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Abstract. We present the application of a low dimensional manifold model (LDMM) on hy-
perspectral image (HSI) reconstruction. An important property of hyperspectral images is that the
patch manifold, which is sampled by the three-dimensional blocks in the data cube, is generally of
a low dimensional nature. This is a generalization of low-rank models in that hyperspectral images
with nonlinear mixing terms can also fit in this framework. The point integral method (PIM) is used
to solve a Laplace-Beltrami equation over a point cloud sampling the patch manifold in LDMM.
Both numerical simulations and theoretical analysis show that the sample points constraint is cor-
rectly enforced by PIM. The framework is demonstrated by experiments on the reconstruction of
both linear and nonlinear mixed hyperspectral images with a significant number of missing voxels
and several entirely missing spectral bands.

1. Introduction. Hyperspectral imagery is an important domain in remote
sensing with numerous applications [3]. A hyperspectral image (HSI) is a set of images
of the same geographic location taken at up to 200 different wavelengths. When such
data of high spatial-spectral dimensionality are collected, it is not uncommon that
they are degraded. For instance, some of the voxels, or sometimes several spectral
bands, are missing due to the malfunctions of the hyperspectral cameras. Typically,
the measuring process can be formulated as:

(1.1) y = ΦIf + ε,

where f and y are the “original” and “observed” HSI data cube, ε is the additive
noise, and ΦI is the projection operator corresponding to the missing data. More
specifically,

ΦIf(x) =

{

f(x) ,x ∈ I
0 ,x 6∈ I.

(1.2)

An important task in HSI analysis is to recover the original data cube from the
incomplete data. It is an ill-posed problem to recover f from (1.1), and some prior
knowledge of the original data cube f must be exploited.

One commonly used prior information of HSI is that the three-dimensional (3D)
data cube is of a low-rank nature under the linear mixing model (LMM) [1]. More
specifically, the spectral signature of each pixel is assumed to be a linear combination
of a few constituent spectra, called endmemers. Under such an assumption, sparse
representation techniques have been used to reconstruct the original HSI [4, 9, 18,
19]. However, such approaches all assume the low-rank property of the hyperspectral
images, which results from the LMM. Despite the simplicity of LMM, the linear mixing
assumption has been shown to be physically inaccurate in certain situations [5].
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Graph based methods with various regularizations can also be applied to recover
f from (1.1). A well-studied and commonly used model is the total variation (TV)
method introduced by Rudin, Osher, and Fatemi in 1992 [14]:

(1.3) min
f

‖∇f‖L1 + λ‖y − ΦIf‖
2
2,

where ‖∇f‖L1 is the total variation semi-norm. The total variation method has the
advantage of recovering images while keeping the edges intact. However, this is a local
method in the sense that the gradient of a pixel is computed by its immediate adjacent
pixels. It is known that local image processing methods fail to achieve satisfactory
results for images with repetitive structures. Therefore nonlocal methods are usually
preferred to process images with textures. Buades, Coll, and Morel introduced non-
local means as a filter for image denoising [2]. Zhou and Schölkopf also constructed a
theory of nonlocal operators in their work [20]. Gilboa and Osher [6] later formalized
a systematic framework for nonlocal image processing. In essence, nonlocal methods
replace the local gradient with its nonlocal counterpart ∇wu ∈ L2(Ω, L2(Ω)):

(1.4) ∇wu(x)(y) =
√

w(x, y)(u(x)− u(y)),

where w(x, y) is the weight between x and y, and is defined as the similarity between
two patches around x and y. The nonlocal total variation (NLTV) model for problem
(1.1) becomes:

(1.5) min
f

‖∇wf‖L1 + λ‖y − ΦIf‖
2
2.

Nonlocal methods have been shown to achieve better results than local methods
in image processing problems, and they have also been applied to HSI classification [8,
11, 21]. However, nonlocal methods do not perform very well on image reconstruction
problems with a significant number of uniformly distributed missing pixels (over 90%)
[13], and the reason is that the sample points constraint is not correctly enforced in
nonlocal methods.

