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In this paper, we propose a time-frequency analysis

method to obtain instantaneous frequencies and

the corresponding decomposition by solving an

optimization problem. In this optimization problem,

the basis that is used to decompose the signal is

not known a priori. Instead, it is adapted to the

signal and is determined as part of the optimization

problem. In this sense, this optimization problem

can be seen as a dictionary adaptation problem,

in which the dictionary is adaptive to one signal

rather than a training set in dictionary learning. This

dictionary adaptation problem is solved by using

the augmented Lagrangian multiplier (ALM) method

iteratively. We further accelerate the ALM method in

each iteration by using the fast wavelet transform.

We apply our method to decompose several signals,

including signals with poor scale separation, signals

with outliers and polluted by noise and a real signal.

The results show that this method can give accurate

recovery of both the instantaneous frequencies and the

intrinsic mode functions.

1. Introduction
Nowadays we must process a massive amount of

data in our daily life and scientific research. Data

analysis methods have played an important role in

processing and analysing these data. Most data analysis

methods use a predetermined basis, including the

most commonly used Fourier transform and wavelet

transform. While these data analysis methods are very

efficient in processing data, each component of the

decomposition in general does not reveal the intrinsic

physical information of these data due to the presence
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of harmonics in the decomposition. For example, application of these traditional data analysis

methods to a modulated oscillatory chirp signal would produce many components. Thus, it

is essential to develop a truly adaptive data analysis method that can extract hidden physical

information such as trend and time varying cycles from these data and preserve the integrity of

the physically meaningful components. To achieve this, we need to use a data-driven basis that is

adapted to the signal instead of being determined a priori.

The empirical mode decomposition (EMD) method, which was proposed by Prof. Norden

E. Huang in 1998 [1,2], provides an efficient adaptive method to analyse nonlinear and non-

stationary data. In the EMD method, the signal is decomposed to several intrinsic mode functions

(IMFs) by the so-called sifting process. The EMD method is empirical in nature. Several methods

with more clear mathematical structures have been proposed as a variant of the EMD method

(for example the synchrosqueezed wavelet transform [3], empirical wavelet transform [4] and

variational mode decomposition [5]). Inspired by the EMD method and the recently developed

compressed (compressive) sensing theory, we have proposed a data-driven time-frequency

analysis method [6–8]. In this method, we formulate the problem as a nonlinear optimization

problem and decompose the signal by looking for the sparsest representation of a multiscale

signal over a dictionary consisting of all IMFs.

In our data-driven time-frequency analysis, we decompose a given signal f (t) into the

following form:

f (t) =

M∑

j=1

aj(t) cos θj(t), t ∈ R, (1.1)

where aj(t), θj(t) are smooth functions, θ ′
j (t) > 0, j = 1, . . . , M, and M is an integer that is unknown

a priori. We assume that aj(t) and θ ′
j (t) are less oscillatory than cos θj(t). We call aj(t) cos θj(t) the

intrinsic mode functions (IMFs) and θ ′
j (t), j = 1, . . . , M the instantaneous frequencies [1]. The

objective of our data-driven time-frequency analysis is to extract the IMFs and their instantaneous

frequencies.

In [7], we proposed to decompose the signal by solving the following optimization problem:

min
(ak)1≤k≤M, (θk)1≤k≤M

M, subject to: f =

M∑

k=1

ak cos θk, ak cos θk ∈D, (1.2)

where D is the dictionary consisting of all IMFs (see [7] for its precise definition). To simplify

the notation, when no ambiguity arises, we drop the argument t from the functions ak(t) and

θk(t) and in the rest of this paper, we will use this notation to make the formula more concise.

Further, an efficient algorithm based on matching pursuit and fast Fourier transform has been

proposed to solve the above nonlinear optimization problem. In a subsequent paper [9], we

proved the convergence of the algorithm in [7] for periodic data that satisfy a certain scale

separation property.

In this paper, we will introduce another formulation to get the sparsest time-frequency

decomposition based on dictionary adaptation. In this formulation, we assume that we have

already known the number of IMFs, M. Then, we can obtain the desirable decomposition by

solving the following optimization problem:

min
x,θ1...,θM

‖x‖1, subject to Φθ1,...,θM
· x = f , (1.3)

where

Φθ1,...,θM
= [Φθ1

, . . . , ΦθM
], (1.4)

and Φθj
, j = 1, . . . , M is the basis to decompose the signal f . The specific form of the basis as a

function of θ j will be given in (2.3). And we use bold font to denote the vectors (lowercase) or

matrices (uppercase).

In (1.3), the basis Φθ1,...,θM
is not known a priori. It is determined by the phase functions θ j,

j = 1, . . . , M and the phase functions are adaptive to the data. We need to solve not only the
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optimal coefficients x but also the optimal basis Φθ1,...,θM
. In this sense, the problem described

above seems to be a dictionary learning problem. Many efficient dictionary learning methods

have been proposed [10–14]. But the problem we study here has some important differences from

the dictionary learning problem. In a dictionary learning problem, a common set-up starts with

a training set, a collection of training vectors. The atoms of the dictionary can be any function.

