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Abstract

In this paper, we formulate the deep residual network (ResNet) as a control problem

of transport equation. In ResNet, the transport equation is solved along the character-

istics. Based on this observation, deep neural network is closely related to the control

problem of PDEs on manifold. We propose several models based on transport equa-

tion, Hamilton-Jacobi equation and Fokker-Planck equation. The discretization of these

PDEs on point cloud is also discussed.
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1 Deep Residual Network

Deep convolution neural networks have achieved great successes in image classification.

Recently, an approach of deep residual learning is proposed to tackle the degradation in the

classical deep neural network [7, 8]. The deep residual network can be realized by adding

shortcut connections in the classical CNN. A building block is shown in Fig. 1. Formally,

a building block is defined as:

y = F (x, {Wi}) + x.

Here x and y are the input and output vectors of the layers. The function F (x, {Wi})
represents the residual mapping to be learned. In Fig. 1, F = W2 · σ(W1 · σ(x)) in which

σ = ReLU ◦ BN denotes composition of ReLU and Batch-Normalization.
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Figure 1: Building block of residual learning [8].

2 Transport Equation and ResNet

Consider the the terminal value problem of linear transport equation in Rd:
∂u

∂t
− v(x, t) · ∇u = 0, x ∈ Rd, t ≥ 0,

u(x, 1) = f(x), x ∈ Rd.
(1)

where v(x, t) is a given velocity field, f is the composition of the output function and the

fully connected layer. If we use the softmax activation function,

f(x) = softmax(WFC · x), (2)

where WFC is the weight in the fully connected layer, softmax function is given by

softmax(x)i =
exp(xi)∑
j exp(xj)

.

which models posterior probability of the instance belonging to each class.

It is well-known that the solution at t = 0 can be approximately solved along the

characteristics:
dx(t;x)

dt
= v (x(t;x), t) , x(0;x) = x. (3)

We know that along the characteristics, u is a constant:

u(x, 0) = u (x(1;x), T ) = f(x(1;x)).

Let {tk}Lk=0 with t0 = 0 and tL = 1 be a partition of [0, 1]. The characteristic of the

transport equation (3) can be solved by using simple forward Euler discretization from

x0(x) = x:

Xk+1(x) = Xk(x) + ∆tv(Xk(x), tk), (4)
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where ∆t is the time step. If we choose the velocity field such that

∆tv(x, t) = W (2)(t) · σ
(
W (1)(t) · σ(x)

)
, (5)

where W (1)(t) and W (2)(t) corresponds to the ’weight’ layers in the residual block, σ =

ReLU ◦ BN, one step in the forward Euler discretization (4) actually recovers one layer in

the deep ResNets, Fig. 1. Then the numerical solution of the transport equation (1) at

t = 0 is given by

u(x, 0) = f(XL(x)) (6)

This is exactly the output we get from the ResNets.

If x is a point from the training set, we already have a labeled value g(x) on it. Then

we want to match the output value given in (6) and g(x) to train the parameters in the

velocity filed (5) and the terminal value.

Based on above analysis, we see that the training process of ResNet can be formulated

as an control problem of a transport equation in Rd.
∂u

∂t
(x, t)− v(x, t) · ∇u(x, t) = 0, x ∈ Rd, t ≥ 0,

u(x, 1) = f(x), x ∈ Rd,
u(xi, 0) = g(xi), xi ∈ T.

(7)

where T denotes the training set. g(xi) is the labeled value at sample xi. Function u may

be scalar or vector value in different applications.

So far, we just formulate ResNet as a control problem of transport equation. This model

will inspire us to get new models by replacing different component in the control problem.

3 Modified PDE model

From the PDE point of view, ResNet consists of five components:

• PDE: transport equation;

• Numerical method: characteristic+forward Euler;

• Velocity filed model: v(x, t) = W (2)(t) · σ
(
W (1)(t) · σ(x)

)
;

• Terminal value: f(x) = softmax(WFC · x);

• Initial value: label on the training set g(xi), xi ∈ T .

In five components listed above, the last one, ”initial value”, is given by the data and

we have no other choice. All other four components, we can consider to replace them by

other options. Recently, there are many works in replacing forward Euler by other ODE

solver. Forward Euler is the simplest ODE solver. By replacing it to other solver, we
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may get different network. In some sense, in DenseNet [9], forward Euler is replaced by

some multi-step scheme. There are many numerical schemes to solve the ODE (3). Some

numerical scheme may be too complicated to be used in DNN. Constructing good ODE

solver in DNN is an interesting problem worth to exploit in our future work.

