑

j=1

R̄t(pi,pj)fjVj .

where fj = f(pj). In this section, we add a normalization factor Ct in the kernel
function,

(5.3) Rt(x,y) = CtR

(‖x− y‖2
4t

)

, R̄t(x,y) = CtR̄

(‖x− y‖2
4t

)

with Ct =
1

(4πt)k/2 and k is the dimension of the manifold M. This factor does not

change the discretization. It is introduced to normalize the kernel function which
would be more convenient in theoretical analysis.

5.1. Assumptions and Results. Before proving the convergence of the point
integral method, we need to clarify the meaning of the convergence between the point
cloud (P, S,V,A) and the manifold M. In this paper, we consider the convergence
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in the sense that

h(P, S,V,A,M, ∂M) → 0

where h(P, S,V,A,M, ∂M) is the integral accuracy index defined as following,

Definition 5.1 (Integral Accuracy Index). For the point cloud (P, S,V,A)
which samples the manifold M and ∂M, the integral accuracy index h(P, S,V,A,M, ∂M)
is defined as

h(P, S,V,A,M, ∂M) = max {h(P,V,M), h(S,A, ∂M)}

and

h(P,V,M) = sup
f∈C1(M)

∣

∣

∫

M f(y)dy −∑n
i=1 f(pi)Vi

∣

∣

|supp(f)|‖f‖C1(M)
,

h(S,A, ∂M) = sup
g∈C1(∂M)

∣

∣

∫

∂M g(y)dτy −∑m
i=1 g(pi)Ai

∣

∣

|supp(g)|‖g‖C1(∂M)

To simplify the notation, we denote h = h(P, S,V,A,M, ∂M) in the rest of the
paper.

Using the definition of integrable index, we say that the point cloud (P, S,V,A)
converges to the manifold M if h → 0. The convergence analysis in this paper is
based on the assumption that h is small enough.

To get the convergence, we also need some assumptions on the regularity of the
submanifold M and the integral kernel function R.

Assumption 5.1.

• Smoothness of the manifold: M, ∂M are both compact and C∞ smooth
k-dimensional submanifolds isometrically embedded in a Euclidean space Rd.

• Assumptions on the kernel function R(r):
(a) Smoothness: R ∈ C2(R+);
(b) Nonnegativity: R(r) ≥ 0 for any r ≥ 0.
(c) Compact support: R(r) = 0 for ∀r > 1;
(d) Nondegeneracy: ∃δ0 > 0 so that R(r) ≥ δ0 for 0 ≤ r ≤ 1

2 .

Remark 5.1. The assumption on the kernel function is very mild. The compact
support assumption can be relaxed to exponentially decay, like Gaussian kernel. In
the nondegeneracy assumption, 1/2 may be replaced by a positive number θ0 with
0 < θ0 < 1. Similar assumptions on the kernel function is also used in analysis the
nonlocal diffusion problem [9].

Remark 5.2. The assumption that (P, S,V,A) is an h-integral approximation
of (M, ∂M) is pretty mild. If the points in P and S are independent samples from
uniform distribution on M and ∂M respectively, then V and A can be taken as
the constant vector. From the central limit theorem, (P, S,V,A) is an h-integral
approximation with h is of the order of 1/

√
n.

All the analysis in this paper is under the assumptions in Assumption 5.1 and h, t
are small enough. In the theorems and the proof, without introducing any confusions,
we omit the statement of the assumptions.

To compare the discrete numerical solution with the continuous exact solution,
we interpolate the discrete solution u = (u1, · · · , un) of the problem (5.2) onto the
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smooth manifold using following interpolation operator:

(5.4) If (u)(x) =

n
∑

j=1

Rt(x,pj)ujVj −
2t

β

m
∑

j=1

R̄t(x,pj)ujAj + t

n
∑

j=1

R̄t(x,pj)fjVj

n
∑

j=1

Rt(x,pj)Vj

.

where f = [f1, · · · , fn] = [f(p1), · · · , f(pn)]. It is easy to verify that If (u) interpolates
u at the sample points P , i.e., If (u)(pj) = uj for any j. In the analysis, If (u) is used
as the numerical solution of (5.1) instead of the discrete solution u.

Now, we can state the main result.
Theorem 5.2. Let u is the solution to Problem (5.1) with f ∈ C1(M). Set

f = (f(p1), · · · , f(pn)). If the vector u is the solution to the problem (5.2). There
exists constants C, T0 and r0 only depend on M and ∂M, so that for any t ≤ T0,

(5.5) ‖u− If (u)‖H1(M) ≤ C

(

h

t3/2
+ t1/2 + β1/2

)

‖f‖C1(M).

as long as h
t3/2

≤ r0 and
√
t

β ≤ r0.

5.2. Structure of the Proof. In the point integral method, we use Robin
boundary problem (5.6) to approximate the Dirichlet boundary problem (5.1). First,
we show that the solution of the Robin problem converges to the solution of the
Dirichlet problem as the parameter β → 0.

Theorem 5.3. Suppose u is the solution of the Dirichlet problem (5.1) and uβ

is the solution of the Robin problem

(5.6)

{

−∆Mu(x) = f(x), x ∈ M
u(x) + β ∂u

∂n (x) = 0, x ∈ ∂M

then

‖u− uβ‖H1(M) ≤ Cβ1/2‖f‖L2(M).

Proof. Let w = u− uβ , then w satisfies

{

∆Mw = 0, on M,
w + β ∂w

∂n = β ∂u
∂n , on ∂M.

