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Abstract. In this paper, we establish a connection between the recently developed data-driven
time-frequency analysis [T.Y. Hou and Z. Shi, Advances in Adaptive Data Analysis, 3, 1–28, 2011],
[T.Y. Hou and Z. Shi, Applied and Comput. Harmonic Analysis, 35, 284–308, 2013] and the classical
second order differential equations. The main idea of the data-driven time-frequency analysis is to
decompose a multiscale signal into the sparsest collection of Intrinsic Mode Functions (IMFs) over the
largest possible dictionary via nonlinear optimization. These IMFs are of the form a(t)cos(θ(t)), where
the amplitude a(t) is positive and slowly varying. The non-decreasing phase function θ(t) is determined
by the data and in general depends on the signal in a nonlinear fashion. One of the main results of
this paper is that we show that each IMF can be associated with a solution of a second order ordinary
differential equation of the form ẍ+p(x,t)ẋ+q(x,t) =0. Further, we propose a localized variational
formulation for this problem and develop an effective l1-based optimization method to recover p(x,t)
and q(x,t) by looking for a sparse representation of p and q in terms of the polynomial basis. Depending
on the form of nonlinearity in p(x,t) and q(x,t), we can define the order of nonlinearity for the associated
IMF. This generalizes a concept recently introduced by Prof. N. E. Huang et al. [N.E. Huang, M.-T.
Lo, Z. Wu, and Xianyao Chen, US Patent filling number 12/241.565, Sept. 2011]. Numerical examples
will be provided to illustrate the robustness and stability of the proposed method for data with or
without noise. This manuscript should be considered as a proof of concept.
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1. Introduction
In many scientific applications such as biology, the underlying physical problem is

so complex that we often do not know what is the appropriate governing equation to
describe its dynamics. Typically, there are several dominating components that could
contribute to the complex phenomena of the underlying physical solution. It is likely
that each dominating component can be characterized by a dynamical system. Although
we do not know the precise governing equation for these complex phenomena, we can
collect a lot of data to characterize the solution of the underlying physical system. A
very interesting question to ask is whether or not it is possible to obtain some qualitative
understanding of different dominating components from the data that we collect. One
of the most important questions is whether the underlying dynamical system is linear or
nonlinear. If it is nonlinear, can we quantify the order of nonlinearity of the underlying
dynamical system? In this paper, we attempt to provide one possible approach via a
recently proposed data-driven time-frequency analysis method [10, 11].

The most commonly used definition of linearity is that the output of a system
is linearly dependent on the input. But this definition is not very practical since we
may not even know the governing system precisely. It is not easy to define what is
input and what is output without knowing the governing system. Another difficulty
is that the solution typically consists of several dominating components each of which
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accounts for a different physical mechanism. Some of these mechanisms may be linear
and others may be nonlinear. Thus it is not a good idea to work on the entire data
directly. We need to first decompose the data into several dominating components and
then try to analyze these components separately. How to extract these intrinsic physical
components from the data without compromising their hidden physical structure and
integrity is highly nontrivial. For the data that we collect from a nonlinear system, such
as the stokes wave, the classical Fourier or wavelet analysis would decompose the signal
to a collection of fundamental components and harmonics. Each of the components,
whether it is a fundamental or harmonic component, looks like a linear signal. A data
analysis method based on these linear transformations would suggest that the signal
is a superposition of linear components corresponding to a linear system rather than a
nonlinear system.

The Empirical Mode Decomposition (EMD) method of Huang et al [12] provides a
completely new way to analyze nonlinear and nonstationary signals. The EMD method
decomposes a signal into a collection of intrinsic mode functions (IMFs) sequentially.
The basic idea behind this approach is the removal of the local median from a signal
by using a sifting process and a cubic spline interpolation of local extrema. The EMD
method has found many applications, see e.g. [13, 30, 31]. One important property
of these IMFs is that they give physically meaningful Hilbert spectral representation.
On the other hand, since the EMD method relies on the information of local extrema
of a signal, it is unstable to noise perturbation. Recently, an ensemble EMD method
(EEMD) was proposed to make it more stable to noise perturbation [29]. Despite of the
tremendous success of EMD and EEMD, there is still lack of a theoretical understand-
ing of this method. We remark that the recently developed synchrosqueezed wavelet
transform by Daubechies, Lu, and Wu [6] is another attempt to provide a mathematical
justification for an EMD like method.

Inspired by EMD/EEMD and the recently developed compressed (compressive)
sensing theory [2, 3, 4, 7, 9], Hou and Shi have recently introduced a data-driven time-
frequency analysis method [10, 11]. There are two important ingredients of this method.
The first one is that the basis that is used to decompose the data is derived from the data
rather than determined a priori. This explains the name “data-driven” in our method.
Finding such nonlinear multiscale basis is an essential ingredient of our method. In some
sense, our problem is more difficult than the compressed (compressive) sensing problem
in which the basis is assumed to be known a priori. The second ingredient is to look for
the sparsest decomposition of the signal among the largest possible dictionary consisting
of intrinsic mode functions. In our method, we reformulate the problem as a nonlinear
optimization and find the basis and the decomposition simultaneously by looking for
the sparsest decomposition among all the possible decompositions.

In this paper, we develop a method to quantify the nonlinearity of the IMFs given
by the data-driven time-frequency analysis method. The main idea is to establish a
connection between the IMFs and the classical second order differential equations. The
data-driven time-frequency analysis decomposes a multiscale signal into a sparse collec-
tion of IMFs. These IMFs are of the form a(t)cos(θ(t)), where the amplitude a(t) is
positive and slowly varying. The non-decreasing phase function θ(t) is determined by
the data and is in general nonlinear. One of the main results of this paper is that each
IMF can be associated with a solution of a second order ordinary differential equation
of the form ẍ+p(x,t)ẋ+q(x,t) =f(t). We further assume that the coefficients p(x,t),
q(x,t) and f(t) are slowly varying with respect to t. Thus, we can freeze these coeffi-
cients locally in time and absorb the forcing function into q. This leads to the reduced
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autonomous second order ODE, i.e. ẍ+p(x)ẋ+q(x) = 0. Further, we can reformulate

the second order ODE in a conservative form: ẍ+ Ṗ (x)+q(x) = 0, where dP (x)
dx =p(x).

