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Abstract. In this paper, we propose a novel low dimensional manifold model (LDMM) and
apply it to some image processing problems. LDMM is based on the fact that the patch manifolds
of many natural images have low dimensional structure. Based on this fact, the dimension of the
patch manifold is used as a regularization to recover the image. The key step in LDMM is to solve
a Laplace-Beltrami equation over a point cloud which is solved by the point integral method. The
point integral method enforces the sample point constraints correctly and gives better results than the
standard graph Laplacian. Numerical simulations in image denoising, inpainting and super-resolution
problems show that LDMM is a powerful method in image processing.

1. Introduction. Many image processing problems can be formalized as the
recovery of an image f ∈ R

m×n from a set of noisy linear measurements

(1.1) y = Φf + ε

where ε is the noise. The operator, Φ, typically accounts for some damage to the
image, for instance, blurring, missing pixels or downsampling, so that the measured
data y only captures a small portion of the original image f . It is an ill-posed problem
to recover the original image from partial information. In order to solve this ill-posed
problem, one needs to have some prior knowledge of the image. Usually, this prior
information gives different regularizations. With the help of regularizations, many
image processing problems are formulated as optimization problems.

One of the most widely used regularizations is total variation, introduced by
Rudin, Osher and Fatemi (ROF)[12]. In the ROF model, the following optimization
problem is solved.

min
f

‖f‖TV +
µ

2
‖y − Φf‖2L2(1.2)

where ‖f‖TV =

∫

|∇f(x)|dx. With the Bregman techniques [9, 6], TV regularized

problems can be solved efficiently. It is well known that TV based model can restore
the “cartoon” part of the image very well, while the performance on the texture part
of the image is not so good.

The nonlocal methods are another class widely used in image processing. These
were first proposed by Buades, Coll, and Morel [1, 2] as a nonlocal filter for image
denoising and were later formulated in a variational framework by Gilboa and Osher
[4, 5]. In the nonlocal method, the local derivatives are replaced by their nonlocal
counterpart:

∇wu(x, y) =
√

w(x, y)(u(x)− u(y))(1.3)
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where w is a weight function defined as

w(x, y) = exp

(

−

∫

G(s)|u(x+ s)− u(y + s)|2ds

)

,(1.4)

G is a Gaussian. Using the nonlocal derivatives, the nonlocal total variation model is
given as following

min
f

‖∇wf‖L1 +
µ

2
‖y − Φf‖2L2 ,(1.5)

where

‖∇w(f)‖L1 =
∑

x

(

∑

y

w(x, y)(f(x)− f(y))2

)1/2

.(1.6)

It has been shown that the nonlocal model recovers textures well.
In this paper, inspired by the nonlocal method and the manifold model of image

[11], we proposed a low dimensional manifold model (LDMM) for image processing.
Consider a m × n size image f ∈ R

m×n. For any pixel (i, j), where 1 ≤ i ≤ m, 1 ≤
j ≤ n, let this pixel constitute the left-top pixel in a s1 × s2 patch and denote this
patch as pij . Let P(f) denote the collection of all such patches, i.e.,

(1.7) P(f) = {pi,j : (i, j) ∈ Θ ⊂ {1, 2, · · · ,m} × {1, 2, · · · , n}} .

where Θ is a index set such that the union of the patch set P(f) covers the whole
image. There are many ways to choose Θ. For example, we can choose Θ =
{1, 2, · · · ,m} × {1, 2, · · · , n} or Θ = {1, s1 + 1, 2s1 + 1, · · · ,m} × {1, s2 + 1, 2s2 +
1, · · · , n}. This freedom may be used to accelerate the computation in LDMM.

In this paper, P(f) is called the patch set of f . P(f) can be seen as a point
set in R

d with d = s1s2. The basic assumption in this paper is that P(f) samples a
low-dimensional smooth manifold M(f) embedded in R

d, which is called the patch
manifold of f . It was revealed that for many classes of images, this assumption holds
[10, 11] Based on this assumption, one natural regularization involves the dimension
of the patch manifold. We want to recover the original image such that the dimension
of its patch manifold is as small as possible. This idea formally gives the following
optimization problem:

min
f

dim(M(f)) + λ‖y − Φf‖22.(1.8)

The problem remaining is how to compute dim(M(f)) for given image f . Fortunately,
using some basic tools in differential geometry, we find that the dimension of a smooth
manifold embedded in R

d can be calculated by a simple formula

dim(M) =

d
∑

j=1

|∇Mαi(x)|
2

where αi is the coordinate function, for any x = (x1, · · · , xd) ∈ M ⊂ R
d,

αi(x) = xi.(1.9)
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Using this formula, the optimization problem (1.8) can be reformulated as

min
f∈Rm×n,

M⊂Rd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + λ‖y − Φf‖2l2 , subject to: P(f) ⊂ M.(1.10)

In this paper, the optimization problem (1.10) is solved by an alternating direction
iteration. First, we fix the manifold M, and update the image f . Then the image is
fixed and we update the manifold. This process is repeated until convergence. In this
two step iteration, the second step is relatively easy. It is done by directly applying
the patch operator on the image f .