By multiplying w on both sides of the equation and integrating by parts, we can get

0 =

∫

M
w∆Mwdx

= −
∫

M
|∇w|2dx+

∫

∂M
w
∂w

∂n
dτx

= −
∫

M
|∇w|2dx− 1

β

∫

∂M
w2dτx +

∫

∂M
w
∂u

∂n
dτx

≤ −
∫

M
|∇w|2dx− 1

2β

∫

∂M
w2dτx + 2β

∫

∂M

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

2

dτx,
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which implies that

∫

M
|∇w|2dx+

1

2β

∫

∂M
w2dτx ≤ 2β

∫

∂M

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

2

dτx.

Moreover, we have

‖w‖2L2(M) ≤ C

(∫

M
|∇w|2dx+

1

2β

∫

∂M
w2dτx

)

≤ Cβ

∫

∂M

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

2

dτx.

Combining above two inequalities and using the trace theorem, we get

‖u− uβ‖H1(M) ≤ Cβ1/2

∥

∥

∥

∥

∂u

∂n

∥

∥

∥

∥

L2(∂M)

≤ Cβ1/2‖u‖H2(M).

The proof is complete using that

‖u‖H2(M) ≤ C‖f‖L2(M).

Next, we prove the solution of (5.2) converges to the solution of the Robin prolem
(5.6) as h, t go to 0. Comparing to the Neumann boundary problem considered in [18],
in (5.2), the unknown variables ui not only appear in the discrete Laplace operator
Lt, but also appear in an integral over the boundary. Therefore, instead of showing
the stability for the integral Laplace operator Lt as in [18], we need to consider the
stability for the following integral operator

Ktu(x) =
1

t

∫

M
Rt(x,y)(u(x)− u(y))dy +

2

β

∫

∂M
R̄t(x,y)u(y)dτy.(5.7)

This is the most difficult part in this paper.
Theorem 5.4. Let u(x) solves following equation with r ∈ H1(M)

Ktu = r.

Then, there exist constants C, T0, r0 > 0 independent on t, such that

‖u‖H1(M) ≤ C

(

‖r‖L2(M) +
t√
β
‖r‖H1(M)

)

,

as long as t ≤ T0 and
√
t

β ≤ r0.

To apply the stability result, we need L2 estimate of Kt(uβ−If (u)) and ∇Kt(uβ−
If (u)). In the analysis, the truncation error Kt(uβ − If (u)) is further splitted to two
terms

Kt(uβ − If (u)) = Kt(uβ − uβ,t)) +Kt(uβ,t − If (u))

where uβ,t is the solution of the integral equation

(5.8)
1

t

∫

M
Rt(x,y)(u(x)−u(y))dy+

2

β

∫

∂M
R̄t(x,y)u(y)dτy =

∫

M
f(y)R̄t(x,y)dy.

The first term Kt(uβ − uβ,t) is same as that in the Neumann boundary problem [18].
It also has boundary layer structure.
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Theorem 5.5. Let u(x) be the solution of the problem (5.1) and ut(x) be the
solution of the corresponding integral equation (5.8). Let

Ibd =

d
∑

j=1

∫

∂M
nj(y)(x− y) · ∇(∇ju(y))R̄t(x,y)p(y)dτy,(5.9)

and

Kt(u− ut) = Iin + Ibd.

where n(y) = (n1(y), · · · , nd(y)) is the out normal vector of ∂M at y, ∇j is the jth
component of gradient ∇.

If u ∈ H3(M), then there exists constants C, T0 depending only on M and p(x),
so that,

‖Iin‖L2(M) ≤ Ct1/2‖u‖H3(M), ‖∇Iin‖L2(M) ≤ C‖u‖H3(M),(5.10)

as long as t ≤ T0.
The estimate of the second term, Kt(uβ,t − If (u)), is given in following theorem.
Theorem 5.6. Let ut(x) be the solution of the problem (5.8) and u be the solution

of the problem (5.2). If f ∈ C1(M) , then there exists constants C, T0 depending only
on M, so that

‖Kt (Ifu− ut) ‖L2(M) ≤
Ch

t3/2
‖f‖C1(M),(5.11)

‖∇Kt (Ifu− ut) ‖L2(M) ≤
Ch

t2
‖f‖C1(M).(5.12)

as long as t ≤ T0 and h√
t
≤ T0.

Corresponding to the boundary layer structure in Theorem 5.5, we need stability
of Kt for the boundary term.

Theorem 5.7. Let u(x) solves the integral equation

Ktu(x) =

∫

∂M
b(y) · (x− y)R̄t(x,y)dτy.

There exist constant C > 0, T0 > 0 independent on t, such that

‖u‖H1(M) ≤ C
√
t ‖b‖H1(M).

as long as t ≤ T0.
Theorem 5.2 is an easy corollary from Theorems 5.3, Theorems 5.4, 5.6, 5.5 and

5.7. The detailed proof is omitted here.
Proof of Theorem 5.5 is essentially a special case with constant coefficients of

Theorem 3.5 in [13]. In the rest of the paper, we prove Theorem 5.4, 5.6 and 5.7
respectively.

6. Discussion and Future Work. In this paper, we applied the point integral
method to solve the harmonic extension problem. We found that the graph Laplacian
has inconsistent problem since one important boundary term is dropped. The point
integral method gives a consistent discretization for the harmonic extension. We
compared the performance of the point integral method with that of graph Laplacian
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in the application of semi-supervised learning and image recovery. In the future, we
will test this method on more datasets and find different applications of harmonic
extension.

We also prove the convergence of the point integral method for Laplace-Beltrami
equation on manifolds with the Dirichlet boundary. In point integral method, the
Dirichlet boundary can not be enforced directly. In this paper, we use Robin boundary
to approximate the Dirichlet boundary and use point integral method to solve the
Poisson equation with Robin boundary condition.