We then have the following weak formulation of the equation by integrating by parts:

<x,φ̈>−<P (x),φ̇>+<q(x),φ>= 0,

where < ·, ·> is the standard inner product, and φ is a smooth test function of compact
support. If p(x) and q(x) have a sparse representation in terms of the polynomial basis,

then we can represent P (x) and q(x) as follows: P (x) =
∑M
k=0pkx

k+1, q(x) =
∑M
k=0qkx

k

for some integer M>0. Then we obtain the following weak formulation:

<x,φ̈>−
M∑
k=0

pk<x
k+1,φ̇>+

M∑
k=0

qk<x
k,φ>= 0.

Based on the above weak formulation, we can design an l1-based optimization method
to solve for pk and qk,

(pk,qk) = arg min
αk,βk

γ

M∑
k=0

(|αk|+ |βk|)+

N∑
i=1

∣∣∣∣∣〈x,φ̈i〉−
M∑
k=0

αk

〈
xk+1,φ̇i

〉
+

M∑
k=0

βk
〈
xk,φi

〉∣∣∣∣∣
2

where φi’s are smooth test functions of compact support and N is the number of the
test functions. We will provide some guidance on how to choose these test functions
optimally.

The method described above provides a new way to interpret the hidden intrinsic
information contained in the extracted IMF. Depending on the local form of nonlinearity
in p(x,t) and q(x,t), we can define the order of nonlinearity for each associated IMF.
Moreover, we also recover accurately the coefficients for the nonlinear terms in p and
q. This generalizes a similar concept recently introduced by Prof. N. E. Huang et. al.
[14]. Numerical examples will be provided to illustrate the robustness and stability of
the proposed method.

The organization of the paper is as follows. In Section 2, we give a brief review of
the data-driven time-frequency analysis. Section 3 is devoted to the connection between
IMFs and second order ODEs. We will illustrate through some examples that solutions
of many linear and nonlinear second order ODEs have solutions that are essentially
IMFs. In Section 4, we introduce two numerical methods to extract the coefficients
of the second order ODE from a given IMF. Based on the order of nonlinearity of the
extracted coefficients, we introduce the order of nonlinearity for each IMF. This is called
nonlinear order analysis. In Section 5, we demonstrate the effectiveness of the proposed
method by a number of numerical examples. Some concluding remarks are made in
Section 6.

2. A brief review of the data-drive time-frequency analysis
The data-driven time-frequency analysis method is based on finding the sparsest

decomposition of a signal by solving a nonlinear optimization problem. First, we need
to construct a large dictionary that can be used to obtain a sparse decomposition of the
signal. In our method, the dictionary is chosen to be:

D={acosθ : a,θ′ is smoother than cosθ, ∀t∈R, θ′(t)≥0} . (2.1)

Let V (θ,λ) be the collection of all the functions that are smoother than cosθ(t). In
general, it is most effective to construct V (θ,λ) as an overcomplete Fourier basis given
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below:

V (θ,λ) = span

{
1,

(
cos

(
kθ

2Lθ

))
1≤k≤2λLθ

,

(
sin

(
kθ

2Lθ

))
1≤k≤2λLθ

}
, (2.2)

where Lθ = b θ(T )−θ(0)
2π c, bµc is the largest integer less than µ, and λ≤1/2 is a parameter

to control the smoothness of V (θ,λ). The dictionary D then becomes:

D={acosθ : a∈V (θ,λ), θ′∈V (θ,λ), and θ′(t)≥0 ∀t∈R}. (2.3)

Each element of the dictionary D is an IMF with inter-wave frequency modulation. By
an IMF with inter-wave frequency modulation, we mean that both the amplitude a(t)
and the instantaneous frequency θ′(t) are less oscillatory than cosθ(t). In the case when
the instantaneous frequency θ′(t) is as oscillatory as cosθ(t) or more oscillatory than
cosθ(t), we say that this IMF has intra-wave modulation. The IMFs with intra-wave
frequency modulation are not included in this dictionary. We will consider the IMFs
with intra-wave frequency modulation in the next section. By saying that a function f
is less oscillatory than another function g, we mean that f contains fewer high frequency
modes than those of g or the high frequency mods of f decay much faster than those of
g.

Since the dictionary D is highly redundant, the decomposition over this dictionary
is not unique. We need a criterion to select the “best” one among all possible de-
compositions. We assume that the data we consider have an intrinsic sparse structure
in the time-frequency plane in some nonlinear and nonstationary basis. However, we
do not know this basis a priori and we need to derive (or learn) this basis from the
data. Based on this consideration, we adopt sparsity as our criterion to choose the best
decomposition. This criterion yields the following nonlinear optimization problem:

Pδ : Minimize M
(ak)1≤k≤M ,(θk)1≤k≤M

Subject to:

{
‖f−

∑M
k=0ak cosθk‖l2 ≤ δ,

ak cosθk ∈D, k= 0, ·· · ,M,

(2.4)

where δ depends on the noise level of the signal.

Remark 2.1. The above decomposition is based on the assumption that the signal has
sparse representation over the dictionary. We believe that this assumption is reasonable
in many cases. First of all, the dictionary we use is very large. Many of the oftenly
used bases, such as Fourier basis and Wavelet basis, are included in our dictionary.
This provides a higher probability that the signal is sparse over the dictionary. On the
other hand, many studies also reveal that many interesting physical signals do have this
property. We refer to [12, 13, 30] for more details.

