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Abstract Atmospheric temperature is one of the most

important climate variables. This observational study pre-

sents detailed descriptions of the temperature variability

imprinted in the 9-year brightness temperature data

acquired by the Advanced Microwave Sounding Unit-

Instrument A (AMSU-A) aboard Aqua since September

2002 over tropical oceans. A non-linear, adaptive method

called the Ensemble Joint Multiple Extraction has been

employed to extract the principal modes of variability in

the AMSU-A/Aqua data. The semi-annual, annual, quasi-

biennial oscillation (QBO) modes and QBO–annual beat in

the troposphere and the stratosphere have been successfully

recovered. The modulation by the El Niño/Southern

oscillation (ENSO) in the troposphere was found and cor-

relates well with the Multivariate ENSO Index. The long-

term variations during 2002–2011 reveal a cooling trend

(-0.5 K/decade at 10 hPa) in the tropical stratosphere; the

trend below the tropical tropopause is not statistically

significant due to the length of our data. A new tropo-

spheric near-annual mode (period *1.6 years) was also

revealed in the troposphere, whose existence was con-

firmed using National Centers for Environmental Predic-

tion Reanalysis air temperature data. The near-annual

mode in the troposphere is found to prevail in the eastern

Pacific region and is coherent with a near-annual mode in

the observed sea surface temperature over the Warm Pool

region that has previously been reported. It remains a

challenge for climate models to simulate the trends and

principal modes of natural variability reported in this work.

Keywords Atmospheric variability � Principal mode

decomposition � Adaptive analysis � Amplitude and phase

profiles � Near-annual variability � Temperature trends

1 Introduction

Temperature in the lower atmosphere (here we refer to the

troposphere and the stratosphere) has been one of the most

important climate variables in the study of climate change

(Allen et al. 2006; Broecker 1975; IPCC 1990, 2007). Its

variations affect many aspects of the earth system,

including the hydrological cycle (Ramanathan et al. 2001),
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the sea level (Wigley and Raper 1992), glaciers (Haeberli

et al. 1999), the arctic ice cap (Dowdeswell et al. 1997) and

the ecological system (Bergengren et al. 2011; Hughes et al.

2003). Comprehensive knowledge of both natural and

human-induced variations in the atmospheric temperature

and how these variations are coupled to other terrestrial

components are thus crucial for predicting the future climate.

The lower atmospheric temperature has been monitored

from ground by in situ measurements or remote sensing

techniques such as lidar and from space since 1970s. A

great advantage of spaceborne measurements is their global

coverage on daily basis. Our interest is in the spaceborne

temperature data. There have been efforts to construct a

continuous temperature record for climate studies using

successive satellite measurements (Christy et al. 2007).

However, differences in the instrumental calibrations and

drifts may lead to artificial fluctuations/trends in the com-

posite records (Xu and Powell 2012). Our aim is to seek a

high-quality long-term temperature record from a single,

stable satellite instrument such that the aforementioned

artifacts/instrumental uncertainties can be avoided. In this

paper, we will use as an example the temperature data

acquired by the Advanced Microwave Sounding Unit-

Instrument A (AMSU-A; Lambrigtsen 2003) aboard the

National Aeronautics and Space Administration’s

(NASA’s) Earth Observing System (EOS) Aqua satellite

(Aumann et al. 2003) since its launch in 2002. Our aim is to

document in details the temperature variability imprinted in

the 9-year AMSU-A/Aqua data during 2002–2011.

AMSU-A/Aqua is one of the A-Train satellite instru-

ments (L’Ecuyer and Jiang 2010) in the EOS that provides

an accurate and complete set of measurements of variables

believed to be crucial for the climate system. Using micro-

wave between 23 and 89 GHz, AMSU-A is capable of

obtaining accurate temperature measurements for the tro-

posphere and stratosphere even in the presence of cloud

(Susskind et al. 2003). The AMSU-A/Aqua data constitute

the longest data period of microwave sounding available

from a single instrument in an accurately maintained polar

orbit. The Aqua spacecraft was launched in May 2002. The

Aqua polar orbit is actively maintained within 30 s for a 1:30

p.m. ascending node equator crossing at 705 km altitude,

which effectively eliminates the cross-talk with the diurnal

cycle and minimizes the orbital drift problem. As of May

2002, AMSU-A/Aqua provides the longest time series of

microwave measurements from a single instrument in sup-

port of climate analysis. We note that, the previous AMSU-

A on the National Oceanic and Atmospheric Administration

(NOAA)-15 satellite, launched in 1998 into polar orbit, was

the first of a new generation of total power microwave

radiometers. Unfortunately, since the orbit of NOAA-15 was

not actively controlled, the ascending node of its orbit

shifted between 1998 and 2007 from 7:30 p.m. to 5 p.m.

local time. This introduced diurnal cycle artifacts in the time

series (Mo 2009). Thus AMSU-A/NOAA-15 data will not be

used in this paper. AMSU-A has also been installed on the

European satellite MetOp-A, which was launched into the

orbit in 2006. This record is a few years shorter than that of

AMSU-A/Aqua and will not be used here.