Another way to deal with the Dirichlet boundary condition in point integral
method is using the volume constraint proposed by Du et.al. [8]. The volume con-
straint has been integrated into the point integral method to enforce the Dirichlet
boundary condition and the convergence has been proved [16].

Appendix A. Stability of Kt (Theorem 5.4 and 5.7). In this section, we
will prove Theorem 5.4 and 5.7. Both these two theorems are concerned with the
stability of Kt, which are essential in the convergence analysis.

To simplify the notation, we introduce an integral operator, Lt,

Ltu(x) =
1

t

∫

M
Rt(x,y)(u(x)− u(y))dy,(A.1)

In the proof, we need following theorem which has been proved in [18].
Theorem A.1. For any function u ∈ L2(M), there exists a constant C > 0

independent on t and u, such that

〈u, Ltu〉M ≥ C

∫

M
|∇v|2dx

where 〈f, g〉M =
∫

M f(x)g(x)dx for any f, g ∈ L2(M), and

v(x) =
Ct

wt(x)

∫

M
R

( |x− y|2
4t

)

u(y)dy,(A.2)

and wt(x) = Ct

∫

M R
(

|x−y|2
4t

)

dy.

A.1. Stability of Kt for interior term (Theorem 5.4). Using Theorem A.1,
we have
(A.3)

‖∇v‖2L2(M) ≤ C 〈u, Ltu〉 =
∫

M
u(x)r(x)dx− 2

β

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx.

where v is the same as defined in Theorem A.1. We control the second term on the
right hand side of (A.3) as follows.

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M

(

R̄t(x,y)−
w̄t(y)

wt(y)
Rt(x,y)

)

u(y)dτy

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂M
u(y)

(∫

M

(

R̄t(x,y)−
w̄t(y)

wt(y)
Rt(x,y)

)

u(x)dx

)

dτy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂M

1

wt(y)
u(y)

(∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

)

dτy

∣

∣

∣

∣

≤ C‖u‖L2(∂M)

(

∫

∂M

(∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

)2

dτy

)1/2

,
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where w̄t(x) =
∫

M R̄t(x,y)dy. Noticing that
∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

=

∫

M

∫

M
Rt(y, z)R̄t(x,y) (u(x)− u(z)) dxdz,

we have
∫

∂M

(∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

)2

dτy

≤
∫

∂M

(∫

M

∫

M
Rt(y, z)R̄t(x,y) (u(x)− u(z)) dxdz

)2

dτy

≤
∫

∂M

(∫

M

∫

M
Rt(y, z)R̄t(x,y)dxdz

)(∫

M

∫

M
Rt(y, z)R̄t(x,y) (u(x)− u(z))

2
dxdz

)

dτy

≤ C

(∫

M

∫

M

(∫

∂M
Rt(y, z)R̄t(x,y)dτy

)

(u(x)− u(z))
2
dxdz

)

= C

(∫

M

∫

M
Q(x, z) (u(x)− u(z))

2
dxdz

)

,

where

Q(x, z) =

∫

∂M
Rt(y, z)R̄t(x,y)dτy.

Notice that Q(x, z) = 0 if ‖y − z‖2 ≥ 16t, and |Q(x, z)| ≤ CCt/
√
t. We have

|Q(x, z)| ≤ CCt√
t
R

(‖x− z‖2
32t

)

.

Then, we obtain the following estimate,
∣

∣

∣

∣

(∫

M

∫

M
Q(x, z) (u(x)− u(z))

2
dxdz

)∣

∣

∣

∣

(A.4)

≤
∣

∣

∣

∣

C√
t

(∫

M

∫

M
CtR

(‖x− z‖2
32t

)

(u(x)− u(z))
2
dxdz

)∣

∣

∣

∣

≤
∣

∣

∣

∣

C√
t

(∫

M

∫

M
CtR

(‖x− z‖2
4t

)

(u(x)− u(z))
2
dxdz

)∣

∣

∣

∣

≤ C
√
t

(∣

∣

∣

∣

∫

M
u(x)r(x)dx

∣

∣

∣

∣

+
1

β

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

∣

∣

∣

∣

)

≤ C
√
t‖u‖L2(M)‖r‖L2(M) +

C
√
t

β

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

∣

∣

∣

∣

.

On the other hand,
∫

M
u(x)

(∫

∂M

w̄t(y)

wt(y)
Rt(x,y)u(y)τy

)

dx

=

∫

∂M

w̄t(y)

wt(y)
u(y)

(∫

M
Rt(x,y)(u(x)− u(y))dx

)

dτy +

∫

∂M
w̄t(y)u

2(y)dτy

=

∫

∂M
w̄t(y)u(y) (v(y)− u(y)) dτy +

∫

∂M
w̄t(y)u

2(y)dτy,
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where v is the same as defined in (A.2). Since u solves Ktu = r(x), we have

wt(x)u(x) = wt(x)v(x)−
2t

β

∫

∂M
Rt(x,y)u(y)dτy − t r(x).(A.5)

Then, we obtain

∫

∂M
w̄t(y)u(y) (v(y)− u(y)) dτy

=

∫

∂M

w̄t(y)

wt(y)
u(y)

(

2t

β

∫

∂M
Rt(x,y)u(x)dτx − t r(y)

)

dτy

≤ C
√
t

β
‖u‖2L2(∂M) + Ct‖u‖L2(∂M)‖r‖L2(∂M)

≤ C
√
t

β
‖u‖2L2(∂M) + Ct‖u‖L2(∂M)‖r‖H1(M).

