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Abstract

In this paper, we consider signals with intra-wave frequency modulation. To handle this

kind of signals effectively, we generalize our data-driven time-frequency analysis by using a

shape function to describe the intra-wave frequency modulation. The idea of using a shape

function in time-frequency analysis was first proposed by Wu in [15]. A shape function could

be any 2π-periodic function. Based on this model, we propose to solve an optimization problem

to extract the shape function. By exploring the fact that s is a periodic function of θ, we can

identify certain low rank structure of the signal. This structure enables us to extract the shape

function from the signal. To test the robustness of our method, we apply our method on several

synthetic and real signals. The results are very encouraging.

1 Introduction

Nowadays, data play a more and more important role in our life. At the same time, the scientific

community face a challenging problem: how to efficiently extract useful information from massive

amount of data. In many real world problems, especially in engineering and physical problems,

frequencies of the signal are usually very useful to help us understand the underlying physical

mechanism. Hence, many time frequency analysis methods have been developed, for instance, the

windowed Fourier transform, the wavelet transform [3, 11], the Wigner-Ville distribution [8], etc.

In recent years, an adaptive time frequency analysis method, the Empirical Mode Decomposition

(EMD) method [7, 16] was developed. This method provides an efficient adaptive method to

extract frequency information. The EMD method has found to be very useful in many applications.

EMD method is purely empirical, it still lacks a rigorous mathematical foundation. Recently,

several methods have been proposed attempting to provide a mathematical foundation for EMD
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method, see e.g. the synchrosqueezed wavelet transform [4], the Empirical wavelet transform [6],

the variational mode decomposition [9].

In the last few years, inspired by the EMDmethod and compressive sensing [1, 2, 5], we proposed

a novel time-frequency analysis method based on the sparsest time-frequency representation of

multiscale data [12]. In this method, the signal is decomposed into several components

f(t) =

M∑

j=1

aj(t) cos θj(t) + r(t), t ∈ R, (1)

where aj(t), θj(t) are smooth functions, θ′j(t) > 0, j = 1, · · · ,M , and r(t) is a small residual. We

assume that aj(t) and θ′j are less oscillatory than cos θj(t). The exact meaning of less oscillatory

will be made clear later. We call aj(t) cos θj(t) as the Intrinsic Mode Functions (IMFs) [7].

One main difficulty in computing the decomposition (1) is that the decomposition is not unique.

To pick up the ”best” decomposition, we proposed to decompose the signal by looking for the

sparsest decomposition by solving a nonlinear optimization problem:

Minimize M
(ak)1≤k≤M ,(θk)1≤k≤M

Subject to: f =
M∑

k=1

ak cos θk,

ak cos θk ∈ D,

where D is the dictionary consist of all IMFs (see [12] for its precise definition).

To solve (2), we proposed two algorithms. The first one is based on matching pursuit [12]

and the other one is based basis pursuit [13]. In a subsequent paper [14], the authors proved the

convergence of their nonlinear matching pursuit algorithm for periodic data that satisfy certain

scale separation property.

Although the model (1) has been applied to a number of applications with success and the

decomposition methods have been shown to be effective and efficient, there are also some applica-

tions such as the Stokes waves or some nonlinear dynamic systems for which our methods do not

work well. An essential difficulty for this type of data is that the instantaneous frequency, θ′k, is as

oscillatory as or even more oscillatory than cos θk, which we call intra-wave frequency modulation.

One consequence is that the data may not have sparse representation in model (1). To effectively

decompose the signal with intra-wave frequency modulation, we need another model to retrieve the

sparse stucture. Our approach is to introduce a periodic shape function [15] to replace the cosine

function in (1), then we get following model:

f(t) =

M∑

k=1

ak(t)sk(θk(t)) + r(t), (2)
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where sk is an unknown 2π-periodic ‘shape function’ and is adapted to the signal. The envelope

ak(t) and the phase function θk(t) are smooth functions and are less oscillatory than cos θk(t). We

also assume that θ′k(t) > 0.