In [13], the authors proposed a low dimensional manifold model (LDMM) for
general image processing problems. In the core of the model, the dimension of the
patch manifold is utilized as a regularization to recover the image. The key step of
the model is to solve the following Laplace-Beltrami equation over the manifold M:











−∆Mu(x) + µ
∑

y∈Ω

δ(x− y)(u(y) − v(y)) = 0, x ∈ M

∂u

∂n
(x) = 0, x ∈ ∂M,

(1.6)

where Ω is the patch set spanned by the image, and M is the underlying patch
manifold embedded in the Euclidean space. The above equation (1.6) is solved by
the point integral method (PIM)[10, 15, 16]. The PIM approximates (1.6) with an
integral equation instead of discretizing the Laplace operator using the traditional
graph Laplacian, which was found to be inconsistent due to the boundary conditions.
LDMM achieves excellent results, especially in image inpainting problems where the
number of missing pixels is large.

In this paper, we extend the idea in [13] and apply LDMM to the reconstruction
of HSI with a large number of missing voxels and several entirely missing spectral
bands. The low dimensional nature of the patch manifold of HSI is exploited and
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Fig. 1. Diagram of patch set P (black points), trivial parameterization (red curve) and patch
manifold M.

good recovery results have been achieved on both linearly and nonlinearly mixed HSI.
LDMM can be used as a reconstruction method for severely degraded HSI, and it
can also be utilized in the data collection process in the first place (i.e. purposefully
measuring only a very small portion of the data).

The paper is organized as follows: In Section 2 we define the patch manifold of
HSI and analyze its low dimensionality. In Section 3, we propose the low dimensional
manifold model, and discuss the numerical implementation of LDMM including the
point integral method, discretization, etc. Different choices of the patch manifold and
proper initializations are discussed in Section 4. Numerical results are presented in
Section 5. Finally, we draw conclusions in Section 6.

2. Patch Manifold. In this section, we describe the patch manifold of HSI and
analyze its dimensionality. Assume we have a hyperspectral image f ∈ R

m×n×B,
where m× n is the spatial dimension of the image and B is the length of the spectral
signatures. For any (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}, we define a patch pij(f) as
a 3D block of size s1 × s2 × B of the original data cube f , and the pixel (i, j) is the
top-left corner of the rectangle of size s1 × s2. The patch set P(f) is defined as the
collection of all patches:

(2.1) P(f) = {pij(f) : (i, j) ∈ {1, 2, . . . ,m}×{1, 2, . . . , n}} ⊂ R
d, d = s1× s2×B.

The patch set P(f) has a trivial 2D parameterization which is given as (i, j) 7→
pij(f). In this sense, the patch set is locally a 2D sub-manifold embedded in R

d.
However, this parameterization is globally not injective and typically leads to high
curvature variations and self-intersections in real applications.

For a given hyperspectral image f , the patch set P(f) gives a point cloud in R
d.

It is found that this point cloud is usually close to a smooth manifold M(f) embedded
in R

d. This underlying smooth manifold is called the patch manifold associated with
f , denoted as M(f). Fig. 1 gives a diagram shows the relation between patch set,
trival parameterization and patch manifold.

Besides the manifold structure, it is found that for real-life hyperspectral images,
the patch manifold M(f) is always of low dimensionality. In the following analysis,
we assume that f is a discrete sampling of a continuous function f̃ : [0, 1]3 → R. More
specifically, f(i, j, k) = f̃(xi, yj, tk), where (xi, yj , tk) = (i∆x, j∆y, k∆t).

Under the linear mixing model (LMM), there is a small collection of constituent
elements (endmembers) el ∈ L2([0, 1]), l = 1, 2, . . . ,K that generate the entire image
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f̃ ∈ L2([0, 1]3). More specifically,

(2.2) f̃(x, y, t) =
K
∑

l=1

βl(x, y)el(t), βl(x, y) ≥ 0.

Then the patch p(x,y)f ∈ R
d can be written down as:

(2.3) p(x,y)f(i, j, k) = f̃(x+ xi, y + yj , tk) =

K
∑

l=1

βl(x + xi, y + yj)el(tk).