Combining above estimates together, we have

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)τy

)

dx

≥
∫

∂M
w̄t(y)u

2(y)dτy − C
√
t

β
‖u‖2L2(∂M) − Ct‖u‖L2(∂M)‖r‖H1(M)

−C
√
t‖u‖L2(M)‖r‖L2(M) −

C
√
t

β

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

∣

∣

∣

∣

.

We can choose
√
t

β small enough such that C
√
t

β ≤ min{ 1
2 ,

wmin

6 } with wmin = minx∈M wt(x),
which gives us

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

≥ 2

3

∫

∂M
w̄t(y)u

2(y)dτy − C
√
t

β
‖u‖2L2(∂M) − Ct‖u‖L2(∂M)‖r‖H1(M) − C

√
t‖u‖L2(M)‖r‖L2(M)

≥ wmin

2
‖u‖2L2(∂M) − Ct‖u‖L2(∂M)‖r‖H1(M) − C

√
t‖u‖L2(M)‖r‖L2(M)

≥ wmin

4
‖u‖2L2(∂M) − Ct2‖r‖2H1(M) − C

√
t‖u‖L2(M)‖r‖L2(M)

Substituting the above estimate to the first inequality (A.3), we obtain

‖∇v‖L2(M) +
wmin

4β
‖u‖2L2(∂M)(A.6)

≤ −C

∫

M
u(x)r(x)dx+

Ct2

β
‖r‖2H1(M) +

C
√
t

β
‖u‖L2(M)‖r‖L2(M)

≤ C‖u‖L2(M)‖r‖L2(M) +
Ct2

β
‖r‖2H1(M).
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Here we require that
√
t

β is bounded by a constant independent on β and t. Now,

using the representation of u given in (A.5), we obtain

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

≤ C‖∇v‖2L2(M) +
Ct2

β2

∥

∥

∥

∥

∇
(

1

wt(x)

∫

∂M
Rt(x,y)u(y)dτy

)∥

∥

∥

∥

2

L2(M)

+Ct2
∥

∥

∥

∥

∇
(

r(x)

wt(x)

)∥

∥

∥

∥

2

L2(M)

+
wmin

8β
‖u‖2L2(∂M)

≤ C‖∇v‖2L2(M) +

(

C
√
t

β2
+

wmin

8β

)

‖u‖2L2(∂M) + Ct‖r‖2L2(M) + Ct2‖r‖2H1(M)

≤ C‖∇v‖2L2(M) +
wmin

4β
‖u‖2L2(∂M) + Ct‖r‖2L2(M) + Ct2‖r‖2H1(M)

≤ C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) +
Ct2

β
‖r‖2H1(M).

Here we require that C
√
t

β ≤ wmin

8 in the third inequality. Furthermore, we have

‖u‖2L2(M) ≤ C

(

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

)

≤ C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) +
Ct2

β
‖r‖2H1(M)

≤ 1

2
‖u‖2L2(M) + C‖r‖2L2(M) +

Ct2

β
‖r‖2H1(M),

which implies that

‖u‖L2(M) ≤ C

(

‖r‖L2(M) +
t√
β
‖r‖H1(M)

)

.

Finally, we obtain

‖∇u‖2L2(M) ≤ C‖u‖L2(M)‖r‖L2(M) +
Ct2

β
‖r‖2H1(M)

≤ C

(

‖r‖L2(M) +
t√
β
‖r‖H1(M)

)2

,

which completes the proof.

A.2. Stability of Kt for boundary term (Theorem 5.7). First, we denote

r(x) =

∫

∂M
b(y) · (x− y)R̄t(x,y)dτy.

The key point of the proof is to show that
∣

∣

∣

∣

∫

M
u(x)r(x)dx

∣

∣

∣

∣

≤ C
√
t ‖b‖H1(M)‖u‖H1(M).(A.7)

Direct calculation gives that

|2t∇ ¯̄Rt(x,y)− (x− y)R̄t(x,y)| ≤ C|x− y|2R̄t(x,y),
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where ¯̄Rt(x,y) = Ct
¯̄R
(

‖x−y‖2

4t

)

and ¯̄R(r) =
∫∞
r

R̄(s)ds. This implies that

∣

∣

∣

∣

∫

M
u(x)

∫

∂M
b(y)

(

(x− y)R̄t(x,y) + 2t∇ ¯̄Rt(x,y)
)

dτydx

∣

∣

∣

∣

(A.8)

≤C

∫

M
|u(x)|

∫

∂M
|b(y)||x− y|2R̄t(x,y)dτydx

≤Ct‖b‖L2(∂M)

(∫

∂M

(∫

M
R̄t(x,y)dx

)(∫

M
|u(x)|2R̄t(x,y)dx

)

dτy

)1/2

≤Ct‖b‖H1(M)

(∫

M
|u(x)|2

(∫

∂M
R̄t(x,y)dτy

)

dx

)1/2

≤Ct3/4‖b‖H1(M)‖u‖L2(M).

On the other hand, using the Gauss integral formula, we have

∫

M
u(x)

∫

∂M
b(y) · ∇ ¯̄Rt(x,y)dτydx(A.9)

=

∫

∂M

∫

M
u(x)Tx(b(y)) · ∇ ¯̄Rt(x,y)dxdτy

=

∫

∂M

∫

∂M
n(x) · Tx(b(y))u(x)

¯̄Rt(x,y)dτxdτy

−
∫

∂M

∫

M
divx[u(x)Tx(b(y))]

¯̄Rt(x,y)dxdτy.