With the introduction of shape function, even the signal with intra-wave frequency modulation

has a sparse representation. But it is more difficult to find this sparse decomposition since the

dictionary is larger than that in (1) due to the extra degree of freedom of shape functions.

In this paper, we will introduce a method to extract the shape function for the signals with

only one dominated shape function. First, the phase function is computed by our data driven

time frequency analysis [12]. Once the phase function is obtained, by exploring the fact that s is

a periodic function of θ, we can identify certain low rank structure of the signal. This structure

enables us to extract the shape function from the signal.

The rest of this paper is organized as follows. In Section 2, the decomposition model for data

with intra-wave frequency modulation is presented. The details of the algorithm and the localized

version are given in Section 3 and 4. We present some numerical results in Section 5. Some

concluding remarks are made in Section 6.

2 Models for signal with intra-wave frequency modulation

In order to design a computational algorithm for the model (2), we first need to define the meaning

of ”less oscillatory”. With a given phase function θ(t), we construct a linear space V (θ) which is

spanned by the following basis
{(

cos

(
kθ

Lθ

))
,

(
sin

(
kθ

Lθ

))}

0≤k≤λLθ

, (3)

where λ < 1/2 is a parameter to control the smoothness of functions in V (θ, λ) and Lθ = (θ(1) −

θ(0))/2π is a positive integer and [0, 1] is the span of the signal in time. And we require ak(t) and

θ′k(t) to be V (θk, λ) to enforce that they are less oscillatory than cos θk.

Then, the model of the signal is given as follows:

f(t) =

M∑

k=1

ak(t)sk(θk(t)), ak, θ
′
k ∈ V (θk)

and θ′k > 0, sk is 2π-periodic. (4)

Corresponding to this model, we propose to solve the following optimization problem to find

the sparsest decomposition (4),

min
ak,θk,sk

M (5)

Subject to:
M∑

k=1

aksk(θk) = f, aksk(θk) ∈ M.
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where the dictionary M is defined as

M =

{
aksk(θk) :

ak, θ
′
k ∈ V (θk), θ

′
k > 0,

sk is 2π-period function.

}
(6)

This optimization problem is very difficult to solve. In this paper, we focus on a simpler case. We

assume the signal is dominated by one component in M, i.e.

f(t) = a(t)s(θ(t)) + r(t), a, θ′ ∈ V (θ),

and θ′ > 0, s is 2π-periodic. (7)

Here, r(t) is the residual. The residual r(t) could be noise or trend or some kind of perturbation.

No matter what r(t) is, we assume that it is small in amplitude compared with a(t)s(θ(t)).

Using the idea of matching pursuit, the decomposition in (7) can be obtained by solving the

following optimization problem:

min
a,θ,s

‖f(t)− a(t)s (θ(t)) ‖22, (8)

subject to: a(t)s (θ(t)) ∈ M.

Although this optimization problem is much simpler than (5), it is still very difficult to solve. It is

highly nonlinear. The envelope a, the phase function θ, and the shape function s are all unknown.

They are all adaptive to the data. This feature makes our method fully adaptive to the signal, but

it also introduces additional difficulty to solve the resulting optimization problem (8).

Inspired by our previous work in the data-driven time-frequency analysis [12], we develop an

efficient method to solve (8). First, the phase function is computed by our data-driven time-

frequency analysis [12]. Once the phase function is obtained, by exploring the fact that s is a

periodic function of θ, we can identify certain low rank structure of the signal. This structure

enables us to extract the shape function from the signal. The details will be given in the next

section.

3 An efficient algorithm to compute the shape function

First, to simplify the discussion, we assume that the phase function θ has been obtained, then the

optimization problem (8) can be reduced to the following problem:

min
a,s

‖f(t)− a(t)s (θ(t)) ‖22,

subject to: a ∈ V (θ), s(·) is 2π-periodic.

