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Abstract

Eigenvectors and eigenvalues of discrete Laplacians are often used for manifold learning and nonlinear
dimensionality reduction. Graph Laplacian is one widely used discrete laplacian on point cloud. It was
previously proved by Belkin and Niyogi [4] that the eigenvectors and eigenvalues of the graph Laplacian
converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in
the limit of infinitely many data points sampled independently from the uniform distribution over the
manifold. Recently, we introduced Point Integral method (PIM) [15] to solve elliptic equations and
corresponding eigenvalue problem on point clouds. In this paper, we prove that the eigenvectors and
eigenvalues obtained by PIM converge in the limit of infinitely many random samples. Moreover, one

estimate of the rate of the convergence is given.

keywords: Graph Laplacian; Laplacian spectra; random samples; convergence rate.

1 Introduction

In the past decade, data science plays more and more important role in sciences, engineering and our
daily lives. Among varieties of data analysis methods and models, manifold model attracts more and more
attentions. In the manifold model, data is represented as a point cloud, which is defined as a collection of
points that are embedded in a high dimensional Euclidean space. It is assumed that the point cloud samples
a smooth manifold. Thus, the structure of the manifold are very useful to understand the data. On the
other hand, research in mathematics shows that the Laplace-Beltrami operator is one of the most important
object associated to Riemannian manifolds. Its eigenvalue and eigenfunctions encode all intrinsic geometry
of the manifolds. To reveal the structure of the underlying manifold sampled by the data, many discrete
counterparts of LBO are developed. The eigenvalues and eigenvectors of the discrete Laplace-Beltrami
operators are widely used in many fields, including machine learning, data analysis, computer graphics and
computer vision, and geometric modeling and processing [2, 6, 18, 16]. Then, one question is that if the
eigenvalues and eigenvectors of these discrete operators converge to the eigenvalues and eigenfunctions of
their continuous counterpart, Laplace-Beltrami operator as the point cloud converges to the manifold. This
is essential to understand these discrete operators and algorithms associated to them.

The convergence between the graph Laplacian and the Laplace-Beltrami operator has been studied ex-
tensively in the literature [13, 3, 4, 9, 8, 7, 21, 23]. In the presence of no boundary and the sample points
are uniformly distributed, Belkin and Niyogi [4] showed that the spectra of the normalized graph Laplacian
converges to the spectra of Laplace-Beltrami operator. When there is a boundary, it was observed in [13, 5]

that the integral Laplace operator L; is dominated by the first order derivative and thus fails to be true

*Yau Mathematical Sciences Center, Tsinghua University, Beijing, China, 100084. Email: zqshi@math.tsinghua.edu.cn.
TThis research was supported by NSFC Grant 11371220 and 11671005.



Laplacian near the boundary. Recently, Singer and Wu [22] showed the spectral convergence in the presence
of the Neumann boundary. In this paper, we study this problem from another point of view. We study the
solution operators of graph Laplacian and Laplace-Beltrami operator. Based on the convergence between
the solutions operators, we get more delicate estimate of the convergence, include the convergence rate.

In this paper, we assume that the data points, X,, = {x1, -+ ,X,}, are sampled independently over
the manifold M from a probability distribution p(x). On the sample points, we consider following discrete

eigenvalue problem.
LS~ g (=l (P
tj_1R<4t (=) =2 )R = (1.1

where R : Rt — R* is a kernel function satisfies some conditions (see Assumption 1). , R(r) = fjoo R(s)ds.
The purpose of this paper is to study the behavior of discrete eigenvalue problem (1.1) as n — oo and ¢t — 0.
We show that when n — oo and ¢ — 0, the spectral of (1.1) converge to the spectra of Laplace-Beltrami

operator,

(1.2)

— ot div (PP (%) Vu(x)) = u(x), x € M,
9u(x) = 0, x € OM.

where n is the out normal vector of M.
The analysis in this paper consists of two parts by introducing an intermediate integral operator.

% /M R (”thynz) (u(x) —u(y))p(y)dy = /\/M R (”X;ty”2> u(y)p(y)dy, x€M. (1.3)

The convergence between the integral operator, (1.3), and graph Laplacian (1.1) has been well studied
in different settings [11, 12, 19, 10, 24, 25]. Under the assumption of smoothness of the kernel function
R, the integral operator becomes a compact operator in some suitable space. Then, with the help of the
perturbation theory of compact operator, the spectral convergence can be proved. In this paper, we also use
this approach. First, the convergence between the integral operator and graph Laplacian is obtained by using
standard estimate in the empirical process theory. Then, perturbation theory of compact operator is invoked
to prove the convergence of spectra. The second convergence, from integral operator to Laplace-Beltrami
operator, is more involved. Laplace-Beltrami operator is not compact, so we consider the solution operator
(inverse operator of Laplace-Beltrami in some sense) which is known to be compact. The convergence between
the solutions operators is more difficult. Fortunately, the convergence between the solution operators in H*
has been proved in our previous paper. With the help of this strong convergence, we can even get the rate
of the spectral convergence.

The main contribution of this paper is of two fold. First, we prove the convergence for general compact
manifolds, with or without boundary. Previous studies mainly focus on the manifolds without boundary. Our
analysis works for general compact manifolds. Secondly, we get the rate of spectral convergence, although
may not be optimal. The rate comes from the convergence of the solution operators in H', which allows us
to do more delicate estimate.

The rest of the paper is organized as follows. We define some necessary notations and operators in Section
2. In Section 3 and 4, the main theorem is stated and proved respectively. Some technical results are proved

in Section 5. Finally, conclusions and remarks are given in Section 6.

2 Notations and Preliminaries

We start with defining three solution operators, T', T}, T} ,, under the assumption that M € C*°, OM € C.



o T': L*(M) — H?(M) is the solution operator of the problem (2.1), i.e., u = T'(f) with [, , u(x)p(x)dx =
0 is the solution of the following problem:

{ — b div (PP(0)Vu(x) = f(x) - f, x €M,
du(
]

2.1
anx):O7 x € OM. 21)

where 1 is the out normal vector of M, f is a constant such that [, (f(x) — f)p*(x)dx = 0. Here, we
further assume that p(x) € C1(M) and minye g p(x) > 0, maxye v p(x) < 00.

o T} : LQ(M) — L?(M) is the solution operator of following integral equation (2.2), i.e. u = Ty(f) with
f MU x)dx = 0 solves the following integral equation

/‘&&JNMM*MwMWMy:/.Eﬁwﬂﬂw*ﬁMWMy (2.2)
M M

| =

where

_ 1 Ix —yl|? 5 1 S x—yl?
Rt(va) - (47Tt)k/2R< At ) Rt(X7y) - (47Tt)k/2R At .

R e C? and f; is a constant such that [, [\, Re(x,y)(f(y) — fo)p(x)p(y)dydx = 0

o T, : C(M)— C(M) is defined as follows.

1 - t . -

Tin(f)(x) = ) ;Rt(xa X )u; + o) ;Rt(x7xj)(f(xj) = ftn) (2.3)
where wy n(x) = + 32" ) Ri(x,%x;) and u = (uy,--- ,u,)" with 37 u; = 0 solves following linear
system,

1 n 1 n B B
%ZRt(Xzﬁxj) i — uj) EZR xi, %) (f(x5) = fe,n), (2.4)
j=1 =1

ft.n s the constant that satisfies > Ry(x;,%;)(f(%;) = fi.n) = 0.

Using the definition of T',T; and T ., it is easy to show that the eigen problems Tu = Au, T} ,,(u) = Au
is equivalent to the eigen problems (1.2) and (1.1) respectively. Namely their eigenvalues are reciprocal to
each other and they share the same eigenspaces.