Here Tx is the projection operator to the tangent space on x. To get the first equality,
we use the fact that ∇ ¯̄Rt(x,y) belongs to the tangent space on x, such that b(y) ·
∇ ¯̄Rt(x,y) = Tx(b(y)) · ∇ ¯̄Rt(x,y) and n(x) · Tx(b(y)) = n(x) · b(y) where n(x) is
the out normal of ∂M at x ∈ ∂M.

For the first term, we have

∣

∣

∣

∣

∫

∂M

∫

∂M
n(x) · Tx(b(y))u(x)

¯̄Rt(x,y)dτxdτy

∣

∣

∣

∣

(A.10)

=

∣

∣

∣

∣

∫

∂M

∫

∂M
n(x) · b(y)u(x) ¯̄Rt(x,y)dτxdτy

∣

∣

∣

∣

≤C‖b‖L2(∂M)

(

∫

∂M

(∫

∂M
|u(x)| ¯̄Rt(x,y)dτx

)2

dτy

)1/2

≤C‖b‖H1(M)

(∫

∂M

(∫

∂M
¯̄Rt(x,y)dτx

)(∫

∂M
|u(x)|2 ¯̄Rt(x,y)dτx

)

dτy

)1/2

≤Ct−1/2 ‖b‖H1(M)‖u‖L2(∂M) ≤ Ct−1/2 ‖b‖H1(M)‖u‖H1(M).

We can also bound the second term on the right hand side of (A.9). By using the
assumption that M ∈ C∞, we have

|divx[u(x)Tx(b(y))]|
≤|∇u(x)||Tx(b(y))|||+ |u(x)||divx[Tx(b(y))]|||+ |∇||u(x)Tx(b(y))|
≤C(|∇u(x)|+ |u(x)|)|b(y)|
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where the constant C depends on the curvature of the manifold M.
Then, we have

∣

∣

∣

∣

∫

∂M

∫

M
divx[u(x)Tx(b(y))]

¯̄Rt(x,y)dxdτy

∣

∣

∣

∣

(A.11)

≤ C

∫

∂M
b(y)

∫

M
(|∇u(x)|+ |u(x)|) ¯̄Rt(x,y)dxdτy

≤ C‖b‖L2(∂M)

(∫

M
(|∇u(x)|2 + |u(x)|2)

(∫

∂M
¯̄Rt(x,y)dτy

)

dx

)1/2

≤ Ct−1/4 ‖b‖H1(M)‖u‖H1(M).

Then, the inequality (A.7) is obtained from (A.8), (A.9), (A.10) and (A.11).
Following the proof of Theorem 5.4, in (A.4) and (A.6), we bound

∣

∣

∫

M u(x)r(x)dx
∣

∣

by C
√
t ‖b‖H1(M)‖u‖H1(M), which implies that

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

≤ C
√
t ‖b‖H1(M)‖u‖H1(M) + Ct‖r‖2L2(M) +

Ct2

β
‖r‖2H1(M)

≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + t

)

where we use the estimates that

‖r(x)‖L2(M) ≤ Ct1/4‖b‖H1(M),

‖r(x)‖H1(M) ≤ Ct−1/4‖b‖H1(M).

Then, using the fact that

‖u‖2L2(M) ≤ C

(

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

)

,

we have

‖u‖2H1(M) ≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + t

)

,

which completes the proof.

Appendix B. Error analysis of the discretization (Theorem 5.6). In this
section, we estimate the discretization error introduced by approximating the integrals
in (5.8), that is to prove Theorem 5.6. To simplify the notation, we introduce two
intermediate operators defined as follows,

Lt,hu(x) =
1

t

n
∑

j=1

Rt(x,pj)(u(x)− u(pj))Vj ,(B.1)

Kt,hu(x) =
1

t

n
∑

j=1

Rt(x,pj)(u(x)− u(pj))Vj +
2

β

m
∑

j=1

R̄t(x,pj)u(pj)Aj .(B.2)

If ut,h = If (u) with u satisfying Equation (5.2). One can verify that following equation
is satisfied,

Kt,hut,h(x) =

n
∑

j=1

R̄t(x,pj)f(pj)Vj .(B.3)
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The following lemma is needed for proving Theorem 5.6. Its proof is deferred to
appendix.

Lemma B.1. Suppose u = (u1, · · · , un)
t satisfies equation (5.2), there exist con-

stants C, T0, r0 only depend on M and ∂M, such that

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖If (u)‖H1(M) + C
√
h t3/4‖f‖∞,

as long as t ≤ T0,
√
t

β ≤ r0,
h

t3/2
≤ r0.

Proof. of Theorem 5.6

Denote

ut,h(x) = If (u) =
1

wt,h(x)





n
∑

j=1

Rt(x,pj)ujVj −
2t

β

m
∑

j=1

R̄t(x,pj)ujAj + t
n
∑

j=1

R̄t(x,pj)fjVj



 ,

where u = (u1, · · · , uN )t solves Equation (5.2), fj = f(pj) and wt,h(x) =
∑n

j=1 Rt(x,pj)Vj .
For convenience, we set

at,h(x) =
1

wt,h(x)

n
∑

j=1

Rt(x,pj)ujVj ,

ct,h(x) =
t

wt,h(x)

n
∑

j=1

R̄t(x,pj)f(pj)Vj ,

dt,h(x) =− 2t

βwt,h(x)

m
∑

j=1

R̄t(x,pj)ujAj .