For the problem we consider here, we only have one signal not a training set. Moreover, the atoms

of the dictionary in our problem are given in the form of cos(θ j). If we do not put any constraint on

the atoms of the dictionary, we may get only trivial decompositions. In order to get a reasonable

result, the atoms of the dictionary are restricted to be nonlinear functionals of the phase function

θ j. At the same time, the phase functions are confined to a low dimensional space to make sure

that the overall degree of freedom is not too large. As we will demonstrate later, we can still get a

reasonable decomposition with only one measurement of the signal. To distinguish our problem

from the dictionary learning problem, we call it dictionary adaptation.

We need to develop a new method to solve this non-convex optimization problem. The key

part is to find the phase functions. Once the phase functions are known, we need to solve

a l1 optimization problem to get the decomposition. Based on this observation, we develop

an iterative algorithm to solve (1.3). This algorithm starts from one initial guess of the phase

functions. In each step, the phase functions are fixed and one l1 optimization problem is solved.

The phase functions will be updated in the next step. This iteration is repeated until the changing

of the phase function between two consecutive iterations is smaller than a given tolerance. In each

step, the augmented Lagrangian multiplier (ALM) method is used to solve the l1 optimization

problem. We further accelerate the ALM method in each iteration by using the fast wavelet

transform. This method can be also generalized to decompose signals that contain outliers by

enlarging the dictionary to include impulses.

We will demonstrate the effectiveness of our method by applying it to decompose several

multiscale data, including synthetic data and real data. For the data that we consider in this

paper, we will demonstrate that we can recover both the instantaneous frequencies and the IMFs

very accurately. Even for those signals that are polluted by noise, we still can approximate the

instantaneous frequencies and the IMFs with reasonable accuracy comparable to the noise level.

The remaining of the paper is organized as follows. In §2, we give the formulation of our

problem. In §3, an iterative algorithm is introduced to solve the nonlinear optimization problem

(1.3). An accelerating procedure is introduced based on the fast wavelet transform in §4. In §5, we

generalize this method to deal with signals that have outliers. In §6, several numerical results are

presented to demonstrate the effectiveness of our method. Finally, some concluding remarks are

made in §7.

2. Formulation based on dictionary adaptation
In this section, we will set up the framework of the data-driven time-frequency decomposition.

First, we construct a dictionary to represent the signal f (t) ∈ L2(R) which satisfies the model (1.1).

In this paper, we construct the dictionary following an idea similar to that in [7]. However, we

will use the wavelet basis instead of the overcomplete Fourier basis used in [7]. We choose the

wavelet basis because there are fast decomposition and reconstruction algorithms. This feature

makes our algorithm very efficient. Another advantage is that the wavelet basis can handle non-

periodic functions much better.

Let {Vl}l∈Z be a multi-resolution approximation of L2(R) and ϕ the associated scaling function,

ψ the corresponding wavelet function. Assume that ϕ is real and ϕ̂ has compact support,

supp(ϕ̂) = [−sϕ , sϕ], where ϕ̂ is the Fourier transform of ϕ defined below,

ϕ̂(k) =
1

2π

∫
R

ϕ(t) e−ikt dt.

For each 1 ≤ j ≤ M, we assume that θ ′
j > 0. Since θj is a strictly monotonically increasing

function, there is a one-to-one mapping between the physical time t and θj(t). Thus, we can use θj
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as a new coordinate and represent the signal as a function of θj. Then we can define the following

wavelet basis in the θj-coordinate:

Aθj = {ψl,n(θj) l,n∈Z,
0<l≤l0

, ϕl0,n(θj)n∈Z}, (2.1)

where l0 is a positive integer associated with the lowest frequency of the envelope. In practice, l0
is usually determined by the time range of the signal. And

ψl,n(θj) =
1√
2lsϕ

ψ

(
θj

2lsϕ

− n

)
and ϕl,n(θj) =

1√
2lsϕ

ϕ

(
θj

2lsϕ

− n

)
. (2.2)

In this paper, we use the Meyer wavelet to construct the basis.

Then the corresponding IMF, aj cos θj, can be represented using the following basis:

Dθj = {(ψl,n(θj) cos θj) l,n∈Z,
0<l≤l0

, (ϕl0,n(θj) cos θj)n∈Z}. (2.3)

This, in turn, implies that the whole signal f (t) given in ((1.1)) lies in the space spanned by the

following basis:

Dθ1,...,θM = {Dθ1 , . . . ,DθM}. (2.4)

We assume that the envelope is sufficiently smooth, aj ∈ C∞. Thus, aj has a sparse representation

over the wavelet basis Aθj . Consequently, the signal f (t) would have a sparse representation over

Dθ1,...,θM . Based on this observation, we propose to decompose the signal f (t) in ((1.1)) by looking

for the sparsest representation over Dθ1,...,θM :

min
cj,θ1...,θM

∑

j

|cj|, subject to:
∑

j

cjφj(t) = f (t), φj(t) ∈Dθ1,...,θM , (2.5)

where cj, j = 1, 2, . . . are the coefficients of the signal f (t) in the dictionary Dθ1,...,θM .