The first step is more difficult. To update the image, we need to solve Laplace-
Beltrami equations over the manifold.











−∆Mu(x) + µ
∑

y∈Ω

δ(x− y)(u(y)− v(y)) = 0, x ∈ M

∂u

∂n
(x) = 0, x ∈ ∂M.

(1.11)

where M is a manifold, ∂M is the boundary of M, n is the out normal of ∂M. δ is
the Dirac-δ function in M, v is a given function in M.

The explicit form of the manifold M is not known. We only know a set of
unstructured points which samples the manifold M in high dimensional Euclidean
space. It is not easy to solve this Laplace-Beltrami equation over this unstructured
high dimensional point set. A graph Laplacian is usually used to approximate the
Laplace-Beltrami operator on point cloud. However, from the point of view of numer-
ical PDE, the graph Laplacian was found to be an inconsistent method due to the
lack of boundary correction. This is also confirmed by our numerical simulations, e.g.
(Fig. 1(d)).

Instead, in this paper, we use the point integral method (PIM) [8, 14, 15] to solve
the Laplace-Beltrami equation over the point cloud. In PIM, the discretized linear
system of the Laplace-Beltrami equation (1.11) is given as following:

|M|

N

N
∑

j=1

Rt(xi,xj)(ui − uj) + µt

N
∑

j=1

R̄t(xi,xj)(uj − vj) = 0(1.12)

where {x1, · · · ,xN} samples M, vj = v(xj) and |M| is the volume of the manifold
M. Rt and R̄t are kernel functions which are given in Section 4.1.

Compared with the graph Laplacian which is widely used in the machine learning
and nonlocal methods, a boundary term is added in PIM based on an integral approx-
imation of the Laplace-Beltrami operator. With the help of this boundary term, the
values in the retained pixels correctly spread to the missing pixels which gives much
better recovery (Fig. 1(c)).

The rest of the paper is organized as following. The patch manifold is analyzed
in Section 2. Several examples are given to show that it usually has a low dimen-
sion structure. In Section 3, we introduce the low dimensional manifold model. The
numerical methods including the point integral method are discussed in Section 4.
This is the most important section for any potential user of our method. In Section
5, we compare the performance of the LDMM method and classical nonlocal meth-
ods and carefully explain the apparently slight differences between the two methods.
Numerical results are shown in Section 6. Concluding remarks are made in Section 7.
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2. Patch manifold. In this section, we analyze the patch manifold and give
several examples. We consider a discrete image f ∈ R

m×n and assume that there is
a continuous counterpart f̃ ∈ L2([0, 1]2) such that f = I(f̃), where I is a “camera”
operator which maps a 2D function to a discrete image. For any x ∈ [0, 1]2, a patch
px(f̃) of size (τ1, τ2) is a function on [0, τ1]× [0, τ2],

px(f̃)(s) = f̃(x+ s), ∀s ∈ [0, τ1]× [0, τ2].(2.1)

The patch manifold is defined as

M(f) = {I(px(f̃)) : x ∈ [0, 1]2} ⊂ R
d, d = s1s2.(2.2)

It is obvious that the patch set P(f) ⊂ M(f) is a sample of M, where the patch set
P(f) is defined in (1.7).

The patch set and patch manifold have been well studied in the literature. Lee et
al. studied the patch set for discretized images with 3 × 3 patches [7]. Their results
were refined later by Carlsson et al. [3] that perform a simplicial approximation of the
manifold. Peyré studied several models of local image manifolds for which an explicit
parameterization is available [10, 11]. One of the most important feature of the patch
manifold is that it is close to a low-dimensional manifold for many natural images.
Now, let us see several simple examples.

If f is a C2 function which correspond to a smooth image. Using Taylor’s expan-
sion, px(f) can be well approximated by a linear function

px(f)(y) ≈ f(x) + (y − x) · ∇f(x).(2.3)

This fact implies that M(f) is close to a 3D manifold.
If f is a piecewise constant function which corresponds to a cartoon image, then,

any patch, px(f), is well approximated by a straight edge patch. Each patch is
parametrized by the location and the orientation of the edge. This suggests that for
a piecewise constant function, M(f) is also close to a 3D manifold.

If f is a oscillatory function corresponding to a texture image. We assume that
f can be represented as

f(x) ≈ a(x) cos θ(x).(2.4)

where a(x) and θ(x) are both smooth functions. For each pixel x, the patch px(f)
can be well approximated by

px(f) ≈ aL(y) cos θL(y),(2.5)

where aL(x) and θL(x) are linear approximations of a(x) and θ(x) at x, i.e.,

aL(y) = a(x) + (y − x) · ∇a(x), θL(y) = θ(x) + (y − x) · ∇θ(x).