Since s is periodic, it can be represented by Fourier basis,

s(θ) =

K∑

k=−K

cke
ikθ. (9)
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In the above Fourier representation, we assume that s is K-band limited, which is a good approxi-

mation as long as s is smooth enough and K is large enough.

Using the above representation, the optimization problem becomes

min
a,ck

‖f − a

K∑

k=−K

cke
ikθ‖22, subject to: a ∈ V (θ).

Next, in order to further simplify above optimization problem, we replace the standard l2 norm in

the objective function to l2 norm in θ space,

‖f‖2,θ =

(∫
f2dθ̄

)1/2

=

(∫
f2(t)θ̄′(t)dt

)1/2

where θ = θ/Lθ is normalized phase function which is used as the coordinate function in the θ-space

and Lθ =
θ(1)−θ(0)

2π . In this paper, we assume that the signal lies in [0, 1].

Then, the above optimization problem is reduced to

min
a,ck

∥∥∥∥∥

+∞∑

ω=−∞

f̂θ(ω)e
iωθ/Lθ − a

K∑

k=−K

cke
ikθ

∥∥∥∥∥

2

2,θ

,

subject to: a ∈ V (θ). (10)

where f̂θ is the Fourier coefficients of f in the θ-space,

f̂θ(ω) =

∫ 1

0
f(t)e−iωθ(t)θ

′
(t)dt.

Next, we represent the envelope a by the Fourier basis in the θ-space,

a =
+∞∑

ω=−∞

âθ(ω)e
iωθ. (11)

Then we have

a
K∑

k=−K

cke
ikθ (12)

=

K∑

k=−K

ck

(
+∞∑

ω=−∞

âθ(ω)e
i(ω+kLθ)θ

)

=
K∑

k=−K

ck

(
+∞∑

ω=−∞

âθ(ω − kLθ)e
iωθ

)

=

+∞∑

ω=−∞

(
K∑

k=−K

ckâθ(ω − kLθ)

)
eiωθ. (13)
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Then, (10) becomes

min
âθ ,ck

∥∥∥∥∥

+∞∑

ω=−∞

[
f̂θ(ω)−

K∑

k=−K

ckâθ(ω − kLθ)

]
eiωθ

∥∥∥∥∥

2

2,θ

subject to: a ∈ V (θ).

Then, using the well known Parsarval equality, the objective function is equal to the l2 norm of the

Fourier coefficients, which gives rise to the following equivalent optimization problem

min
âθ,ck

+∞∑

ω=−∞

∣∣∣∣∣f̂θ(ω)−
K∑

k=−K

ckâθ(ω − kLθ)

∣∣∣∣∣

2

,

subject to: a ∈ V (θ).

Since a ∈ V (θ), using the defination of V (θ), we have âθ(ω) = 0, |ω| ≥ Lθ/2. Then

+∞∑

ω=−∞

∣∣∣∣∣f̂θ(ω)−
K∑

k=−K

ckâθ(ω − kLθ)

∣∣∣∣∣

2

=

+∞∑

j=−∞

Lθ/2−1∑

ω=−Lθ/2

∣∣∣∣∣f̂θ(ω + jLθ)−

K∑

k=−K

ckâθ(ω + (j − k)Lθ)

∣∣∣∣∣

2

=

K∑

j=−K

Lθ/2−1∑

ω=−Lθ/2

∣∣∣f̂θ(ω + jLθ)− ckâθ(ω)
∣∣∣
2

+
∑

|j|>K,

j∈Z

Lθ/2−1∑

ω=−Lθ/2

∣∣∣f̂θ(ω + jLθ)
∣∣∣
2
,

where we have used the fact that if k 6= j, âθ(ω + (j − k)Lθ) = 0 for any −Lθ/2 ≤ ω < Lθ/2 in

obtaining the last equality.