3.1 Terminal Value

From the control problem point of view, the softmax output function is not a good choice

for terminal vaule, since they are pre-determined, may be far from the real value. Semi-

supevised learning (SSL) seems provides a good way to get terminal value instead of the

pre-determined softmax function as shown in Fig. 2(b).

DNN

X(x;Θ)

Output

Softmax

DNN

X(x;Θ)

Output

SSL

DNN

X(x;Θ)

WNLL

Output

(a) (b) (c)

Figure 2: (a): standard DNN; (b): DNN with semi-supervised learning; (c): DNN with last

layer replaced by WNLL.

Recently, we try to use weighted nonlocal Laplacian [11] to replace softmax and the

results is pretty encouraging [12].

3.2 Velocity Field Model

In transport equation, we need to model a high dimensional velocity filed. In general, it is

very difficult to compute a high dimensional vector field. In the application associated to

images, the successes of CNN and ResNet have proved that the velocity filed model based

on convolutional operators, (8), is effective and powerful.

v(x, t) = W (2)(t) · σ
(
W (1)(t) · σ(x)

)
. (8)

However, this is not the only way to model the velocity field. Moreover, for the applications

in which convolutional operator makes no sense, we have to propose alternative velocity

model. Here, we propose a model based on Hamilton-Jacobi equation to reduce the degree

of freedom in the velocity field.

Notice that even though the velocity v(x, t) is a high dimensional vector field, in the

tranport equation, only the component along ∇u is useful. Based on this observation, one
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idea is only model the component along ∇u by introducing v̄(x, t) = v(x, t) · n(x, t) and

n(x, t) = ∇Mu
|∇Mu| . Then the transport equation in (7) becomes a Hamilton-Jacobi equation.

We get a control problem of Hamilton-Jacobi equation.
∂u

∂t
− v̄(x, t) · |∇u| = 0, x ∈ Rd, t ≥ 0,

u(x, 0) = f(x), x ∈M,

u(xi, 1) = g(xi), xi ∈ T.

(9)

In (7), the velocity field, v(x, t), is a d-dimensional vector field. Meanwhile, in the

Hamilton-Jacobi model, we only need to model a scalar function v̄(x, t). The number of

parameters can be reduced tremendously. To model a scalar function is much easier than

model a high dimensional vector field. There are already many ways to approximate v̄(x, t).

1. The simplest way is to model v̄(x, t) as a linear function with respect to x, i.e.

v̄(x, t) = w(t) · x+ b(t), w(t) ∈ Rd, b(t) ∈ R. (10)

Although v̄(x, t) is a linear function to x, the whole model (9) is not a linear model

since Hamilton-Jacobi equation is a nonlinear equation.

2. Neural network is consider to be an effective way to approximate scalar function in

high dimensioanl space. One option is a simple MLP with one hidden layer as shown

in Fig. 3.

Weight

d×m
ReLU

Weight

m× 1
x ∈ Rd v̄(x) ∈ R

Figure 3: MLP model with one hidden layer for v̄(x, t) in (9).

There are many other neural networks in the literature to approximate scalar function

in high dimensioanl space.

3. Radial basis function is another way to approximate v̄(x, t). Radial functions centered

at each sample point are used as basis function to approximate v̄(x, t), i.e.

v̄(x, t) =
∑
xj∈P

cj(t)R

(
|x− xj |2

σ2j

)
(11)

where cj(t), j = 1, · · · , |P | are coefficients of the basis function. One often used basis

function is Gaussian function, R(r) = exp(−r).
Another difficulty in solving model (9) is efficient numerical solver of Hamilton-Jacobi

equation in high dimensional space. Hamilton-Jacobi equation is a nonlinear equation

which is more difficult to solve than linear transport equation in (7). Recently, fast solver

of Hamilton-Jacobi equation in high dimensional space attracts lots of attentions and many

efficient methods have been developed [1, 2, 3, 4, 5, 6].
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3.3 PDEs on point cloud

Another thing we can consider to change is the characteristic method in solving the transport

equation. There are many other numerical method for transport equation based on Eulerian

grid. However, in these methods, we need to discretize the whole space Rd by Eulerian grid,

which is impossible when d is high. So in high dimensional space Rd, characteristic method

seems to be the only practical numerical method to solve the transport equation. On the

other hand, we only need to solve the transport equation in the dataset instead of the whole

Rd space. Usually, we can assume that the data set sample a low dimensional manifold

M⊂ Rd, then the PDE can be confined on this manifold. The manifold is sampled by the

point cloud consists of the data set including the training set and the test set. Then the

numerical methods in point cloud can be used to solve the PDE.