This means that the patch manifold M(f) is approximately a 6-dimensional manifold.
These simple examples show that for many images, smooth, cartoon and texture,

the patch manifold is approximately a low dimensional manifold. Then one natural
idea is to retrieve the original image by looking for the patch manifold with the lowest
dimension. This idea leads to a low dimensional manifold model introduced in the
next section.
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3. Low dimensional manifold model. Based on the discussion in the previous
section, we know that an important feature of the patch manifold is low dimensionality.
One natural idea is to use the dimension of the patch manifold as the regularization
to recover the original image. In the low dimensional manifold model, we want to
recover the image f such that the dimension of its patch manifold M(f) is as small
as possible. This idea formally gives an optimization problem:

min
f∈Rm×n,

M⊂Rd

dim(M), subject to: y = Φf + ε, P(f) ⊂ M(3.1)

where dim(M) is the dimension of the manifold M.
However, this optimization problem is not mathematically well defined, since we

do not know how to compute dim(M) with given P(f). Next, we will derive a simple
formula for dim(M) using some basic knowledge of differential geometry.

3.1. Calculation of dim(M). Here we assume M is a smooth manifold em-
bedded in R

d. First, we introduce some notation. Since M is a smooth submanifold
isometrically embedded in R

d, it can be locally parametrized as follows,

x = ψ(γ) : U ⊂ R
k → M ⊂ R

d(3.2)

where k = dim(M), γ = (γ1, · · · , γk)t ∈ R
k and x = (x1, · · · , xd)t ∈ M.

Let ∂i′ = ∂
∂γi′

be the tangent vector along the direction γi
′

. Since M is a

submanifold in R
d with induced metric, ∂i′ = (∂i′ψ

1, · · · , ∂i′ψ
d) and the metric tensor

(3.3) gi′j′ =< ∂i′ , ∂j′ >=

d
∑

l=1

∂i′ψ
l∂j′ψ

l.

Let gi
′j′ denote the inverse of gi′j′ , i.e.,

k
∑

l′=1

gi′l′ g
l′j′ = δi′j′ =

{

1, i′ = j′,
0, i′ 6= j′.

(3.4)

For any function u on M, let ∇Mu denote the gradient of u on M,

(3.5) ∇Mu =

k
∑

i′,j′=1

gi
′j′∂j′u ∂i′ .

We can also view the gradient ∇Mu as a vector in the ambient space Rd and let ∇j
Mu

denote the u component of the gradient ∇Mu in the ambient coordinates, i.e.,

∇j
Mu =

k
∑

i′,j′=1

∂i′ψ
jgi

′j′∂j′u, j = 1, · · · , d.(3.6)

Let αi, i = 1, · · · , d be the coordinate functions on M, i.e.

αi(x) = xi, ∀x = (x1, · · · , xd) ∈ M(3.7)

Then, we have the following formula
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Proposition 3.1. Let M be a smooth submanifold isometrically embedded in
R

d. For any x ∈ M,

dim(M) =

d
∑

j=1

‖∇Mαj(x)‖
2

Proof. First, following the definition of ∇M, we have

d
∑

j=1

‖∇Mαj‖
2 =

d
∑

i,j=1

∇i
Mαj∇

i
Mαj

=

d
∑

i,j=1





k
∑

i′,j′=1

∂i′ψ
jgi

′j′∂j′αj









k
∑

i′′,j′′=1

∂i′′ψ
jgi

′′j′′∂j′′αj





=

d
∑

j=1

k
∑

i′,j′,i′′,j′′=1

(

d
∑

i=1

∂i′ψ
i∂i′′ψ

i

)

gi
′j′gi

′′j′′∂j′αj∂j′′αj

=

d
∑

j=1

k
∑

j′,i′′,j′′=1

(

k
∑

i′=1

gi′i′′g
i′j′

)

gi
′′j′′∂j′αj∂j′′αj

=

d
∑

j=1

k
∑

j′,i′′,j′′=1

δi′′j′g
i′′j′′∂j′αj∂j′′αj

=
d
∑

j=1

k
∑

j′,j′′=1

gj
′j′′∂j′αj∂j′′αj .

The second equality comes from the definition of gradient on M, (3.6). The third
and fourth equalities are due to (3.3) and (3.4) respectively.