In practice, we usually choose the size of the patches s1 × s2 small enough to be
consistent with the spatial resolution of the HSI. So locally inside the patch, βl(x +
xi, y + yj) can be approximated by Taylor expansion:

p(x,y)f(i, j, k) ≈

K
∑

l=1

(

βl(x, y) +
∂βl

∂x
(x, y) · xi +

∂βl

∂y
(x, y) · yj

)

el(tk)(2.4)

=

K
∑

l=1

(

βl(x, y) + i
∂βl

∂x
(x, y)∆x + j

∂βl

∂y
(x, y)∆y

)

el(k∆t).(2.5)

Therefore the underlying patch manifold M(f) can be approximated by a manifold
of dimension 3K.

If we are taking into account the more intimate mixture by considering the bilinear
mixing model (BMM), then f̃ can be expressed as:

(2.6) f̃(x, y, t) =
K
∑

u=1

βu(x, y)eu(t) +

p−1
∑

u=1

p
∑

v=u+1

γuv(x, y)βu(x, y)βv(x, y)eu(t) · ev(t).

Again, the same analysis as above shows that M(f) under BMM is of dimension
(3K + 3

2 (K
2 −K))

Of course, more complicated mixing models yield higher dimensions of the patch
manifolds, but the intrinsic dimension of the manifold is still smaller than d, which is
the dimension of the Euclidean space in which the manifold is embedded. Moreover, in
reality, the intimate mixture between multiple endmembers can usually be neglected.
This means that it is a natural idea to use the low dimensionality of the patch manifold
as a prior knowledge to reconstruct the HSI.

We make one remark before ending this section. In practice there are different
ways to choose the patch size s1 × s2 × s3 to cater to different problems at hand. In
our discussion above, s1 and s2 are chosen to be consistent with the spatial resolution,
and s3 is chosen to be B, which is the length of the third dimension of the original
data cube. But sometimes s3 can be chosen to be smaller than B. More details about
the patch sizes are discussed in Section 4.

3. Low Dimensional Manifold Model. In this paper, we focus more on the
“inpainting” part of the reconstruction. That is, we assume the data is not con-
taminated by noise and the incomplete data are generated by the following process:

(3.1) y = ΦIf,
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where ΦI is defined in (1.2). Based on the discussion in the previous section it
is natural to utilize the dimension of the patch manifold as a regularization in the
following variational problem:

(3.2) min
f∈Rm×n×B,

M⊂Rd

dim(M), subject to: y = ΦIf, P(f) ⊂ M.

However, (3.2) is not well defined in the sense that we have not yet derived an explicit
formula to evaluate dim(M). Fortunately, there is a very simple formula to calculate
the dimension of a smooth manifold [13]:

Proposition 3.1. Let M be a smooth submanifold isometrically embedded in

R
d. For any x ∈ M,

dim(M) =
d

∑

j=1

‖∇Mαj(x)‖
2,

where αi, i = 1, . . . , d are the coordinate functions on M, i.e.

αi(x) = xi, ∀x = (x1, . . . , xd) ∈ M.

Hence (3.2) can be transformed into the following LDMM:

(3.3) min
f∈Rm×n×B,

M⊂Rd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + δΦ−1

I
(y)(f), subject to: P(f) ⊂ M,

where Φ−1
I (y) is the pre-image of y, and δΦ−1

I
(y) is the indicator function. More

specifically:

Φ−1
I (y) = {f : ΦI(f) = y}, δΦ−1

I
(y)(f) =

{

0 , f ∈ Φ−1
I (y)

∞ , f 6∈ Φ−1
I (y).

(3.4)

We point out that (3.2) and (3.3) are not exactly the same, since the regularizer
in (3.3) is actually the L1 norm of the local dimension over the manifold M. This
is actually favorable in the context of HSI reconstruction for two reasons. First, the
patch manifold M is not necessarily a smooth manifold, and taking the integral of
local dimension of M can address the situation when M is only piecewise smooth.
Second, for high-resolution HSI, there might be several materials that are not mixed
with the others, which means the patch manifold M has zero local dimension at those
points (patches spanned by “pure pixels”); the L1 regularizer of the local dimension,
which is known to promote sparsity, correctly uses this prior knowledge.

