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Abstract

In this paper, we propose a numerical method to solve isotropic elliptic equations on point
cloud by generalizing the point integral method. The idea of the point integral method is to
approximate the differential operators by integral operators and discretize the corresponding
integral equation on point cloud. The key step is to get the integral approximation. In this
paper, with proper kernel function, we get an integral approximation for the elliptic operators
with isotropic coefficients. Moreover, the integral approximation has been proved to keep the
coercivity of the original elliptic operator. The convergence of the point integral method is also
proved.

1 Introduction

Nowadays, data plays more and more important roles in science and engineering. In many problems,
data is usually represented as a collection of points embedding in a high dimensional Euclidean
space. Processing and analysis of the point cloud data is essential in many applications, such as
machine learning [4, 11] and image processing [31, 30].

In many applications, the point cloud data lies in a manifold whose dimension is much lower
than the ambient Euclidean space. The low dimensionality is an important feature we could exploit
to analyze the data. One example is the low dimensional manifold model (LDMM) in image
processing [30]. In this model, the original image is cutted to many overlap patches. The collection
of all patches consists of a point cloud in Euclidean space. It is found that for many natural
images, the patch set usually samples a low dimensional manifold which is called patch manifold.
The dimension of the patch manifold is used as a regularization to processing the image. Based on
differential geometry and variational method, this model is reduced to solve Laplace equation on
patch set. The key point in LDMM is to solve this Laplace equation accurately and efficiently.

Beside the data analysis, solving PDEs on manifold also appears in many physical problems,
such as material science [9, 17], fluid flow [19, 21], biology and biophysics [3, 18, 29, 2]. To solve
PDEs on manifold, many methods have been developed, especially on 2D surfaces, including surface
finite element method [16], level set method [8, 37], grid based particle method [25, 24] and closest
point method [32, 28]. However, these methods need extra information besides the point cloud, for
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instance, meshes, level set function and closest point function. These information is not easy to
obtain from point cloud when the dimension of the manifold is high.

Recently, Liang et al. proposed to discretize the differential operators on point cloud by local
least square approximations of the manifold [27]. Their method can achieve high order accuracy
and enjoy more flexibility since no mesh is needed. In principle, it can be applied to manifolds with
arbitrary dimensions and co-dimensions with or without boundary. However, if the dimension of
the manifold is high, this method may not be stable since high order polynomial is used to fit the
data. Later, Lai et al. proposed local mesh method to approximate the differential operators on
point cloud [23]. The main idea is to construct mesh locally around each point by using K nearest
neighbors. The local mesh is easier to construct than global mesh. Based on the local mesh, it
is easy to discretize differential operators and compute integrals. However, when the dimension of
the manifold is high, even local mesh is not easy to construct.

The original point integral method for Laplace equation is closely related with the graph Lapla-
cian [10, 7]. Graph Laplacian has been widely used in many problems. It is observed in [5, 22, 20, 35]
that the graph Laplacian with the Gaussian weights well approximates the Laplace-Beltrami oper-
ator when the vertices of the graph are assumed to sample the underlying manifold. When there
is no boundary, Belkin and Niyogi [6] showed the spectra of the graph Laplacian with Gaussian
weights converges to that of Laplace-Beltrami operator. Recently, Singer and Wu [36] showed the
spectral convergence of the graph Laplacian in the presence of the Neumann boundary.

Inspired by the graph Laplacian and the nonlocal diffusion, we developed the point integral
method for Poisson equation on point cloud [26, 33, 34].

−∆Mu(x) = f(x), x ∈ M,

where ∆M = div(∇) is the Laplace-Beltrami operator in M.
We assume that M ∈ C∞ is a compact k-dimensional manifold isometrically embedded in R

d

with the standard Euclidean metric and k ≤ d. If M has boundary, the boundary, ∂M is also a
C∞ smooth manifold.

Let Φ : Ω ⊂ R
k → M ⊂ R

d be a local parametrization of M and θ ∈ Ω. For any differentiable
function f : M → R, define the gradient on the manifold

∇f(Φ(θ)) =
m
∑

i,j=1

gij(θ)
∂Φ

∂θi
(θ)

∂f(Φ(θ))

∂θj
(θ), (1.1)

and for vector field F : M → TxM on M, where TxM is the tangent space of M at x ∈ M, the
divergence is defined as

div(F ) =
1√

detG

d
∑

k=1

m
∑

i,j=1

∂

∂θi

(√
detGgijF k(Φ(θ))

∂Φk

∂θj

)

(1.2)

where (gij)i,j=1,··· ,k = G−1, detG is the determinant of matrix G and G(θ) = (gij)i,j=1,··· ,k is the
first fundamental form which is defined by

gij(θ) =
d
∑

k=1

∂Φk

∂θi
(θ)

∂Φk

∂θj
(θ), i, j = 1, · · · ,m. (1.3)

and (F 1(x), · · · , F d(x))t is the representation of F in the embedding coordinates.
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The main idea of the point integral method is to approximate the Poisson equation by the
following integral equation:

−
∫

M
∆Mu(y)R̄t(x,y)dµy ≈ 1

t

∫

M
Rt(x,y)(u(x)− u(y))dµy − 2

∫

∂M
R̄t(x,y)

∂u

∂n
(y)dτy,

where n is the out normal of M, Rt(x,y) and R̄t(x,y) are kernel functions given as follows

Rt(x,y) = CtR

( |x− y|2
4t

)

, R̄t(x,y) = CtR̄

( |x− y|2
4t

)

(1.4)

where Ct =
1

(4πt)k/2
is the normalizing factor. R ∈ C2(R+) be a positive function which is integrable

over [0,+∞). And

R̄(r) =

∫ +∞

r
R(s)ds.

There is not any derivatives in the integral equation. It is easy to be discretized from point clouds
using some quadrature rule. In [33, 34], we proved the convergence of the point integral method
for Poisson equation with Neumann and Dirichlet boundary condition.

In the point integral method, we only need the point cloud to discretize the differential operator.
This gives PIM great flexibility to fit the requirements in variety of applications. However, one
limitation of the point integral method is that it only applies on Laplace-Beltrami operator. In many
problems, we need to discretize other differential operators besides Laplace-Beltrami operator. In
this paper, we generalize the point integral method to isotropic elliptic operators. Isotropic elliptic
operators are also widely used in many problems. One example is the nonlocal total variation
minimization on point cloud, in which we need to solve an optimization problem,

min
u

‖∇u‖L1(M), subject to: Ψ(u) = b

where ∇ is the gradient in M, Ψ is the measurement operator related with the application, b is the
observation and

‖∇u‖L1(M) =

∫

M
|∇u(x)|dx

Using standard variational approach, the solution of above optimization problem can be given by
solving a nonlinear elliptic equation,

−div

( ∇u(x)

|∇u(x)|

)

= f(x).

where f(x) is a known function. Apparently, this equation can be solved by solving a sequence of
isotropic elliptic equation iteratively.

In this paper, we consider to solve elliptic equations with isotropic coefficients on manifold M,

−div(p2(x)∇u(x)) = f(x), x ∈ M (1.5)

The coeffcients p(x) and source term f(x) are known smooth functions of spatial variables, i.e.

p ∈ C1(M), f ∈ C1(M).

The elliptic condition makes that there exist generic constants c0, c1 > 0 such that for any x ∈ M,

0 < c0 ≤ p(x) ≤ c1 < ∞,
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The key observation in this paper is the integral approximation of isotropic elliptic operators given
as following

−
∫

M
div(p2(y)∇u(y))

R̄t(x,y)

p(y)
dµy ≈1

t

∫

M
Rt(x,y)(u(x)− u(y))p(y)dµy (1.6)

− 2

∫

∂M

∂u

∂n
(y)R̄t(x,y)p(y)dτy,

where the kernel functions Rt and R̄t are same as those in (1.4). The main advantage of this
integral approximation is that there is no differential operator inside. Using this approximation, we
transfer the numerical differential to numerical integral which is much easier to compute on point
cloud. Based on this integral approximation, we are able to develop the point integral method to
isotropic elliptic equations.

Similar integral approximation is also widely used in nonlocal diffusion and peridynamic model
[12, 1, 13, 14, 38]. The integral approximation is easy to implement on point cloud, since it has no
derivatives inside. Moreover, the point integral method also has very good theoretical property. It
is proved that the coercivity of the original elliptic operator is partially preserved and this partial
coercivity implies the convergence of the point integral method.

The rest of the paper is organized as following. In Section 2, we introduce the point integral
method for isotropic elliptic operator with Neumann and Dirichlet boundary condition. The con-
vergence analysis is given in Section 3. Several numerical examples are presented in Section 4. The
conclusion remarks are made in Section 5.

2 Point Integral Method for Isotropic Elliptic Equations

In this section, we introduce a numerical method for isotropic elliptic equation on point cloud based
on the integral approximation (1.6).

To simplify the notation, we introduce an integral operator,

Ltu(x) =
1

t

∫

M
Rt(x,y)(u(x)− u(y))p(y)dµy (2.1)

where Rt is the kernel function given in (1.4).

2.1 Neumann Boundary

First, we consider the Neumann problem,
{ −div(p2(x)∇u(x)) = f(x), x ∈ M,

∂u
∂n(x) = g(x), x ∈ ∂M.