Next we upper bound the approximation error Kt(ut,h)−Kt,h(ut,h). Since ut,h =
at,h + ct,h + dt,h, we only need to upper bound the approximation error for at,h, ct,h
and dt,h separately. For ct,h,

|(Ktct,h −Kt,hct,h) (x)|

≤ 1

t
|ct,h(x)|

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)dy −

n
∑

j=1

Rt(x,pj)Vj

∣

∣

∣

∣

∣

∣

+
1

t

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)ct,h(y)dy −

n
∑

j=1

Rt(x,pj)ct,h(pj)Vj

∣

∣

∣

∣

∣

∣

+
2

β

∣

∣

∣

∣

∣

∣

∫

∂M
R̄t(x,y)ct,h(y)dτy −

m
∑

j=1

R̄t(x,pj)ct,h(pj)Aj

∣

∣

∣

∣

∣

∣

≤ Ch

t3/2
|ct,h(x)|+

Ch

t3/2
‖ct,h‖∞ +

Ch

t
‖∇ct,h‖∞ +

Ch

β

(

t−1‖ct,h‖∞ + t−1/2‖∇ct,h‖∞
)

≤ Ch√
t

(

1 +

√
t

β

)

‖f‖∞.
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Now we upper bound ‖Ktat,h −Kt,hat,h‖L2(M). First, we have

∫

M
(at,h(x))

2

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)dy −

n
∑

j=1

Rt(x,pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.4)

≤ Ch2

t

∫

M





1

wt,h(x)

n
∑

j=1

Rt(x,pj)ujVj





2

dx

≤ Ch2

t

∫

M





n
∑

j=1

Rt(x,pj)u
2
jVj









n
∑

j=1

Rt(x,pj)Vj



 dx

≤ Ch2

t





n
∑

j=1

u2
jVj

∫

M
Rt(x,pj)dx



 ≤ Ch2

t

n
∑

j=1

u2
jVj .

Let

K1 = Ct

∫

M

1

wt,h(y)
R

( |x− y|2
4t

)

R

( |pi − y|2
4t

)

dy

− Ct

n
∑

j=1

1

wt,h(pj)
R

( |x− pj |2
4t

)

R

( |pi − pj |2
4t

)

Vj .

We have |K1| < Ch
t1/2

for some constant C independent of t. In addition, notice that
only when |x− pi|2 ≤ 16t is K1 6= 0, which implies

|K1| ≤
1

δ0
|K1|R

( |x− pi|2
32t

)

.

Then we have

∫

M

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)at,h(y)dy −

n
∑

j=1

Rt(x,pj)at,h(pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.5)

=

∫

M

(

n
∑

i=1

CtuiViK1

)2

dx

≤ Ch2

t

∫

M

(

n
∑

i=1

Ct|ui|ViR

( |x− pi|2
32t

)

)2

dx

≤ Ch2

t

∫

M

(

n
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iVi

)(

n
∑

i=1

CtR

( |x− pi|2
32t

)

Vi

)

dx

≤ Ch2

t

n
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iVi

)

)

≤ Ch2

t

(

n
∑

i=1

u2
iVi

)

.

Let

K2 = Ct

∫

∂M

1

wt,h(y)
R̄

( |x− y|2
4t

)

R

( |pi − y|2
4t

)

dτy

− Ct

m
∑

j=1

1

wt,h(pj)
R̄

( |x− pj |2
4t

)

R

( |pi − pj |2
4t

)

Aj .
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We have |K2| < Ch
t for some constant C independent of t. In addition, notice that

only when |x− pi|2 ≤ 16t is K2 6= 0, which implies

|K2| ≤
1

δ0
|K2|R

( |x− pi|2
32t

)

.

Then

∫

M

∣

∣

∣

∣

∣

∣

∫

∂M
R̄t(x,y)at,h(y)dτy −

m
∑

j=1

R̄t(x,pj)at,h(pj)Aj

∣

∣

∣

∣

∣

∣

2

dx(B.6)

=

∫

M

(

n
∑

i=1

CtuiViK2

)2

dx

≤ Ch2

t2

∫

M

(

n
∑

i=1

Ct|ui|ViR

( |x− pi|2
32t

)

)2

dx

≤ Ch2

t2

∫

M

(

n
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iVi

)(

n
∑

i=1

CtR

( |x− pi|2
32t

)

Vi

)

dx

≤ Ch2

t2

n
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iVi

)

)

≤ Ch2

t2

(

n
∑

i=1

u2
iVi

)

.

Combining Equation (B.4), (B.5) and (B.6),

‖Ktat,h −Kt,hat,h‖L2(M) ≤
Ch

t3/2

(

1 +

√
t

β

)

(

n
∑

i=1

u2
iVi

)1/2

Now we upper bound ‖Ktdt,h −Kt,hdt,h‖L2
. We have

∫

M
(dt,h(x))

2

∣

∣

∣

∣

∣

∣

∫

M
R̄t(x,y)dτy −

n
∑

j=1

R̄t(x,pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.7)

≤ Ch2

t2

∫

M
(dt,h(x))

2
dx

≤ Ch2t

β2

∫

M





1

wt,h(x)

m
∑

j=1

R̄t(x,pj)ujAj





2

dx

≤ Ch2t

β2

∫

M





m
∑

j=1

R̄t(x,pj)u
2
jAj









m
∑

j=1

R̄t(x,pj)Aj



 dx

≤ Ch2
√
t

β2





m
∑

j=1

u2
jAj

∫

M
R̄t(x,pj)dx



 ≤ Ch2
√
t

β2

m
∑

j=1

u2
jAj .