In this problem, not only the coefficients are unknown, but the basis over which the signal

has a sparse representation is also unknown a priori. The basis is determined by the phase

functions θ1, . . . , θM. Both the coefficients cj and the phase functions need to be determined in

the optimization process.

The above formulation is presented in the continuous version. Next, we will introduce a

discrete version. Suppose the signal f (t) is sampled over N discrete points, tj = jh, j = 1, . . . , N,

h = T/N and [0, T] is the sample interval. Here, we assume that the sample points are dense

enough such that the signal can be interpolated to any other grids with high accuracy. And we

use the bold font to denote the corresponding discrete samples of the continuous function, for

instance, f = [f (t1), . . . , f (tN)]. Then the discrete version of (2.5) is given as

min
x,θ1...,θM

‖x‖1, subject to: Φθ1,...,θM
· x = f, (2.6)

where Φθ1,...,θM
= [Φθ1

, . . . , ΦθM
] and Φθ j

, j = 1, . . . , M are matrices corresponding to the

dictionaries Dθj , j = 1, . . . , M, i.e. each column of Φθ j
is discrete samples of basis function in Dθj .

Here, we denote x = [x1, . . . , xM]T and xj, j = 1, . . . , M are the corresponding coefficients of aj cos θ j

over Φθ j
. Moreover, we define

Πθ j
= [ψ l,n(θ j) l,n∈Z,

0<l≤l0

, ϕl0,n(θ j)n∈Z]. (2.7)

To simplify the notation, we introduce an operator ⋆, which is defined as follows: for any x ∈

R
n, y ∈ R

n×m,

x ⋆ y = diag(x) · y. (2.8)

3. An algorithm based on the Augmented Lagrangian Multiplier method
Inspired by the algorithm in [7], we propose an iterative algorithm, algorithm 1, to solve the

nonlinear l1 optimization problem (2.6). Algorithm 1 is essentially based on the Gauss–Newton
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iteration which is derived by performing a local linearization around the phase functions in

the current step. Suppose θ∗(t) is the exact phase function and θn(t) is a good approximation.

By keeping only the linear terms in the Taylor expansion, we obtain the following linearization

around θn(t),

cos θ∗(t) ≈ cos θn(t) − �θn(t) sin θn(t),

where �θn(t) = θ∗(t) − θn(t). Both the matrix Ψ θn
1 ,...,θn

M
in (3.1) and bj in (3.2) come from this

linearization procedure. The coefficients, bj, are just auxiliary functions in the iteration and will

tend to zero as the iteration converges.

Algorithm 1. (Gauss–Newton-type iteration).

Input: Initial guess of phase functions θ0
j , j = 1, . . . , M, η = l0, where l0 is same as that in (2.1).

Output: Phase functions and corresponding envelopes: θ j, aj, j = 1, . . . , M.

1: while η ≥ 1 do

2: while

M∑

j=1

‖θn+1
j − θn

j ‖2 > ǫ0 do

3: Solve the following l1 optimization problem:
(

ãn+1, b̃
n+1

)
= argminx,y(‖x‖1 + ‖y‖1), (3.1)

subject to Φθn
1 ,...,θn

M
· x + Ψ θn

1 ,...,θn
M

· y = f,

where Ψ θn
1 ,...,θn

M
= [Ψ θn

1
, . . . , Ψ θn

M
] and

Ψ θn
j
= (sin θ j) ⋆ Πθ j

, j = 1, . . . , M.

4: Calculate the envelopes aj, bj, j = 1, . . . M:

aj = Πθn
j
· ãn+1

j , bj = Πθn
j
· b̃

n+1
j , (3.2)

5: Update θn
j , j = 1, . . . , M:

�θ ′
j = PVη(θn

j )

(
d

dt

(
arctan

(
bj

aj

)))
,

�θ j =

∫
�θ ′

j (s)ds, θn+1
j = θn

j − βj�θ j,

where βj ∈ [0, 1] is chosen to make sure that θn+1
j is monotonically increasing:

βj = max

{
α ∈ [0, 1] :

d

dt
(θn

j − α�θ j) ≥ 0

}
.

Here PVη(θn
j ) is the projection operator to the space Vη(θn

j ) and

Vη(θ ) = span[ψl,n(θ ) l,n∈Z,
η<l≤l0

, ϕl0,n(θ )n∈Z].

and d
dt is approximated by a central difference scheme, the integral is approximated by

the trapezoid rule.