Proposition 2.1. Let 0(u) denote the restriction of u to the sample points P, i.e., 0(u) = (u(x1), -+ ,u(xn))*.

1. If a function u is an eigenfunction of Ty , with the eigenvalue X, then the vector 6(u) is an eigenvector

of the eigenproblem (1.1) with eigenvalue 1/\.

2. If a vector u is an eigenvector of the eigenproblem (1.1) with the eigenvalue X # 0, then I(u) is an

eigenfunction of Ty , with eigenvalue 1/\, where

ijePR (x,x;)u; Vi — At Zp er Ry(x, x;)u;V;

Ii(u)(x) = > ep Bi(x,%5)V;

3. A function u is the eigenfunction of the eigenproblem (1.2) with the eigenvalue X # 0 if and only if the
function u is an eigenfunction of T with the eigenvalue 1/\.



Using the above proposition, we only need to prove the eigenvalues and the eigenfunctions of 7T} ,, converge
to the eigenvalues and the eigenfunctions of T'.

The advantage of using the solution operators is that they are all compact operators.
Proposition 2.2.

1. For any t > 0, n > 0, T,T; are compact operators on H*'(M) into H'(M); Ty, Ty, are compact
operators on C*(M) into C*(M).

2. All eigenvalues of T, T}, T} ,, are real numbers. All generalized eigenvectors of T,Ty, T , are eigenvec-

tors.

Proof. First, it is well known that 7" is compact operator. T}, is actually finite dimensional operator, so it

is also compact. To show the compactness of T}, we need the following formula,

w(x)
In this paper, we assume that the kernel function R € C2. Then, direct calculation gives that that Tyu € C2.
This implies the compactness of T; both in H' and C.

For the operator T, the conclusion (2) is well known. The proof of T; and T}, are very similar, so here
we only present the proof for T;.

Let A be an eigenvalue of T; and u is corresponding eigenfunction, then

Ltﬂ’u = ALtU
where
1
LS00 =7 [ Rixy)(6 = S0y (25)
It is easy to see that
L)) = [ Rulxy)uy)o)dy (26)

Then, we get

_ Jur fM Ry(x, y)u* (x)u(y)dxdy
S w () (Lyu) (x)dx

where u* is the complex conjugate of u. From the symmetry of L; and R(x,y), it is easy to show that A € R.

A

Now, we turn to study the eigenfunctions. Let u be a generalized eigenfunction of T; with multiplicity
m > 1 associate with eigenvalue \. Let v = (T, — \)™ tu, w = (T; — )™ 2u, then v is an eigenfunction of
T; and

Tiow=2XM, (T;—Nw=v
By applying L; on both sides of above two equations, we have
Aw = LiTw) = [ Rixy)e(y)dy.
M

Liv = Li(Tyw) — ALyw = / Ri(x,y)w(y)dy — AL;w
M



Using above two equations and the fact that L; is symmetric, we get

0 = (waLw- [ Rixyay)

M

= <ALtw - /M Ry(x, Y)w(y)dy,v>M

2
= (L, 0) p = Clloll;

which implies that (T; — \)™ 'u = v = 0. This proves that u is a generalized eigenfunction of T; with

multiplicity m — 1. Repeating this process, we can show that u is actually an eigenfunction of T3. O

3 Main Result

Before stating the main theorem, we summarize the assumptions in this paper as follows:
Assumption 1.

e Assumptions on the manifold: M is k-dimensional compact and C* smooth manifold isometrically
embedded in a Fuclidean space R?.

o Assumptions on the sample points: X = {x1, - ,X,} are sampled independently over the manifold M

distribution p(x) € C1(M) and minge p p(x) > 0, maxygepm p(x) < 0.
o Assumptions on the kernel function R(r):

(a) R e C*(RY);
(b) R(r) >0 and R(r) =0 for Vr > 1;
(c) 360 > 0 so that R(r) > §p for 0 <r < %

The main result in this paper is stated with the help of the Riesz spectral projection. Let X be a
complex Banach space and L : X — X be a compact linear operator. The resolvent set p(L) is given by
the complex numbers z € C such that z — L is bijective. The spectrum of L is o(L) = C\p(L). It is well
known that o(L) is a countable set with no limit points other than zero. All non-zero value s in o(L) are
eigenvalues. If \ is a nonzero eigenvalue of L, the ascent multiplicity o of A\ — L is the smallest integer such
that ker(\ — L)* = ker(\ — L)>*1.

Given a closed smooth curve I' C p(L) which encloses the eigenvalue A and no other elements of o (L),
the Riesz spectral projection associated with A is defined by

EOL) = —— /F(z — L) lds, (3.1)

274
where ¢ = y/—1 is the unit imaginary.

Theorem 3.1. Under the assumptions in Assumption 1, let \; be the ith largest eigenvalue of T (same
eigenvalue is repeated according to its multiplicity) with multiplicity o; and ¢,k = 1,--- ,a; be the linear
independent eigenfunctions corresponding to A;. Let /\z’" be the ith largest eigenvalue of Ty ,,. With probability
at least 1 — 1/n, there exists a constant C1 > 0,Cqy > 0 depend on M, kernel function R, distribution p and
spectra of T, such that

I logt| +1
a4 eI 1)

tk+3 \/ﬁ



and

n ) logn + |logt| + 1
6~ B Tin)of oy < Ca (1424 22T OEHEL),

tk+2\/’ﬁ

as long as n large enough. Here oi™ = {)\zn €o(Tin):jel} and I; ={j e N: \j = \;}.

Remark 3.1. In above theorem, \/t and \/n seem to be optimal. However, the factor multiply /n, t*+2 and
tF+3 | are not optimal. We believe that it can be improved by obtaining better a prior estimate of the integral
equation (1.3). Now, we only get L? estimate. In the spectra convergence analysis, we need C* estimate. In
this paper, the regularity is lifted by using the regularity of the kernel function. The trade off is that a factor
t=5/% emerges which reduces the rate of convergence. If we can get a prior estimate of the integral equation

in C', t=5/* can be removed.

4 Proof of the Main Theorem (Theorem 3.1)

The proof of Theorem 3.1 consists of three parts, which are given in Section 4.1, 4,2 and 4.3 respectively.
The first part is to establish the connection between the difference of the eigenvalues and eigenfunctions and
the difference of solution operators || T — T;|| g and || Ty — Tyn|lcr (Theorem 4.3). This is achieved by using
the results in the perturbation theory of compact operators.

In the second part, we estimate the difference of operators T' — T; and T; — T , in H L and C! norm
respectively, Theorem 4.4 and 4.5. This is the most difficult part. Comparing with the pointwise convergence
which was proved in previous works, convergence in H' or C' is stronger, hence more difficult to prove.

Finally, we use the the theory of the Glivenko-Cantelli class in statistical learning to estimate the error
in the Monte-Carlo integration. The key ingredient in this part is to estimate the covering number of some
function classes.

Here, we list some notations which will be used in the proof. Some of them have been defined in previous

sections. We also list them here for the convenience of readers.

e k: dimension of the underlying manifold; d: dimension of the ambient Euclidean space; n: number of

sample points.

e (' positive constant independent on ¢ and sample points X,,. We abuse the notation to denote all the

constants independent on ¢ and sample points X,, by C. It may be different in different places.
o C; = W is the normalize constant of kernel function R.
e p(x): probability distribution function.

e R: kernel function. R(r) = [ R(s)ds.

o Ri(xy) = e B (DGE) . Ritey) = b B (520,
o Lif(x) = § [ R, y)(f(x) = f(y))p(y)dy.
o Linf(x) = & S0y R, x,) (%) = f(x5)).

o W) = [ R Y)Y, win(x) = ok Sy B (250

® Wmin, Wmax: Wmin = inf min w¢(X), Wmax = sup max wy(x). Under the assumption in Assumption 1,
t>0xeM +>0 XEM

we can show that 0 < Wyin, Wmax < 00.



o p(f) = [ FEPx)dx, pa(f) =3 X0, f(xi)-
° 'Rt:{R(%> :XEM}

oﬁt:{R(%»xeM}

o D= {V.r (E5E) i x e M)

4.1 Perturbation results of Solution Operators
First, we need two theorems in [1] regarding the perturbation of the compact operators.