The above optimization problem can be seen as a nonlinear l0 minimization prob-
lem. Thanks to the recent developments of compressed sensing, two types of methods
have been developed to study this problem. Since we have infinitely many elements
in the basis (in fact uncountably many), we could not generalize basis pursuit directly
to solve our problem. On the other hand, matching pursuit can be generalized. How-
ever, straightforward generalization of matching pursuit to our nonlinear optimization
problem could be ill-conditioned and would introduce severe interference among differ-
ent IMFs. In order to develop a stable nonlinear optimization method and remove the
interference, we add an l1 term to regularize the nonlinear least squares problem. This
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gives rise to the following algorithm based on an l1 regularized nonlinear least squares.
We begin with r0 =f, k= 0.

Step 1: Solve the following l1 regularized nonlinear least-square problem (P2):

P2 : (ak,θk)∈ Argmin γ‖â‖l1 +‖rk−1−acosθ‖2l2a,θ

Subject to: a∈V (θ,λ), θ′≥0, ∀t∈R,
(2.5)

where γ >0 is a regularization parameter and â is the representation of a in the over-
complete Fourier basis.

Step 2: Update the residual rk =f−
∑k
j=1aj cosθj .

Step 3: If ‖rk‖l2 <ε0, stop. Otherwise, set k=k+1 and go to Step 1.

If signals are periodic, we can use the standard Fourier basis to construct V (θ,λ) instead
of the overcomplete Fourier basis. The l1 regularization term is not needed (i.e. we can
set γ= 0) since the standard Fourier basis elements are orthogonal to each other. For
data with poor samples (i.e. the number of samples is not sufficient to resolve the signal)
or for data with poor scale separation, we would still require the l1 regularization even
for periodic data.

One of the main difficulties in solving our l1 regularized nonlinear least squares
problem is that the objective functional is non-convex since the basis is not known a
priori. We need to find the basis and the decomposition simultaneously. In [11], a
Gauss-Newton type method was proposed to solve the l1 regularized nonlinear least
squares problem.

2.1. Numerical method for IMFs with intra-wave frequency modulation.
The data-driven time-frequency analysis method described in the previous section

is applicable to those signals whose IMFs have only inter-wave modulation but do not
have intra-wave frequency modulation. As we will see in Section 3, the IMF with inter-
wave frequency modulation is typically associated with a linear second order ODE,
while the IMF with intra-wave frequency modulation is associated with a nonlinear
second order ODE. In order to analyze the nature of nonlinearity in a signal, we must
consider those IMFs with intra-wave frequency modulation. In this section, we describe
a modified data-driven time-frequency analysis method that is capable of decomposing
signals which contain IMFs with intra-wave frequency modulation.

For a signal that contains IMFs with intra-wave frequency modulation, they still
have a sparse decomposition:

f(t) =

M∑
k=1

ak cosθk, (2.6)

where ak are smooth amplitude functions. An important difference for data with intra-
wave modulation is that their instantaneous frequencies, θ′k, are no longer in V (θk,λ).
Typically, the phase function has the form θk =φk+εcos(ωkφk), where φk is a smooth
function, ε>0 is a small number, and ωk is a positive integer.

An essential difficulty for this type of data is that the instantaneous frequency, θ′k,
is as oscillatory as or even more oscillatory than cosθk. In the method proposed in
the previous section, we assume that ak and θ̇k are less oscillatory than cosθk. We
use this property to construct the dictionary D. In the case when an IMF has strong
intra-wave modulation, θ′k is as oscillatory as cosθk. Thus the method described in the
previous section would not be able to give a good approximation of θk. To overcome
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this difficulty, we introduce a shape function, sk, to replace the cosine function. The
idea is to absorb the high frequency intra-wave modulation into the shape function sk.
This will ensure that θ′k is still less oscillatory than sk(θk). This idea was proposed by
Dr. H.-T. Wu in [28], but he did not provide an efficient algorithm to compute such
shape function.

Note that sk is not known a priori and is adapted to the signal. We need to learn
sk from the physical signal. This consideration naturally motivates us to modify the
construction of the dictionary as follows:

M={aksk(θk) : ak,θ
′
k ∈V (θk,λ), sk is 2π-period function} , (2.7)

where V (θ,λ) is defined in (2.2) and sk is an unknown 2π-periodic ‘shape function’
and is adapted to the signal. If we choose sk to be the cosine function, then the new
dictionary M is reduced to the dictionary D that we used previously, i.e. M=D.

We also use “sparsity” as the criterion to select the decomposition over the redun-
dant dictionary M. This would give us the following optimization problem:

Minimize M
(sk)1≤k≤M ,(ak)1≤k≤M ,(θk)1≤k≤M

Subject to:

{
‖f−

∑M
k=0ak ·sk(θk)‖l2 ≤ δ,

ak ·sk(θk)∈M, k= 0,·· · ,M,

(2.8)

where δ depends on the noise level of the signal.
The above optimization problem is much more complicated than (2.4), since the

shape function sk is also unknown instead of being determined a priori as in (2.4). In
order to simplify this problem, we further assume that the non-zero Fourier coefficients
of sk are confined to a finite number of low frequency modes, i.e. for each sk, there
exists Nk ∈N, such that

sk(t)∈ span
{
eijt, j=−Nk,·· · ,Nk

}
. (2.9)

We further assume that we know how to obtain an estimate for Nk by some method.
We call this the low-frequency confinement property of sk. Based on this property of
sk, we can represent sk by its Fourier series,

sk(t) =

Nk∑
j=−Nk

ck,je
ijt. (2.10)

For a given θk, we can use this representation and apply the singular value decomposition
(SVD) to recover the Fourier coefficients ck,j of each sk. This enables us to obtain the
shape function sk. Once we get an approximation of the shape function sk, we can use
sk to update θk. This process continues until it converges. The detail of this method
will appear in a subsequent paper. In this paper, we will focus on using this generalized
data analysis method to perform nonlinearity analysis of multiscale data whose IMFs
have intra-wave modulation.