6: end while

7: η = η − 1.

8: end while
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In some sense, algorithm 1 is similar in spirit to the K-SVD algorithm [10]. The step to solve

the l1 optimization problem is similar to the sparse coding stage in the K-SVD method and the

step to update the phase functions is similar to the codebook update stage. The main difference

is in the codebook update stage. In our problem, the atoms of the dictionary are not arbitrary

functions. They are parametrized by the phase functions. For this reason, we cannot use singular

value decomposition (SVD) to update the dictionary directly. Instead, we use the Gauss–Newton

algorithm to update the phase functions, which in turn updates the dictionary accordingly.

In the step to update the phase functions, we choose to update the instantaneous frequency

(derivative of the phase function) instead of updating the phase function directly. This is because

arctan (bj/aj) could be discontinuous if we do not add or subtract 2π at some particular points.

Here, βj at step 5 is used to make sure that the instantaneous frequency being positive during the

iteration to make sure that the phase function remains monotonically increasing. In other words,

we update θ j along the direction of �θ j under the constraint that θ ′
j > 0.

The optimization problem we want to solve is non-convex. There are many local minima. If

the initial guess is not good enough, the iteration may converge to a local minimum instead

of the global minimum. However, we cannot guarantee to get a good initial guess unless we

have obtained some a priori information about the signal. To abate the dependence on the

initial guess, we introduce a projection operator PVη(θn
j ) and a parameter η. The value of η is

gradually decreased during the iteration. When η is large, �θ ′ is confined to a small space. In

this small space, the objective functional has fewer local minima. The iteration may find a good

approximation for �θ ′. By gradually decreasing η, we enlarge the space for �θ ′ which allows

for the small-scale structures of �θ ′ to develop gradually during the iterations. This procedure

mimics a continuation method and works very well in practice.

In the numerical examples presented in §6, we obtain the initial guess using a simple approach

based on the Fourier transform. More precisely, we obtain the initial guess by estimating the

frequencies by which the Fourier coefficients have the largest energy.

In algorithm 1, the most expensive part is to solve the l1 optimization problem (3.1) at step 3.

In this paper, we use an ALM algorithm [15] to solve (3.1). In order to simplify the notations, we

denote

Θθn
1 ,...,θn

M
= [Θθn

1
, . . . , Θθn

M
], (3.3)

where

Θθn
j
= [Φθn

j
, Ψ θn

j
], j = 1, . . . , M.

The ALM method operates on the augmented Lagrangian

L(p, q) = ‖p‖1 + 〈q, f − Θθ1,...,θM
p〉 +

µ

2
‖f − Θθ1,...,θM

p‖2
2. (3.4)

A generic Lagrange multiplier algorithm [15] would solve (3.1) by repeatedly setting pk+1 =

argminp L(p, qk), and then updating the Lagrange multiplier via qk+1 = qk + µ(f − Θθ1,...,θM
pk).

In this iteration, solving minp L(p, qk) is also very time consuming. Note that the matrix

Θθ1,...,θM
= [Θθ1

, . . . , ΘθM
] is the combination of M matrices with smaller size. It is natural to use

the following sweeping algorithm, algorithm 2, to solve minp L(p, qk) iteratively.

Theoretically, we need to run the above sweeping process several times until the solution

converges, but in practical computations, in order to save the computational cost, we only run the

sweeping process once. Combining this idea with the augmented Lagrange multiplier method,

we obtain algorithm 3 to solve the l1 optimization problem (3.1):

4. A fast algorithm based on the discrete wavelet transform

In this section, we propose an approximate solver to accelerate the computation of pk+1
j =

argminpj
‖pj‖1 + (µ/2)‖rk

j + qk/µ − Θθ j
pj‖

2
2, which is the most expensive step in algorithm 1.

In this paper, we only consider the signal which is well resolved by the samples and the

samples are uniformly distributed in time and the total number of the samples is N. Based on
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Algorithm 2. (Sweeping).

Input: p0
j = 0, j = 1, . . . , M, µ > 0.

1: while not converge do

2: for j=1:M do

3: Compute rm
j = f −

∑j−1
l=1 Θθ l

pm+1
l −

∑M
l=j+1 Θθ l

pm
l .

4: Compute pm+1
j = argminpj

‖pj‖1 +
µ

2
‖rm

j + qk/µ − Θθ j
pj‖

2
2.

5: end for

6: end while

Algorithm 3. (Sweeping ALM).

Input: p0
j = 0, j = 1, . . . , M, q0 = 0, µ > 0

1: while not converge do

2: for j=1:M do

3: Compute rk
j = f −

∑j−1
l=1 Θθ l

pk+1
l −

∑M
l=j+1 Θθ l

pk
l .