Using the above derivation, we have the following equivalent optimization problem,

min
âθ ,ck

K∑

k=−K

∑

|ω|<Lθ/2

|f̂θ(ω + kLθ)− ckâθ(ω)|
2.

Denote

f̂θ,k(ω) =

{
f̂θ(ω), kLθ ≤ ω < (k + 1)Lθ,

0, otherwise,

and

fθ,k(θ) = F−1
θ

(
f̂θ,k(ω)

)
(θ) =

+∞∑

ω=−∞

f̂θ,k(ω)e
iωθ.
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Then, using the Parsaval equality one more time, we need only to solve the following equivalent

problem:

min
aθ ,ck

K∑

k=−K

‖fθ,k(θ)− ckaθ(θ)‖
2
2, (14)

where aθ(θ(t)) = a(t) is the representation of a in the θ-space. Fortunately, after discretization,

the above optimization problem can be solved by singular value decomposition (SVD).

Suppose aθ and fθ,k is sampled over θj = (j − 1)/N, j = 1, · · · , N which is a uniform grid in

the θ-space. Let

fθ,k =
(
fθ,k(θ1), · · · , fθ,k(θN )

)t
, (15)

Fθ = (Re(fθ,0), · · · ,Re(fθ,K)), Im(fθ,1), · · · , Im(fθ,K)) ,

and

aθ =
(
aθ(θ1), · · · , aθ(θN )

)t
, (16)

c = (Re(c0), · · · ,Re(cK), Im(c1), · · · , Im(cK)).

Then, the discrete version of (14) is

min
c∈R2K+1,

aθ∈RN

‖Fθ − aθ · c‖
2
F , (17)

where ‖ · ‖F is the Forbenius norm of a matrix. It is well known that the above optimization

problem can be solved by SVD.

Suppose

Fθ = U · S ·V

is the singular value decomposition of Fθ, diag(S) = (s1, · · · , s2K+1) and s1 ≥ s2 ≥ · · · ,≥ s2K+1 ≥

0. Then the solution of the optimization problem (17) is

aθ = u1, c = v1, (18)

where u1 is the first column of matrix U and v1 is the first row of matrix V.

Summarizing above discussion, we get Algorithm 1 to compute the shape function with given

phase function.

At the end of this section, we give some remarks on how to compute the phase function θ.

Notice that s has the following representation

s(t) =

K∑

k=−K

cke
ikt =

K∑

k=1

(bk cos(kt) + dk sin(kt)) ,

7



Algorithm 1 (Extraction of shape function)

Input: Signal f = (f(t1), · · · , f(tN )) is sampled over tl, l = 1, · · · , N , phase functions θ, band

width of shape function K.

Output: Shape function s and corresponding envelope a(t).

1: Interpolate the original signal f from tl, l = 1, · · · , N to a uniform grid θj = j/N, j = 0, · · · , N−

1 in θ space.

f j
θ = Interpolate(θ(tl), f(tl), θj).

In the computation, we use cubic spline to do interpolation.

2: Compute the Fourier coefficients of f in θ space

f̂θ(ω) =

N−1∑

j=0

f j
θ e

−iωθj , ω = −
N

2
, · · · ,

N

2
− 1.

3: Compute fθ,k, k = 0, · · · ,K,

fθ,k(θj) =

(k+1/2)Lθ−1∑

ω=(k−1/2)Lθ

f̂θ(ω)e
iωθj .

4: Assemble the matrix Fθ according to (15).

5: Apply SVD on Fθ to get the envelope aθ(θj), j = 1, · · · , N and ck, k = 0, · · · ,K according to

(16) and (18).

6: Compute the shape function and the envelope function in t space

s(tl) =

K∑

k=−K

cke
iktl , l = 1, · · · , N,

a(tl) = Interpolate(θj , aθ(θj), θ(tl)),

where c−k = c∗k is the complex conjugate of ck. The interpolation is also implemented by cubic

spline.