Notice that

∂j′αj =
∂

∂γj′
αj(ψ(γ)) = ∂j′ψ

j .(3.8)

It follows that

d
∑

j=1

‖∇Mαj‖
2 =

d
∑

j=1

k
∑

j′,j′′=1

gj
′j′′∂j′ψ

j∂j′′ψ
j

=
k
∑

j′,j′′=1

gj
′j′′





d
∑

j=1

∂j′ψ
j∂j′′ψ

j





=
k
∑

j′,j′′=1

gj
′j′′gj′j′′

=
k
∑

j′=1

δj′j′ = k = dim(M)(3.9)
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Using above proposition, the optimization problem (3.1) can be rewritten as

min
f∈Rm×n,

M⊂Rd

d
∑

i=1

‖∇Mαi‖
2
L2(M) + λ‖y − Φf‖2l2 , subject to: P(f) ⊂ M.(3.10)

where

(3.11) ‖∇Mαi‖L2(M) =

(∫

M

‖∇Mαi(x)‖
2dx

)1/2

.

This is the optimization problem we need to solve.

4. Numerical method. The optimization problem (3.10) is highly nonlinear
and nonconvex. In this paper, we propose an iterative method to solve it approx-
imately. In the iteration, first the manifold is fixed, the image and the coordinate
functions are computed. Then the manifold is updated using the new image and
coordinate functions. More specifically, the algorithm is as following:

• With a guess of the manifold Mn and a guess of the image fn satisfying
P(fn) ⊂ Mn, compute the coordinate functions αn+1

i , i = 1, · · · , d and fn+1,

(fn+1, αn+1
1 , · · · , αn+1

d ) = arg min
f∈Rm×n,

α1,··· ,αd∈H1(Mn)

d
∑

i=1

‖∇Mnαi‖
2
L2(Mn) + λ‖y − Φf‖2l2 ,

(4.1)

subject to: αi(px(f
n)) = pix(f),

where pix(f) is the ith element of patch px(f).
• Update M by setting

Mn+1 =
{

(αn+1
1 (x), · · · , αn+1

d (x)) : x ∈ Mn
}

.(4.2)

• repeat these two steps until convergence.
In the above iteration, the manifold is easy to update. The key step is to solve equality
(4.1). Now, (4.1) is a linear optimization problem with constraints. We use Bregman
iteration [9] to enforce the constraints in (4.1) which gives the following algorithm:

• Update (fn+1,k+1,αn+1,k+1) by solving

(fn+1,k+1, αn+1,k+1
1 , · · · , αn+1,k+1

d )

= arg min
α1,··· ,αd∈H1(Mn),

f∈Rm×n

d
∑

i=1

‖∇αi‖
2
L2(Mn) + µ‖α(P(fn))− P(f) + dk‖2F + λ‖y − Φf‖22,

where

α(P(fn)) =











α1(P(fn))
α2(P(fn))

...
αd(P(fn))











∈ R
d×N , N = |P(fn)|

and αi(P(fn)) = (αi(x))x∈P(fn), i = 1 · · · , d are N dimensional row vectors.
P(f) is also a d×N matrix, with each column represents one patch in P(f).
‖ · ‖F is the Frobenius norm.
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• Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1)

.
To further simplify the algorithm, we use the idea of split Bregman iteration [6] to
update f and αi sequentially.

• Solve αn+1,k+1
i , i = 1, · · · , d with fixed fn+1,k,

(αn+1,k+1
1 , · · · , αn+1,k+1

d )

(4.3)

= arg min
α1,··· ,αd∈H1(Mn)

d
∑

i=1

‖∇αi‖
2
L2(Mn) + µ‖α(P(fn))− P(fn+1,k) + dk‖2F.

• Update fn+1,k+1 as following

fn+1,k+1 =arg min
f∈Rm×n

λ‖y − Φf‖2l2 + µ‖αn+1,k+1(P(fn))− P(f) + dk‖2F

(4.4)

• Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1)

Notice that in (4.3), αn+1,k+1
i , i = 1, · · · , d can be solved separately,

αn+1,k+1
i = arg min

αi∈H1(Mn)
‖∇αi‖

2
L2(Mn) + µ‖αi(P(fn))− Pi(f

n+1,k) + dki ‖
2

(4.5)

where Pi(f
n) is the ith row of matrix P(fn).

Summarizing above discussion, we get Algorithm 1 to solve the optimization
problem (3.10) in LDMM.

In Algorithm 1, the most difficult part is to solve following type of optimization
problem

min
u∈H1(M)

‖∇Mu‖2L2(M) + µ
∑

y∈Ω

|u(y)− v(y)|2(4.9)

where u can be any αi, M = Mn, Ω = P(fn) and v(y) is a given function on Ω.
By a standard variational approach, we know that the solution of (4.9) can be

obtained by solving the following PDE










−∆Mu(x) + µ
∑

y∈Ω

δ(x− y)(u(y)− v(y)) = 0, x ∈ M

∂u

∂n
(x) = 0, x ∈ ∂M.