There are fifteen microwave channels on AMSU-A/

Aqua. Ten of them (Channel 5–14) that are relatively

insensitive to the surface conditions will be examined in

this paper. Each of these channels has sensitivity to

atmospheric temperature variations at different altitudes

between 2.5 and 700 hPa. Thus, combining these temper-

ature measurements provides the vertical profile of tem-

perature variations during the last decade, which contains

the information about vertical propagations that may be

used for diagnosis of current climate models.

We will decompose the decadal temperature record from

AMSU-A/Aqua into a long-term trend and intrinsic modes

of variability and to construct vertical patterns associating

with them. Such a decomposition is useful for climate

studies because we are always interested in separating the

small secular trend (B1 K/decade), primarily caused by the

increase of greenhouse gases, from other variability, e.g.

the seasonal cycle (*10 K), the quasi-biennial oscillation

(QBO; *few K), and quasi-periodic changes due to the El

Niño/Southern oscillation (ENSO; Wang and Picaut 2004).

A common approach of time series decomposition is to use

linear parametric methods such as the Fourier transform or

a simple running-average filter to isolate different modes of

variability. An advantage of using these parametric meth-

ods is that the filtered data can be easily interpreted in

terms of the physical meanings of the chosen parameters.

However, a minimal knowledge about the underlying sys-

tem is required to determine the values of the parameters.

In addition, the underlying system has to be linear and

stationary, which is generally not true for real data.

There have been growing interests in developing adap-

tive methods that decompose a non-linear time series based

only on the nature of the time series per se, in the way that

the decomposition does not require any assumptions or

prior information. Examples of such adaptive methods

include the Empirical Mode Decomposition (EMD) (Hu-

ang et al. 1998), the Hilbert spectral representation based

on wavelet projection (Olhede and Walden 2004), and the

synchrosqueezed wavelet transforms (Daubechies et al.

2011; Wu et al. 2011). Recently, Hou and Shi (2011)

developed a more mathematically-based version of EMD,

tentatively named the Decomposition Matching Pursuit

(DMP), which treats EMD as a nonlinear L1 optimization

problem. Based on the examples given in Hou and Shi

(2011), DMP shows similar properties as of EMD and

preserves the intrinsic properties of the input signal (such

as trends and instantaneous frequency). It is also less
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sensitive to noise perturbation, which seem to be the major

weakness of EMD. However, as will be discussed below,

DMP also subjects to the problem of end-point problem. In

this paper, we will decompose the AMSU-A/Aqua data

using DMP, with appropriate treatments of the end-point

problem using the ensemable EMD (EEMD; Wu and

Huang 2009); the combined DMP-EEMD method will be

called the Ensemble Joint Multiple Extraction (EJME).

The rest of the paper is organized as follows. The

AMSU-A/Aqua data are described in Sect. 2, followed by a

brief description of the principal method used in our data

analysis in Sect. 3. The results are presented in Sect. 4,

where an overview of the monthly-averaged raw data is

first given, followed by discussions of the principal modes

extracted by EJME. In Sect. 5, the principal modes of

similar periods are combined to give a time–height picture

of their vertical propagations. Long-term variations repre-

sented by the last principal modes are also presented.

Finally, we will report a less-known near-annual mode in

the troposphere, which we will relate to a near-annual

mode in the sea surface temperature (SST) in the Warm

Pool region. Section 6 summarizes the main findings in this

work. A detailed description of our principal method is

given in ‘‘Appendixes 2 and 3’’.

2 Data

2.1 AMSU-A/aqua brightness temperature

The tropically averaged (30�S–30�N) brightness tempera-

ture (TB) over ocean measured by Channels 5–14 of AMSU-

A/Aqua will be used in this study. (Channel 4 stopped

functioning since 2006 and the other channels are sensitive to

the surface conditions.) These channels are relatively

insensitive to surface conditions (Goldberg et al. 2001) and

the presence of clouds (Susskind et al. 2003). The AMSU-A/

Aqua data constitute the longest data period of microwave

sounding available from a single instrument in an accurately

maintained polar orbit. Aqua was launched into a polar sun-

synchronous orbit in May 2002 at 705 km altitude. AMSU-

A/Aqua scans ±49� cross track with 3.3� (40.6 km at nadir)

diameter footprints (Lambrigtsen 2003). The AMSU-A/

Aqua observations have considerable zenith angle depen-

dence, and to avoid errors introduced by limb adjustment, we

use only near-nadir observations in this paper.