(2.2)

Using the integral approximation (1.6), the solution of the Neumann problem (2.2) can be obtained
approximately by solving an integral equation

Ltu(x)− 2

∫

∂M
g(y)R̄t(x,y)p(y)dτy =

∫

M
f(y)

R̄t(x,y)

p(y)
dµy, (2.3)

with t ≪ 1.
The eigenvalue problem is also solved by a generalized eigenvalue problem

Ltu(x) = λ

∫

M
u(y)

R̄t(x,y)

p(y)
dµy, (2.4)
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2.2 Dirichlet Boundary

The Dirichlet problem is more involved in point integral method, since the normal derivative, ∂u
∂n

is not known.
{

−div(p2(x)∇u(x)) = f(x), x ∈ M,
u(x) = g(x), x ∈ ∂M.

(2.5)

Here, we use the same idea as that in [26] to deal with the Dirichlet boundary.

2.2.1 Robin Approximation

The simplest way is using Robin boundary to approximate the Dirichlet boundary. More specifically,
we consider the following Robin problem

{ −div(p2(x)∇u(x)) = f(x), x ∈ M,

u(x) + β ∂u
∂n(x) = g(x), x ∈ ∂M.

(2.6)

where 0 < β ≪ 1 is a small parameter. It is easy to show that as β → 0, the solution of the Robin
problem, (2.6), converges to the solution of the Dirichlet problem, (2.5).

For the Robin problem, the integral approximation (1.6) is applicable to give an integral equa-
tion,

Ltu(x)−
2

β

∫

∂M
(g(y)− u(y))R̄t(x,y)p(y)dτy =

∫

M

f(y)

p(y)
R̄t(x,y)dµy. (2.7)

Similarly, we also get an approximation of the eigenvalue problem,

Ltu(x) +
2

β

∫

∂M
u(y)R̄t(x,y)p(y)dτy = λ

∫

M
u(y)

R̄t(x,y)

p(y)
dµy (2.8)

2.2.2 Iterative Solver based on Augmented Lagrangian Multiplier

In the Robin approximation, the parameter β has to be small to get good approximation, while the
linear system becomes ill-conditioned. To alleviate this difficulty, we could use an iterative method
based on the Augmented Lagrange method (ALM).

It is well known that the Dirichlet problem can be reformulated to be following constrained
optimization problem:

min
v∈H1(M)

1

2

∫

M
p2(y)|∇v(y)|2dµy +

∫

M
f(y)v(y)dµy, (2.9)

subject to: v(x)|∂M = g(x),

Applying the ALM method to the problem (2.9), we get an iterative method, in each step, an
unconstrained optimization problem is solved,

min
v

1

2

∫

M
p2(y)|∇v(y)|2dµy +

∫

M
f(y) · v(y)dµy

+

∫

∂M
wk(y) · (g(y)− v(y))p2(y)dτy +

1

2β

∫

∂M
(g(y)− v(y))2p2(y)dτy. (2.10)

Using the variational method, one can show that the solution to (2.10) is exactly the solution to
the following Robin problem:

{

div(p2(x)∇v(x)) = f(x), x ∈ M,

v(x) + β ∂v
∂n(x) = g(x) + βwk(x), x ∈ ∂M.

(2.11)

This Robin problem is solved by the integral equation. Notice that, the parameter β is not neces-
sarily small. Usually, we set β = 1. Thus, the linear system is not ill-conditioned.
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Procedure 1 ALM for Dirichlet Problem
1: k = 0, w0 = 0.
2: repeat

3: Solving the following integral equation to get vk,

Ltv
k(y) − 2

β

∫

∂M
(g(y)− vk(y) + βwk(y))R̄t(x,y)p(y)dτy =

∫

M

f(y)

p(y)
R̄t(x,y)dµy.

4: wk+1 = wk + 1
β (g − (vk|∂M)), k = k + 1

5: until ‖g − (vk−1|∂M)‖ = 0
6: u = vk

2.3 Discretization

The main advantage of the integral equations is that they are easy to discretize over the point cloud
since there is not any derivatives inside.

Assume we are given a set of sample points P sampling the submanifold M and a subset S ⊂ P
sampling the boundary of M. List the points in P respectively S in a fixed order P = (x1, · · · ,xn)
where xi ∈ R

d, 1 ≤ i ≤ n, respectively S = (s1, · · · , snb
) where si ∈ P . In addition, assume

we are also given two vectors V = (V1, · · · , Vn)
t where Vi is an volume weight of xi in M, and

A = (A1, · · · , Anb
)t where Ai is an area weight of si in ∂M. In this point cloud data (P, S,V,A),

the integral equation (2.3) can be disretized as

1

t

∑

xj∈P
Rt(xi,xj)(ui − uj)pjVj = 2

∑

sj∈S
R̄t(xi, sj)bjpjAj +

∑

xj∈P
R̄t(xi,xj)fjVj/pj . (2.12)

where pj = p(xj), fj = f(xj), bl = b(sl), j = 1, · · · , |P |, l = 1, · · · , |S|.
The other integral equations and corresponding eigenvalue problems can be discretized conse-

quently.

Remark 2.1. The integral approximation (1.6) also holds if the parameter t depends on x, i.e.

−
∫

M
div(p2(y)∇u(y))

R̄t(x,y)

p(y)
dµy ≈ 1

t(x)

∫

M
R

( |x− y|2
4t(x)

)

(u(x)− u(y))p(y)dµy (2.13)

− 2

∫

∂M

∂u

∂n
(y)R̄

( |x− y|2
4t(x)

)

p(y)dτy.

Based on above approximation, in the computation, we can choose t adaptive to the distribution of
the points.

3 Convergence Analysis

In this section, we analyze the convergence of the point integral method for isotropic elliptic equa-
tion. To make the theoretical analysis concise, we only consider the homogeneous Neumann bound-
ary conditions,

{ −div(p2(x)∇u(x)) = f(x), x ∈ M,
∂u
∂n(x) = 0, x ∈ ∂M.

(3.1)
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The corresponding numerical scheme is

1

t

∑

xj∈P
Rt(xi,xj)(ui − uj)pjVj =

∑

xj∈P
R̄t(xi,xj)fjVj/pj . (3.2)

The analysis can be easily generalized to the non-homogeneous boundary conditions. The conver-
gence of Dirichlet problem can be proved also following the similar procedure as that in [34].

3.1 Main Result

We will prove that the solution given by the point integral method converges to the exact solution
as the point cloud (P,V) converges to the manifold M. Before giving the result of the convergence,
we need to clarify the meaning of the convergence of the point cloud (P,V) to the manifold M.

First, we introduce an index to measure the distance between the point cloud (P,V) and the
manifold M, which is called integral accuracy index, denoted as h(P,V,M).

Definition 3.1 (Integral Accuracy Index). For the point cloud (P,V) which samples the manifold
M, the integral accuracy index h(P,V,M) is defined as

h(P,V,M) = sup
f∈C1(M)

∣

∣

∫

M f(y)dµy −∑xi∈P f(xi)Vi

∣

∣

|supp(f)|‖f‖C1(M)
.

where ‖f‖C1(M) = ‖f‖∞ + ‖∇f‖∞ and |supp(f)| is the volume of the support of f .

Using the definition of integrable index, we say that the point cloud (P,V) converges to the
manifold M if h(P,V,M) → 0. In the convergence analysis, we consider the case that h(P,V,M)
is small enough.

Remark 3.1. In some sense, h(P,V,M) is a measure of the density of the point cloud. If the
point cloud is uniformly distributed on the manifold, from central limit theorem, h(P,V,M) ∼
O(1/

√

|P |) where |P | is the number of point in P .

Remark 3.2. To consider the non-homogeneous Neumann boundary condition or Dirichlet bound-
ary condition, we have to also assume that h(S,A, ∂M) → 0, where S is the point set sample the
boundary ∂M and A is the corresponding volume weight on the boundary ∂M.

To get the convergence, we also need some assumptions on the regularity of the submanifold
M and the integral kernel function R.

Assumption 3.1. • Smoothness of the manifold: M, ∂M are both compact and C∞ smooth
k-dimensional submanifolds isometrically embedded in a Euclidean space R

d.

• Ellipticity: there exist generic constants c0, c1 > 0, such that c0 ≤ p(x) ≤ c1 and p(x) ∈
C1(M).

• Assumptions on the kernel function R(r):

(a) Smoothness: R ∈ C2(R+);

(b) Nonnegativity: R(r) ≥ 0 for any r ≥ 0.

(c) Compact support: R(r) = 0 for ∀r > 1;

(d) Nondegeneracy: ∃δ0 > 0 so that R(r) ≥ δ0 for 0 ≤ r ≤ 1
2 .

7



Remark 3.3. The assumption on the kernel function is very mild. The compact support assumption
can be relaxed to exponentially decay, like Gaussian kernel. In the nondegeneracy assumption, 1/2
may be replaced by a positive number θ0 with 0 < θ0 < 1. Similar assumptions on the kernel
function is also used in analysis the nonlocal diffusion problem [15].

All the convergence analysis in this paper is based on above assumptions. In the statement of
the theorems, above assumptions are omitted to make the statements more concise.