3. IMFs and second order ODEs
One of the main objectives of this paper is to establish a connection between an

IMF that we decompose from a multiscale signal and a second order ODE. Moreover,
we propose an effective method to find such second order ODE and study the order of
nonlinearity of the associated ODE. For a given IMF of the form x(t) =a(t)cosθ(t), it
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is not difficult to show that it satisfies the following second order ordinary differential
equation:

ẍ+

(
− θ̈
θ̇
−2

ȧ

a

)
ẋ+

(
θ̇2 +

ȧθ̈

aθ̇
+2

(
ȧ

a

)2

− ä
a

)
x= 0. (3.1)

Let p(t) =
(
− θ̈
θ̇
−2 ȧa

)
and q(t) =

(
θ̇2 + ȧθ̈

aθ̇
+2
(
ȧ
a

)2− ä
a

)
, then we get a second order ODE

ẍ+p(t)ẋ+q(t)x= 0. (3.2)

Note that p(t) and q(t) in general depend on x(t). Thus the above ODE may be nonlinear
in general. This formal connection does not give much information about the nature of
the ODE. We will perform further analysis to reveal the nature of the associated ODE
depending on the regularity of the amplitude, a(t), and the instantaneous frequency,
θ′(t), of a given IMF, a(t)cos(θ(t)).

3.1. Connection between linear second order ODEs and IMFs. Many
second order linear differential equations with smooth coefficients have solutions that
have the form of an IMF, i.e. x=a(t)cosθ(t). Moreover, the corresponding amplitude
a(t) and the instantaneous frequency θ̇(t) are smoother than cosθ(t). To see this, we
consider the following linear second order ODE:

ẍ+b(t)ẋ+c(t)x= 0. (3.3)

It can be also rewritten in the following form:

v̈+Q(t)v= 0, (3.4)

where

v=e
1
2

∫ t
0
b(ξ)dξx, Q(t) = c(t)− 1

4
b2 (t)− 1

2
ḃ(t) . (3.5)

Assume that Q(t)>0 and Q(t)�1. Using the WKB method [1], we can get the asymp-
totic approximation of v(t),

v(t)∼ c1 cos

(∫ t

0

√
Q(ξ)dξ

)
+c2 sin

(∫ t

0

√
Q(ξ)dξ

)
. (3.6)

In terms of the original variables, the solution of (3.3) has the form:

x(t)∼e− 1
2

∫ t
0
b(ξ)dξ

(
c1 cos

(∫ t

0

√
Q(ξ)dξ

)
+c2 sin

(∫ t

0

√
Q(ξ)dξ

))
, (3.7)

which is essentially an IMF without intra-wave frequency modulation in which both
the amplitude and the instantaneous frequency are smoother than cosθ(t) due to the
smoothness of b and Q.

On the other hand, for those IMFs a(t)cosθ(t) that do not have intra-wave frequency
modulation (meaning that both a(t) and θ̇(t) are smoother than cos(θ(t))), it is easy
to see that the coefficients q and p given in (3.2) are smooth functions with respect to
t. This seems to suggest that there is a close connection between oscillatory solutions
of a linear second order ODE with smooth coefficients and IMFs without intra-wave
frequency modulation.
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3.2. IMFs with intra-wave frequency modulation and nonlinear ODEs.
For IMFs with intra-wave frequency modulation, the situation is much more com-

plicated. In this case, the coefficients p(t) and q(t) that appear in Equation (3.2) are
no longer smooth since θ̇(t) is not smooth. As we will demonstrate later, intra-wave
frequency modulation is usually associated with a solution of a nonlinear ODE.

Consider a conservative system ẍ=F (x), where F (x) =−dU(x)
dx for some smooth

function U . The total energy of the system is E= 1
2 ẋ

2 +U (x). Assume E>U (x) for all
values of x in D= [x0,x1], except the end points where E=U (x0) =U (x1). It is obvious
that ẋ= 0 only at x0 and x1. Take a= x0+x1

2 , b= −x0+x1

2 . Consequently, the range of
x(t)−a
b lies within [−1,1]. We define

θ(t) = arccos
(
x(t)−a
b

)
, for ẋ<0,

θ(t) = arccos
(
−x(t)+a

b

)
+π, for ẋ>0.

As a result, we have

θ̇(t) = −ẋ(t)

b
√

1−( x(t)−ab )
2
, for ẋ<0,

θ̇(t) = ẋ(t)

b
√

1−( x(t)−ab )
2
, for ẋ>0,

and θ̇ >0 if x(t)−a
b 6=±1. Now, if x(t)−a

b →−1, then θ̇(t)→
√

ẍ
b . Remember that ẍ>0 as

x(t)−a
b →−1. Similarly, we can show that as x(t)−a

b →1, we have ẍ<0 and θ̇(t)→
√
−ẍ
b .

Therefore, the solution of ẍ=F (x) can be represented as x(t) =a+bcosθ(t), where a,b
are constants and θ(t)∈C1 (t), θ̇(t)>0. The period T of the oscillation, using θ̇, can

be defined as a real positive number such that
∫ T

0
θ̇dt= 2π.

To illustrate this point further, we consider the solution of the Duffing equation. The
undamped Duffing equation has the form ẍ+x+x3 = 0. The energy E of the system is

E= ẋ2

2 + x2

2 + x4

4 . Obviously, the potential energy is U(x) = x2

2 + x4

4 . Now, assume that
the solution varies within the interval [−A,A]. Due to symmetry, we look for a solution
of the form x(t) =Acosθ(t). Substituting this into the energy equation gives

A2 cos2θ+A2θ̇2 sin2θ+
1

2
A4 cos4θ=A2 +

A4

2
,

which can be further simplified as

θ̇2 =
A2

2

(
1+cos2θ

)
+1.