Theorem 4.1. ([1]) Let (X,| - ||x) be an arbitrary Banach space. Let S and T be compact linear operators
on X into X. Let z € p(T). Assume

2|
T-5Sx <—"Frn——. 4.1
I = )8l < o= (4.1)
Then z € p(S) and (z — S)™! has the bound
- 1+ [IS|lx (= — T)~*Ix
z—9)Mx < : 4.2
Iz =)« 2l = Iz = )M x (T = 5)S]Ix “2)

Theorem 4.2. ([1]) Let (X,| - ||x) be an arbitrary Banach space. Let S and T be compact linear operators
on X into X. Let zg € C, zg # 0 and let € > 0 be less than |z|, denote the circumference |z — zo| =€ by T
and assume T' C p(T). Denote the interior of T' by U. Let or = UNo(T) # 0. 05 =UNo(S). Let E(os,S)
and E(or,T) be the corresponding spectral projections of S for os and T for or, i.e.

1
E(O’S,S) = Tm

/(z—S)*ldz, E(op,T) = L/(z—T)*ldz. (4.3)
r r

211

Assume

(T — S)S||x < min 12|

G =D (44

Then, we have

(1). Dimension E(cg,S)X = E(or,T)X, thereby og is nonempty and of the same multiplicity as or.



(2). For everyz € X,

|E(or, T)z — E(os, S)zllx < ]\CAOE (T = )zl x + [« x (T = 5)Sllx) -

where M = max_.cr ||(z — T) Y| x, co = min.er |2].

To apply above two theorems, we need some estimates of 7" and T; which are summarized in three lemmas

below.

Lemma 4.1. Let T be the solution operator of the Neumann problem (2.1) and z € p(T), then

1
_ 71 <

where {\p tnen is the set of eigenvalues of T.

Proof. Suppose ¢;, j € N be the normalized eigenfunction of 1" corresponding to A;, 7 € N. Then it is well

known that {¢;};en is a orthonormal basis of H(M).
For any x € HY(M), z € p(T), first we can expand z over {¢;}jen to obtain

0o
xr = ZCj¢j.
j=1

Then, we have

Iz =T)allm = | cilz=Das|| =D eilz= Ay
j=1 H1 Jj=1 HY

1/2 1/2

oo
— 2 2 - 2
= ch\z—)\j\ 217{16111\]1|z—)\n| ch
Jj=1 Jj=1

= min|z = Aulllellmn

Lemma 4.2. Let T; be the solution operator of the integral equation (2.2). For any z € C\|J
with ro > ||T — Ti|| g1, then

neN

~ 2| M| . 1o
I(z = T0) 1||clémax{|z|tuf+z)/4(Iggglz—Anl—llT—Tth) T

Proof. For any z € H'(M),
I =Tl > Iz = Tyl — (T - To)alm

<gg§|z - ||TTt|H1) 0

v

Then (z — T;) ™! exists and

-1
=T < (gl =l =17~ Tl )

(4.6)

O

B()\nﬂ“o)

(4.7)

(4.8)



For any u € C*(M),

-1
Iz = T ulln < (ggyzAa - |TTt||H1) M lulen (4.9)

where |M] is the volume of the manifold M.
On the other hand, let v = (z — T;) ~'u which means v = (u + T;v)/z

1
[oller < |7|(IIU||CI+||TW\|01)
1 -
< 7 (ellor + 42/l 2
< L M| i A T-T, - 1
= 2\ glell{\}k— nl = 1T = T4l g + 1) Juller
which proves that
_ 2|M| . o9
_ 1 < [l el B _ _ _ =
[(z =T¢) "l —ma’X<|Z|t(k+2)/4 <I,?€111\}|Z An| =T Tt||H1> T2l (4.10)

O

Lemma 4.3. Let T be the solution operator of the integral equation (2.2) and A, be eigenvalues of T, then

o(T1) € | B (s 20T = Til i ) -
neN

Proof. Let ro = ||T — Tt|| g1 (amy, A = C\ U, ey B(An, 2r0). For any z € A, using Lemma 4.1, we have

1z =T) "l mrmy < max <

1
|z — Anl ~ 21
which implies that
1

Z_T)_1||H1(M).

1T — T grpmy =70 <
) 2]((

Then using Theorem 4.1, we have z € p(T3).
Since z is arbitrary in A, we get A C p(73). This means that

o(Ti) = C\p(T;) € C\A = ] B, 21T = Til a2 (m))-

neN
O
Now, we get the main theorem in this subsection.
Theorem 4.3. Let \,, be the mth largest eigenvalue of T with multiplicity o, and ¢F, k= 1,--- oy, be the

eigenfunctions corresponding to A,. Let \i™ be the mith largest eigenvalue of Ty . Let vy, = min |A;—
J<m A # X1
)\j+1‘ and

t mtk/4+3/2 Am| = Ym /3 Qt(k+2)/4 - Al = Yim /3 2
||(Tt$n_Tt)Tt’anl Smln{i,’y 24 ’(| ‘ Py /12) ’y 7(l | z’y /) }7

IT = Till vy < vm /12, (T = T)Till ) < ([Aml = Ym /3)7m /3




Then there exists a constant Cy,Cy depend on M, the kernel function R, v, and \,, such that

2

t,n
A" = Am| < ey II(

Tt,n - Tt)Tt,nncl + HT - Tt||H1(M)

and

" C
1 $m—E (033" Ten) bl 112ty < C(ll(T—Tt)¢fn||H1+||(T—Tt)Tt||H1)+W(II(Tt—Tt,n)¢5@I|01+||(Tt—Tt,n)Tt,n 1)

Here ol = {)\3’" co(Typn):jelntand I, ={j e N: \j =\, }.

Proof. Let 11 = 77 (T = T)Trnlln + 1T = Tellrr )y A= C\ U B, 1) U B(0, £1/2)].
For any z € A, using Theorem 4.1, we have

_ 2| M| -t
1 .
[(z =T2) fler < FIGEL <151€1§|z = M| = |IT - Tt||H1>

2lM| 1

= ka1 (r1 =T = Tyl 1)
t1/2 - |Z|

||(T;f,n - Tt)ﬂ,n”cl - ||(Tt,n - Tt)Tt,n”Cq

or
2 2 t
=Ty e < 22 gt P

|Z| -tz ||(Tt n Tt)Tt,anl - H(Tt,n - Tt)Tt,anl '

Here, we use the assumption that ||(T;,, — T3)Tinll o0 < t/2.
Above two inequalies together imply that

||
Ty —T3)T, < — V.
e [CE DRl =
Then using Theorem 4.1, we have z € p(T},).
Since z is arbitrary in A, A C p(T},,). This means that
o(Tin) = C\p(Tyn) € C\A = | ] B(An,m1) [ B(0,£72). (4.11)
neN
Moreover, using Theorem 4.3 and the definition of r1, we have
o(Ty) € | B(An,2r). (4.12)

neN

For any fixed eigenvalue A, € o(T), let v, = n}in |A; — Ajq1]. Using the structure of o(T"), we know that
i<m

Ym > 0. Notice that

2
Py [(Ten = T)Temllcr < vm/12, T = Tillarom) < ¥m /12,

which gives r1 < 7, /6.
Let I'; = {z € C: |z — A\j| = ,/3}, U, be the aera enclosed by I';. Let

Ut,j = J(Tt) nt, Jt,n,j = O’(:rtm) ﬂUJ

Using the definition of I';, we know that for any j < m, I'; C p(T), p(T}) and p(T},,).