The other issue we have to address is that how to compute the difference between the discrete
solution and the analytic solution. The solution of the discrete system (3.2) is a vector u defined on
P while the solution of the problem (3.1) is a function defined on M. To make them comparable,
for any solution u = (u1, · · · , un)t, n = |P | to the problem (3.2), we construct a function on M

If (u)(x) =

∑

xj∈P Rt(x,xj)ujpjVj + t
∑

xj∈P R̄t(x,xj)fjVj/pj
∑

xj∈P Rt(x,xj)pjVj
. (3.3)

It is easy to verify that If (u) interpolates u at the sample points P , i.e., If (u)(xj) = uj for any
xj ∈ P . The following theorem guarantees the convergence of the point integral method.

Theorem 3.1. Let u be the solution to problem (3.1) with f ∈ C1(M) and let the vector u be the
solution to the problem (3.2). Then there exists constants C and T0 depend on M and p(x), such

that for any t, h(P,V,M)√
t

≤ T0,

‖u− If (u)‖H1(M) ≤ C

(

t1/2 +
h(P,V,M)

t3/2

)

‖f‖C1(M). (3.4)

where h(P,V,M) is the integral accuracy index.

3.2 Proof of Convergence

Roughly, the proof the convergence includes two parts: estimate of the truncation error Lt(u−If (u))
and the stability of the integral operator Lt. Here Lt is the integral operator in (2.1) , u(x) is the
solution of the problem (3.1) and u is the solution of the problem (3.2).

This strategy is standard in numerical analysis. It is well known that consistency together
with stability imply convergence. On the other hand, the point integral method has some special
structures both in truncation error and stability, which makes the analysis a little more involved.

First, we have following theorem regarding the stability of the operator Lt.

Theorem 3.2. Let u(x) solves the integral equation

Ltu = r(x)

where r ∈ H1(M) with
∫

M r(x)p(x)dµx = 0. Then, there exist constants C > 0, T0 > 0 independent
on t, such that

‖u‖H1(M) ≤ C
(

‖r‖L2(M) + t‖∇r‖L2(M)

)

as long as t ≤ T0.

To use above stability result, we need L2 estimate of Lt(u− If (u)) and ∇Lt(u− If (u)). In the
analysis, we split the truncation error Lt(u− If (u)) to two terms,

Lt(u− If (u)) = Lt(u− ut)) + Lt(ut − If (u))

8



where ut is the solution of the integral equation

1

t

∫

M
Rt(x,y)(u(x)− u(y))p(y)dµy =

∫

M
f(y)

R̄t(x,y)

p(y)
dµy. (3.5)

For the second term, we have following estimate.

Theorem 3.3. Let ut(x) be the solution of the problem (3.5) and u be the solution of the prob-
lem (3.2). If f ∈ C1(M) , then there exists constants C, T0 depending only on M and the coefficient
p(x), so that

‖Lt (Ifu− ut) ‖L2(M) ≤ Ch(P,V,M)

t3/2
‖f‖C1(M), (3.6)

‖∇Lt (Ifu− ut) ‖L2(M) ≤ Ch(P,V,M)

t2
‖f‖C1(M). (3.7)

as long as t ≤ T0 and h(P,V,M)√
t

≤ T0, h(P,V,M) is the integral difference index in Definition 3.1.

The error term Lt(u − ut)) is a little more complicated. It has two parts, one is the interior
term and the other is the boundary term. We need to estimate these two terms separately to get
better estimation of the convergence rate.

Theorem 3.4. Let u(x) be the solution of the problem (3.1) and ut(x) be the solution of the
corresponding integral equation (3.5). Let

Ibd =

d
∑

j=1

∫

∂M
nj(y)(x− y) · ∇(∇ju(y))R̄t(x,y)p(y)dτy, (3.8)

and

Lt(u− ut) = Iin + Ibd.

where n(y) = (n1(y), · · · , nd(y)) is the out normal vector of ∂M at y, ∇j is the jth component of
gradient ∇.

If u ∈ H3(M), then there exists constants C, T0 depending only on M and p(x), so that,

‖Iin‖L2(M) ≤ Ct1/2‖u‖H3(M), ‖∇Iin‖L2(M) ≤ C‖u‖H3(M), (3.9)

as long as t ≤ T0.

Using the definition of the boundary term Ibd, (3.8), it is easy to check that

‖Ibd‖L2(M) = O(t1/4), ‖∇Ibd‖L2(M) = O(t−1/2),

Based on this estimation, Theorem 3.2 and Theorem 3.4 give that

‖u− ut‖H1(M) = O(t1/4).

This proves the convergence, however the convergence rate is relatively low. This low rate comes
from the boundary term. From interior term only, the rate is

√
t. Notice that the boundary term

has a specific integral formula given in (3.8). Using this formula, we know that the boundary term
concentrates in a small layer adjacent to the boundary whose width is of the order of

√
t and vanish

in the interior region. Utilizing this special structure, we could get better convergence rate with
the help of a stability estimate specifically for the boundary term, which is given in Theorem 3.5.
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Theorem 3.5. Let u(x) solves the integral equation

Ltu =

∫

∂M
b(y) · (x− y)R̄t(x,y)p(y)dτy − b̄

where |M|p =
∫

M p(x)dµx and

b̄ =
1

|M|p

∫

M

(∫

∂M
b(y) · (x− y)R̄t(x,y)p(y)dτy

)

dx.

Then, there exist constant C > 0, T0 > 0 independent on t, such that

‖u‖H1(M) ≤ C
√
t ‖b‖H1(M).

as long as t ≤ T0.

Based on above four theorems, it is easy to prove Theorem 3.1. Using Theorem 3.3 and Theorem
3.2, we get

‖ut − If (u)‖H1(M) = O

(

h(P,V,M)

t3/2

)

.

Applying Theorem 3.2 to the interior term in Theorem 3.4 and Theorem 3.5 to the boundary term
respectively, we have

‖u− ut‖H1(M) = O
(

t1/2
)

.

Putting above two inequality together, Theorem 3.1 is proved.
Next, we prove Theorem 3.2, 3.3, 3.4 and 3.5 respectively.

3.3 Proof of Theorem 3.4

Let r(x) = Ltu − Ltut where u and ut are the solution of (3.1) and (3.5) respectively. Using
integration by parts, we have

r(x) =
1

t

∫

M
Rt(x,y)(u(x)− u(y))p(y)dµy −

∫

M
div(p2(y)∇u(y))

R̄t(x,y)

p(y)
dµy (3.10)

− 2

∫

∂M
R̄t(x,y)

∂u

∂n
(y)p(y)dτy

=
1

t

∫

M
(u(x)− u(y)− (x− y) · ∇u(y))Rt(x,y)p(y)dµy

−
∫

M
∆Mu(y)R̄t(x,y)p(y)dµy

The main idea of the proof is the Taylor expansion,

u(x)− u(y)− (x− y) · ∇u(y) =
1

2
(x− y)T ·Hu(y) · (x− y) +O(|x− y|3)

where Hu(y) is the Hessian matrix of u at y.
Using the integration by parts, the second order term actually gives Laplace-Beltrami operator

which cancel with the second term in (3.10).
In manifold, the Taylor expansion and integration by parts are more complicated. To make

the whole idea rigorous, we need to introduce a special parametrization of the manifold M. This
parametrization is based on following proposition.
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Proposition 3.1. Assume both M and ∂M are C2 smooth and σ is the minimum of the reaches
of M and ∂M. For any point x ∈ M, there is a neighborhood U ⊂ M of x, so that there is a
parametrization Φ : Ω ⊂ R

k → U satisfying the following conditions. For any ρ ≤ 0.1,

(i) Ω is convex and contains at least half of the ball BΦ−1(x)(
ρ
5σ), i.e., vol(Ω ∩ BΦ−1(x)(

ρ
5σ)) >

1
2(

ρ
5σ)

kwk where wk is the volume of unit ball in R
k;

(ii) Bx(
ρ
10σ) ∩M ⊂ U .

(iii) The determinant the Jacobian of Φ is bounded: (1− 2ρ)k ≤ |DΦ| ≤ (1 + 2ρ)k over Ω.

(iv) For any points y, z ∈ U , 1− 2ρ ≤ |y−z|
|Φ−1(y)−Φ−1(z)| ≤ 1 + 3ρ.

This proposition basically says there exists a local parametrization of small distortion if (M, ∂M)
satisfies certain smoothness, and moreover, the parameter domain is convex and big enough. The
proof of this proposition can be found in [33] and for the sake of completeness, we give the proof
in the supplementary material. Next, we introduce a special parametrization of the manifold M.

Let ρ = 0.1, σ be the minimum of the reaches of M and ∂M and δ = ρσ/20. For any x ∈ M,
denote

Bδ
x = {y ∈ M : |x− y| ≤ δ} , Mt

x =
{

y ∈ M : |x− y|2 ≤ 4t
}

(3.11)

and we assume t is small enough such that 2
√
t ≤ δ.

Since the manifold M is compact, there exists a δ-net, Nδ = {qi ∈ M, i = 1, · · · , N}, such
that

M ⊂
N
⋃

i=1

Bδ
qi
.

and there exists a partition of M, {Oi, i = 1, · · · , N}, such that Oi ∩ Oj = ∅, i 6= j and

M =
N
⋃

i=1

Oi, Oi ⊂ Bδ
qi
, i = 1, · · · , N.