3.1. Numerical Implementation. The numerical procedure to solve (3.3) is
similar to that in [13], and we write it down here again for readers not familiar with
LDMM. It is hard to solve problem (3.3) directly with respect to both M and the
image f . So we use an iterative method instead. In every iteration, we first fix
the manifold M and use the metric defined by M to update the image f ; then the
manifold is updated by enforcing the fact that the patch set of the new image f
samples the new manifold M.

In practice, we find it a lot easier to perturb the coordinate function αi as well.
More specifically, we have the following iterative procedure:
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• Assume we have the n-th iterates fn and Mn satisfying P(fn) ⊂ Mn.
• Fix the manifold Mn, and update fn+1 and the perturbed coordinate func-
tions αn+1

i , i = 1, . . . , d by solving:

(fn+1, αn+1
1 , . . . , αn+1

d ) = arg min
f∈Rm×n×B,

α1,...,αd∈H1(Mn)

d
∑

i=1

‖∇Mnαi‖
2
L2(Mn) + δΦ−1

I
(y)(f),

(3.5)

subject to: α(P(fn)) = P(f)

where α = (α1, α2, . . . , αd)
T is the perturbed coordinate function. The con-

straint means that the coordinate function α maps the original patch set
P(fn) into the patch set of the new image P(fn+1).

• Update M by setting

(3.6) Mn+1 = α(Mn) =
{

(αn+1
1 (x), . . . , αn+1

d (x))T : x ∈ Mn
}

.

• Repeat the process until convergence.
We first point out the legitimacy of perturbing the coordinate function α. As

discussed in Proposition 3.1, α should be a function defined on M which maps x into
itself, so it makes no sense at first glance to make α a variable. But it is not hard
to observe that when the iteration converges, Mn+1 is very close to Mn and so is
P(fn+1) to P(fn). Therefore α is getting closer and closer to the identity. Moreover,
perturbed α helps enforce the constraint P(fn+1) ⊂ Mn+1 as can be seen from (3.5)
and (3.6).

Notice that (3.6) is easy to implement, whereas (3.5) is a much more complicated
constrained optimization problem. We use the split Bregman iteration [12, 7] to
enforce the linear constraint and update αi and f in (3.5) sequentially.

• Given k-th iterates αn+1,k, fn+1,k and dk.
• Update αn+1,k+1

i , i = 1, . . . , d with fixed fn+1,k and dk

(αn+1,k+1
1 , . . . , αn+1,k+1

d )

(3.7)

= arg min
α1,...,αd∈H1(Mn)

d
∑

i=1

‖∇αi‖
2
L2(Mn) + µ‖α(P(fn))− P(fn+1,k) + dk‖2F,

where both the patch set P(fn+1,k) and the image of the patch set under the
perturbed coordinate functions α(P(fn)) are treated as matrices in the space
R

d×N . More specifically, every column of P(f) is one patch in the patch set
P(f), and

α(P(fn)) =











α1(P(fn))
α2(P(fn))

...
αd(P(fn))











∈ R
d×N , N = |P(fn)|.

• Update fn+1,k+1 with fixed αn+1,k+1 and dk

fn+1,k+1 =arg min
f∈Rm×n×B

δΦ−1
I

(y)(f) + µ‖αn+1,k+1(P(fn))− P(f) + dk‖2F.

(3.8)
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• Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1).

We first show how to solve (3.8). This is a constrained least-square problem:

(3.9) fn+1,k+1 = arg min
f∈Rm×n×B,

ΦI (f)=y

‖αn+1,k+1(P(fn))− P(f) + dk‖2F,

which has an analytic solution:

fn+1,k+1(x) =

{

y(x), x ∈ I,
(P∗P)−1(P∗(αn+1,k+1(P(fn)) + dk))(x), x /∈ I,

(3.10)

where P∗ is the adjoint operator of P . It is worth mentioning that P∗P is a diagonal
operator, so (3.10) can be solved efficiently.