The right hand side of this equation is strictly positive. Since θ̇ >0, we obtain

θ̇=

√
A2

2
(1+cos2θ)+1.

This shows that the solution of the Duffing equation is an IMF with intra-wave frequency
modulation. We can see that the peaks and troughs of the signal coincide with the
maximum of the instantaneous frequency θ̇.
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4. Nonlinear order analysis
In this section, we propose a new method to analyze the order of nonlinearity of

the IMFs that we decompose from a multiscale signal. We will present an effective
optimization method to construct a second order ODE for each IMF. Moreover, based
on the order of the nonlinearity of the coefficients associated with the second order
ODE, we define the order of nonlinearity for each IMF.

To begin with, we consider the second order ODE of the following type:

ẍ+p(x,t)ẋ+q(x,t) =f(t), (4.1)

where p(x,t), q(x,t), and f(t) are slowly varying with respect to t. For example, in case
of the Duffing equation, we have p(x) = 0, q(x) =x+x3.

Based on this assumption, we can freeze p(x,t), q(x,t), and f(t) locally in time over
a local time interval (a few periods) since they vary slowly in time. Thus we can replace
the above ODE by the corresponding autonomous ODE over this local time interval
and absorb f into q (meaning that we can set f = 0):

ẍ+p(x)ẋ+q(x) = 0. (4.2)

This approximation reduces the level of difficulty significantly.

4.1. A strong formulation. In order to determine the autonomous ODE
locally, we propose to use polynomials to approximate p(x) and q(x),

p(x) =

M∑
k=0

pkx
k, q(x) =

M∑
k=0

qkx
k, (4.3)

where M is the order of polynomials which is given a priori, and pk, qk are unknown
coefficients.

One way to get the coefficients pk, qk is to substitute (4.3) to (4.2). This leads to

ẍ+

M∑
k=0

pk(xk)ẋ+

M∑
k=0

qkx
k = 0. (4.4)

Then pk, qk can be obtained by using a least squares method,

(pk,qk) = arg min
αk,βk

‖ẍ+

M∑
k=0

αk(xk)ẋ+

M∑
k=0

βkx
k‖2. (4.5)

To study the order of nonlinearity, we are most interested in the highest order terms
in p and q. Further, we assume that the coefficients pk and qk are sparse. Due to the
strong correlation between x and ẋ, the direct least squares proposed in (4.5) would
be unstable to noise perturbation. In order to stabilize this optimization algorithm, we
add an l1 term to regularize the least squares and look for the sparsest representation,

(pk,qk) = arg min
αk,βk

γ

M∑
k=0

(|αk|+ |βk|)+‖ẍ+

M∑
k=0

αk(xk)ẋ+

M∑
k=0

βkx
k‖22, (4.6)

where γ is a parameter to control the sparsity of the coefficients. In order to capture
the leading order term, γ is chosen to be O(1). In the following examples, γ is chosen
to be 2.

In the method described above, we need to compute ẍ and ẋ. This tends to amplify
the error introduced in our approximation of the IMF, x. Next, we will introduce
another method based on the weak formulation of the second order ODE.
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4.2. A weak formulation. In this section, we will introduce an l1-based
optimization based on a weak formulation for the second order ODE. Let P (x) be the
primitive function of p(x), i.e. Ṗ (x) =p(x)ẋ. Then the ODE can be rewritten in a
conservation form:

ẍ+ Ṗ (x)+q(x) = 0. (4.7)

Suppose the span of time of the signal that we want to study is [0,T ]. For any test
function φ∈C2

0 [0,T ] satisfying φ̇(0) = φ̇(T ) = 0, we have the following weak formulation
of the equation by performing integration by parts:

<x,φ̈>−<P (x),φ̇>+<q(x),φ>= 0, (4.8)

where < ·, ·> is the standard inner product.
If p(x),q(x) can be approximated by polynomials as what we have done in (4.3),

then P (x) and q(x) can be expanded in terms of the polynomial basis:

P (x) =

M∑
k=0

pkx
k+1, q(x) =

M∑
k=0

qkx
k. (4.9)

Then we get

<x,φ̈>−
M∑
k=0

pk<x
k+1,φ̇>+

M∑
k=0

qk<x
k,φ>= 0. (4.10)

Using this formulation, we can design the following optimization problem to solve for
pk and qk,

(pk,qk) = arg min
αk,βk

γ

M∑
k=0

(|αk|+ |βk|)+

N∑
i=1

∣∣∣∣∣〈x,φ̈i〉−
M∑
k=0

αk

〈
xk+1,φ̇i

〉
+

M∑
k=0

βk
〈
xk,φi

〉∣∣∣∣∣
2

(4.11)
where N is the number of the test functions that we use. In our computations, we choose
N = 2M to make sure that we have enough measurements to determine the coefficients.
The test functions that we use are given below:

φi(t) =

{
1
2 (1+cos(π(t− ti)/λ)), −λ<t− ti<λ,
0, otherwise,

i= 1,·· · ,N, (4.12)

where ti’s (i= 1,·· · ,N) are the centers of the test functions and the parameter λ de-
termines their support. In order to enhance stability, we should make the support of
the test functions as large as possible by choosing a large λ. On the other hand, if the
support of φ is too large, we cannot get the high frequency information of the signal,
which is essential in capturing the nonlinearity of the signal. Thus, we should determine
λ based on the balance between stability and resolution. The strategy that we use is
that to make λ as large as possible without compromising the resolution. In our com-
putations, λ is chosen to be 1/5 of the local period (or wavelength) of the signal. After
λ is determined, we choose ti, i= 1, ·· · ,N to be uniformly distributed over [λ,T −λ],
where [0,T ] is the time span of the signal.