Using Proposition 3.1, there exist a parametrization Φi : Ωi ⊂ R
k → Ui ⊂ M, i = 1, · · · , N ,

such that

1. (Convexity) B2δ
qi

⊂ Ui and Ωi is convex.

2. (Smoothness) Φi ∈ C3(Ωi);

3. (Locally small deformation) For any points θ1, θ2 ∈ Ωi,

1

2
|θ1 − θ2| ≤ ‖Φi(θ1)− Φi(θ2)‖ ≤ 2 |θ1 − θ2| .

Using the partition, {Oi, i = 1, · · · , N}, for any y ∈ M, there exists unique J(y) ∈ {1, · · · , N},
such that

y ∈ OJ(y) ⊂ Bδ
qJ(y)

. (3.12)

Moerover, using the condition, 2
√
t ≤ δ, we have Mt

y ⊂ B2δ
qJ(y)

⊂ UJ(y). Then Φ−1
J(y)(x) and

Φ−1
J(y)(y) are both well defined for any x ∈ Mt

y.
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Now, we define an auxiliary function, η(x,y) for any y ∈ M, x ∈ Mt
y. Let

ξ(x,y) = Φ−1
J(y)(x)− Φ−1

J(y)(y) ∈ R
k, η(x,y) = ξ(x,y) · ∂ΦJ(y)(α(x,y)) ∈ R

d, (3.13)

where α(x,y) = Φ−1
J(y)(y) and ∂ is the gradient operator in the parameter space, i.e.

∂Φj(θ) =

(

∂Φj

∂θ1
(θ),

∂Φj

∂θ2
(θ), · · · , ∂Φj

∂θk
(θ)

)

, θ ∈ Ωj ⊂ R
k.

Now we state the proof of Theorem 3.4.

Proof. First, we split the residual r(x) in (3.10) to four terms

r(x) =r1(x) + r2(x) + r3(x)− r4(x)

where

r1(x) =
1

t

∫

M

(

u(x)− u(y)− (x− y) · ∇u(y)− 1

2
ηiηj(∇i∇ju(y))

)

Rt(x,y)p(y)dµy,

r2(x) =
1

2t

∫

M
ηiηj(∇i∇ju(y))Rt(x,y)p(y)dµy −

∫

M
ηi(∇i∇ju(y)∇jR̄t(x,y)p(y)dµy,

r3(x) =

∫

M
ηi(∇i∇ju(y)∇jR̄t(x,y)p(y)dµy +

∫

M
div

(

ηi(∇i∇u(y)
)

R̄t(x,y)p(y)dµy,

r4(x) =

∫

M
div

(

ηi(∇i∇u(y)
)

R̄t(x,y)p(y)dµy +

∫

M
∆Mu(y)R̄t(x,y)p(y)dµy.

where ∇i, i = 1, · · · , d is the ith component of the gradient ∇, ηi, i = 1, · · · , d is the ith component
of η(x,y) defined in (3.13). To simplify the notation, we drop the variable (x,y) in the function
η(x,y).

Next, we will prove the theorem by estimating above four terms one by one. First, we consider
r1. Let

d(x,y) = u(x)− u(y)− (x− y) · ∇u(y)− 1

2
ηiηj(∇i∇ju(y)).

we have

∫

M
|r1(x)|2dµx =

∫

M

∣

∣

∣

∣

∫

M
Rt(x,y)d(x,y)p(y)dµy

∣

∣

∣

∣

2

dµx

≤ (max
y

p(y))2
∫

M

(∫

M
Rt(x,y)dµy

)(∫

M
Rt(x,y)|d(x,y)|2dµy

)

dµx

≤ C

∫

M

∫

M
Rt(x,y)|d(x,y)|2dµydµx

and

∫

M

∫

M
Rt(x,y)|d(x,y)|2dµydµx =

N
∑

i=1

∫

M

∫

Oi

Rt(x,y)|d(x,y)|2dµydµx

=

N
∑

i=1

∫

Oi

(

∫

Mt
y

Rt(x,y)|d(x,y)|2dµx

)

dµy.
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Using Newton-Leibniz formula, we get

d(x,y) = u(x)− u(y)− (x− y) · ∇u(y)− 1

2
ηiηj(∇i∇ju(y))

= ξiξi
′

∫ 1

0

∫ 1

0

∫ 1

0
s1

d

ds3

(

∂iΦ
j(α+ s3s1ξ)∂i′Φ

j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))
)

ds3ds2ds1

= ξiξi
′

ξi
′′

∫ 1

0

∫ 1

0

∫ 1

0
s21s2∂iΦ

j(α+ s3s1ξ)∂i′′∂i′Φ
j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))ds3ds2ds1

+ξiξi
′

ξi
′′

∫ 1

0

∫ 1

0

∫ 1

0
s21∂i′′∂iΦ

j(α+ s3s1ξ)∂i′Φ
j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))ds3ds2ds1

+ξiξi
′

ξi
′′

∫ 1

0

∫ 1

0

∫ 1

0
s21s2∂iΦ

j(α+ s3s2s1ξ)∂i′Φ
j′(α+ s3s2s1ξ)∂i′′Φ

j′′(α+ s3s2s1ξ)

∇j′′∇j′∇ju(Φ(α+ s3s2s1ξ))ds3ds2ds1

Here, Φi, i = 1, · · · , d is the ith component of the parameterization function Φ and the parame-
terization function Φ = ΦJ(y), J(y) is the index function given in (3.12). α = α(x,y) = Φ−1

J(y)(y),

ξ = ξ(x,y) = Φ−1
J(y)(x)−Φ−1

J(y)(y). In the rest of the proof, without introducing any confusion, we
always to use these short notations to save the space. In above derivation, we need the convexity
property of the parameterization function to make sure all the integrals are well defined.

Using above equality and the smoothness of the parameterization functions, it is easy to show
that

∫

Oi

(

∫

Mt
y

Rt(x,y)|d(x,y)|2dµx

)

dµy

≤ Ct3
∫ 1

0

∫ 1

0

∫ 1

0

∫

Oi

∫

Mt
y

Rt(x,y)
∣

∣D2,3u(ΦJ(y)(α+ s3s2s1ξ))
∣

∣

2
dµxdµyds3ds2ds1

≤ Ct3 max
0≤s≤1

∫

Oi

∫

Mt
y

Rt(x,y)
∣

∣D2,3u(Φi(α+ sξ))
∣

∣

2
dµxdµy,

where we use the fact that J(y) = i, y ∈ Oi and

∣

∣D2,3u(x)
∣

∣

2
=

d
∑

j,j′,j′′=1

|∇j′′∇j′∇ju(x)|2 +
d
∑

j,j′=1

|∇j′∇ju(x)|2.

Let zi = Φi(α+ sξ), 0 ≤ s ≤ 1, then for any y ∈ Oi ⊂ Bδ
qi

and x ∈ Mt
y,

|zi − y| ≤ 2s|ξ| ≤ 4s|x− y| ≤ 8s
√
t, |zi − qi| ≤ |zi − y|+ |y − qi| ≤ δ + 8s

√
t.

We can assume that t is small enough such that 8
√
t ≤ δ, then we have

zi ∈ B2δ
qi
.
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After changing of variable, we obtain
∫

Oi

∫

Mt
y

Rt(x,y)
∣

∣D2,3u(Φi(α+ sξ))
∣

∣

2
dµxdµy

≤ C

δ0

∫

Oi

∫

B2δ
qi

1

sk
R

( |zi − y|2
128s2t

)

∣

∣D2,3u(zi)
∣

∣

2
dµzidµy

=
C

δ0

∫

Oi

1

sk
R

( |zi − y|2
128s2t

)

dµy

∫

B2δ
qi

∣

∣D2,3u(zi)
∣

∣

2
dµzi

≤ C

∫

B2δ
qi

∣

∣D2,3u(x)
∣

∣

2
dµx.

This estimate would give us that

‖r1(x)‖L2(M) ≤ Ct1/2‖u‖H3(M) (3.14)

Now, we turn to estimate the gradient of r1.

∫

M
|∇xr1(x)|2dµx ≤ C

∫

M

∣

∣

∣

∣

∫

M
∇xRt(x,y)d(x,y)p(y)dµy

∣

∣

∣

∣

2

dµx

+C

∫

M

∣

∣

∣

∣

∫

M
Rt(x,y)∇xd(x,y)p(y)dµy

∣

∣

∣

∣

2

dµx.

where ∇x is the gradient in M with respect to x.
Using the same techniques in the calculation of ‖r1(x)‖L2(M), we get that the first term of right

hand side can bounded as follows
∫

M

∣

∣

∣

∣

∫

M
∇xRt(x,y)d(x,y)p(y)dµy

∣

∣

∣

∣

2

dµx ≤ C‖u‖2H3(M).

The estimation of second term is a little involved. First, we have

∫

M

∣

∣

∣

∣

∫

M
Rt(x,y)∇xd(x,y)p(y)dµy

∣

∣

∣

∣

2

dµx ≤ C

∫

M

(∫

M
Rt(x,y)|∇xd(x,y)|2dµy

)

dµx

= C
N
∑

i=1

∫

Oi

(

∫

Mt
y

Rt(x,y)|∇xd(x,y)|2dµx

)

dµy.