Let

K3 = Ct

∫

M

1

wt,h(y)
R

( |x− y|2
4t

)

R̄

( |pi − y|2
4t

)

dy

− Ct

n
∑

j=1

1

wt,h(pj)
R

( |x− pj |2
4t

)

R̄

( |pi − pj |2
4t

)

Vj .
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We have |K3| < Ch
t1/2

for some constant K3 independent of t. In addition, notice that
only when |x− pi|2 ≤ 16t is K3 6= 0, which implies

|K3| ≤
1

δ0
|C|R

( |x− pi|2
4t

)

.

Then we have

∫

M

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)dt,h(y)dy −

n
∑

j=1

Rt(x,pj)dt,h(pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.8)

=
4t2

β2

∫

M

(

m
∑

i=1

CtuiAiK3

)2

dx

≤ Ch2t

β2

∫

M

(

m
∑

i=1

Ct|ui|AiR

( |x− pi|2
32t

)

)2

dx

≤ Ch2t

β2

∫

M

(

m
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iAi

)(

m
∑

i=1

CtR

( |x− pi|2
32t

)

Ai

)

dx

≤ Ch2
√
t

β2

m
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iAi

)

)

≤ Ch2
√
t

β2

(

m
∑

i=1

u2
iAi

)

.

Let

K4 = Ct

∫

∂M

1

wt,h(y)
R̄

( |x− y|2
4t

)

R̄

( |pi − y|2
4t

)

dτy

− Ct

m
∑

j=1

1

wt,h(pj)
R̄

( |x− pj |2
4t

)

R̄

( |pi − pj |2
4t

)

Aj .

We have |K4| < Ch
t for some constant C independent of t. In addition, notice that

only when |x− pi|2 ≤ 16t is K4 6= 0, which implies

|K4| ≤
1

δ0
|K4|R

( |x− pi|2
32t

)

.

and

∫

M

∣

∣

∣

∣

∣

∣

∫

∂M
R̄t(x,y)dt,h(y)dτy −

∑

j

R̄t(x,pj)dt,h(pj)Aj

∣

∣

∣

∣

∣

∣

2

dx(B.9)

=
4t2

β2

∫

M

(

m
∑

i=1

CtuiAiK4

)2

dx

≤ Ch2

β2

∫

M

(

m
∑

i=1

Ct|ui|AiR

( |x− pi|2
32t

)

)2

dx

≤ Ch2

β2

∫

M

(

m
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iAi

)(

m
∑

i=1

CtR

( |x− pi|2
32t

)

Ai

)

dx

≤ Ch2

β2
√
t

m
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iAi

)

)

≤ Ch2

β2
√
t

(

m
∑

i=1

u2
iAi

)

.
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Combining Equation (B.7), (B.8) and (B.9),

‖Ktdt,h −Kt,hdt,h‖L2(M) ≤
Ch

βt3/4

(

1 +

√
t

β

)

(

m
∑

i=1

u2
iAi

)1/2

Now assembling the parts together, we have the following upper bound.

‖Ktut,h −Kt,hut,h‖L2(M)(B.10)

≤ Ch

t3/2



‖g‖∞ + t‖f‖∞ +

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2


 .

At the same time, since ut solves Ktut =
∫

M R̄t(x,y)f(y)dy and ut,h solves (B.3)
respectively, we have

‖Kt(ut)−Kt,h(ut,h)‖L2(M)(B.11)

=

(∫

M
((Ktut −Kt,hut,h) (x))

2
dx

)1/2

≤







∫

M





∫

M
R̄t(x,y)f(y)−

n
∑

j=1

R̄t(x,pj)f(pj)Vj





2

dx







1/2

≤ Ch

t1/2
‖f‖∞.

From Equation (B.10) and (B.11), we get
(B.12)

‖Ktut − Ltut,h‖L2(M) ≤
Ch

t3/2





(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

+ t‖f‖∞



 .

Using the similar techniques, we can get the upper bound of ‖∇(Ktut−Ltut,h)‖L2(M)

as following.
(B.13)

‖∇ (Ktut − Ltut,h) ‖L2(M) ≤
Ch

t2



t‖f‖C1(M) +

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2


 .

In the remaining of the proof, we only need to get a prior estimate of
(
∑n

i=1 u
2
iVi

)1/2
+

t1/4
(
∑m

l=1 u
2
lAl

)1/2
. First, using the estimate (B.12) and (B.13) and the Theorem

5.4, we have

‖ut,h‖H1(M) ≤
Ch

t3/2





(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

+ t‖f‖∞





+C‖Ktut‖L2(M) + Ct3/4‖Ktut‖H1(M).(B.14)

Using the relation that Ktut = −
∫

M R̄t(x,y)f(y)y, it is easy to get that

‖Ktut‖L2(M) ≤ C‖f‖∞,(B.15)

‖∇(Ktut)‖L2(M) ≤
C

t1/2
‖f‖∞.(B.16)
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Substituting above estimates in (B.14), we have

‖ut,h‖H1(M) ≤
Ch

t3/2





(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

+ t‖f‖∞



+ C‖f‖∞.

Using Lemma B.1, we have

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖ut,h‖H1(M) + C
√
h
(

t3/4‖f‖∞ + ‖g‖∞
)

≤ Ch

t3/2



t‖f‖∞ +

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2




+C‖f‖∞ + C
√
h t3/4‖f‖∞(B.17)

Using the assumption that h
t3/2

is small enough such that Ch
t3/2

≤ 1
2 , we have

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖f‖∞(B.18)

Then the proof is complete by substituting above estimate (B.18) in (B.12) and (B.13).