10



In order to apply Theorem 4.2, we need to verify the condition

E

T —T)HT, 1 < in ———m—— 4.13
I =TTl < i =1 (419)
(Ty = Ton)Tomllcr < min 2| (4.14)

€l [[(z = To) Hier
Using Lemma 4.1 and the choice of I';, we have
2| minger,, |2

m

i > (Al = 7 /3)  mi “ Al = (ol = Y /3) Y /3
B T T T 2 maveer, [ o T) g = (Al = /3) min 12 = Aml = (Al =5 /3)m/

Then, using the assumption that ||(T"— T3)T¢|| g1 (v < (| Am] = Ym/3)¥m /3, condition (4.13) is true..

Using Lemma 4.2, we have

2| min.cr,, ||

min >
z€l [|(z2 = Ti) " tler = maxeer, (2 —Tp) " en

(A = i /3)2t+2/ (

Y

min N|z — A — ||T—Tt|H1)

2 z€l'y,,ne
(Al = ym/3)2t 24y,
> . 4.1
- 12 (4.15)
or
s _ 2
z€lm [|(z2 = T3) " Hler — maxeer, [[(z = T3) 7o 2

To get the last inequality of (4.15), we use the assumption that || T — T¢| ;1 < /6 and Ignin N |z — Am| =
zel'm,ne
Ym /3.
Using the assumption that [[(T" — T} ) T35 |lcr () < min{(
(4.14) is satisfied.
Then using Theorem 4.2, we have

|>‘m|7'7m/3)2t(k+2)/47m (|>‘m|77m/3)2
12 ’ 2

}, condition

dim(E(Am, T)) = dim(E(0y.m, T1)) = dim(E (04 pms Trn))- (4.17)

It follows from (4.11) that

2

t,n _
Am’ = Am| <1 = Pz Y5 I(

Tt,n _Tt)Tt,n”cﬂ + HT_Tt”Hl(M)- (4~18)
The convergence of eigenspace is also given by Theorem 4.2. For any © € E(\,,,T), ||z|c: =1,

maxer,, [|(z = T) " | g1ym/3

|z — E(ot,m, Tt)x||m < .
min;er,, ||

(T =Tl e + (T = T) Tell e 12 1)

Using Lemma 4.1, we know that

3
—T) 1 < _—
max [|(z = T)~ |z < WA ] S 2
and miner,, |z| = |Am| — ¥m/3. This implies that from Theorems 4.4,
|z = E(ot,m, To)|| g < C((T = Te)x|[ g2 + (T = T) Te|| o |2 10)- (4.19)

Regarding the convergence from 7} ,, to T}, using Theorem 4.2 again, we have

Y max [|(z = T3) " flon

||E(Ut,m7Tt)x - E(Ut,n,m7Tt,n)x||Cl < z 37;11nz61"m |Z| (”(Tt - Tt,n)xucl + ||(Tt - Tt,n)Tt,nHCl) .
(4.20)

11



Using Lemma 4.2, we know that

2 2
— _1 e — 1 — . — — 1 R
max |[(z — Tt)™ [l < max { EGRL (gigglz Ml =T = Tillu ) : |Z}

12 2
< . 4.21
_maX{VWL(|>‘m| _’Ym/?’)t(k+2)/47 ‘)‘ml _'Ym/g} ( )

To get the last inequality, we use that || T — T3|| g1 < vm /6 and |z — A | = Y /3, |2] > |Am — /3] for z € T'yy,.
Then the proof is completed by (4.18), (4.19), (4.20) and (4.21).
O

4.2 Convergence of Solution Operators

Now, we estimate ||T' — T;|| g and [|T;, — Ty |lcr respectively. The uniform bound of |7 — 7| g has been
obtained in [14].

Theorem 4.4. ([14]) Under the assumptions in Assumption 1, there exists a constant C > 0 only depends
on M and the kernel function R, such that

IT — Tyl g < CtY2, || Ti||g < C.
Regarding || T, — T},n||c1, we have following upper bound.

Theorem 4.5. Under the assumptions in Assumption 1 and

Cy sup Ip(f) = Pn(f)] < Wnin/2, (4.22)
fGRt/ UR+URSsg:
52
C su — Dn < , 4.23
k fE/Ct/’nUICE)/Yn‘ICt/yn |p(f) P (f)l 2 max{wmax + wmin/Qv 2/wmin} ( )
where § = #,t/ = t/18. There exists a constant C' only depends on M and kernel function R,
such that
Chy Ch(f)
[(Tin = Ti)Tenllor < 73k/aT3 I(Tim = Ti) fller < pETyrEEyoR
where
ho = sup  |pa(g) —p(9)| +1 sup Ipn(9) — p(9)| (4.24)
gER - Kt,n UR: gEDLUK R UK ¢, n Rt UK+ Dy
+t2 sup Ipa(9) —p(9)l +1° sup  [pa(9) — p(9)l;
gEK:,n D g€, n Dy
h(f) = sup  |pn(g) —p(g)| +1¢ sup lpn(9) — p(9)] (4.25)
JER- K, n UR: gEDUF RUK, n ReUKy nDe
+t2 sup  [pa(9) —p(9)l+t> sup  |pa(g) —p(9)l;
9€’Ct,n'ft QGEt,n'ﬁt

The proof of this theorem can be found in Section 5.

4.3 Entropy bound

In this subsection, we will verify the assumptions (4.22), (4.23) in Theorem 4.5 and give upper bounds of
ho and h(f) defined in (4.24) and (4.25). To achieve these goals, we invoke a powerful theorem in empirical
process theory.
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Theorem 4.6. (Theorem 2.3 in [17]) Let F be a class of functions from M to [—1,1] and set p to be a
probability measure on M. Let (x;)$2, be independent random variables distributed according to u. For every
€>0 and any n > 8/€2,

(bup |— Zf X;) / fx)p(x)dx| > 6) < 8E,[N(e/8, F, L1(un))] exp(—ne®/128) (4.26)

In above theorem, N (¢, F, L, (i, ) denotes the covering numbers of F at scale € with respect to the L, (1)
norm. g, is the empirical measure supported on one sample of (x;)52,. Let (Y, d) be a metric space and set
F C Y. For every € > 0, denote by N (e, F, d) the minimal number of open balls (with respect to the metric d)
needed to cover F. That is, the minimal cardinality of the set {y1,-- ,ym} C Y with the property that every
f € F has is some y; such that d(f,y;) < e. The set {y1, - ,ym} is called an e-cover of F' . The logarithm of
the covering numbers is called the entropy of the set. For every sample {z1, - ,2,} let u, be the empirical

1/p

measure supported on that sample. For 1 < p < 0o and a function f, || f]|1, () = (£ >iey [f(2:)|P) " and

[ flloo = maxi<i<n | f(2i)]-
Notice that

Ll(,un) < Loo(,un) < L

where || f||lL.. = maxxenm | f(x)|. We get one immediate corollary of Theorem 4.6.

Corollary 4.1. Let F be a class of functions from M to [—1,1] and set p1 to be a probability measure on M.

Let (x;)$2, be independent random variables distributed according to pu. For every ¢ > 0 and any n > 8/¢?,

(?22 ‘EZ f(xi) / F(x)p(x)dx| > e> < 8N (€/8, F, Loy) exp(—ne? /128) (4.27)

where N (e, F, Lo,) be the covering numbers of F at scale € with respect to the Lo, norm
Then, we get an upper bound of sup ¢ p | S f(xi) fM x)dx]|.