Next, we talk about how to solve (3.7). Notice that in (3.7), αn+1,k+1
i , i = 1, . . . , d

are decoupled and can be solved separately,

αn+1,k+1
i = arg min

αi∈H1(Mn)
‖∇αi‖

2
L2(Mn) + µ‖αi(P(fn))− Pi(f

n+1,k) + dki ‖
2,

(3.11)

where Pi(f
n) is the i-th row of the matrix P(fn).

To sum up the discussion above, we have a continuous version of LDMM as in
Algorithm 1.

The key step in Algorithm 1 is to solve optimization problems of the form:

min
u∈H1(M)

‖∇Mu‖2L2(M) + µ
∑

y∈Ω

|u(y)− v(y)|2,(3.12)

where u can be any αi, M = Mn, Ω = P(fn) and v(y) is a given function on Ω.
By standard variational methods, we know problem (3.12) is equivalent to the

following PDE:











−∆Mu(x) + µ
∑

y∈Ω

δ(x− y)(u(y) − v(y)) = 0, x ∈ M

∂u

∂n
(x) = 0, x ∈ ∂M.

(3.13)

Notice that problem (3.13) is a Laplace equation over an unstructured point cloud
P(fn) sampling the manifold M, which can be solved correctly and efficiently by the
point integral method (PIM) [10, 15, 16].

3.1.1. Point Integral Method. In order to solve (3.13) over a point cloud,
we need to discretize the Laplace-Beltrami operator and the δ-function. One might
be tempted to use the graph-Laplacian to discretize ∆M, but the consistency of
the graph-Laplacian does not hold true when the boundary ∂M of M is nonempty
[10, 15, 16, 13]. Moreover, the δ-functions in (3.13) are all supported on the sample
point set P(fn), so it is difficult to discretize them directly. Therefore, it seems
natural to convolve (3.13) with a test function Rt:

(3.14)

∫

M

−∆Mu(y)Rt(x,y) + µ
∑

z∈Ω

δ(y − z)(u(z) − v(z))Rt(x,y)dy = 0,
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Algorithm 1 LDMM Algorithm - Continuous version

Require: Initial guess of the image f0, d0 = 0.
Ensure: Restored image f .
1: while not converge do
2: while not converge do
3: With fixed manifold Mn, for i = 1, · · · , d, solve

αn+1,k+1
i = arg min

αi∈H1(Mn)
‖∇Mnαi‖

2
L2(Mn) + µ‖αi(P(fn))− Pi(f

n+1,k) + dki ‖
2.

4: Update fn+1,k+1,

fn+1,k+1 =arg min
f∈Rm×n×B

δΦ−1
I

(y)(f) + µ‖αn+1,k+1(P(fn))− P(f) + dk‖2F.

5: Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1).

6: end while

7: Set fn+1 = fn+1,k, αn+1 = αn+1,k.
8: Update M

Mn+1 =
{

(αn+1
1 (x), · · · , αn+1

d (x)) : x ∈ Mn
}

.

9: end while

where t > 0 is a positive parameter, and Rt is the Gaussian:

(3.15) Rt(x,y) = Ct exp

(

−
|x− y|2

4t

)

.

Ct is the normalizing factor for the Gaussian.

Then we can use the point integral method to solve (3.14). The key observation
in PIM is that the convolution of ∆Mu and a Gaussian can be approximated by:
(3.16)
∫

M

∆Mu(y)Rt(x,y)dy ≈ −
1

t

∫

M

(u(x)−u(y))Rt(x,y)dy+2

∫

∂M

∂u(y)

∂n
Rt(x,y)dτy .

More rigorously, we have the following theorem:

Theorem 3.2. If u ∈ C3(M) is a function on M, then we have for any x ∈ M,

‖r(u)‖L2(M) = O(t1/4),(3.17)

where

r(u) =

∫

M

∆u(y)Rt(x,y)dy +
1

t

∫

M

(u(x)− u(y))Rt(x,y)dy − 2

∫

∂M

∂u(y)

∂n
Rt(x,y)dτy.