Remark 4.1. The choice of λ depends on the regularity of the signal that we want to
study. If the signal is nearly singular, we should choose a small λ to make sure that the
information of the signal can be well captured by the test functions.
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Remark 4.2. If the test functions φi(t) are chosen to be the classical piecewise linear
finite element basis, then the weak formulation is equivalent to the strong formulation
if we approximate ẍ and ẋ by a second order central difference approximation.

Based on the coefficients that we recover from the signal, we can define two indices
associated with each IMF to characterize the nonlinearity of this IMF.

Definition 4.1. ( Order of Nonlinearity.) The order of nonlinearity of an IMF is
defined to be the following two indices

I1 = max{k :pk 6= 0, k= 0, ·· · ,M}, I2 = max{k : qk 6= 0, k= 0, ·· · ,M}. (4.13)

From the above definition, we can see that the order of nonlinearity of the signal
corresponds to the highest order of the nonlinear terms. The case of I1 = 0 and I2 =
1 corresponds to a linear ODE. When I1>0 or I2>1, the IMF becomes nonlinear.
The larger the index is, the more nonlinear the IMF becomes. We not only quantify
the order of nonlinearity of the IMF, we can also recover the coefficients associated
with the leading order nonlinear terms. This information is very helpful in quantifying
how nonlinear an IMF is and may have an important implication in engineering and
biomedical applications.

Remark 4.3. In the above definition, we have only used the highest order. Other
information arising from the ODE, such as the amplitude of the coefficients, will also play
roles in the nonlinearity of the signal. It is part of our future research to develop more
comprehensive definition of the nonlinearity of the signal by using all the information
carried out by the ODE itself.

In practical computations, the signal may be polluted by noise or measurement
errors. As a result, our recovery of the coefficients will be influenced by these errors.
To alleviate this side effect, we set up a small threshold ν0 to enforce sparsity of the
coefficients by keeping only those coefficients that are larger than ν0. This leads to the
following modified definition of the order of nonlinearity:

I1 = max{k : |pk|>ν0, k= 0,·· · ,M}, I2 = max{k : |qk|>ν0, k= 0,·· · ,M}. (4.14)

In the computations to be presented in the next section, we set ν0 = 0.05.
The method proposed in this paper is still not very robust to large noise perturba-

tions. The reason is twofold. First, in our method, the second order derivative of an
IMF is involved, which would amplify the perturbation of the IMF polluted by noise.
Second, the definition of the order of nonlinearity is sensitive to perturbation. In short,
the noise perturbation changes the dynamics of the system. Hence, the presence of
so much noise would completely tarnish the dynamics of the signal. As we mentioned
before, in the future work, we will study how to combine all the information of the
coefficients and orders of the ODE to improve the definition of the order of nonlinearity.

The method based on the l1 regularized least squares performs very well in identify-
ing those nonlinear terms with large coefficients. On the other hand, the l1 regularization
also compromises the accuracy of the coefficients at the expense of producing a sparse
representation of the signal. In order to recover the coefficients accurately, we propose
the following procedure to improve the accuracy.

First, we identify the dominant coefficients,

Γ1 ={k : |pk|>ν1, k= 0,·· · ,M}, Γ2 ={k : |qk|>ν1, k= 0, ·· · ,M}. (4.15)
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In our computations, ν1 is chosen to be 0.05.
Secondly, we solve a least squares problem without l1 regularization to obtain more

accurate coefficients for these dominant terms, for k2∈Γ2, k1∈Γ1,

(pk2 ,qk1) = arg min
αk2 ,βk1

N∑
i=1

∣∣∣∣∣〈x,φ̈i〉− ∑
k2∈Γ2

αk2

〈
xk2+1,φ̇i

〉
+
∑
k1∈Γ1

βk1
〈
xk1 ,φi

〉∣∣∣∣∣
2

. (4.16)

Remark 4.4. If the signal is free of noise and accurate, the above refinement procedure
does help to get more accurate coefficients. But when the signal is polluted with noise,
the IMF that we extract from the signal is not very accurate. In this case, the error of
the coefficients is still relatively large even with the above refinement procedure.

Before we end this section, we summarize the discussion by giving the following
algorithm. We first partition the entire physical domain into a number of subdomains
and localize the signal locally by multiplying a smooth cut-off function. Then we apply
the above optimization algorithm to the localized signal to extract the local order of
nonlinearity of the signal.

An l1-l2 Refinement Algorithm.
• Calculate the phase function θ(t) of the signal. Choose K points tj , j= 1,·· · ,K

such that the time variation of P and q is well resolved by the local resolution
(tj+1− tj).

• For j= 1 :K

• Extract the signal around the point tj ,

fj(t) =f(t)χ(θ(t)−θ(tj)),

where χ(t) is a cutoff function. In our computations, it is chosen to be

χ(t) =

{
1
2 (1+cos(t/µ)), −µπ<t<µπ,
0, otherwise.

µ is a parameter to control the width of the cutoff function. In this paper,
we choose µ= 3, which means that for each point, we localize the signal
within 3 periods to perform the order of nonlinearity analysis.

• Extract the IMF cj for fj(t) using the algorithm in Section 2.

• Solve the optimization problem (4.11) with x= cj to get the coefficients of
the polynomials, Pj(x) and qj(x).

• (optional) Apply the refinement procedure to update the coefficients.

• End

• Calculate the order of nonlinearity of the signal according to (4.14).

5. Numerical results
In this section, we will show several numerical results to demonstrate the perfor-

mance of our nonlinearity analysis method proposed previously. We first apply our
method to study the order of nonlinearity from the signal generated from the solution
of the Van der Pol equation.