Corollary 4.2. Let F be a class of functions from M to [—1,1]. Let (x;)52, be independent random variables
distributed according to p, where p is the probability distribution in Assumption 1. Then with probability at

least 1 — 9,
128 2 8
sup [p(f) — pu(f)] < (l N(\/>,F,Loo)—|-ln>,
feF n n 1)

where

1 n
f= [ foomax. o) = 1" s (125)
Proof. Using Corollary 4.1, with probability at least 1 — 4,
sup [p(f) = pa(f)| < €5,

fer

where €5 is determined by

128 8
65—\/n (lnN65/8FL )+ln5).

13



Obviously,
/128 2
€5 >\ — = 8\/7
n n

2
N(es/8,F, L) < N(\/;, F, L)

12 2
€5 < 128 (lnN(\/>,F,LOO)—|—ln8>
n n 0

which proves the corollary. O

which gives that

Then, we have

If the entropy bound of F' is known, the upper bound of sup;cp [p(f) — pn(f)| follows from Corollary
4.2. Now, the key point left becomes bounding the entropy of some given function class F'.

Let us start from the function class R;. The functions in R; are bounded uniformly, and the bound
only depends on the kernel function R. To apply above corollary, we need to normalize R; to make it lie in
[-1,1]. Here we also use R; to denote the normalized function class and absorb the bound of R, into the
generic constant C. We do same normalize procedure for all function classes defined in Section 4.

Since the kernel R € C?(M) and M € C*°, we have for any x,y € M

- yI?\ _ (lz=yI2Y, _ C
PoI) _p (220 ) < Zjx — 2.
r(PE) - r (122X < Cix-a

This gives an easy bound of N(e, R, L),

N(e,Ry, Loc) < (G\C;E)k (4.29)

Using Corollary 4.2, with probability at least 1 — 1/(2n),

sup  [p(f) = pal(f)] € —= (Inn —Int +1)"/ (4.30)

FERIUR, URs: n

4o

This gives that

Corollary 4.3. With probability at least 1 —1/(2n),

Wt
sup —[p(f) = pa(f)] < =5+
fERtURt/URgf,

as long as n is large enough such that the right hand side of (4.30) is less than wmin/2.

To get the covering number of K ,,, we need the assumption that supseg, [p(f) —pa(f)| < “3=. Notice
that

i ) () () () < e

The first inequality comes from the fact that minge pq we o (2) > Wmin/2 which is guaranteed by the assump-

tion that supseg, [P(f) — pn(f)] < “5i=. This gives a bound

N(e,Kpn, Loo) < (&)k (4.31)

14



Similarly, we can get

C 2k
N(Q ,Ct,n . Ict,na Loo) S <€\/%> (432)

Using Corollary 4.2, if sup;cg, [p(f) — pu(f)| < #%, then

C
sup p(f) = pu(f)| < == (Inn —Int 4 1)"/? (4.33)
fEK: nUK 0K n \/ﬁ

with probability at least 1 —1/(2n). Moreover, from Corollary 4.3, the assumption sup;cx, [p(f) = pn(f)| <

“min holds with probability at least 1 —1/(2n). By integrating these results together, we obtain

Corollary 4.4. With probability at least 1 —1/n,

s p() = palf) >

<
fER: nUK n K n | -2 max{wmax + wmin/27 2/wmin}

. — Wmin
as long as n is large enough. Here § oo —-

Using similar techniques, we can get the estimate of hg and h(f) in (4.24) and (4.25). Putting all bounds
in Theorem 4.4, we get

Theorem 4.7. Let ¢ be an eigenfunction of T. With probability at least 1 —1/n,

c 2
||(Tt — Tt,n)Tt7n||C1 SW (lnn —Int + 1)1/ ,
C
||(Tt — ﬂ7n)¢||cl Sm (lnn —Int + 1)1/2

as long as n is large enough. Here Cy is a constant depends on M, kernel function R, distribution p and

eigenfunction ¢.

The main theorem, Theorem 3.1, is an easy corollary of Theorem 4.3 and 4.7.

5 Proof of Theorem 4.5

To prove Theorem 4.5, first we prove the convergence in L? and then lift the convergence from L? to C' by
using the regularity of the kernel function. The calculus is a little tedious. However, the method is rather
standard.

In L?(M) space, we have

Theorem 5.1. Under the assumptions in Assumption 1. Let f € C(M) in both problems, then there exists
constants C > 0, so that

C
1T = T)Tenfllzziv < g llflleo sup  |pu(9) —p(9)l+t  sup  [pa(g) —p(9)]
JERURKe,n GEK t n Ry UKt n Ry
C
I(Ten = Ti) 2oy < gl sup  |pu(g) —p(9)] +1t sup  [pa(9) —p(9)| |
GERUR:Ki,n gEK: n ReUF Ry

as long as t small enough and (4.22), (4.23) are satisfied.

To prove Theorem 5.1, we need two theorems regarding the a prior estimate of the discrete solution and

the stability of the integral operator L;.

15



Theorem 5.2. Suppose u = (uy, -+ ,up,)" with Y, u; = 0 solves the problem (2.4) and f € C(M). Then
there exists a constant C > 0 only depends on M and kernel function R, such that

1 n 1/2 1 n 1/2
el 2 <C|= <
(n;ul> > (n;fxz ) < Ol flloos

as long as (4.22), (4.23) are satisfied.

Theorem 5.3. ([14]) Under the assumptions in Assumption 1, assume u(x) solves the following equation
—Liu=r, (5.1)

where

x — vl2
po= [ r (P 6o - utnpiay. (5.2)

Then, there exist constants C > 0,Ty > 0 independent on t, such that

lullz2(at) < Cllrll2(a)- (5.3)
as long ast < Ty.

Theorem 5.3 has been proved in [14]. Theorem 5.2 is an easy corollary of following theorem which is

proved in the appendix.

Theorem 5.4. Under the assumption in Assumption 1 and assume (4.22), (4.23) hold. There exist constants
C > 0 only depends on M and kernel function R, so that for any u = (u1,- -+ ,u,)’ € R with Y1, u; =0,

n

R C
5 Z Ry(xi, %) (u; — uj)? > o Zuf (5.4)
ij=1 i=1

Now we can give the proof of Theorem 5.1.

Proof. of Theorem 5.1
First, denote

nwt n

U (X) =Ty nf = Z Ry (x,%x;)uj — tz Ri(x,%;)f; (5.5)
j=1

where u = (uy,--- ,u,)" with Y21, u; = 0 solves the problem (2.4), f; = f(x;) and w,,(x) = + 37| Re(x, x;).
And denote

vt,n(x> = Tt,nut,n = ZRt X X] tZRt X XJ (56)

wtn

where v = (v, ,v,)" with 7" | v; = 0 solves
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It follows from Theorem 5.4 that there exists a constant C' > 0 independent on ¢ and n such that

1 n 1/2 1 n 1/2 1 n 1/2
<n2u5> < C fllsos <nZv5> SO(nZu?> < Cfllso (5.8)
=1 =1 =1

The idea to prove the theorem is using Theorem 5.3. Then we need to estimate ||L;(T},, — T;)T; n f]l2 and
| Le(Ttn — Tt) fll2 for any f € C(M).
For any f € C(M),

Lt(Tt,n - Tt)Tt,nf = (LtTt,nTt,nf - Lt,nTt,nTt,nf) + (Lt,nrft,nTt,nf - LtTtTt,nf)
= (Lyvgn — Linvin) + (Lo Ty nten — LiTitig ) - (5.9)