The detailed proof can be found in [15].
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Combining (3.13)(3.14)(3.16), we have the following integral equation to approx-
imate (3.13)

∫

M

(u(x)− u(y))Rt(x,y)dy + µt
∑

y∈Ω

Rt(x,y)(u(y) − v(y)) = 0.(3.18)

Notice that only point value information of u is needed in the above equation instead
of ∆M, and we no longer have to discretize the δ-functions.

3.1.2. Discretization. Next we discuss how to discretize (3.18) over the point
cloud Ω = P(fn). Let P(fn) = {x1,x2, . . . ,xN}, and we assume P(fn) samples
the patch manifold M uniformly at random. It is easy to discretize (3.18) into the
following linear system:

|M|

N

N
∑

j=1

Rt(xi,xj)(u(xi)− u(xj)) + µt

N
∑

j=1

Rt(xi,xj)(u(xj)− v(xj)) = 0,(3.19)

where |M| is the volume of M.
(3.19) can be rewritten in the following matrix form:

(L+ µ̄W )u = µ̄Wv,(3.20)

where u = (u(x1), . . . , u(xN ))T ,v = (v(x1), . . . , v(xN ))T , and µ̄ = µtN
|M| . L is defined

as the difference between D and W :

(3.21) L = D −W ,

where W = (wij) is the weight matrix with wij = Rt(xi,xj). D = diag(di) is the

degree matrix with di =
∑N

j=1 wij . So now we know how to update αn+1,k+1
i in

Algorithm 1.
Next, we discuss about the computation of the weight matrixW . Since we need to

solve the large-scale linear system (3.20), it is preferable if W is a sparse matrix. We
use the approximate nearest neighbor (ANN) scheme to efficiently compute the sparse
weight matrix W [21]. In the core of ANN search scheme, a balanced k-dimensional
tree is built, and an upper bound on the number of distance comparisons are placed
to approximately compute the nearest neighbors of every point in P(fn). Interested
readers are referred to [21] for a detailed explanation of ANN search scheme.

To summarize the discussion in this section, we write down Algorithm 2 for HSI
reconstruction.

4. Different Choices for Patch Size and Proper Initializations. As dis-
cussed in Section 2, there is a lot of freedom in choosing the patch size s1 × s2 × s3.
Usually s1 × s2 is chosen to be compatible with the spatial resolution, and smaller s3
leads to higher accuracy and more computational time.

When dealing with the problem of HSI reconstruction, we only have the degraded
image y to begin with, and the objective is to fill in the missing data. We found
out that choosing s3 = B usually leads to unsatisfactory recovering results, especially
when the number of the missing data is significant. To explain the reason why large
s3 leads to worse recovering results, let us assume for simplicity that s1 = s2 = 1
and s3 = B. In this case, every patch is the spectral signature of a pixel, and the
size of P(f) is B ×N , where N is the number of pixels in the 2D spatial dimension.
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Algorithm 2 LDMM Algorithm

Require: Initial guess of the image f0, d0 = 0.
Ensure: Restored image f .
1: while not converge do
2: Compute the weight matrix W = (wij)1≤i,j≤N from P(fn), where N =

|P(fn)|,

wij = Rt(xi,xj), xi,xj ∈ P(fn), i, j = 1, . . . , N.

Assemble the matrices L, W as follows:

L = D −W , W = (wi,j), i, j = 1, · · · , N.

3: for k = 1 : K do

4: Solve the following linear systems

(L+ µ̄W )Uk = µ̄WVk−1,

where Vk =
(

P(fn)− dk
)T

.
5: Update f by solving a constrained least square problem.

fn+1,k(x) =

{

y(x), x ∈ I,
(P∗P)−1(P∗(UT

k + dk−1))(x), x /∈ I

6: Update dk,

dk = dk−1 +UT
k − P(fn+1).