(4.10)

where ∂M is the boundary of M and n is the out normal of ∂M. If M has no
boundary, ∂M = ∅.

The problem remaining is to solve the PDE (4.10) numerically. Notice that, we
do not know the analytical form of the manifold M. Instead, we know P(fn) is a
sample of the manifold M. Then we need to solve (4.10) on this unstructured point
set P(fn). In this paper, we use the point integral method (PIM) [8, 14, 15] to solve
(4.10) on P(fn).
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Algorithm 1 LDMM Algorithm - Continuous version

Require: Initial guess of the image f0, d0 = 0.
Ensure: Restored image f .
1: while not converge do

2: while not converge do

3: With fixed manifold Mn, for i = 1, · · · , d, solving

αn+1,k+1
i = arg min

αi∈H1(Mn)
‖∇Mnαi‖

2
L2(Mn) + µ‖αi(P(fn))− Pi(f

n+1,k) + dki ‖
2.

(4.6)

4: Update fn+1,k+1,

fn+1,k+1 =arg min
f∈Rm×n

λ‖y − Φf‖2l2 + µ‖αn+1,k+1(P(fn))− P(f) + dk‖2F

(4.7)

5: Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1).

6: end while

7: Set fn+1 = fn+1,k, αn+1 = αn+1,k

8: Update M

Mn+1 =
{

(αn+1
1 (x), · · · , αn+1

d (x)) : x ∈ Mn
}

.(4.8)

9: end while

4.1. Point Integral Method. The point integral method was recently proposed
to solve elliptic equations over a point cloud. For the Laplace-Beltrami equation, the
key observation in the point integral method is the following integral approximation.

∫

M

∆Mu(y)R̄t(x,y)dy ≈ −
1

t

∫

M

(u(x)− u(y))Rt(x,y)dy + 2

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy,

(4.11)

where t > 0 is a parameter and

(4.12) Rt(x,y) = CtR

(

|x− y|2

4t

)

.

R : R+ → R
+ is a positive C2 function which is integrable over [0,+∞), and CT is

the normalizing factor

(4.13) R̄(r) =

∫ +∞

r

R(s)ds, and R̄t(x,y) = CtR̄

(

|x− y|2

4t

)

We usually set R(r) = e−r, then R̄t(x,y) = Rt(x,y) = Ct exp
(

|x−y|2

4t

)

are Gaus-

sians.
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Next, we give a brief derivation of the integral approximation (4.11) in Euclidean
space. Here we assume M is an open set on R

d. For a general submanifold, the
derivation follows from the same idea but is technically more involved. Interested
readers are referred to [14]. Thinking of R̄t(x,y) as test functions, and integrating
by parts, we have

∫

M

∆u(y)R̄t(x,y)dy(4.14)

=−

∫

M

∇u · ∇R̄t(x,y)dy +

∫

∂M

∂u

∂n
R̄t(x,y)dτy

=
1

2t

∫

M

(y − x) · ∇u(y)Rt(x,y)dy +

∫

∂M

∂u

∂n
R̄t(x,y)dτy.

The Taylor expansion of the function u tells us that

u(y)− u(x) =(y − x) · ∇u(y)−
1

2
(y − x)THu(y)(y − x) +O(‖y − x‖3),

where Hu(y) is the Hessian matrix of u at y. Note that
∫

M
‖y − x‖nRt(x,y)dy =

O(tn/2). We only need to estimate the following term.

1

4t

∫

M

(y − x)THu(y)(y − x)Rt(x,y)dy(4.15)

=
1

4t

∫

M

(yi − xi)(yj − xj)∂iju(y)Rt(x,y)dy

= −
1

2

∫

M

(yi − xi)∂iju(y)∂j
(

R̄t(x,y)
)

dy

=
1

2

∫

M

∂j(yi − xi)∂iju(y)R̄t(x,y)dy +
1

2

∫

M

(yi − xi)∂ijju(y)R̄t(y,x)dy

−
1

2

∫

∂M

(yi − xi)nj∂iju(y)R̄t(x,y)dτy

=
1

2

∫

M

∆u(y)R̄t(x,y)dy −
1

2

∫

∂M

(yi − xi)nj∂iju(y)R̄t(x,y)dτy +O(t1/2).

The second summand in the last line is O(t1/2). Although its L∞(M) norm is of
constant order, its L2(M) norm is of the order O(t1/2) due to the fast decay of
wt(x,y). Therefore, we get Theorem 4.1 to follow from the equations (4.14) and
(4.15).