Transport equation In the manifold, the transport equation model (7) can be rewritten

as follows: 
∂u

∂t
− v(x, t) · ∇Mu = 0, x ∈M ⊂ Rd, t ≥ 0,

u(x, 0) = f(x), x ∈M,

u(xi, 1) = g(xi), xi ∈ T.

(12)

∇M denotes the gradient on manifold M. Let X : V ⊂ Rm → M ⊂ Rd be a local

parametrization of M and θ ∈ V . For any differentiable function u : M→ R, let U(θ) =

f(X(θ)), define

Dku(X(θ)) =
m∑

i,j=1

gij(θ)
∂Xk

∂θi
(θ)

∂U

∂θj
(θ), k = 1, · · · , d. (13)

where (gij)i,j=1,··· ,m = G−1 and G(θ) = (gij)i,j=1,··· ,m is the first fundamental form which

is defined by

gij(θ) =
d∑

k=1

∂Xk

∂θi
(θ)

∂Xk

∂θj
(θ), i, j = 1, · · · ,m. (14)

∇M is defined as

∇Mu = (D1u,D2u, · · · , Ddu). (15)

In (12), the manifold M is sampled by the data set P and P is a collection of unstruc-

tured high dimensional points. Unlike the classical numerical methods which solve PDE on

regular grids (or meshes), in this case, we need to discretize PDE on unstructured high di-

mensional point cloud P . To handle this kind of problems, recently, point integral method

(PIM) was developed to solve PDE on point cloud. In PIM, gradient on point cloud is

approximate by an integral formula [10].

Dku(x) =
1

wδ(x)

∫
M

(u(x)− u(y)) (xk − yk)Rδ(x,y)dy. (16)
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where wδ(x) =
∫
MRδ(x,y)dy,

Rδ(x,y) = R

(‖x− y‖2
δ2

)
. (17)

The kernel function R(r) : R+ → R+ is assumed to be a C2 function with compact support.

Corresponding discretization is

Dku(x) =
1

w̄δ(x)

∑
y∈P

(u(x)− u(y)) (xk − yk)Rδ(x,y)V (y). (18)

w̄δ(x) =
∑

y∈P Rδ(x,y)V (y) and V (y) is the volume weight of y depends on the distribu-

tion of the point cloud in the manifold.

Hamilton-Jacobi equation We can also confine the Hamilton-Jacobi equation in (9) in

the manifold. 
∂u

∂t
− v̄(x, t) · |∇Mu| = 0, x ∈M ⊂ Rd, t ≥ 0,

u(x, 0) = f(x), x ∈M,

u(xi, 1) = g(xi), xi ∈ T.

(19)

On the point cloud, one possible choice to discretize |∇Mu| is

|∇Mu(x)| =
(∫
M
w(x,y)(u(x)− u(y))2dy

)1/2

. (20)

v̄(x, t) can be modeled in the way discussed in the previous section.

PDEs with dissipation We can also consider to add dissipation to stabilize the PDEs.

∂u

∂t
− v̄(x, t) · |∇Mu| = ∆Mu, x ∈M ⊂ Rd, t ≥ 0,

u(x, 0) = f(x), x ∈M,

u(xi, t) = g(xi), xi ∈ S,
u(xi, 1) = g(xi), xi ∈ T\S,
∂u

∂n
(x, t) = 0, x ∈ ∂M.

(21)

In the model with dissipation, we need to add constraints, u(xi, t) = g(xi), xi ∈ S ⊂ T

in a subset S of the training set T . Otherwise, the solution will be too smooth to fit the

data due to the viscosity. The choice of S is an issue. The simplest way is to choose S at

random. In some sense, the viscous term maintains the regularity of the solution and the

convection term is used to fit the data.

On the point cloud, the Laplace-Beltrami operator along with the constraints u(xi, t) =

g(xi), xi ∈ S ⊂ T can be discretized by the weighted nonlocal Laplacian [11].
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4 Discussion

In this paper, we establish the connection between the deep residual network (ResNet)

and the transport equation. ResNet can be formulated as solving a control problem of

transport equation along the characteristics. Based on this observation, we propose several

PDE models on the manifold sampled by the data set. We consider the control problem of

transport equation, Hamilton-Jacobi equation and viscous Hamilton-Jacobi equation.

This is a very preliminary discussion on the relation between deep learning and PDEs.

There are many important issues remaining unresolved including the model of the velocity

field, numerical solver of the control problem and so on. This is just the first step in

exploring the relation between deep learning and control problems of PDEs.
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