Next, we estimate two terms of right hand side of (5.9) separately. For convenience, we split vy, =

a¢,n + by and
1
at,’ﬂ(x) = 72Rt(xvxj)vjv (510)
bin(x) = ————— ) Ri(x,x;)u;. (5.11)

For || Libt, — Lt by n||2, we have

[(Libin — Linbin) (%)

-1 /M Ry(%,3) (bt (%) = be.n(¥))0(y )dy—f;Rt 2, %;) (b (%) = bin(,))
< S ben(x / Ri(x,y)p dy—*ZRtxx])

/ Ri(%, )bt (y)p(y) y——ZRt X, %;)bt.n (X;) (5.12)

j=1

The first term of (5.12) can be bounded as following,

bt,n(x) /M Rt(xa Y)p(Y)dy - % Z Rt(xa Xj) S C‘tHbt,n”L2 Su7lg) |pn(g) - p(g)| (513)

geER
L2
and
2
9 12 1 L
1benllze = 5 o o Z::Rt(x,xj)uj p(x)dx
Ct? S
< — ZRt X, X;) ZRt(x, x;)uf | p(x)dx

IA
Q
%
3
/—'\
\
&
><
QX
\_/

Ct2 -

IN

& < OF| f. (5.14)

Jj=1
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where last inequality comes from (5.8).
For the second term of (5.12),

[ Ry b))y = 5 D Rul i)

Jj=1

_t Rtxy <Z Ri(y. xx)u ) ()dy_nZRt(XXJ) ZRt (X5, Xpe ) g

n S wen(y oyt = Wi ( oyt
Ry(x, y) 1 Ri(x,%;) =
< — X dy — — ——Ri(x4,x 5.15
< Zl 1 ) R xep(y)dy n; (o %) (5.15)
Let
1 x=yI*\ 5 (|xi —yI?
A = d
e e L G
Ct n 1 ‘X—Xj‘Q = ‘Xi—Xj‘Q
- = Ll R 1
n jz_;wtyn(xj)R< 4t R 4t (5.16)
We have
|A| < Cy sup  [pn(g) —p(9)] (5.17)
9gEK: n-Re

for some constant C' independent of ¢. In addition, notice that only when |x — x;|? < 16t is A # 0, which
implies
1 |x — x;|?
Al < —|AIR| ———— ). 5.18
A< glair (B3 (515)

Using these properties of A, we obtain

[ Ry b )p()y 5 D Rulx )

j=1
Ct " |x — xp|?
Z2A|o R( 22k
o Al ;'“” ( 32t

Ct & x — xp |2
S ctulr (M) e s o) - alo) (5.19)
k=1

32t geK:t,n'ﬁt

IN

IN

It follows that

/Rtxybm )()y——ZRtxxnbm(xj)

j=1 9

9 1/2
1 <& |x — xx|?
ci / LSS Gl R < px)dx | G sup [pa(e) — p(9)]
( M <7’L ; ! 32t tgG’Ct,n'ﬁt

. 1/2
1
o (nzuk) ¢ s Ipalg) = plo)]

gEKt n R

Ct[|floCt  sup_ |pn(g) — p(9)] (5.20)
gEKt n Rt

IN

IN

IN
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To get the second inequality, we use the condition that Ctsupger,, < Wmin /2.
Now we have complete upper bound of ||Lbsr, — Ly nbinllr, using (5.12), (5.13) and (5.20) and C; =

1
C
[ Ltbt,n — Linbenll 2y < W”‘ﬂlm sup  |pnlg) —p(9)| | - (5.21)
JERUK: n- R
Mimicking the derivation of (5.21), we have
[ L1atn = Linainl < /1 su lpn(g) — p(9)] (5.22)
n nlt nl|| L2 > 275071 0o n - .
tat, tntnllL2(M) = a0 geRtUK:I:,n'Rt Pnlg) — P9

And consequently,

||Ltvt,n - Lt,nvt,n ||L2(./\/l)

< [[Liagn — Lt,nat,n||L2(M) + || Leben — Lta"btv"”LQ(M)
C
< W”JCH‘X’ sup Ipn(9) —p(g)|+t sup |pn(g9) —p(9)| |- (5.23)
t GERUK: n Rt gG’Ct,n'ﬁt

The second term of (5.9) can be bounded as following,

Lt(TtUt,n) - Lt,n(Tt,nUt,n)

_ 1 < =
Ry(%,y)uen(Y)p(y)dy — > Bi(x,%;)u
j=1

IN
D

IN
3[\3"_‘
jilng
HE
Sle
N
=
NgE
=
®
~
»
z
<
=
I
~
Eod
i
=
¥
<
»
Z
=
N——

nJm wt,n(y) =1 k=1
1 « 1 — Ri(x,x;) / Ri(x,y)
= =) up | =Y —LR(x5,xk) — — T Ry(y,x d
w2\ 2 o) Oy Ty
t — 1= Re(x, %)) — / Ri(%,y)=
_t SN BB (xx) = | 2R YIR (g« dy | . 5.24
nkZ:lfk 7 2 ) g = |y Ry xep(y)dy (5.24)
Using the similar derivation from (5.15) to (5.21), we get
I Le(Twen) = L (Tentien)l| L2
1/2
1<
<C EZuj Ci sup_ [pa(9) = p(9)| + Ct fllcCi sup_ |pn(g) — p(9)|
j=1 gEK: nRe gEK: nRe
C
< galifllee | sup_ Ipalg) —plg)l +t  sup_ [palg) —p(g)l |- (5.25)
gEKt,n R gERt n Rt

The complete estimate follows from Equation (5.23) and (5.24).

C
1 Le(Ten — T)Tin fllL2(m) < WT_H”]FHOO (gentfblg}cm Ipn(g) — p(9)

+t sup  |pu(g) —p(9)l + sup _ [pa(9) —p(g)|> - (5.26)
gGICtm,-’Rf, gEKt,n Re
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Similarly, we can also get

C
Li(Tyn — T < — N flls () —
| Le (T, )2y < Ty I £1] (gentit;g_lcm Ipn(9) — p(9)l

+t sup [pa(g) —plg)| +1* sup Ipn(g)—p(g)|>- (5.27)
gEKtn Rt gef-Re

The theorem is proved by using Theorem 5.3 and above two estimates (5.26), (5.27)

Now, we can prove Theorem 4.5 after one techinical lemma.

Lemma 5.1. Under the assumption in Assumption 1 and assume (4.22), (4.23) hold. Then, there exist
constants C' > 0 only depends on M and kernel function R, such that for any f € C(M),

1T flloo < CEF 4 Flloos 1Tl < Ol flloo-

Proof. From the definition of T} ,,, we have for any f € C(M)

C; |x — x;|? tC, Ix — x;|?
Tonf = nwy (X ZR( 4t )u‘+nwtn(x)z_;R< 4t )f(xl)

i=1

where (ug,--- ,u,) satisfies the equation
C, — Ix; — x;|? C) — Ix; —x;|?
i E R =7 P —ui) = E R v J ).
nt <~ ( 4t (i =) =3 st 4t JGx)

Using Theorem 5.4, it is easy to get that

Lo 1/2
(ZU?> < Cllfllo
=

where C' > 0 is a constant only depends on M and kernel function R.

Then
" 1/2 . 1/2
Cy |x — x;]? Cy Ix — %2\
T fl < | —2 L.l Tt Lkl N P
Tinfl < (nwtn (x) ZR( 4t nwe n (x) ;R 4t Ui
X — X
P S (' ) 1l
nwtn :
1/2
Ci Ix — 2
< ;
< (Wn (22X i) e
12 1/2
<(2) ( Zu> 1l < Clf
and

ITin Sl <2 [ s SR ('XX') u2p()dx + 262 f]12

NW¢.p, p 4t

1 n
=¢ <n >_uf +t2||f||zo> < ClIfI
i=1
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Finally, we get fully prepared to prove Theorem 4.5.