Theorem 4.1. If u ∈ C3(M) is a function on M, then we have for any x ∈ M,

‖r(u)‖L2(M) = O(t1/4).(4.16)

where

r(u) =

∫

M

∆u(y)R̄t(x,y)dy +
1

t

∫

M

(u(x)− u(y))Rt(x,y)dy − 2

∫

∂M

∂u(y)

∂n
Rt(x,y)dτy

The detailed proof can be found in [14].
Using the integral approximation (4.11), we get an integral equation to approxi-

mate the original Laplace-Beltrami equation (4.10),
∫

M

(u(x)− u(y))Rt(x,y)dy + µt
∑

y∈Ω

R̄t(x,y)(u(y)− v(y)) = 0(4.17)
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This integral equation has no derivatives, and is easy to discretize over the point
cloud.

4.2. Discretization. Next, we discretize the integral equation (4.17) over the
point set P(fn). To simplify the notation, denote the point cloud as X. Notice that
the point cloud X = P(fn) in the n-th iteration.

Assume that the point set X = {x1, · · · ,xN} samples the submanifold M and
it is uniformly distributed. The integral equation can be discretized very easily as
following:

|M|

N

N
∑

j=1

Rt(xi,xj)(ui − uj) + µt

N
∑

j=1

R̄t(xi,xj)(uj − vj) = 0(4.18)

where vj = v(xj) and |M| is the volume of the manifold M.
We can rewrite (4.18) in the matrix form.

(L+ µ̄W̄ )u = µ̄W̄v.(4.19)

where v = (v1, · · · , vN ) and µ̄ = µtN
|M| . L is a N ×N matrix which is given as

L = D −W(4.20)

where W = (wij), i, j = 1, · · · , N is the weight matrix and D = diag(di) with

di =
∑N

j=1 wij . W̄ = (w̄ij), i, j = 1, · · · , N is also a weight matrix. From (4.18), the
weight matrices are

wij = Rt(xi,xj), w̄ij = R̄t(xi,xj), xi,xj ∈ P(fn), i, j = 1, · · · , N.(4.21)

Remark 4.1. The discretization (4.18) is based on the assumption that the point
set P(fn) is uniformly distributed over the manifold such that the volume weight of
each point is |M|/N . If P(fn) is not uniformly distributed, PIM actually solves an
elliptic equation with variable coefficients [13] where the coefficients are associated
with the distribution.

Combining the point integral method within Algorithm 1, finally we get the algo-
rithm in LDMM, Algorithm 2. In Algorithm 2, the number of split Bregman iterations
is set to be 1 to simplify the computation.

5. Comparison with nonlocal methods. At first sight, LDMM is similar to
nonlocal methods. But actually, they are very different. First, LDMM is based on
minimizing the dimension of the patch manifold. The dimension of the patch manifold
can be used as a general regularization in image processing. In this sense, LDMM is
more systematic than nonlocal methods.

The other important difference is that the formulation of LDMM is continuous
while the nonlocal methods use a graph based approach. In a graph based approach,
a weighted graph is constructed which links different pixels x, y over the image with
a weight w(x, y). On this graph, the discrete gradient is defined.

∀x, y, ∇wf(x, y) =
√

w(x, y)(f(y)− f(x)).(5.1)

Typically, in the nonlocal method, the following optimization problem is solved.

min
f∈Rm×n

1

2
‖y − Φf‖2 + λJw(f)(f).(5.2)
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Algorithm 2 LDMM Algorithm

Require: Initial guess of the image f0, d0 = 0.
Ensure: Restored image f .
1: while not converge do

2: Compute the weight matrix W = (wij) from P(fn), where i, j = 1, · · · , N and
N = |P(fn)| is the total number of points in P(fn),

wij = Rt(xi,xj), w̄ij = R̄t(xi,xj), xi,xj ∈ P(fn), i, j = 1, · · · , N.

And assemble the matrices L, W and W̄ as following:

L = D −W , W = (wi,j), W̄ = (w̄i,j), i, j = 1, · · · , N.

3: Solve following linear systems

(L+ µ̄W̄ )U = µ̄W̄V .

where V = P(fn)− dn.
4: Update f by solving a least square problem.

fn+1 =arg min
f∈Rm×n

λ‖y − Φf‖2l2 + µ̄‖U − P(f) + dn‖2F

5: Update dn,

dn+1 = dn +U − P(fn+1)

6: end while

where Jw(f) is a regularization term related with the graph. Most frequently used
Jw(f) are the L2 energy

Jw(f) =

(

∑

x,y

w(x, y)(f(x)− f(y))2

)1/2

(5.3)

and the nonlocal total variation

Jw(f) =
∑

x

(

∑

y

w(x, y)(f(x)− f(y))2

)1/2

(5.4)

The nonlocal methods provide powerful tools in image processing and were widely
used in many problems. However, from the continuous point of view, the graph based
approach has an intrinsic drawback.