4: Compute pk+1
j = argmin

pj

‖pj‖1 +
µ

2
‖rk

j + qk/µ − Θθ j
pj‖

2
2.

5: end for

6: qk+1 = qk + µ
(

f −
∑M

j=1 Θθ j
pk+1

j

)
.

7: end while

these assumptions, we can approximate the continuous integral by the discrete summation and

the integration error is negligible. This greatly simplifies our calculations.

Now, we turn to simplify the optimization problem. First, we replace the standard L2 norm by

a weighted L2 norm which gives the following approximation:

pk+1
j = argmin

pj

‖pj‖1 +
µ

2
‖rk

j +
qk

µ
− Θθ j

pj‖
2
2,θ j

, (4.1)

where ‖g‖2
2,θ j

=
∑

i g(ti)
2θ ′

j(ti), θ ′
j is the derivative of θ j which is computed by a central difference

scheme, g(ti) is the ith element of vector g.

Using the fact that supp(ϕ̂) = (−sϕ , sϕ), it is easy to check that the columns of the matrix Θθ are

orthonormal under the weighted discrete inner product

〈g, h〉θ =

N∑

i=1

g(ti)h(ti)θ
′(ti) = gT · (θ ′ ⋆ h). (4.2)

Using this property, it is easy to derive the following equality:

‖Θθ · x‖2,θ = ‖x‖2. (4.3)

We can also define the projection operator PV(θ ) to the V(θ ) space. Here, V(θ ) is the linear space

spanned by the columns of the matrix Θθ and PV(θ) is the projection operator to V(θ ). Since the

columns of the matrix Θθ are orthonormal under the weighted inner product (4.2), the projection

PV(θ ) can be calculated as follows:

PV(θ)(r) = Θθ · r̂, r̂ = ΘT
θ · [θ ′ ⋆ r]. (4.4)
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Now, we are ready to show that the optimization problem (4.1) can be solved explicitly by the

shrinkage operator. To simplify the notation, we denote w = rk
j + qk/µ,

argmin
pj

‖pj‖1 +
µ

2

∥∥∥∥∥rk
j +

qk

µ
− Θθ j

pj

∥∥∥∥∥

2

2,θ j

= argmin
pj

‖pj‖1 +
µ

2
‖Θθ j

pj − PV(θ j) (w) ‖2
2,θ j

= argmin
pj

‖pj‖1 +
µ

2
‖Θθ j

· [pj − ΘT
θ j

· [θ ′
j ⋆ w]]‖2

2,θ j

= argmin
pj

‖pj‖1 +
µ

2
‖pj − ΘT

θ j
· [θ ′

j ⋆ w]‖2
2

= Sµ−1

(
ΘT

θ j
·

[
θ ′

j

(
rk

j +
qk

µ

)])
, (4.5)

where Sτ is the shrinkage operator defined below:

Sτ (x) = sgn(x) max(|x| − τ , 0). (4.6)

Note that the matrix vector product in (4.5) has the following structure by the definition of Θθ j

in (3.3):

ΘT
θ j

· (θ ′
j ⋆ r) = [ΠT

θ j
· (cos θ j ⋆ (r ⋆ θ ′

j)), Π
T
θ j

· (sin θ j ⋆ (r ⋆ θ ′
j))]

T.

This is nothing but the wavelet transform of sin θ j ⋆ r and cos θ j ⋆ r in the θ j-coordinate, since

the columns of Πθ j
are standard wavelet basis in the θ j-coordinate. Then this product can

be computed efficiently by interpolating cos θ j ⋆ r and sin θ j ⋆ r to the uniform grid in the θ j

coordinate and employing the fast wavelet transform.

Summarizing the above discussion, we obtain algorithm 4 based on the fast wavelet transform

to solve the optimization problem (3.1).

Remark 4.1. The final algorithm described above is based on employing the soft shrinkage

operator iteratively. Essentially, it is a proximal splitting algorithm which shares many common

ideas with some existing l1 optimization methods, including the split Bregman method [16],

proximity algorithms [17] and proximal splitting methods [18]. Inspired by these methods, we

adopt the splitting technique to decompose the original problem to some easier subproblems and

solve the original problem by solving these subproblems iteratively. In each step, we need to

compute a proximity operator. The main novelty of our algorithm is in the computation of the

proximity operator. Here, we use the special structure of the matrix Θθ j
, i.e. the orthonormality of

the columns in the θ j-coordinate such that the proximity operator is just a simple soft shrinkage

operator. This observation gives rise to a much more efficient algorithm which is designed

specifically for our optimization problem. For our particular application, our method is much

more efficient than the current l1 optimization algorithms.

5. Generalization for signals with outliers
One advantage of the formulation (2.6) is that it can be generalized to deal with more complicated

data with some minor modifications. In this section, we will give one generalization for signals

with outliers. For outliers, we mean that at some sample points, the error of the measurement is

large. In this paper, we assume that the number of outliers is small and distributed over the whole

interval at random.