Example 1: Consider the Van der Pol Equation

ẍ+
(
x2−1

)
ẋ+x= 0.
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Fig. 5.1. Top: The solution of the Van der Pol equation; Middle: Coefficients (qk,pk) recovered
by our method, star points ∗ represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star points ∗ represent the numerical
results, black line is the exact one.
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Fig. 5.2. Top: The solution of the Van der Pol equation with noise 0.1X(t), where X(t) is the
white noise with standard deviation σ2 = 1; Middle: Coefficients (qk,pk) recovered by our method, star
points ∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity of the signal
according to the recovered coefficients, star points ∗ represent the numerical results, black line is the
exact one.

The equation is solved from t= 0 to t= 100 with the initial condition x(0) = 1, ẋ(0) = 0.
Figure 5.1 shows the original signal and the extracted coefficients and nonlinearity
at different times. We choose M = 10 in our computations. With this choice, there
are 22 coefficients in total, and only three of them are not zero. They correspond to
p1 =−1, p2 = 1/3, and q1 = 1 respectively. As shown in figure 5.1, we can get almost
exact recovery of all the coefficients. When the signal is polluted by noise, our method
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can still give reasonably accurate results, see figure 5.2.

Example 2: The second example is the Duffing equation

ẍ+x+x3 = 0,

with initial conditions x(0) = 1 and ẋ(0) = 0. The solution is also solved from t= 0 to
t= 100. Figure 5.3 shows the original signal and recovery of the coefficients and order of
nonlinearity. Again, we use M = 10 in our computations. In this case, there are actually
two coefficients that are not zero, q1 = 1, q3 = 1.

When the signal does not have noise, the recovery is very good for both of the
coefficients and the order of nonlinearity, see figure 5.3. But when the signal is polluted
by noise, the results for the Duffing equation are not as good as those for the Van der
Pol equation, see figure 5.3. The reason is that the solution of the Duffing equation is
closer to the linear sinusoidal wave with q3 = 0. A small perturbation would introduce
a large perturbation to the coefficients. Nevertheless, even in this case, our method can
still give the correct order of nonlinearity, see figure 5.4.

0 10 20 30 40 50 60 70 80 90 100
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Degree of the nonlinearity

Fig. 5.3. Top: The solution of the Duffing equation; Middle: Coefficients (qk,pk) recovered by our
method, star points ∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity
of the signal according to the recovered coefficients, star points ∗ represent the numerical results, black
line is the exact one.

Example 3: The equations in the previous two examples are both autonomous.
For this kind of equations, the coefficients can be extracted globally, since it does not
change over the whole time span. In order to demonstrate the locality of our method,
we consider an equation which is not autonomous:

ẍ+a(t)(x2−1)ẋ+(1−a(t))x3 +x= 0, (5.1)

where a(t) = 1
2

(
1− t−100√

(t−100)2+400

)
. The initial condition is that ẋ(0) = 0, x(0) = 1, and

the equation is solved over t∈ [0,200].
As we can see, this equation is essentially of the Van der Pol type when t is small

(t<100). As t increases, the equation changes to the Duffing type equation gradually.
This equation has to be analyzed locally. A global approach would predict the wrong
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Fig. 5.4. Top: The solution of the Duffing equation with noise 0.1X(t), where X(t) is the white
noise with standard deviation σ2 = 1; Middle: Coefficients (qk,pk) recovered by our method, star points
∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity of the signal
according to the recovered coefficients, star points ∗ represent the numerical results, black line is the
exact one.
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Fig. 5.5. Top: The solution of the equation given in (5.1); Middle: Coefficients (qk,pk) recovered
by our method, star points ∗ represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star points ∗ represent the numerical
results, black line is the exact one.

order of nonlinearity. We first present our results in figure 5.5 when the solution is free
of noise. Our method can capture the time variation of the coefficients very accurately.
Even if the solution is polluted with noise, the results are still with reasonable accuracy,
figure 5.6. The error of the coefficients is relatively large when t>100. The reason
is that in this region, the equation is qualitatively of Duffing type, and the Duffing
equation is more sensitive to noise than the Van der Pol equation, as we pointed out in
the previous example.
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Fig. 5.6. Top: The solution of the equation given in (5.1) with noise 0.1X(t), where X(t) is the
white noise with standard deviation σ2 = 1; Middle: Coefficients (qk,pk) recovered by our method, star
points ∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity of the signal
according to the recovered coefficients, star points ∗ represent the numerical results, black line is the
exact one.

Example 4: In this example, we consider a more challenging equation, the coeffi-
cients have a sharp change instead of a smooth transition as in Example 3. The equation
is given as follows:

ẍ+
1

2
(1−sgn(t−100))ẋ+

1

2
(1+sgn(t−100))x3 +x= 0, (5.2)

where sgn(·) is the sign function. This equation has a sharp transition from the Van
der Pol equation to the Duffing equation at point t= 100.

When applying our method to analyze the solution of this equation, it is not hard
to imagine that there would be some problem near the transition point, since we require
that the coefficients be constants over a few periods of the signal. This assumption is
not satisfied near the transition point.

We present the results in figure 5.7. It is not surprising that the error near t= 100
is very large, but in the region away from the transition point, our method still gives a
reasonably accurate recovery. Due to the poor accuracy near the transition point, our
method cannot locate the transition point accurately. But the good news is that our
method does tell us that the nonlinearity of the signal changes from the Van der Pol type
to the Duffing type, although it cannot give the precise location of the transition point.
When the signal is polluted by noise, the performance of our method is qualitatively
the same, see figure 5.8.
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Fig. 5.7. Top: The solution of the equation given in (5.2); Middle: Coefficients (qk,pk) recovered
by our method, star points ∗ represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star points ∗ represent the numerical
results, black line is the exact one.
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Fig. 5.8. Top: The solution of the equation given in (5.2) with noise 0.1X(t), where X(t) is the
white noise with standard deviation σ2 = 1; Middle: Coefficients (qk,pk) recovered by our method, star
points ∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity of the signal
according to the recovered coefficients, star points ∗ represent the numerical results, black line is the
exact one.