Fig. 1 (d) shows one example of subsample image recovery computed with an
L2 energy norm. The image of Barbara (Fig. 1 (a))is subsampled. Only 10% of the
pixels are retained at random (Fig. 1 (b)). It is clear that in the recovered image,
some pixels are not consistent with their neighbors. From the zoomed in image, it is
easy to see that these pixels are just the retained pixels. This phenomena shows that
in the graph based approach, the value at the retained pixels do not spread to their
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(a) (b) (c) (d)

 

 

 

 

(a’) (b’) (c’) (d’)

Fig. 1. Subsampled image recovery of Barbara based on low dimensional manifold model
(LDMM) and nonlocal method. (a): original image; (b): subsampled image (10% pixels are re-
tained at random); (c): recovered image by LDMM; (d): recovered image by Graph Laplacian. The
bottom row shows the zoom in image of the red box enclosed area.

neighbours properly. Compared with the graph based approach, the result given by
LDMM method is much better (Fig. 1 (c)).

This phenomena can be explained by using a simple model problem, Laplace-
Beltrami equation with Dirichlet boundary condition,

{

∆Mu(x) = 0, x ∈ M,
u(x) = g(x), x ∈ ∂M.

(5.5)

where M is a smooth manifold embedded in R
d and ∂M is its boundary. Suppose

the point cloud X = {x1, · · · ,xN} samples the manifold M and B ⊂ X samples the
boundary ∂M.

Using the graph based method, the solution of the Dirichlet problem (5.5) is
approximately obtained by solving the following linear system











N
∑

j=1

w(xi,xj)(u(xi)− u(xj)) = 0, xi ∈ X\B,

u(xi) = g(xi), xi ∈ B.

(5.6)

In the point integral method, we know that the Dirichlet problem can be approximated
by an integral equation







1

t

∫

M

(u(x)− u(y))Rt(x,y)dy − 2

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy = 0, x ∈ M,

u(x) = g(x), x ∈ ∂M.

(5.7)

Comparing these two approximations, (5.6) and (5.7), we can see that in the graph

based method, the boundary term, −2

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy, is dropped. However,
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it is easy to check that this term is not small. Since the boundary term is dropped,
the boundary condition is not enforced correctly in the graph based method.

Another difference between LDMM and the nonlocal methods is that the choice
of patch is more flexible in LDMM. In nonlocal methods, for each pixel there is a
patch and the patch has to be centered around this pixel. In LDMM, we only require
that patches have same size and cover the whole image. This feature gives us more
freedom to choose the patch.

6. Numerical results. In the numerical simulations, the weight function we
used is the Gaussian weight

Rt(x,y) = exp

(

−
‖x− y‖2

σ(x)2

)

(6.1)

σ(x) is chosen to be the distance between x and its 20th nearest neighbour, To make
the weight matrix sparse, the weight is truncated to the 50 nearest neighbours.

The patch size is 10× 10 in the denoising and inpainting examples and is 20× 20
in the super-resolution examples.

For each point in X, the nearest neighbors are obtained by using an approximate
nearest neighbor (ANN) search algorithm. We use a k-d tree approach as well as
an ANN search algorithm to reduce the computational cost. The linear system in
Algorithm 2 is solved by GMRES.

PSNR defined as following is used to measure the accuracy of the results

PSNR(f, f∗) = −20 log10(‖f − f∗‖/255)(6.2)

where f∗ is the ground truth.

6.1. Inpainting. In the inpainting problems, the pixels are removed from the
original image and we want to recover the original image from the remaining pixels.
The corresponding operator, Φ, is

(Φf)(x) =

{

f(x), x ∈ Ω,
0, x /∈ Ω,

(6.3)

where Ω ⊂ {0, · · · ,m} × {0, · · · , n} is the region where the image is retained. The
pixels outside of Ω are removed. In our simulations, Ω is selected at random.

We assume that the original images do not have noise. In this noise free case, the
parameter λ in the least-squares problem in Algorithm 2 is set to be ∞. Then, the
least-squares problem can be solved as

fn+1(x) =

{

f(x), x ∈ Ω,
(P∗P)−1(P∗(U + dn)), x /∈ Ω

(6.4)

where P∗ is the adjoint operator of P. Notice that P∗P is a diagonal operator. So
fn+1 can be solved explicitly without inverting a matrix.

The initial guess of f is obtained by filling the missing pixels with random numbers
satisfy Gauss distribution, N(µ0, σ0), where µ0 is the mean of Φf and σ0 is the
standard deviation of Φf . The parameter µ̄ = 0.5.

In our simulations, the original images are subsampled. Only 10% of the pixels are
retained. The retained pixels are selected at random. From these 10% subsampled
images, LDMM method is employed to recover the original images. The recovery
of several different images are shown in Fig. 2. In this example, we compare the
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original 10% subsample LDMM BPFA

24.74 dB 23.44 dB

28.54 dB 27.38 dB

25.49 dB 24.72 dB

32.12 dB 30.41 dB

Fig. 2. Examples of subsampled image recovery.

performance of LDMM with BPFA [16]. As we can see in Fig. 2, the LDMM gives
much better recovery. In the Barbara image, LDMM recovers the image very well
both in cartoon part and the texture part.