7: end for

8: fn+1 = fn+1,K .
9: end while

According to the discussion in Section 3, updates for the coordinate functions αi,
which correspond to the 2D image of the i-th spectral band, are decoupled. That
means the information in other spectral bands is not utilized in the update of αi.
And the only occasion when all of the information is used is when the weight matrix
is updated. Therefore, we usually choose a small s3, e.g. s3 ≈ B/10 for a good
reconstruction result. In practice, in order to speed up the computation, we can first
run a few iterations with large s3 to get a rough inpainting result as initialization, and
then use smaller s3 to refine the result. For example, we can first choose s1 × s2 × s3
to be 1× 1×B, and then 2× 2×B, and at last 5× 5×B/10.

Another way to obtain a proper initialization is to utilize the low-rank matrix
completion methods. In this paper, we first use the accelerated proximal gradient
singular value thresholding (APG) algorithm [17] to get an initial guess of the linear
mixing part of the HSI. And then we use LDMM with small patch size, 5 × 5 ×
B/10, to pick up the more intimate nonlinear part of the image. In the numerical
experiments, we found out that using low rank matrix completion as an initialization
usually achieves better results than just using LDMM.
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Urban at 55th band 95% missing voxels APG (36.9dB) LDMM (37.5dB)

Urban at 100th band 95% missing voxels APG (36.9dB) LDMM (37.5dB)

Syn at 55th band 95% missing voxels APG (35.6dB) LDMM (37.9dB)

Syn at 100th band 95% missing voxels APG (35.6dB) LDMM (37.9dB)

Fig. 2. Reconstruction of the Urban and synthetic HSI with 95% missing voxels chosen uni-
formly at random. Figures in the third column are the results using low-rank matrix completion
method APG. Figures in the fourth column are the results using LDMM with the results of APG
as initialization. PSNR calculated among the entire data cube is used to quantitatively measure the
accuracies of the algorithms.

5. Numerical Results. In this section, we present the numerical results of HSI
reconstruction by our proposed LDMM. All the numerical experiments are run on a
Macbook Pro with 2.7 GHz Intel Core i5 CPU and 8 GB memory.

5.1. Description of the Datasets. We use two datasets, Urban and synthetic
HSI, to illustrate the performance of LDMM on HSI reconstruction.

The Urban dataset is a real-world HSI from HYperspectral Digital Imagery Col-
lection Experiment (HYDICE), which has 150× 150 pixels and contains 162 spectral
bands. Six classes of material (road, dirt, house, metal, tree, and grass) are mostly
linearly mixed in the Urban HSI.

In the synthetic dataset, the five endmembers are randomly extracted from a real
scene with a total of 162 spectral bands. The spatial dimension of the synthetic HSI is
also 150× 150, and the 22500 abundance vectors are generated as a sum of Gaussian
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fields. The dataset is generated using a bilinear mixing model:

(5.1) y =

P
∑

i=1

aiei +

P−1
∑

i=1

P
∑

j=i+1

γijaiajei ⊙ ej + n,

where γij are chosen uniformly and randomly in the interval [0, 1], n is the Gaussian
noise, and ei ⊙ ej is the pointwise product between two endmembers.

5.2. Reconstruction of HSI with uniformly random missing pixels. The
first experiment we are considering is the reconstruction of the Urban and synthetic
datasets with 95% missing voxels chosen uniformly at random. In this experiment, we
first use the low-rank matrix completion algorithm APG [17] to get an initial guess
of the linear mixing part of the HSI, then we use LDMM with a small patch size,
5× 5× 15, to refine the result. The reason for the choice of patch size is explained in
Section 4. The parameter µ̄ is set to be 1, and the weight matrices are truncated to
50 nearest neighbors.