In order to deal with this kind of signal, we have to enlarge the dictionary since the outliers are

not sparse over the time-frequency dictionary. Under the assumption that the number of outliers

is small, we know that the outliers are sparse over the basis consisting of the impulses δ[n − i],
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Algorithm 4. (Sweeping ALM accelerated by the fast wavelet transform).

Input: a0
θ j

= b0
θ j

= 0, j = 1, . . . , M, q0 = 0.

1: while not converge do
2: for j=1:M do
3: Compute

rn
j = f −

j−1∑

l=1

(an+1
θ l

⋆ cos θ l + bn+1
θ l

⋆ sin θ l)

−

M∑

l=j+1

(an
θ l

⋆ cos θ l + bn
θ l

⋆ sin θ l).

4: Interpolate R = rn
j + qn/µ from {ti}

N
i=1 in the physical space to a uniform mesh in the

θ j-coordinate to get Rθ j
and compute the wavelet representations:

Rθ j, k = Interpolate
(
θ j(ti), R, θ j, k

)
,

where θ j, k, j = 0, . . . , N − 1 are uniformly distributed in the θ j-coordinate, i.e. θ j, k =

2πLθ j
k/N and the interpolation is done by a cubic spline. And compute

ã =

N∑

k=1

ΠT
θ j

(θ j,k) ·
[
(cos θ j,k) ⋆ Rθ j, k

]
, (4.7)

b̃ =

N∑

k=1

ΠT
θ j

(θ j,k) ·
[
(sin θ j,k) ⋆ Rθ j, k

]
. (4.8)

This computation can be accelerated by the fast wavelet transform. Here we add (θ j,k)
after the matrix (or vector) to emphasize it is evaluated over θ j,k.

5: Apply the shrinkage operator to compute aθ j
and bθ j

in the θ j-coordinate:

an+1
θ j

(θ j,k) = Πθ j
(θ j,k) · Sµ−1 (̃a), (4.9)

bn+1
θ j

(θ j,k) = Πθ j
(θ j,k) · Sµ−1 (̃b). (4.10)

This step can also be accelerated by the wavelet reconstruction algorithm.
6: Interpolate aθ j

and bθ j
back to the physical grid points {ti}

N
i=1 by a cubic spline.

7: end for
8: Compute

qn+1 = µ

⎡
⎣f −

M∑

j=1

(an+1
θ j

⋆ cos θ j + bn+1
θ j

⋆ sin θ j)

⎤
⎦

+ qn

9: end while

i = 1, . . . , N, where N is the number of samples and

δ[n] =

{
1, n = 0,

0, n �= 0.
(5.1)

If we enlarge the dictionary to include all the impulses, then the generalized formulation can be

used to decompose signals with outliers.
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Algorithm 5. (Gauss–Newton type iteration with outliers).

Input: Initial guess of phase functions θ0
j , j = 1, . . . , M, η = l0, where l0 is same as that in (2.1).

Output: Phase functions and the corresponding envelopes: θ j, aj, j = 1, . . . , M.

1: while η ≥ 1 do

2: while

M∑

j=1

‖θn+1
j − θn

j ‖2 > ǫ0 do

3: Solve the following l1 optimization problem:
(

ãn+1, b̃
n+1

, zn+1
)

= argminx,y,z(‖x‖1 + ‖y‖1 + ‖z‖1),

subject to: Φθn
1 ,...,θn

M
· x + Ψ θn

1 ,...,θn
M

· y + z = f.

4: Calculate the envelopes in the same way as we did in Step 4 of Algorithm 1.

5: Update θn
j , j = 1, . . . , M in the same way as we did in Step 5 of Algorithm 1.

6: end while

7: η = η − 1.

8: end while

Algorithm 6. (Sweeping ALM with outliers).

Input: p0
j = 0, j = 1, . . . , M, q0 = 0, µ > 0.

Output: Phase functions and the corresponding envelopes: θ j, aj, j = 1, . . . , M.

1: while not converge do

2: for j = 1 : M do

3: rk
j = f −

j−1∑

l=1

Θθ l
pk+1

l −

M∑

l=j+1

Θθ l
pk

l − zk.

4: pk+1
j = argmin

pj

‖pj‖1 +
µ

2
‖rk

j + qk/µ − Θθ j
pj‖

2
2.

5: end for

6: rk
0 = f −

M∑

l=1

Θθ l
pk+1

l .

7: zk+1 = Sµ−1 (rk
0 + qk/µ).

8: qk+1 = qk + µ

⎛
⎝f −

M∑

j=1

Θθ j
pk+1

j − zk+1

⎞
⎠.

9: end while

More specifically, in this case, the optimization problem is formulated in the following way:

min
x,θ1...,θM

‖x‖1 + ‖z‖1, subject to: Φθ1,...,θM
· x + z = f, (5.2)

where Φθ1,...,θM
is given in (2.4).