Also using Newton-Leibniz formula, we have

d(x,y) = ξiξi
′

∫ 1

0

∫ 1

0
s1

(

∂iΦ
j(α+ s1ξ)∂i′Φ

j′(α+ s2s1ξ)∇j′∇ju(Φ(α+ s2s1ξ))
)

ds2ds1

−ξiξi
′

∫ 1

0

∫ 1

0
s1

(

∂iΦ
j(α)∂i′Φ

j′(α)∇j′∇ju(Φ(α))
)

ds2ds1

Then the gradient of d(x,y) has following representation,

∇xd(x,y) = ξiξi
′∇x

(∫ 1

0

∫ 1

0
s1

(

∂iΦ
j(α+ s1ξ)∂i′Φ

j′(α+ s2s1ξ)∇j′∇ju(Φ(α+ s2s1ξ))
)

ds2ds1

)

+∇x

(

ξiξi
′
)

∫ 1

0

∫ 1

0

∫ 1

0
s1

d

ds3

(

∂iΦ
j(α+ s3s1ξ)∂i′Φ

j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))
)

ds3ds2ds1

= d1(x,y) + d2(x,y).
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For d1, we have

∫

Oi

(

∫

Mt
y

Rt(x,y)|d1(x,y)|2dµx

)

dµy ≤ Ct2 max
0≤s≤1

∫

Oi

(

∫

Mt
y

Rt(x,y)|D2,3u(Φi(α+ sξ))|2dµx

)

dµy,

which means that
∫

Oi

(

∫

Mt
y

Rt(x,y)|d1(x,y)|2dµx

)

dµy ≤ C

∫

B2δ
qi

|D2,3u(x)|2dµx (3.15)

For d2, we have

d2(x,y)

= ∇x

(

ξiξi
′
)

∫

[0,1]3
s1

d

ds3

(

∂iΦ
j(α+ s3s1ξ)∂i′Φ

j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))
)

ds3ds2ds1

= ∇x

(

ξiξi
′
)

ξi
′′

∫

[0,1]3
s21s2∂iΦ

j(α+ s3s1ξ)∂i′′∂i′Φ
j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))ds3ds2ds1

+∇x

(

ξiξi
′
)

ξi
′′

∫

[0,1]3
s21∂i′′∂iΦ

j(α+ s3s1ξ)∂i′Φ
j′(α+ s3s2s1ξ)∇j′∇ju(Φ(α+ s3s2s1ξ))ds3ds2ds1

+∇x

(

ξiξi
′
)

ξi
′′

∫

[0,1]3
s21s2∂iΦ

j(α+ s2s1ξ)∂i′Φ
j′(α+ s3s2s1ξ)∂i′′Φ

j′′(α+ s3s2s1ξ)

∇j′′∇j′∇ju(Φ(α+ s3s2s1ξ))ds3ds2ds1

This formula tells us that
∫

Oi

(

∫

Mt
y

Rt(x,y)|d2(x,y)|2dµx

)

dµy ≤ Ct2 max
0≤s≤1

∫

Oi

(

∫

Mt
y

Rt(x,y)|D2,3u(Φ(α+ sξ))|2dµx

)

dµy.

Using the same arguments as that in the calculation of ‖r1‖L2(M), we have

∫

Oi

(

∫

Mt
y

Rt(x,y)|d2(x,y)|2dµx

)

dµy ≤ C

∫

B2δ
qi

|D3u(x)|2dµx (3.16)

Combining (3.15) and (3.16), we have

‖∇r1(x)‖L2(M) ≤ C‖u‖H3(M) (3.17)

For r2, first, notice that

∇jR̄t(x,y) =
1

2t
∂m′Φj(α)gm

′n′

∂n′Φi(α)(xi − yi)Rt(x,y),

ηj

2t
Rt(x,y) =

1

2t
∂m′Φj(α)gm

′n′

∂n′Φi(α)ξi
′

∂i′Φ
iRt(x,y).

Then, we have

∇jR̄t(x,y)−
ηj

2t
Rt(x,y)

=
1

2t
∂m′Φigm

′n′

∂n′Φj
(

xj − yj − ξi
′

∂i′Φ
j
)

Rt(x,y)

=
1

2t
ξi

′

ξj
′

∂m′Φigm
′n′

∂n′Φj

(∫ 1

0

∫ 1

0
s∂j′∂i′Φ

j(α+ τsξ)dτds

)

Rt(x,y)
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Thus, we get
∣

∣

∣

∣

∇jR̄t(x,y)−
ηj

2t
Rt(x,y)

∣

∣

∣

∣

≤ C|ξ|2
t

Rt(x,y)

∣

∣

∣

∣

∇x

(

∇jR̄t(x,y)−
ηj

2t
Rt(x,y)

)∣

∣

∣

∣

≤ C|ξ|
t

Rt(x,y) +
C|ξ|3
t2

|R′
t(x,y)|

Then, we have following bound for r2,
∫

M
|r2(x)|2dµx (3.18)

≤Ct

∫

M

(∫

M
Rt(x,y)|D2u(y)|p(y)dµy

)2

dµx

≤Ct

∫

M

(∫

M
Rt(x,y)p(y)dµy

)∫

M
Rt(x,y)|D2u(y)|2p(y)dµydµx

≤Ctmax
y

(∫

M
Rt(x,y)dµx

)∫

M
|D2u(y)|2p(y)dµy

≤Ct‖u‖2H2(M).

Similarly, we have
∫

M
|∇r2(x)|2dµx (3.19)

≤Ct

∫

M

(∫

M
∇xRt(x,y)p(y)dµy

)∫

M
∇xRt(x,y)|D2u(y)|2p(y)dµydµx

≤C
√
tmax

y

(∫

M
∇xRt(x,y)dµx

)∫

M
|D2u(y)|2p(y)dµy

≤C‖u‖2H2(M).

r3 is relatively easy to estimate by using the well known Gauss formula.

r3(x) =

∫

∂M
njηi(∇i∇ju(y))R̄t(x,y)p(y)dτy −

∫

M
ηi(∇i∇ju(y))R̄t(x,y)∇jp(y)dµy

= Ĩbd −
∫

M
ηi(∇i∇ju(y))R̄t(x,y)∇jp(y)dµy

where Ĩbd =
∫

∂M njηi(∇i∇ju(y))R̄t(x,y)p(y)dτy.
Using the assumption that p ∈ C1(M), it is easy to get that

‖r3 − Ĩbd‖L2(M) ≤ C
√
t‖u‖H2(M), (3.20)

‖∇(r3 − Ĩbd)‖L2(M) ≤ C‖u‖H2(M). (3.21)

Now, we turn to bound the last term r4. Notice that

∇j
(

∇ju(y)
)

= (∂k′Φ
j)gk

′l′∂l′
(

(∂m′Φj)gm
′n′

(∂n′u)
)

(3.22)

= (∂k′Φ
j)gk

′l′
(

∂l′(∂m′Φj)
)

gm
′n′

(∂n′u)

+(∂k′Φ
j)gk

′l′(∂m′Φj)∂l′
(

gm
′n′

(∂n′u)
)

=
1√

detG
(∂m′

√
detG)gm

′n′

(∂n′u) + ∂m′

(

gm
′n′

(∂n′u)
)

=
1√

detG
∂m′

(√
detGgm

′n′

(∂n′u)
)

= ∆Mu(y).

16



where detG is the determinant of G and G = (gij)i,j=1,··· ,k. Here we use the fact that

(∂k′Φ
j)gk

′l′
(

∂l′(∂m′Φj)
)

= (∂k′Φ
j)gk

′l′
(

∂m′(∂l′Φ
j)
)

= (∂m′(∂k′Φ
j))gk

′l′(∂l′Φ
j)

=
1

2
gk

′l′∂m′(gk′l′)

=
1√

detG
(∂m′

√
detG).

Moreover, we have

gi
′j′(∂j′Φ

j)(∂i′ξ
l)(∂lΦ

i)(∇i∇ju(y)) (3.23)

= −gi
′j′(∂j′Φ

j)(∂i′Φ
i)(∇i∇ju(y))

= −gi
′j′(∂j′Φ

j)(∂i′Φ
i)(∂m′Φi)gm

′n′

∂n′

(

∇ju(y)
)

= −gi
′j′(∂j′Φ

j)∂i′
(

∇ju(y)
)

= −∇j
(

∇ju(y)
)

.

where the first equalities are due to that ∂i′ξ
l = −δli′ . Then we have

div
(

ηi(∇i∇ju(y))
)

+∆Mu(y)

=
1√

detG
∂i′
(√

detGgi
′j′(∂j′Φ

j)ξl(∂lΦ
i)(∇i∇ju(y))

)

− gi
′j′(∂j′Φ

j)(∂i′ξ
l)(∂lΦ

i)(∇i∇ju(y))

=
ξl√
detG

∂i′
(√

detGgi
′j′(∂j′Φ

j)(∂lΦ
i)(∇i∇ju(y))

)

.

Here we use the equalities (3.22), (3.23), ηi = ξl∂i′Φ
l and the definition of div,

divX =
1√

detG
∂i′(

√
detGgi

′j′∂j′Φ
kXk). (3.24)

whereX is a smooth tangent vector field onM and (X1, . . . , Xd)t is its representation in embedding
coordinates.