In order to improve the accuracy in the region near the transition point, we combine
the idea of the ENO method in computing shock waves in fluid dynamics [16] with the
method that we proposed earlier. This gives rise to the following algorithm.

• Calculate the phase function θ(t) of the signal. Choose K points tj , j= 1,·· · ,K
such that the time variation of P and q is well resolved by the local resolution
(tj+1− tj).

• For j= 1 :K
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S1: Extract the signal centered around the point tj and also extract the signal
to the left and to the right of tj ,

f cj (t) =f(t)χc(θ(t)−θ(tj)),
f lj(t) =f(t)χl(θ(t)−θ(tj)),
frj (t) =f(t)χr(θ(t)−θ(tj)),

where χc(t),χl(t),χr(t) are cutoff functions

χc(t) =

{
1
2 (1+cos(t/µ)), −µπ<t<µπ,
0, otherwise,

χl(t) =

{
1
2 (1+cos(t/µ+π)), −2µπ<t<0,
0, otherwise,

χr(t) =

{
1
2 (1+cos(t/µ−π)), 0<t<2µπ,
0, otherwise.

As before, we choose µ= 3.

S2: Extract the IMFs ccj ,c
l
j ,c

r
j for f cj (t),f lj(t),f

r
j (t) respectively.

S3: Pick up the IMF c∗j such that the residual ‖cαj −fαj ‖2 is minimized over
the choices α= c,l,r, i.e.

c∗j = arg min
α∈{c,l,r}

‖cαj −fαj ‖2.

S4: Solve the optimization problem (4.11) with x= c∗j to get the coefficients of
the polynomials, Pj(x) and qj(x).

S5: (optional) Apply the refinement procedure to update the coefficients.

• End

• Calculate the order of nonlinearity of the signal according to (4.14).
Figure 5.9 gives the performance of the above modified algorithm. The result is much
better than the one obtained earlier. The coefficients are now accurate over the whole
time span of the signal. The location of the transition point is also captured accurately.
Even when the signal is polluted with noise, this method is still capable of approximating
the order of nonlinearity and the transition point accurately as shown in figure 5.10.

Example 5: The signal f(t) we consider in this last example consists of several
components,

f(t) =s(t)+cos(16πt/200)+ t/100+0.1X(t), t∈ [0,200], (5.3)

where s(t) is the solution of the Van der Pol equation with the initial condition ẋ(0) =
0, x(0) = 2 and X(t) is the white noise with standard deviation σ2 = 1.

For this kind of signal, we have to decompose it to several IMFs first and apply
the nonlinearity analysis to each IMF to obtain their order of nonlinearity. Figure 5.11
gives the signal and two IMFs that we decompose from the signal. In figure 5.12 and
figure 5.13, we present the results of the nonlinearity analysis for each IMF. As we can
see that for this signal, the performance of our method is still reasonably good.

These examples show that our data-driven time-frequency analysis can be used to
detect the type of nonlinearity (or at least its leading order of nonlinearity). A future
goal is to combine this method with statistical study to make the nonlinear system
identification algorithm more accurate and more stable.
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Fig. 5.9. Top: The solution of the equation given in (5.2); Middle: Coefficients (qk,pk) recovered
by our method together with the trick in ENO method, star points ∗ represent the numerical results,
black line is the exact one; Bottom: Nonlinearity of the signal according to the recovered coefficients,
star points ∗ represent the numerical results, black line is the exact one.
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Fig. 5.10. Top: The solution of the equation given in (5.2) with noise 0.1X(t), where X(t) is
the white noise with standard deviation σ2 = 1; Middle: Coefficients (qk,pk) recovered by our method
together with the ENO type method, star points ∗ represent the numerical results, black line is the exact
one; Bottom: Nonlinearity of the signal according to the recovered coefficients, star points ∗ represent
the numerical results, black line is the exact one.

6. Concluding remarks
In this paper, we have shown that many of the IMFs can be analyzed from the

point of view of dynamical systems. This explains to some extent why adaptive methods
such EMD or our data-driven time-frequency analysis method provide a natural way
to analyze such signals. By establishing a connection between each IMF and a second
order ODE, we can use the information of the associated second order ODE to obtain
further information about the IMF that we extract, including the order of nonlinearity
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Fig. 5.11. Top: The signal consists of the solution of the Van der Pol equation and a cosine
function and a linear trend and noise 0.1X; Middle: The IMF extracted from the signal corresponding
to the solution of the Van der Pol equation, blue: numerical result; red: exact solution; Bottom: The
IMF extracted from the signal corresponding to the cosine function, blue: numerical result; red: exact
solution.
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Fig. 5.12. Top: Coefficients (qk,pk) recovered by our method for the first IMF in figure 5.11,
star points ∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity of the
signal according to the recovered coefficients, star points ∗ represent the numerical results, black line
is the exact one.

and their energy levels. This information can be also used to provide a quantitative and
qualitative description of the extracted IMFs of a multiscale signal. This may prove to
be very useful in a number of engineering or biomedical applications. A possible future
direction is to use statistical methods to do system identification and detect whether
the system is linear or nonlinear.
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Fig. 5.13. Top: Coefficients (qk,pk) recovered by our method for the second IMF in figure 5.11,
star points ∗ represent the numerical results, black line is the exact one; Bottom: Nonlinearity of the
signal according to the recovered coefficients, star points ∗ represent the numerical results, black line
is the exact one.
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