The recovering results of the Urban and synthetic data from the observation
of 5% pixels using APG and LDMM are shown in Fig. 2. All spectral bands are
reconstructed simultaneously, even though we only show two recovered bands for
every degraded image. One can hardly tell the difference between the visual results
of APG and LDMM, but PSNR defined by the following formula can be used to
quantitatively measure the accuracy of the reconstruction:

(5.2) PSNR(f, f∗) = −20 log10 (‖f − f∗‖/max(f∗)) ,

where f∗ is the original image. As we can see, the low-rank matrix completion method
APG works pretty well on the Urban dataset (PSNR = 36.9 dB), which is essentially
a linearly mixed HSI. But our LDMM using APG as initialization can further refine
the result to a higher accuracy (PSNR = 37.5 dB). As for the nonlinearly mixed
synthetic HSI, LDMM achieves a much better result (PSNR = 37.9 dB) than using
just APG (PSNR = 35.6 dB).

Finally, we have to point out that the computational speed is a drawback of
LDMM, despite its higher accuracy and adaptivity to nonlinear mixing problems. For
an image of the size 150 × 150 × 162, LDMM needs around 50 minutes to converge.
However, our current code for LDMM is not optimized, and there are several ways
to speed up the computation. For example, all the linear systems in LDMM are
decoupled and can be easily parallelized. Also, to speed up the computation of the
weight matrix, we can search the nearest neighbors in a local window, instead of
searching amongst the entire patch set.

5.3. Reconstruction of HSI with entirely missing bands. Next, we present
the result of the reconstruction of HSI with several entirely missing spectral bands.
This is a more difficult problem than the previous one in the sense that the entire
information of certain spectral bands is missing. We make the problem even harder
by downsampling the remaining voxels significantly. In the experiments, we consider
removing 16 of the 162 spectral bands chosen randomly, and we further downsam-
ple 5% of the remaining voxels. The objective is to recover the original data cube,
including the removed spectral bands.

In the experiments, we first use APG on the spectral bands that are not removed,
and then make inference on the missing bands by cubic spline interpolation with
respect to the spectral dimension. The smoothness of the spectral signatures in HSI
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Urban at 6th band APG (36.5dB) LDMM (37.1dB)

Urban at 111th band APG (36.5dB) LDMM (37.1dB)

Syn at 6th band APG (35.7dB) LDMM (38.2dB)

Syn at 111th band APG (35.7dB) LDMM (38.2dB)

Fig. 3. Reconstruction of the Urban and synthetic HSI with 16 entirely missing bands, and
95% missing voxels chosen uniformly at random. Figures in the third column are the results using
low-rank matrix completion method APG. Figures in the fourth column are the results using LDMM
with the results of APG as initialization. The spectral bands shown above are removed initially, and
the PSNR is calculated among the missing bands.

ensures the validity of the cubic spline interpolation. We then use LDMM on the
entire data cube, including the missing bands, with s1 × s2 × s3 = 5 × 5 × 15. The
parameters are set to be the same as the previous experiment.

Fig. 3 shows the numerical results of the Urban and synthetic data using APG
and LDMM. The spectral bands shown in the figure are removed initially, and PSNR
is calculated among all the missing bands. Again, LDMM yields better results than
APG on both linear and nonlinear HSI. Also, the improvement of LDMM on nonlinear
HSI is more significant. We also need to point out that the higher PSNR here does
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not imply the results are better than the ones in Section 5.2. In this experiment, the
PSNR of the synthetic dataset in the entire data cube is actually 36.3dB, which is
lower than 37.9dB in the previous experiment with just missing pixels.

6. Conclusion. In this paper, we applied LDMM to the reconstruction of hy-
perspectral images with significant missing voxels. The low dimensionality of the
patch manifold of HSI is exploited and both linear and nonlinear mixed HSI fit in
this framework. In the core of the algorithm, a point integral method is used to solve
a Laplace-Beltrami equation over a point cloud sampling the underlying manifold.
LDMM generally produces better results on HSI inpainting problems as compared to
low-rank matrix completion methods, especially on nonlinearly mixed HSI. We are
now working to speed up the computational run-time of LDMM to make it a more
powerful technique for general data reconstruction tasks.

Acknowledgment. The authors would like to thank Alexandre Tiard, for gen-
erating the synthetic hyperspectral image for numerical experiments.
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