Hence,

r4(x) =

∫

M

ξl√
detG

∂i′
(√

detGgi
′j′(∂j′Φ

j)(∂lΦ
i)(∇i∇ju(y))

)

R̄t(x,y)p(y)dµy

Then it is easy to get that

‖r4(x)‖L2(M) ≤ Ct1/2‖u‖H3(M), (3.25)

‖∇r4(x)‖L2(M) ≤ C‖u‖H3(M). (3.26)

By combining (3.14),(3.17),(3.18),(3.19),(3.20),(3.21),(3.25),(3.26), we know that

‖r − Ĩbd‖L2(M) ≤ Ct1/2‖u‖H3(M), (3.27)

‖∇(r − Ĩbd)‖L2(M) ≤ C‖u‖H3(M). (3.28)

Using the definition of Ibd and Ĩbd, we obtain

Ibd − Ĩbd =

∫

∂M
nj(y)(x− y − η(x,y)) · (∇∇ju(y))R̄t(x,y)p(y)dτy
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Using the definition of η(x,y), it is easy to check that

|x− y − η(x,y)| = O(|x− y|2), |∇x(x− y − η(x,y))| = O(|x− y|)

which implies that

‖Ibd − Ĩbd‖L2(M) ≤ Ct3/4‖u‖H2(M), (3.29)

‖∇(Ibd − Ĩbd)‖L2(M) ≤ Ct1/4‖u‖H3(M). (3.30)

The theorem is proved by putting (3.27), (3.28), (3.29), (3.30) together.

Remark 3.4. Using above proof, we can also show that the L2 error in the integral approximation
(2.13) is O(t1/4).

3.4 Proof of Theorem 3.3

To simplify the notation, we introduce a intermediate operator defined as follows,

Lt,hu(x) =
1

t

∑

xj∈P
Rt(x,xj)(u(x)− u(xj))p(xj)Vj . (3.31)

Let ut,h = If (u) with u satisfying equation (3.2) and If is given in (3.3). One can verify that the
following equation are satisfied,

− Lt,hut,h(x) =
∑

xj∈P
R̄t(x,xj)f(xj)/p(xj)Vj . (3.32)

In the proof, we need a prior estimate of u which is given as following.

Theorem 3.6. Suppose u = (u1, · · · , u|P |) with
∑|P |

i=1 uipiVi = 0 solves the problem (3.2) and
f = (f(x1), · · · , f(x|P |))

t for f ∈ C(M). Then there exists a constant C > 0 such that





|P |
∑

i=1

u2i piVi





1/2

≤ C‖f‖∞,

provided t and h(P,V,M)√
t

are small enough.

This theorem is an easy corollary of following theorem.

Theorem 3.7. If the manifolds M is C∞, there exist constants C > 0, C0 > 0 independent on t

so that for any u = (u1, · · · , u|P |)
t ∈ R

d with
∑|P |

i=1 uipiVi = 0 and for any sufficient small t and
h(P,V,M)√

t
|P |
∑

i,j=1

Rt(xi,xj)(ui − uj)
2pipjViVj ≥ C(1− C0h(P,V,M)√

t
)

|P |
∑

i=1

u2i piVi.

The proof of this theorem is given in the supplementary material which is a small modification
of the proof of Theorem 9.1 in [33].

We are now ready to prove Theorem 3.3.
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Proof. To simplify the notation, we denote h = h(P,V,M) and n = |P | and denote

ut,h(x) =
1

wt,h(x)





∑

xj∈P
Rt(x,xj)ujpjVj − t

∑

xj∈P
R̄t(x,xj)fjVj/pj



 (3.33)

where u = (u1, · · · , un)t with
∑n

i=1 uipiVi = 0 solves the problem (3.2), fj = f(xj) and wt,h(x) =
∑

xj∈P Rt(x,xj)pjVj . For convenience, we set

at,h(x) =
1

wt,h(x)

∑

xj∈P
Rt(x,xj)ujpjVj , (3.34)

ct,h(x) = − t

wt,h(x)

∑

xj∈P
R̄t(x,xj)f(xj)Vj/pj , (3.35)

and thus ut,h = at,h + ct,h.
First we upper bound ‖Lt(ut,h)− Lt,h(ut,h)‖L2(M). For ct,h, we have

|(Ltct,h − Lt,hct,h) (x)|

=
1

t

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)(ct,h(x)− ct,h(y))p(y)dµy −

∑

xj∈P
Rt(x,xj)(ct,h(x)− ct,h(xj))pjVj

∣

∣

∣

∣

∣

∣

≤ 1

t
|ct,h(x)|

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)p(y)dµy −

∑

xj∈P
Rt(x,xj)pjVj

∣

∣

∣

∣

∣

∣

+
1

t

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)ct,h(y)p(y)dµy −

∑

xj∈P
Rt(x,xj)ct,h(xj)pjVj

∣

∣

∣

∣

∣

∣

≤ Ch

t3/2
|ct,h(x)|+

Ch

t3/2
‖ct,h‖C1(M)

≤ Ch

t3/2
t‖f‖∞ +

Ch

t3/2
(t‖f‖∞ + t1/2‖f‖∞) ≤ Ch

t
‖f‖∞.

For at,h, we have

∫

M
(at,h(x))

2

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)p(y)dµy −

∑

xj∈P
Rt(x,xj)pjVj

∣

∣

∣

∣

∣

∣

2

dµx (3.36)

≤ Ch2

t

∫

M
(at,h(x))

2 dµx ≤ Ch2

t

∫

M





1

wt,h(x)

∑

xj∈P
Rt(x,xj)ujpjVj





2

dµx

≤ Ch2

t

∫

M





∑

xj∈P
Rt(x,xj)u

2
jpjVj









∑

xj∈P
Rt(x,xj)pjVj



 dµx

≤ Ch2

t





n
∑

j=1

u2jpjVj

∫

M
Rt(x,xj)dµx



 ≤ Ch2

t

n
∑

j=1

u2jpjVj .
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Let

A = Ct

∫

M

1

wt,h(y)
R

( |x− y|2
4t

)

R

( |xi − y|2
4t

)

p(y)dµy

− Ct

∑

xj∈P

1

wt,h(xj)
R

( |x− xj |2
4t

)

R

( |xi − xj |2
4t

)

pjVj .

We have |A| < Ch
t1/2

for some constant C independent of t. In addition, notice that only when

|x− xi|2 ≤ 16t is A 6= 0, which implies

|A| ≤ 1

δ0
|A|R

( |x− xi|2
32t

)

.

Then we have

∫

M

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)at,h(y)p(y)dµy −

∑

xj∈P
Rt(x,xj)at,h(xj)pjVj

∣

∣

∣

∣

∣

∣

2

dµx (3.37)

=

∫

M

(

n
∑

i=1

CtuipiViA

)2

dµx ≤ Ch2

t

∫

M

(

n
∑

i=1

Ct|ui|piViR

( |x− xi|2
32t

)

)2

dµx

≤ Ch2

t

∫

M

(

n
∑

i=1

CtR

( |x− xi|2
32t

)

u2i piVi

)





∑

xi∈P
CtR

( |x− xi|2
32t

)

piVi



 dµx

≤ Ch2

t

n
∑

i=1

(∫

M
CtR

( |x− xi|2
32t

)

dµx

(

u2i piVi

)

)

≤ Ch2

t

(

n
∑

i=1

u2i piVi

)

.

Combining Equation (3.36), (3.37) and Lemma 3.6,

‖Ltat,h − Lt,hat,h‖L2(M)

=

(∫

M
|(Lt(at,h)− Lt,h(at,h)) (x)|2 dµx

)1/2

≤ 1

t





∫

M
(at,h(x))

2

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)p(y)dµy −

∑

xj∈P
Rt(x,xj)pjVj

∣

∣

∣

∣

∣

∣

2

dµx





1/2

+
1

t





∫

M

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)at,h(y)p(y)dµy −

∑

xj∈P
Rt(x,xj)at,h(xj)pjVj

∣

∣

∣

∣

∣

∣

2

dµx





1/2

≤ Ch

t3/2

(

n
∑

i=1

u2i piVi

)1/2

≤ Ch

t3/2
‖f‖∞.

Assembling the parts together, we have the following upper bound.

‖Ltut,h − Lt,hut,h‖L2(M) (3.38)

≤ ‖Ltat,h − Lt,hat,h‖L2(M) + ‖Ltct,h − Lt,hct,h‖L2(M)

≤ Ch

t3/2
‖f‖∞ +

Ch

t
‖f‖∞ ≤ Ch

t3/2
‖f‖∞
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At the same time, since ut respectively ut,h solves equation (3.5) respectively equation (3.32), we
have

‖Lt(ut)− Lt,h(ut,h)‖L2(M) (3.39)

=

(∫

M
((Ltut − Lt,hut,h) (x))

2 dµx

)1/2

=





∫

M





∫

M
R̄t(x,y)f(y)/p(y)−

∑

xj∈P
R̄t(x,xj)f(xj)Vj/pj





2

dµx





1/2

≤ Ch

t1/2
‖f‖C1(M).

The complete L2 estimate follows from Equation (3.38) and (3.39).
The estimate of the gradient, ‖∇(Lt(ut)− Lt,h(ut,h))‖L2(M), can be obtained similarly.