Appendix C. Proof of Lemma B.1.
Proof. First, denote

ut,h(x) = If (u) =
1

wt,h(x)





n
∑

j=1

Rt(x,pj)ujVj −
2t

β

m
∑

j=1

R̄t(x,pj)ujAj + t

n
∑

j=1

R̄t(x,pj)fjVj



 ,

where fj = f(pj) and wt,h(x) =
∑n

j=1 Rt(x,pj)Vj and u = (u1, · · · , un) solves (5.2).
Let

v1(x) =
1

wt,h(x)

n
∑

j=1

Rt(x,pj)ujVj , and

v2(x) = − 2t

βwt,h(x)

m
∑

j=1

R̄t(x,pj)ujAj , and

v3(x) =
t

wt,h(x)

n
∑

j=1

R̄t(x,pj)fjVj ,

and then ut,h = v1 + v2 + v3 and
∣

∣

∣

∣

∣

∣

‖ut,h‖2L2(M) −
n
∑

j=1

u2
jVj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3
∑

m,m′=1





∫

M
vm(x)vm′(x)dµx −

n
∑

j=1

vm(xj)vm′(xj)Vj





∣

∣

∣

∣

∣

∣

≤
3
∑

m,m′=1

∣

∣

∣

∣

∣

∣

∫

M
vm(x)vm′(x)dµx −

n
∑

j=1

vm(xj)vm′(xj)Vj

∣

∣

∣

∣

∣

∣

.
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We now estimate these six terms in the above summation one by one. First, we
consider the term with m = m′ = 1. Denote

A =

∫

M

Ct

w2
t,h(x)

R

( |x− pi|2
4t

)

R

( |x− pl|2
4t

)

dµx −

n
∑

j=1

Ct

w2
t,h(pj)

R

( |pj − pi|2
4t

)

R

( |pj − pl|2
4t

)

Vj ,

and then |A| ≤ Ch
t1/2

. At the same time, notice that only when |pi − pl|2 < 16t is
A 6= 0. Thus we have

|A| ≤ 1

δ0
|A|R(

|pi − pl|2
32t

),

and

∣

∣

∣

∣

∣

∣

∫

M
v21(x)dµx −

n
∑

j=1

v21(pj)Vj

∣

∣

∣

∣

∣

∣

≤
n
∑

i,l=1

|CtuiulViVl||A|

≤ Ch

t1/2

n
∑

i,l=1

∣

∣

∣

∣

CtR

( |pi − pl|2
32t

)

uiulViVl

∣

∣

∣

∣

≤ Ch

t1/2

n
∑

i=1

(

n
∑

l=1

CtR

( |pi − pl|2
32t

)

Vl

)1/2( n
∑

l=1

CtR

( |pi − pl|2
32t

)

u2
l Vl

)1/2

uiVi

≤ Ch

t1/2

(

n
∑

i=1

n
∑

l=1

CtR

( |pi − pl|2
32t

)

u2
l VlVi

)1/2( n
∑

i=1

u2
iVi

)1/2

.

=
Ch

t1/2

(

n
∑

l=1

u2
l Vl

n
∑

i=1

CtR

( |pi − pl|2
32t

)

Vi

)1/2( n
∑

i=1

u2
iVi

)1/2

≤ Ch

t1/2

n
∑

i=1

u2
iVi.

Using a similar argument, we can obtain the following estimates for the remaining
terms,

∣

∣

∣

∣

∣

∣

∫

M
v1(x)v2(x)dµx −

n
∑

j=1

v1(pj)v2(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht1/4

β

(

n
∑

i=1

u2
iVi

)1/2( m
∑

l=1

u2
lAl

)1/2

,

∣

∣

∣

∣

∣

∣

∫

M
v1(x)v3(x)dµx −

n
∑

j=1

v1(pj)v3(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht1/2

(

n
∑

i=1

u2
iVi

)1/2




n
∑

j=1

f2
j Vj





1/2

,
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∣

∣

∣

∣

∣

∣

∫

M
v22(x)dµx −

n
∑

j=1

v22(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht

β2

m
∑

l=1

u2
lAl, and

∣

∣

∣

∣

∣

∣

∫

M
v2(x)v3(x)dµx −

n
∑

j=1

v2(pj)v3(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht5/4

β

(

m
∑

l=1

u2
lAl

)1/2




n
∑

j=1

f2
j Vj





1/2

, and

∣

∣

∣

∣

∣

∣

∫

M
v23(x)dµx −

n
∑

j=1

v23(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht3/2
n
∑

j=1

f2
j Vj .

Assembling all the above estimates together, we obtain
∣

∣

∣

∣

∣

‖ut,h‖2L2(M) −
n
∑

i=1

u2
iVi

∣

∣

∣

∣

∣

≤ Ch

t1/2

(

n
∑

i=1

u2
iVi + t1/2

m
∑

l=1

u2
lAl + t2‖f‖2∞

)

.

Similarly, we have
∣

∣

∣

∣

∣

‖ut,h‖2L2(∂M) −
m
∑

l=1

u2
lAl

∣

∣

∣

∣

∣

≤ Ch

t

(

n
∑

i=1

u2
iVi + t1/2

m
∑

l=1

u2
lAl + t2‖f‖2∞

)

.

Using the assumption that h
t1/2

is small enough such that Ch
t1/2

≤ 1
2 , we obtain

n
∑

i=1

u2
iVi + t1/2

m
∑

l=1

u2
lAl ≤ 2

(

‖ut,h‖2L2(M) + t1/2‖ut,h‖2L2(∂M)

)

+ Ch
(

t3/2‖f‖2∞
)

≤ C‖ut,h‖2H1(M) + Cht3/2‖f‖2∞,

which implies that

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖ut,h‖H1(M) + C
√
h t3/4‖f‖∞.
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