Each day since 1 September, 2002, AMSU-A/Aqua

generates *0.5 million measurements, which corresponds

to *100 MB of calibrated radiances from Channels 5–14.

In order to manage this data volume, we randomly collect

*3,400 samples within 3� of nadir from the tropical

oceans (30�S–30�N) during the 1:30 a.m. local overpasses,

referred to as ‘‘night’’ and an approximately equal number

of samples from the 1:30 p.m. overpass referred to as

‘‘day’’. This random selection is described in details in

‘‘Appendix 1’’. An example of the daily spatial distribution

of data is shown in Fig. 11a. The daily means of AMSU-A/

Aqua radiances are calculated for each calendar day

between 30�S and 30�N. Of the 3,287 days between 1

September, 2002 and 31 August, 2011, 50 days of data are

missing due to various spacecraft and downlink problems.

The missing days are filled by sinusoidal functions before

obtaining the monthly averaged data, which will be used in

this study.

The weighting functions of AMSU/Aqua Channels 5–14

spread over some altitude range (*10 km) and peak at

different pressure levels/altitudes from the mid-troposphere

to the mid-stratosphere. For example, over tropical oceans,

Channel 5 measures the mid-tropospheric temperature at

*700 hPa, Channel 9 around the tropopause temperature

at *90 hPa, and Channel 14 the mid-stratospheric tem-

perature at *2.5 hPa. The weighting functions of the

AMSU-A/Aqua channels at near-nadir view can be found

from Fig. 7 of Goldberg et al. (2001). Approximate peak

pressures/altitudes as well as the full width at half maxi-

mum (FWHM) for Channels 5–14 are listed in Table 1.

2.2 Air temperature and sea surface temperature

To help confirm the existence of some extracted IMFs (the

near-annual modes that will be discussed in Sect. 5), we

will use the air temperature data assimilated in the National

Centers for Environmental Prediction Reanalysis-I (NCEP-

1) (Kalnay et al. 1996). The NCEP-1 data are given on 17

pressure levels between 10 and 1,000 hPa and has a hori-

zontal resolution of 2.5� 9 2.5�. The NCEP-1 daily data

Table 1 Approximate pressure/altitudes levels to which the AMSU-

A/Aqua Channels 5–14 are most sensitive and the full width at half

maximum (FWHM) of the weighting functions

Channel

no.

Peak level FWHM

Pressure

(hPa)

Altitude

(km)

Pressure

(hPa)

Altitude

(km)

5 700 3 750 10

6 400 8 500 10

7 250 11 400 10

8 150 14 240 10

9 90 17 120 9

10 50 20 80 10

11 25 25 40 10

12 10 31 20 11

13 5 37 8 12

14 2.5 41 4 12

The weighting functions of AMSU-A channels at near nadir view are

shown in Fig. 7 of Goldberg et al. (2001)
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after 2002 will be used and these data are averaged

monthly.

The daily sea surface temperature (SST) from the

Tropical Rainfall Measuring Mission (TRMM) Microwave

Imager (TMI) will also be used (Reynolds et al. 2010).

TMI SST data are retrieved from the microwave channel

10.7 GHz, which is nearly transparent to clouds. The

measurements are available since 1997 but only the SST

data after 2002 will be used in the study. The TMI SST

data has a spatial resolution of 0.25� 9 0.25�. However,

our focus is on relatively large-scale variability in the SST.

So the TMI SST have been averaged monthly onto a

coarser resolution of 2.5� in latitudes.

3 Methods

3.1 Decomposition matching pursuit (DMP)

By defining the ‘‘smoothness’’ of a function as the third-

order total variation (TV3):

TV3½gðtÞ� ¼
Zb

a

d4gðtÞ
dt4

����
����dt; ð1Þ

DMP decomposes a time series f(t) into a sum of the

smallest number of intrinsic mode functions (IMFs) of the

form a(t)cos[h(t)], where a(t) [ 0 is assumed to be

smoother than cos[h(t)] and (t) is a piecewise smooth

increasing function (i.e.
dhðtÞ

dt
� 0). In other words, it looks

for decomposition.

f ðtÞ ¼
XM

k¼1

akðtÞ cos½hkðtÞ� ð2Þ

where M is minimized. The above definition of IMF by

Hou and Shi (2011) is a mathematical generalization of that

defined by Huang et al. (1998). Note that EMD also

decomposes f(t) into the form of Eq. (2) but M is not

necessarily minimized.