Using a linearization procedure similar to that of algorithm 1, we obtain algorithm 5 for the

above optimization problem (5.2). Moreover, the l1 optimization problem in the above iterative

algorithm can be solved by a sweeping ALM method, algorithm 6. The computation of pk+1
j =

argminpj
‖pj‖1 + (µ/2)‖rk

j + qk/µ − Θθ j
pj‖

2
2 can be accelerated by algorithm 4 in the previous

section.
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6. Numerical results
In this section, we present several numerical results to demonstrate the effectiveness of our time-

frequency analysis methods. In our previous paper [7], we have performed extensive numerical

experiments to demonstrate the effectiveness of our data-driven time-frequency analysis method

for signals with good scale separations. To save space, we will not consider the examples with

good scale separation in this paper and consider more challenging signals that do not have good

scale separation property.

Example 6.1. In the first example, the signal contains two different components whose

instantaneous frequencies intersect with each other. More specifically, the signal is generated by

the formula below:

f = cos θ1(t) + cos θ2(t) + X(t), t ∈ [0, 1], (6.1)

where the phase function θ1, θ2 are given as follows:

θ1(t) = 39.2π t − 12 sin 2π t and θ2(t) = 85.4π t + 12 sin 2π t,

and X(t) is white noise with zero mean and variance σ 2 = 1. The signal is sampled over 1024 grid

points which are uniformly distributed over the interval [0, 1]. The original signal is shown in

figure 1.

For this signal, the classical time-frequency analysis methods, such as the windowed Fourier

transform, the wavelet transform give a poor result near the intersection where the two

instantaneous frequencies cross each other. The EMD method and the data-driven time-frequency

analysis method introduced in our previous paper [7] also have problem near the intersection.

The result given by the data-driven time-frequency analysis method proposed in this paper

is shown in figure 1. In the computation, the initial guesses of the instantaneous frequencies are

chosen to be 128π t and 32π t, respectively, which are far from the ground truth. As we can see,

even with these rough initial guesses, our iterative algorithm still can recover the instantaneous

frequencies and the corresponding IMFs with reasonable accuracy, although the signal is polluted

by noise. We note that the end-effect is more pronounced in this case due to the noise pollution.

Example 6.2. The next signal that we consider is polluted by outliers. We generate the signal

by using the following formula:

f = cos θ1(t) + cos θ2(t) + σ (t), (6.2)

where θ1(t) and θ2(t) are the same as in example 6.1. The signal is sampled over 1024 uniform

grid points. Among these samples, there are 32 samples that are outliers. The locations of these

outliers are selected randomly and the strengths satisfy the normal distribution. In figure 2, we

present the results for the case without noise (σ (t) = 0) by using the algorithm given in §5. As we

can see, both the IMFs and the outliers are captured very accurately.

We also test the signal with outliers and noise. The results are shown in figure 3. In this

example, the noise and the outliers are added to the original signal together. The signal is sampled

over 1024 uniform grid points. Among these samples, there are 32 samples that are outliers. The

locations of these outliers are selected randomly and the strengths satisfy the normal distribution

whose standard deviation is 1. The noise is Gaussian noise and the standard deviation is 0.1.

In this case, the instantaneous frequencies and the IMFs are still quite accurate. But the outliers

are not captured as well as in the case with no noise. We would like to emphasize that it would

be hard to distinguish the outliers from the noise when the amplitude of the outliers is small. For

the outliers whose amplitude is large, they can be separated from the noise by a proper shrinkage

operator. However, the shrinkage operator also kills the outliers whose amplitude is comparable

to or smaller than the noise level.
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Figure 1. (a) Original signal in example 6.1, red curve is the clean signal without noise; (b) instantaneous frequencies; red:

exact, blue: numerical; (c) corresponding IMFs, red: exact, blue: numerical. (Online version in colour.)
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Figure 2. (a) Instantaneous frequencies; red: exact, blue: numerical; (b) corresponding IMFs; red: exact, blue: numerical;

(c) outliers; red circle: exact, blue cross: numerical. (Online version in colour.)
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Figure 3. (a) Instantaneous frequencies; red: exact, blue: numerical; (b) corresponding IMFs; red: exact, blue: numerical;

(c) outliers; red circle: exact, blue cross: numerical. (Online version in colour.)

Example 6.3. In our third example, we consider a real signal, a bat chirp signal. It is the

digitized echolocation pulse emitted by the Large Brown Bat, Eptesicus Fuscus.1 The signal

includes 400 samples and the sampling period is 7 µs, so the total time span is 2.8 ms.

1The authors wish to thank Curtis Condon, Ken White and Al Feng of the Beckman Institute of the University of Illinois for
the bat data and for permission to use it in this paper.
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Figure 4. (a) Bat chirp signal; (b) IMFs; (c) instantaneous frequencies. (Online version in colour.)