8



where bk = Re(ck), dk = −Im(ck). Without loss of generality, we assume that c0 = 0. Otherwise,

the constant part of s can be absorbed into r(t) in model (7). Then the signal f(t) can be written

as follows:

f(t) = a(t)s(θ(t)) + r(t)

= a(t)

K∑

k=1

(bk cos(kθ(t)) + dk sin(kθ(t))) + r(t)

=
K∑

k=1

(
a(t)

√
b2k + d2k

)
cos(kθ(t) + φk) + r(t),

where φk = arctan
(
dk
bk

)
.

Then the signal f(t) can be seen as the signal composed by K IMFs. And these IMFs satisfy

the scale separation property. Then, we could use the method developed in [12] to compute the

phase function.

4 The signal with varying shape function

In some problems, the change of the shape function is more useful than the shape function itself.

To detect the change of the shape function, we need some local method to extract “instantaneous”

the shape function. The simplest idea is to cut the whole signal into small pieces and apply the

method proposed in the previous section to get the shape function in each piece. Then we can get

a series of shape functions which could show us how the shape function varies.

Suppose we have a signal f = (f(t1), · · · , f(tN )) which is sampled at t1, · · · , tN , and the phase

functions θ = (θ(t1), · · · , θ(tN )) is also given. For each tm, m = 1, · · · , N , we want to use the

signal around tm to get a shape function.

First, we extract a small piece of signals fm and the phase function θm around tm, the length

of fm depends on the phase function θ,

fm = fTχT , θm = θT .

where fT = (f(tj))j∈T and so is θT . Here T = {1 ≤ j ≤ N : |θ(tj)− θ(tm)| ≤ µπ} and

χT =

(
1

2

(
1 + cos

(
tj
µ

)))

j∈T

.

Here µ is a parameter to control the length of the segment. In this paper, we choose µ = 3, which

means that for each point, we localize the signal within 3 periods to extract the shape function.

Once we get the segments fm and θm, the shape function can be obtained by using the method

in the previous section. For each tm, repeat this process, then we get a series of shape functions

which could capture the change of the shape function.
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The shape functions are a series of functions. Usually, it is not easy to distinguish which

part is changing. It would be very helpful if we could find an index for each shape function

and this index could reflect the main feature of the shape function. The concept of degree of

nonlinearity was proposed by Huang (lecture in the IMA Hot Topic Workshop on Trend and

Instantaneous Frequency, September 7-9, 2011, IMA). The main idea is that the signal comes from

some physical process. The main feature of the shape function is the nonlinearity of the underling

physical process. He defined an index to measure this nonlinearity. Later, we further developed this

idea by assuming that the underling process is governed by a second order ODE with polynomial

nonlinearity [10]. Then we formulated an optimization problem to calculate the coefficients and

the degree of nonlinearity of the ODE. Using these techniques, we could see clearly how the shape

function changes and detect the time when significant change occurs.

5 Numerical results

In this section, we will present some numrical results to demonstrate the performance of our algo-

rithm.

Example 1. The first example is a simple synthetic data which generated by the following formula:

θ(t) = 40πt+ 2cos(6πt),

a(t) =
1

2 + sin(2πt)
,

f(t) =
a(t)

1.1 + cos [θ(t) + cos(2θ(t))]
. (19)

From (19), the exact frequency is θ′(t) − 2θ′(t) sin(2θ(t)) which has two times more oscillations

than the original signal f(t). If we relax the shape function to any periodic function not necessarily

cosine, then the phase function θ is much smoother than f(t) and the shape function has the form

cos(t+ cos(2t)). In Fig. 1, the shape function given by our method is shown. We can see, in this

case, our method could capture the shape function very accurately. Next, we add Gaussian noise,

0.3X(t), to the clean signal to test the robustness of our method. X(t) is the standard Gaussian

noise. The result is shown in Fig. 2. Even with noise, our method still recovers the shape function

with reasonable accuracy.