Proof. of Theorem 4.5:
For any f € CY(M), let uyn, = Ty nf and v; = T} pus n(x;), i = 1,-++ ,n. Using the definition of T; and

Ty n, Tyut n, and Ti puy , have following representations

Tyuen = ﬁ /M Ri(x,y)Tyut o (y)p(y)dy + ﬁ /M R(x,y)utn(y)p(y)dy,

n n

1

t _

Tnu nm o — R X, X;)V; + ————— RX,Xi Wj. 5.28

t, t nwt,n(x) — t( ) nwt7n(x) ; ( ) ( )

where u; = u (%), ¢ = 1,--- ,n. We know that (u1,---,u,) and (vy,--- ,v,) satisfy following equations

respectively

1 « 1

- D Rl ) (s — uy) = - > Rilxi, %) f(x5),
j=1 i=1

1 < 1<

o D Ru(xi %) (0 = v) = ngt(Xi»Xj)Uj'
j=1 i=1

Using Theorem 5.2, we have

1 n 1/2 1 n 1/2 1 n 1/2
n i = o n ; < . H < 00 2
(n%m) < O flloos <n;vz> _C(n;%) < C|If| (5.29)
Denote

1 t _

Tlunzi/Rx, Tiugn d+7/Rx, Ut dy,

P UL, el (%, ) Teurn (y)p(y)dy o (%, ¥)usn (y)p(y)dy
1 t _

T2 = — T, - .

Purn = s | R Tty + s [ By 5)ply)iy

We will prove the theorem by upper bound Tyuy n, — Tl ey T ugn — Tug,n and TPuy , — T} s, separately.

First, let us see Tiugn — T g p-

‘Ttut,n - Ttlut,n ’
1 1

S @ wm®)

<28 sup (Ipu(e) - (@) (\ /. s y)Ttut,ay)p(y)dy’ Tt \ | rex y)ut,my)p(y)dy\)

min 9ER¢

(| rte Tnainmiay| +o| | Rexyuainmay))

(ITewe,nll L2 + tlwnll22) sup (Ipag) = p(9)])

<
t3k/4 9ER,

C
<——|ut.n su n _
<garzalluenlzs sup (lpnlg) = p(9))

C
<= flloe su n(g) — ,
<walfl gg}gt(lp (9) —p(9)])

Similarly, we have
C

1
‘V(Ttut,n -1 Ut,n)| Sm“f”w g;ggptﬂpn(g) —p(g9)l),
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which proves that

C
HTtut,n - Ttlut,nucl < WHf”oo . sup _ (|pn(g) — p(9)])- (5.30)

ERUD;

Secondly, using Theorem 5.1 we have

|Tt1ut7n — Tt2ut,n‘

1
_ ‘ / Ri(x,y) (Tyue,n(y) — Tinuen(y)) p(y)dy
wt,n(x) M
< Otk | Teut,n — Ty el 2
= Ct_k/4 ||(Tt - Tt,n)Tt,nf||L2
C
< a1l sup  |palg) —p(@)|+t sup_ [palg) —p(g)| + 2 sup_ |palg) —p(9)l | -
t GERUR Ky, gEK Rt 9EK L nRs
and

IV (T ey — Tues)|
Ve (g [ Ry ) = T (7)) )|

< Ctmk/AHL/2 Tyt — Tttt nll 12

= Ot kA2 (T — Tt,n)Tt,nf”m

IN

C
si7raza 1M1l sup  |palg) —p(9)l +t  sup_ [pa(g) —p(g)l + ¢ sup_ [pa(g) —p(g)l | -
GERUR-Ky,n g€K:t,n'ﬁt gezt,n‘ﬁt

This implies that
HTtlut,n - TtQUt,nHCl (5.31)

C
< msalflleo sup pn(9) —p@)l+t sup  |pn(g) —p(9)|+ ¢ sup  |pn(9) —pl9)| |-
t gERUR Ko gEKn R 9EL n Re

Now, we turn to estimate Ty nu; ., — TPus . Using (5.28), we have

E,nut,n _ﬂQUt,n - wt ( ZRIS X X’L [ / Rt(x y)Tt nUt n( )p(Y)dY>

1 e -
wtn (nz:Rxxl U; /nyutn )(y)dy).
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Using (5.28) again, the first term becomes

1 n
— E Rt(X,Xi)w*/ Rt(XaY)Tt,nut,n(y)p(y)dy
ni4 M

< ZR“”‘Z) mZRt Gcio)) vy + s > B u;
n z J=1 n\ti) 5
1 - t nL
/MRt(va) nwt,n(y)Z::Rt(y,xj)vg+nwt,n(y)ZRt(y x;) u; | ply)dy
<

L~y (LS Balbeoxi) ooy [ By
nz I <nz Wy (X;) Ry (xi,%;) /M R (y, ])p(y)dy>

j=1 i=1 b Wen(Y)

3 (iZmR o) = [ TR () (y)dy>

wt,n(Y)

Using the similar techniques from (5.15) to (5.21), we get

1 n
S Rl = [ R y)Ti i (1)p(3)dy
i=1

1/2 1/2
1 n
< c a(g) — = c n(g) —
< tm Zv Lo Ipn(9) — p(g)| + tk/4 - nZ:: Lo Pn(9) — p(9)]
C
< allflle | sup pal9) —p(9)l +¢ sup_ |pa(9) —p(9)l
t g€ n Ry gEKt,n R
The second term can be bounded similarly,
1 n ~ B
-~ > R(x,x;)u; — » R(x,y)ut,n(y)p(y)dy
i=1
1/2
< tk/4 Zu Cy sup  |pa(g9) —plg)l + tm - Zf2 Ci sup_ |pa(g) — pl9)|
9gEK: n-Re lJE’Ct n Ry
C
< W||f||w< sup_ |pn(g9) —p(g9)l +t sup pn(g)—p(g)l> (5.32)
gEKt n R QEKf n Rt

Now, we have

2
|Tt,nut,n - Tt

C
< alfllee | swp Ipalg) =p(9)l +t  sup_Ipa(9) —p(9)| +¢*  sw_ |pu(g) — p(9)]
gEK: nRe gE)Ct,n‘ﬁt geEt,n‘ﬁt

Using the similar method, we can get

C
IV (Tenten = Tiuen)l < amalflse | sup Ipalg) —plg)l +t  sup_ |palg) —p(9)l + 1 sup_ [palg) —p(9)]
t 9EL: Dy ge}Ct,n'ﬁt geKt n-Di

The estimate of ||(T; — T},n)T} n||cr in Theorem 4.5 is proved.
Similarly, we can obtain the estimate of ||(T; — Tt ) fl|lc1 for any f € C(M) which complete the proof.
O
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6 Conclusions

In this paper, we proved that the spectra of the normalized graph laplacian (1.1) will converge to the spectral
of Laplace-Beltrami operator with Neumann boundary condition (1.2) as ¢ — 0 and the number of sample
points goes to infinity. The samples points are assumed to be drawn on a smooth manifold according to
some probability distribution p. Moreover, we also give an estimate of the convergence rate. However, the
estimate of the convergence rate in this paper is far from optimal. In the analysis, we believe that a prior
estimate of the integral equation (1.3) can be improved. Now, we only get L? estimate. In the spectra
convergence analysis, we need C! estimate. In this paper, the regularity is lifted by using the regularity of
the kernel function. The trade off is that a large factor t—*/4 emerges which reduces the rate of convergence.