The signal is shown in figure 4a. The IMFs and instantaneous frequencies obtained by our

method are given in figure 4b,c. Our method could give precise instantaneous frequencies and

also the sparse decomposition of the original signal. From figure 4, we can see that the signal is

approximated very well by only three IMFs. Near the boundaries, the original signal and the IMFs

are all very small. In these regions, the frequencies actually do not have any physical meaning.

They are only auxiliary variables in the algorithm. In the region in which the amplitude of the

signal is order one, the recovered instantaneous frequencies reveal some interesting patterns that

have not been seen before using traditional time-frequency methods. The physical significance of

these patterns need to be further investigated in the future.

Example 6.4. In the last example, we consider the data from an ODE system. We consider a

multiple degree of freedom system.

ü + K(t)u = 0, (6.3)

where K is an N × N symmetric positive definite stiffness matrix and u is an N × 1 vector, which

typically represents the displacement of certain engineering structure. This kind of ODE system

is widely used to model the movements of structures [19], such as buildings, bridges, etc. In

many applications, we want to recover the stiffness matrix K (at least part of it) from incomplete

measurement of the solution u.

Here, we assume that K(t) is slowly varying. Under this assumption, the solutions, uj(t), j =

1, . . . , N, have the following approximate expression:

uj(t) =

N∑

k=1

ρj,k eiθ k(t), (6.4)

and (θ ′
k(t))2, k = 1, . . . , N are eigenvalues of K(t). Using this formulation, we can see that the

instantaneous frequencies could help us to retrieve the stiffness matrix.

As a test example, we consider a simple case where the degree of freedom is given by N = 2.

The K matrix has the following form:

K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, (6.5)

k1 = k3 = 100 cos(0.2π t) + 500 and k2 = 400 cos(0.2π t) + 400.

The initial conditions are

u1(0) = 1, u′
1(0) = 0, u2(0) = 2 and u′

2(0) = 0.

This system models the movement of two objects of equal masses connected by springs. And

k1, k2, k3 are stiffness values of springs.
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Figure 5. (a) Solution u1 of the ODE system (6.3); (b) instantaneous frequencies; red: theoretical frequencies; blue: numerical

results. (Online version in colour.)

The above system is solved up to t = 9. The initial guesses of the phase functions are 20t

and 40t. Here, we only analyse the first component of the solution u1(t), which is shown in the

figure 5a. According to (6.4), the theoretical frequencies are
√

(k1 + k3)/2 and
√

(k1 + k3 + 4k2)/2. In

figure 5c, we compare the theoretical frequencies and the numerical results given by our method.

As we can see, they match very well even near the intersection point. This toy example shows

that our method indeed has the capability to retrieve some information of the physical process

hidden within the signal. Now we are trying to apply our method to analyse the signals from

real bridges.

7. Concluding remarks
In this paper, we have introduced a novel formulation to obtain sparse time-frequency

decomposition and the corresponding instantaneous frequencies. We formulated the decomposi-

tion as a dictionary adaptation problem. The dictionary is parametrized by phase functions and

the phase functions are determined by the signal itself. Based on our previous work and the

methods of dictionary learning, we developed an iterative algorithm to determine the phase

functions and the corresponding decomposition. By designing the dictionary carefully to make

them orthogonal in the coordinate of the phase functions, we can accelerate the algorithm by

using the fast wavelet transform. This makes our algorithm very efficient.

Another advantage of this method is that it can be easily generalized to deal with more

complicated data that are not sparse over the time-frequency dictionary, such as data with

outliers. For this kind of signal, we just need to enlarge the dictionary and follow a similar

procedure to look for the sparsest decomposition over this enlarged dictionary. We presented

several numerical examples to demonstrate the effectiveness of our method, including data that

do not have scale separation and data that are polluted by noise and/or outliers. The results that

we obtained seem to suggest that our method can offer an effective way to decompose multiscale

data even with a poor scale separation property.

We remark that decomposing several IMFs simultaneously increases the complexity of the

optimization problem. As a result, the robustness of this new method is not as good as the

previous one that we introduced in [7]. Generally speaking, the more IMFs we try to decompose

simultaneously, the less robust the method becomes. In the numerical tests, we found that a naive
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application of the method is not very stable if M > 3. This difficulty can be alleviated by knowing

some information about the signal. To make our method more robust, we are now considering

combining our method with other time-frequency analysis methods, such as synchrosqueezed

wavelet transform [3], in our future work.

Another interesting problem that we are considering is to decompose data with intra-wave

frequency modulation. This type of data is known to be very challenging. Naive application of

traditional data analysis methods tends to introduce artificial harmonics. To deal with this kind

of data, we have to extend the definition of the dictionary by replacing the cosine function by an

unknown periodic shape function that we need to find as part of the optimization problem. This

work will be reported in our future paper.
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