3.5 Proof of Theorem 3.2

In order to prove Theorem 3.2, we need two theorems, 3.8 and 3.9. The proof of these two theorems
can be obtained by making minor revision of the proof of Theorem 4.4 and 4.5 in [33], the details
of the proof are put in the supplementary material.

Theorem 3.8. For any function u ∈ L2(M), there exists a constant C > 0 independent on t and
u, such that

∫

M

∫

M
R

( |x− y|2
4t

)

(u(x)− u(y))2p(x)p(y)dµxdµy ≥ C

∫

M
|∇v(x)|2p(x)dµx,

where

v(x) =
Ct

wt(x)

∫

M
R

( |x− y|2
4t

)

u(y)p(y)dµy,

and wt(x) = Ct

∫

MR
(

|x−y|2
4t

)

p(y)dµy.

Theorem 3.9. Assume both M and ∂M are C∞. There exists a constant C > 0 independent on
t so that for any function u ∈ L2(M) with

∫

M u(x)p(x)dµx = 0 and for any sufficient small t

∫

M

∫

M
R

( |x− y|2
4t

)

(u(x)− u(y))2p(x)p(y)dµxdµy ≥ C‖u‖2L2(M).

Using above two theorems, Theorem 3.2 becomes an easy corollary.

Proof. of Theorem 3.2
Using Theorem 3.9, we have

‖u‖2L2(M) ≤ C

∫

M
u(x)r(x)p(x)dµx ≤ C‖u‖L2(M)‖r‖L2(M). (3.40)

This inequality (3.40) implies that

‖u‖L2(M) ≤ C‖r‖L2(M).
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Now we turn to estimate ‖∇u‖L2(M). Notice that we have the following expression for u,

u(x) = v(x) +
t

wt(x)
r(x)

where

v(x) =
1

wt(x)

∫

M
Rt(x,y)u(y)p(y)dµy, wt(x) =

∫

M
Rt(x,y)p(y)dµy.

By Theorem 3.8, we have

‖∇u‖2L2(M) ≤ 2‖∇v‖2L2(M) + 2t2
∥

∥

∥

∥

∇
(

r(x)− r̄

wt(x)

)∥

∥

∥

∥

2

L2(M)

≤ C

∫

M
u(x)Ltu(x)p(x)dµx + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C
(

‖r‖L2(M) + t‖∇r‖L2(M)

)2
.

The proof is completed.

3.6 Proof of Theorem 3.5

Proof. First, we denote

r(x) =

∫

∂M
b(y) · (x− y)R̄t(x,y)p(y)dτy,

r̄ =
1

|M|p

∫

M

(∫

∂M
b(y) · (x− y)R̄t(x,y)p(y)dτy

)

p(x)dx.

where |M|p =
∫

M p(y)dµy.
The key point of the proof is to show that

∣

∣

∣

∣

∫

M
u(x) (r(x)− r̄) p(x)dµx

∣

∣

∣

∣

≤ C
√
t ‖b‖H1(M)‖u‖H1(M). (3.41)

First, notice that
|r̄| ≤ C

√
t ‖b‖L2(∂M) ≤ C

√
t ‖b‖H1(M).

Then it is sufficient to show that
∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
b(y) · (x− y)R̄t(x,y)p(y)dτy

)

p(x)dµx

∣

∣

∣

∣

≤ C
√
t ‖b‖H1(M)‖u‖H1(M). (3.42)

Direct calculation gives that

|2t∇ ¯̄Rt(x,y)− (x− y)R̄t(x,y)| ≤ C|x− y|2R̄t(x,y),
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where ¯̄Rt(x,y) = Ct
¯̄R
(

‖x−y‖2
4t

)

and ¯̄R(r) =
∫∞
r R̄(s)ds. This implies that

∣

∣

∣

∣

∫

M
u(x)p(x)

∫

∂M
b(y)

(

(x− y)R̄t(x,y) + 2t∇ ¯̄Rt(x,y)
)

p(y)dτydµx

∣

∣

∣

∣

(3.43)

≤C

∫

M
|u(x)p(x)|

∫

∂M
|b(y)||x− y|2R̄t(x,y)p(y)dτydµx

≤Ct‖b‖L2(∂M)

(∫

∂M

(∫

M
R̄t(x,y)p(x)dµx

)(∫

M
|u(x)|2R̄t(x,y)p(x)dµx

)

p(y)dτy

)1/2

≤Ct‖b‖H1(M)

(∫

M
|u(x)|2p(x)

(∫

∂M
R̄t(x,y)p(y)dτy

)

dµx

)1/2

≤Ct3/4‖b‖H1(M)‖u‖L2(M).

On the other hand, using the Gauss integral formula, we have
∫

M
u(x)p(x)

∫

∂M
b(y) · ∇ ¯̄Rt(x,y)p(y)dτydµx (3.44)

=

∫

∂M

∫

M
u(x)p(x)Tx(b(y)) · ∇ ¯̄Rt(x,y)p(y)dµxdτy

=

∫

∂M

∫

∂M
n(x) · Tx(b(y))u(x)

¯̄Rt(x,y)p(x)p(y)dτxdτy

−
∫

∂M

∫

M
divx[u(x)p(x)Tx(b(y))]

¯̄Rt(x,y)p(y)dµxdτy.

Here Tx is the projection operator to the tangent space on x. To get the first equality, we use the fact
that ∇ ¯̄Rt(x,y) belongs to the tangent space on x, such that b(y)·∇ ¯̄Rt(x,y) = Tx(b(y))·∇ ¯̄Rt(x,y)
and n(x) · Tx(b(y)) = n(x) · b(y) where n(x) is the out normal of ∂M at x ∈ ∂M.

For the first term, we have
∣

∣

∣

∣

∫

∂M

∫

∂M
n(x) · Tx(b(y))u(x)

¯̄Rt(x,y)p(x)p(y)dτxdτy

∣

∣

∣

∣

(3.45)

=

∣

∣

∣

∣

∫

∂M

∫

∂M
n(x) · b(y)u(x) ¯̄Rt(x,y)p(x)p(y)dτxdτy

∣

∣

∣

∣

≤C‖b‖L2(∂M)

(

∫

∂M

(∫

∂M
|u(x)| ¯̄Rt(x,y)p(x)dτx

)2

p(y)dτy

)1/2

≤C‖b‖H1(M)

(∫

∂M

(∫

∂M
¯̄Rt(x,y)p(x)dτx

)(∫

∂M
|u(x)|2 ¯̄Rt(x,y)p(x)dτx

)

p(y)dτy

)1/2

≤Ct−1/2 ‖b‖H1(M)‖u‖L2(∂M) ≤ Ct−1/2 ‖b‖H1(M)‖u‖H1(M).

We can also bound the second term on the right hand side of (3.44). By using the assumption that
M ∈ C∞, we have

|divx[u(x)p(x)Tx(b(y))]|
≤|∇u(x)||Tx(b(y))||p(x)|+ |u(x)||divx[Tx(b(y))]||p(x)|+ |∇p(x)||u(x)Tx(b(y))|
≤C(|∇u(x)|+ |u(x)|)|b(y)|

where the constant C depends on the curvature of the manifold M.
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Then, we have

∣

∣

∣

∣

∫

∂M

∫

M
divx[u(x)Tx(b(y))]

¯̄Rt(x,y)p(x)p(y)dµxdτy

∣

∣

∣

∣

(3.46)

≤ C

∫

∂M
b(y)p(y)

∫

M
(|∇u(x)|+ |u(x)|) ¯̄Rt(x,y)p(x)dµxdτy

≤ C‖b‖L2(∂M)

(∫

M
(|∇u(x)|2 + |u(x)|2)p(x)

(∫

∂M
¯̄Rt(x,y)p(y)dτy

)

dµx

)1/2

≤ Ct−1/4 ‖b‖H1(M)‖u‖H1(M).

Then, the inequality (3.42) is obtained from (3.43), (3.44), (3.45) and (3.46). Now, using Theorem
3.9, we have

‖u‖2L2(M) ≤ C

∫

M
u(x)Ltu(x)p(x)dµx ≤ C

√
t ‖b‖H1(M)‖u‖H1(M). (3.47)

Note r(x) =
∫

∂M(x− y) · b(y)R̄t(x,y)p(y)dτy. Direct calculation gives us that

‖r(x)‖L2(M) ≤ Ct1/4‖b‖H1(M), and

‖∇r(x)‖L2(M) ≤ Ct−1/4‖b‖H1(M).

The integral equation Ltu = r − r̄ gives that

u(x) = v(x) +
t

wt(x)
(r(x)− r̄)

where

v(x) =
1

wt(x)

∫

M
Rt(x,y)u(y)p(y)dµy, wt(x) =

∫

M
Rt(x,y)p(y)dµy.

By Theorem 3.8, we have

‖∇u‖2L2(M) (3.48)

≤ 2‖∇v‖2L2(M) + 2t2
∥

∥

∥

∥

∇
(

r(x)− r̄

wt(x)

)∥

∥

∥

∥

2

L2(M)

≤ C

∫

M
u(x)Ltu(x)p(x)dµx + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C
√
t ‖b‖H1(M)‖u‖H1(M) + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + Ct3/2

)

.