6.2. Super-resolution. Super-resolution corresponds to the recovery of a high-
definition image from a low resolution image. Usually, the low resolution image is
obtained by filtering and sub-sampling from a high resolution image.

Φf = (f ∗ h) ↓k(6.5)

where h is a low-pass filter, ↓k is the down-sampling operator by a factor k along each
axis. Here, we consider a simple case in which the filter h is not applied, i.e.,

Φf = (f) ↓k(6.6)
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original downsampled by 8 Bi-cubic LDMM

23.53 dB 25.25 dB

21.82 dB 22.42 dB

26.45 dB 26.48 dB

Fig. 3. Example of image super-resolution with downsample rate k = 8.

This downsample problem can be seen as a special case of subsample. However, in
this problem, the pixels are retained over regular grid points which makes the recovery
much more difficult than that in the random subsample problem considered in the
previous example.

(Φf)(x) =

{

f(x), x ∈ Ω,
0, x /∈ Ω,

(6.7)

where Ω = {1, k + 1, 2k + 1, · · · } × {1, k + 1, 2k + 1, · · · }.
Here, we also assume the measure is noise free and use the same formula (6.4) to

update the image f . The parameter µ̄ = 0.5 in the simulation. The initial guess is
obtained by Bi-cubic interpolation.

Fig. 3 shows the results for 3 images. The downsample rate is set to be 8. In
terms of PSNR, compared with Bi-cubic interpolation, the improvement in LDMM is
not too much. However, the images given by LDMM are visually more pleasing than
those given by Bi-cubic since the edges are reconstructed much better.

6.3. Denoising. In the denoising problem, the operator Φ is the identity oper-
ator. In this case, the least-squares problem in Algorithm 2 has closed form solution.

fn+1 = (λ Id + µ̄P∗P)
−1

(λy + µ̄P∗(U + dn))(6.8)
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original noisy LDMM BPFA

 

 

8.14 dB 25.55 dB 24.87 dB

8.12 dB 22.63 dB 22.19 dB

8.13 dB 23.21 dB 22.76 dB

8.15 dB 26.44 dB 26.13 dB

Fig. 4. Example of image denoising with standard deviation σ = 100.

where P∗ is the adjoint operator of P.

In the denoising tests, Gaussian noise is added to the original images. The stan-
dard deviation of the noise is 100. Parameter µ̄ = 0.5 and λ = 0.2 in the simulation.

Fig. 4 shows the results obtained by LDMM. BPFA is a dictionary learning based
method introduced in [16]. The results given by LDMM are a little better in terms of
PSNR. However, LDMM is much better visually since edges are reconstructed better.

At the end of this section, we want to make some remarks on the computational
speed of LDMM. As shown in this section, LDMM gives very good results for inpaint-
ing, super-resolution and denoising problems. On the other hand, the computational
cost of LDMM is relatively high. For the example of Barbara (256×256) in inpainting
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problem, LDMM needs about 18 mins while BPFA needs about 15 mins. For Barbara
(512 × 512) in the denoising problem, LDMM spends about 9 mins (about 25 mins
in BPFA). Both of the tests are run with matlab code in a laptop equiped with CPU
intel i7-4900 2.8GHz. In this paper, we have not optimized the numerical method for
speed. There are many possibilities to speed up. For instance, the nearest neighbors
may be searched over a local window rather than over the whole image. We may
also exploit the freedom to choose the index set Θ in (1.7). First, Θ is set to be
a coarse set such that the number of patch is small and computation is fast. After
several iteration, the result is passed to a fine grid to refine the result. Using this
idea, preliminary test shows the computational time is reduced to around 5 mins for
Barbara (256×256) inpainting while PSNR of the recovered image is 24.55 dB (24.74
dB in Fig. 2). These procedures will be investigated further in our future works.

7. Conclusion. In this paper, we proposed a novel low dimensional manifold
model (LDMM) for image processing. In the LDMM, instead of the image itself, we
study the patch manifold of the image. Many studies reveal that the patch manifold
has low dimensional structure for many classes of images. In the LDMM, we just
use the dimension of the patch manifold as the regularization to recover the original
image from the partial information. The point integral method (PIM) also plays a
very important role. It gives a correct way to solve the Laplace-Beltrami equation over
the point cloud. In this paper, we show the performance of the LDMM in subsample
and downsample problem. LDMM is a general model. The dimension of the patch
manifold can be used as a general regularization not only in image processing problem.
In some sense, LDMM is a generalization of the low rank model. We are now working
on applying LDMM to matrix completion, hyperspectral image processing and large
scale computational physics problems.
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