Example 2. The second example is the solution of the Duffing equation. This is an example

to demonstrate the importance of the intra-wave frequency modulation in some complex dynamic

system.

The Duffing equation is a nonlinear ODE which has the following form:

d2u

dt2
+ u+ ǫu1+ω = γ cos(βt). (20)

10
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Figure 1: Upper: the original data in Example 1; Bottom: The shape function obtained by our

method (blue) and the exact shape function (red).
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Figure 2: Upper: The noised data f(t)+0.3X(t), where f(t) is given in Example 1 and X(t) is the

white noise with standard derivative σ2 = 1; Bottom: The shape function obtained by our method

(blue) and the exact shape function (red).
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Figure 3: Upper: the solution of duffing equation; Middle: the shape function s; Bottom: the

Fourier coefficients of s.

The parameters, ǫ, γ, ω, that we use here to generate the solution in Fig. 3, are the same as those

in the paper [7], ǫ = −1, γ = 0.1, β = 1
25 and ω = 2. The initial condition is u(0) = u′(0) = 1.

In Fig. 3, we plot the shape function that we obtain from the solution of the Duffing equation. In

[7], the example of the Duffing equation was used to demonstrate that the EMD method is capable

of capturing the intra-wave frequency modulation. In that computation, the shape function is

actually fixed to be the cosine function and the intra-wave oscillation is reflected in the instantaneous

frequency. In our method, since the intra-wave oscillation is absorbed in the shape function, the

instantaneous frequency is very smooth, but the shape function is not the simple cosine function

any more, see Fig. 3. In this example, we can also express s(θ) in terms of cos θ̃k, from which

we can recover the instantaneous frequency with intra-wave modulation. More interestingly, from

the Fourier coefficients of the shape function, we can see the Fourier coefficient is 0 when the

wavenumber k = 2. This actually implies that ω = 2 in the Duffing equation if we know that the

signal comes from an ODE of the particular form given in (20). This phenomena may be very

special, but it suggests that the some quantities, such as the deviation of the Fourier coefficients of

the shape function, may reflect some important feature of the shape function.

We also add Gaussian noise X(t) with variance σ2 = 1 to the original solution of the Duffing

equation. Fig. 4 shows the corresponding results. We can see that the shape function extracted

from the noisy signal still keeps the main characteristics of the shape function extracted from the

signal without noise. We can also clearly extract the degree of nonlinearity, ω = 2, even with such

large noise perturbation to the solution of the Duffing equation.

Example 3: ECG data The last example is a piece of electrocardiogram (ECG) data. The

length of the data used here is 16s. The bottom picture of Fig. 5 shows the shape function extracted

from this set of ECG signal. We want to remark that it is challenging to extract the shape function

from ECG data since it has sharp peaks in each period. This means that the shape function is

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

wave number

F
o
u
ri
e
r 

C
o
e
ff
ic

ie
n
ts

 o
f 
s

Figure 4: Upper: the solution of duffing equation with noise X(t); Middle: the shape function s;

Bottom: the Fourier coefficients of s.
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Figure 5: Left: The original ECG data; Right: The shape function obtain by our method for the

ECG data.

not regular and needs many Fourier coefficients to well represent it. The shape function that we

extracted seems to have all the characteristics of a typical ECG period. The interpretation of the

significance of the shape function requires expertise in medicine and is beyond our expertise.

6 Concluding Remarks

In this paper, we present an effective and efficient method to extract the shape function from

the signal with intra-wave frequency modulation by exploiting the intrinsic low rank structure of

the data. The current method works only for those signal with one dominated shape function.

Extracting shape functions for signals with multiple shape functions is much more involved and

requires more efforts. How to define an effective index, such as the degree of nonlinearity, to reflect

the main characteristic of the shape function is another interesting problem, a topic for our future
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study.
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