Appendix A: Proof of Theorem 5.4

Proposition A.1. (/20]) Assume both M and OM are C* smooth. There are constants Wmin > 0, Wimax <
400 and Ty > 0 depending only on the geometry of M, so that

Wmin S wt / Rt X Y)dy < Wmax
as long as t < Tp.

We have the following lemma about the function wy .

Lemma A.1. Under the assumptions in Assumption 1, if Cy sup |[p(f) — pn(f)] < Wmin/2,
fER:

wmin/2 S wt,n(x) S Wmax + wmin/2~

This lemma is a direct consequence of Proposition A.1 and the fact that

]wn ~af (“‘yP)pwxw‘sctwpmuv—nxﬁL

fER:

Lemma A.2. (/20, 14]) For any function u € L?(M), there exists a constant C > 0 only depends on M,
such that

/‘/1waW@%ﬂmw%kmwmmyzC/IM@—M%&MK (A1)
MIM M

where

U= /M u(x)p(x)dx.

Now, we can prove Theorem 5.4.

Proof. of Theorem 5./

First, we introduce a smooth function u that approximates u at the samples X,,.

u(x) = = ZR(X Xl') (A.2)

where wy ,(x) = S+ 3" R (\xZ;ilz) and t' = ¢/18.

n
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Then, we have

| [ Reley) (a0 — ul))? sty xay
MIM

2
/ / Rt/ * y (nwt/ ZRt, X Xl i nwt/ ZRt/ X77 ) p(X)p<y)dXdy

i=1

1
= /M /M Rt’(Xa Y) (nQ'U)t’,n(X)wt’)n(y Z Rt/ X Xz)Rt’(XJ, )(uz ’U,J)) p(X)p(y)dXdy

1,j=1

AN

/M //\/1 Ry (x,y) n2wy. (1 Z Ry (%, %) Ry (%5, y) (wi — 1) *p(x)p(y) dxdy

n X)wt/,n(y =

= nz Zl (/ /M wrn (X0 () —— R (x, %)) R (x;,y) Ry (X’Y)p(x)p(Y)dXdY> (u; — uj)?.

(A.3)

Denote .
A= e e (%, Xi) R (x5, ) Ry (%, y)p(x)p(y ) dxd
/ /M Wy (X)W 1 (¥) v (%, %) Ry (x5, y) Re (%, y)p(x)p(y ) dxdy

and then notice only when |x; — x;|* <36t is A # 0. For |x; — x;|? < 36t/, we have

x; — %2\ x; — x;|?
A< / / Ry (x,xi) Ry (x5, y) R (x,y)R (|72t,J|> R <72t,J) p(x)p(y)dxdy
ccC x; — X;|?
< t/ / Ry (x,x;) Ry (x,y)R <|72t’j|> p(x)p(y)dxdy
x; — %42
/ / Ry (x,%;) Ry (x,y)R (' m,j' >p(X)p(y)dxdy

Ixi — % |2
CCiR <4t . (A.4)

IN

IN

Combining Equation (A.3), (A.4) and Lemma A.2, we obtain

nt &
1,j=1

CC 5 g ('Xj‘;') (=) > [ () = 0P (A5)

We now lower bound the RHS of the above equation using .- Z

= | [ utamtxiax

]11
n

([ wn (X Zfﬁ) ) |

Jj=1

Notice that

n

C; Ix — x| 1 Cy Ix; — x|
dx — —
/M Wy p (X) R ( 4t p(x)dx n Z Wy (%) R 4

i=1

< C; sup |p(f) —pa(f)]
fe)ct/,n

25



Thus we have

1 — C, Ix; — x;|? 1 <
i < |— R J . 2z , —
< E 2 ( )yt (R wl] swe le(f) —pulf)
1,7=1 ) j=1 t/\n
SN ES S| S i 1p(F) — pu(f)|
< =) ulx = |u sup [p(f) — pn
n i=1 j=1 ! FER
1/2
1 <« C, Ix; — x;|? 1 <&
< |— R J — u; - — Dn
< |z ”2;1 ES ( ) ()| + ;uj s [p(f) = pa(f)
1/2 1/2
2 Cr ¥ xi — %[ 2 IR
< =zt R — =
~  Wmin 712”:1 ( 4t (ui = uy) + n;uj fes)lclgn Ip(f) = pu(f)l

(A7)

Denote

B C |x — x;)? Ix —x;|?
1= [t () R (B oo

Iy~ G R(|xj —xiP) R(xj —xﬂ)
n wy ,(%5) 4t 4t

j=1

and then |A| < Cy sup Ip(f) — pn(f)|. At the same time, notice that only when |x; — x;|> < 16t is
feKt’JL'Kt'JL

A # 0. Thus we have

Ix; —x|?

1
Al < —|A .
4] < SR

Then
/ u?(x)dx — 1 En u?(x;)
M n = !
Jj=1
1 n
72 E Ctuiul||A|

Sl Ny

n? fEKy WKy

IA

IN

x; — Xl|2
Cift ( v )Y

i,l=1
Cy xi —x1*\
< = CiR '
< e, 003 an (o)
1
S (wmax + wmin/Q)Ct sup ‘p(f) - pﬂ(f)' ( Z u?) . (AS)
FERy o Kyr n i=1

In the last inequality, we use the condition that Cysup cr, [p(f) = Pn(f)| < Wmin/2-
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Now combining Equation (A.5), (A.7) and (A.8), we have for small ¢

% ZUQ(XZ‘) = / ’U/Q(X)p(X)dx + (wmax + wmin/2)Ct sup |p(f) - pn(f)| (7’1L Z U?)
i=1 M :

FERy Kyt

IN

2 /M (U(X) - ﬂ)zp(x)dx + 262 + (wmax + wmin/Q)Ct sup |p(.f) - pn(f)| (1 Z u?)

FERy WKy
OCt - |Xi - Xj|2 2
< W E R ( 1t (ui - uj)

,n

i,7=1
1 n
+ max{wmax + wmin/za 2/wmin}ot sup ‘p(f) - pn(f)' < Z U?) .
FERy oKy UK n i=1
Letézm 121 1U(X7)26 Zl 1U and
max{wmax + wmin/2a 2/wmin}ct sup |p(f) — Pn (f)| S 62/2

feK:t’,n'K:t’,nUK:t',n

then we have completed the proof. Otherwise, we have
_ 1 —~ 5 1¢ 2 2¢ (1-0)° <~ o
= E —u(x; - E , + = E i) — = g su(Xi) 2 E i A9
u(x;) = ul+n. u(x;) - uu(x;) 2l (A.9)

This enables us to prove the theorem in the case of % S uP(xg) < % S u? as follows.

C, — x; — X;|?
72t ZR< 4t/J‘ >(“i_“j)2

ij—l

2C, x; — %%
== Z R(|4t']|) ui(ui — uy)

3,7=1

= fzuz Ui — u(X;)) Wy n (%)

= — Z —Uu Xl wt’,n(xi) + % ' u(xz)(ul - u(xi))wt/m(xi)

5 2_1 1/2 1/2
> n Z(ul - U(Xi))zwt’ - (n u? Xz Wt n Xz)) < Z wt n(xz)>

i=1 i1

v n 1 n 1/2 1 n 1/2

> == D (i = u(x:))? = 2(Wmax + Winin/2) <n > “2(Xi)> (n > (i — u(Xi))2>
i=1 =1 =1
1/2 n 1/2
> (Winin(1 — 6) — 2(Wmax + Winin/2)0) ( Zu ) <711 > (i — u(xi)y)
=1
> wmln 1 - < Zu > . (AIO)
O
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