Using (3.47) and (3.48), we have

‖u‖2H1(M) ≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + Ct3/2

)

,

which proves the theorem.
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4 Numerical Experiments

In this section, we show several numerical examples to demonstrate the performance of the point
integral method for isotropic elliptic equations. This section is separated to two parts. In the first
part, on some simple 2D surfaces, the convergence of the point integral method is verified. In the
second part, we consider a nonlocal total variation minimization problem, in which some isotropic
elliptic equations are solved on point cloud in high dimensional space.

4.1 Examples on 2D Surfaces

In this subsection, we consider the isotropic elliptic equation on 2D surfaces

−div(p2(x)∇u(x)) = f(x), x ∈ M, (4.1)

with Neumann and Dirichlet boundary conditions,

∂u

∂n
(x) = b(x), or u(x) = b(x), x ∈ ∂M

To estimate the volume weight vector V from the point sets P , a local mesh around each sample
point is constructed, from which the weight of that point is computed. For details to estimate the
volume weight, we refer to [26]. The kernel function is chosen to be Gaussian function,

Rt(x,y) =
1

(4πt)k/2
exp

(

−‖x− y‖2
4t

)

.

The parameter t is set as t =
(

1
|P |
∑|P |

i=1 ρ(xi)
)2

, where ρ(xi) is the radius of 10 nearest neighbors

of xi.

Example 1 In the first example, the manifold M is an unit disk and an annulus in R
2. The inner

radius of the annulus is 1 and outer radius is 3. The exact solution is set to be ugt(x) = cos(2π‖x‖)
in unit disk and ugt = sin(x + y) in the annulus, see Figure 1. The coefficient of the equation in

(a) (b)

Figure 1: Ground truth: (a) ugt = cos(2πr) in unit disk; (b) ugt = sin(x+ y) in the annulus

(4.1) is

p = 1 +
1

4
‖x‖2, (4.2)
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|P | 684 2610 10191 40296

disk 0.364597 0.214960 0.111961 0.056028

annulus 0.036760 0.012227 0.005557 0.003542

Table 1: l2 error for ugt = cos(2πr) in the unit disk and sin(x+ y) in the annulus.

both in the unit disk and annulus. The Neumann boundary condition is enforced in unit disk and
we consider the Dirichlet boundary condition in the annulus.

Table 1 list the l2 error of the point integral method as the number of points grows. This result
clearly shows the convergence of the point integral method. The convergence rate in l2 error is
approximately 1/

√

|P |.
The eigenvalue problem with homogeneous Neumann boundary condition is also solved in the

annulus.

−div(p2(x)∇u(x)) =λu(x), x ∈ M
∂u

∂n
(x) =0, x ∈ ∂M

and the coefficient p is given in (4.2).
The first 20 eigenvalues are plotted in Figure 2. The eigenvalues given by finite element method

in the finest mesh is used as the true solution. Our result shows that the eigenvalue computed in
the point integral method also converge.

Figure 2: First 20 eigenvalues in the annulus with Neumann boundary condition with different
point cloud.

Example 2 Now, we solve equation (4.1) with Neumann condition and Dirichlet condition on a
curved surface in R

3. Let M be a cap on the unit sphere, whose height is 1/2 and the cap angle is
π/3, as shown in Figure 3. The coefficient of the equation is also given in (4.2).

We set the ground truth to be ugt = x+ y + z, where (x, y, z) is the coordinate in R
3.

The l2 errors of the point integral method are listed in Table 2. The convergence rate for both
boundary value problems are 1.
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Figure 3: Ground truth: ugt = x+ y + z on the cap.

|P | 1199 4689 18540 73757

Neumann 0.036779 0.015355 0.007479 0.003189

Dirichlet 0.007238 0.001921 0.001278 0.000750

Table 2: l2 error for ugt = x+ y + z on cap.

The first 20 eigenvalues are also computed for homogeneous Neumann condition as shown in
Figure 4. As the number of points increases, the eigenvalues given by PIM converge to those
computed by FEM, which suggests the convergence of the point integral method.

Figure 4: First 20 eigenvalues on the cap with Neumann boundary condition.
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Example 3 In this example, we consider a more complex surface, a human face called ”Alex”.
The surface is sampled by 10597 points (Figure 5) and the analytic form of the surface is not known.
The coefficient of the equation in (4.1) is

p2 =
1

sin(r/10)/2 + 1

where r =
√

x2 + y2 + z2. In this example, we solve the eigenvalue problem of the isotropic elliptic

Figure 5: (a) Face of Alex; (b) Coefficient: restriction of p2 on M

operator. Several eigenfunctions computed by the point integral method are shown in Figure 6.
From the examples in 2D surfaces, we see that PIM solves isotropic elliptic equations with

Neumann and Dirichlet boundary very well. Moreover, the convergence rate is higher than that
obtained in the convergence analysis. The point integral method is applicable to point cloud in high
dimensional space, not only on the 2D surfaces. Next, we will show a high dimensional example.

4.2 Nonlocal Total Variation Extension

In this example, we consider an L1 extension on point cloud. The point cloud is constructed
by using the patches of a 512 × 512 image, which is shown in Figure 7(a). The original image is
subsampled and only retain 10% of the pixels at random. The subsampled image is shown in Figure
7(b). One classical problem in image processing is to recover the image from the subsampled image.
Here, rather than give an image reconstruction method, we only use this example to demonstrate
the performance of the point integral method for isotropic elliptic equations.

In this example, the point cloud consists of the patches of the original image. For each pixel xi
in the image f , we extract a patch around it of size 5 × 5 which is denoted as pxi(f), where f is
the original image. Totally, we get 5122 patches and each patch is 5× 5. The collection of all the
patches give a point cloud in R

25. Denote this point cloud as P = {pxi(f) : i = 1, · · · , 5122}. The
image is actually corresponding a function u on the point cloud P with u(pxi(f)) = f(xi), f(xi)
is the value of image f at pixel xi. Corresponding to the subsampled image, the value of function
u is only known in the patches around the sampled pixels. The collection of all these patches is
denoted as S.
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Figure 6: Eigenfunctions on ‘Alex’ with homogenous Neumann boundary condition.

Recently, manifold model attracts many attentions in image processing [30]. In manifold model,
the point cloud P is assumed to be a sample of an underlying manifold, which is called patch
manifold. The total variation is used as a regularization to reconstruct the image. The main idea
is to minimize the total variation in the patch manifold, i.e.,

min
u

‖∇u‖L1(M), subject to: u(x) = f(x), x ∈ S. (4.3)

The variation approach tells us that the optimal solution of (4.3) is given by solving following PDE,

div

( ∇u(x)

|∇u(x)|

)

= 0,

with the Dirichlet type boundary condition

u(x) = f(x), x ∈ S.

One natural method to solve above PDE is an iterative scheme,

div

(∇un+1(x)

|∇un(x)|

)

= 0, un+1(x) = f(x), x ∈ S. (4.4)

In each step, we need to solve an isotropic elliptic equation.
Here, the gradient is computed by using an integral approximation also.

∇u(x) =
1

t w̄t(x)

∫

M
Rt(x,y)(x− y)(u(x)− u(y))dµy
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w̄t(x) =
∫

M R̄t(x,y)dµy. In the computation, to avoid degenerate of the ellipticity, we regularize
the coefficient by adding a small constant in the denominator, i.e., replace |∇un(x)| by |∇un(x)|+ǫ
in (4.4) with ǫ = 10−3. The point cloud is assumed to be uniformly distributed, so the volume
weight is uniform. The kernel function is Gaussian function. In this example, we use the integral
approximation (2.13) with adaptive t(xi) = ρ(xi)

2, where ρ(xi) is the radius of 20 nearest neighbors
of xi.

(a) (b)

Figure 7: (a): original data; (b): 10% subsampled data.

Figure 8(a) shows the image reconstructed by L1 extension and Figure 8(b) gives the difference
between the original image, Figure 7(a) and the reconstructed image Figure 8(a). As we can see,
L1 extension gives very good reconstruction. This result shows that the point integral method solve
the isotropic elliptic equation very well on point cloud.

5 Conclusion

In this paper, we generalize the point integral method to solve the isotropic elliptic equation. The
point integral method is very easy to implement on point cloud, since it only needs the point cloud
without any extra information. Moreover, it also has very good theoretical property. The coercivity
of the original elliptic operator is partially preserved in the point integral method. Based on this
property, the convergence is proved.

One important implication is the spectral convergence of the point integral method on random
samples. Suppose the points are obtained by sampling a manifold according to some probability
distribution p(x). In the point integral method, the eigenvalue problem

{

− 1
p2(x)

div(p2(x)∇u(x)) = λu(x), x ∈ M,
∂u
∂n(x) = 0, x ∈ ∂M,

(5.1)
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(a) (b)

Figure 8: (a): reconstructed data; (b): residual.

is discretized as
1

t

∑

xj∈P
Rt(xi,xj)(ui − uj) = λ

∑

xj∈P
R̄t(xi,xj)uj . (5.2)

This discretization is closely related with the normalized graph laplacian. Based on the theoretical
results in this paper, it can be proved that the spectra of (5.2) converges to the spectra of (5.1) as
the number of sample points goes to infinity.

The other interesting problem is how to generalize the point integral method to anisotropic
elliptic equation. On this problem, we already get some results. They are going to be reported in
the subsequent paper.
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