(a) Iterative decomposition for ideal data without noise

Hou and Shi (2011) propose a recursive approach to

solve for ak(t) and hk(t). Consider a time series f(t) without

noise. We seek the highest-frequency IMF a1(t)cos[h1(t)]

using a Newton-type iterative method such that the

remainder f1(t) = f(t) - a1(t)cos[h1(t)] is the smoothest.

To do this, an initial guess of h1
0(t) is required; in the

absence of noise, cos[h1
0(t)] can be taken as the shifted/

normalized f(t) such that all maxima equal ?1 and all

minima equal -1. Next, we find some functions f1
0(t), a1

0(t),

and b1
0(t) such that the sum of their total variations

TV3[f1
0(t)] ? TV3[a1

0(t)] ? TV3[b1
0(t)] is minimized while

f1
0(t) ? a1

0(t) ? b1
0(t)sin[h1

0(t)] = f(t). The minimization is

done through the split Bregman iteration (Goldstein and

Osher 2009). If the L2-norm tan�1 b0
1

�
a0

1

� ��� ��
2

is greater

than some threshold e0, then we improve the estimate of the

phase function by taking h1
1 tð Þ ¼ h0

1 tð Þ � l tan�1 b0
1

�
a0

1

� �
,

where l is the largest value between 0 and 1 such that h1
1(t)

is piecewise increasing, and repeat the above minimization

to obtain f1
1(t), …, f1

n(t), a1
1(t), …, a1

n(t), and b1
1(t), …, b1

n(t)

until tan�1 bn
1

�
an

1

� ��� ��
2
� e0. The final f1

n(t) is the required

remainder f1(t). In the similar fashion, f1(t) can then

be decomposed further: f ðtÞ ¼ f1ðtÞ þ a1ðtÞ cos½h1ðtÞ� ¼
f2ðtÞ þ a2ðtÞ cos½h2ðtÞ� þ a1ðtÞ cos½h1ðtÞ� ¼ � � �. As a result,

f(t) is decomposed into the form of Eq. (2) recursively.

(b) Iterative decomposition for real data with noise

For real data in the presence of noise, the above shift-

ing–normalization scheme for estimating cos[hk
0(t)] does

not work. Instead, cos[hk
0(t)] is taken as the band-pass fil-

tered time series by Fourier transform with the band-pass

frequencies embracing the highest frequency component in

fk(t). However, an initial guess of the band-pass frequencies

have to be supplied, which requires a visual determination

from the raw Fourier spectrum that has to be done manu-

ally. hk
0(t) (the arc-cosine of the bass-pass filtered time

series) so estimated may subject to some end-point prob-

lems, the treatment of which will be discussed in the next

subsection. In addition, fk(t) has to be ‘‘regularized’’ before

the TV3 minimization: given the nth iterative estimate k
n(t),

we regard as noise the variability of fk(t) that have higher

frequencies than those of cos[hk
n(t)] and remove them from

fk(t). This regularization is done by first transforming the

independent variable of fk from t to hk
n. Then the Meyer

low-pass filter W mhð Þ is applied to the Fourier transform

F fk hn
k

� �� �
of fk(hk

n) to remove variability of frequencies

higher than one wavenumber, where m is the wavenumber

in the Fourier space of hk
n, and

WðmhÞ ¼
1

2

1; mhj j � 1

½1� cosðpmhÞ�; 1� mhj j
0; mh� 2

� 2:

8<
: ð3Þ

The low-pass filtered time series �fk hn
k

� �
¼

F�1 F fk hn
k

� �� �
WðmhÞ

	 

is transformed back to �fkðtÞ and

the DMP can then be applied.

3.2 The end-point problem and the ensemble joint

multiple extraction (EJME)

As discussed in Sect. 3.1, when noise is present, a Fourier

transform filtering has been used to generate cos[hk
0(t)] that

is confined within some frequency range. Such a treatment

effectively avoids the notorious scale mixing problem in
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EMD, which makes the physical meaning of modes

obscure. However, because of the Fourier transform, DMP

inherits the end-point problem when it periodically extends

the time series. Hence in our analysis, the EEMD, which is

a noise-assisted version of EMD, is jointly used with DMP

to resolve the end-point problem. It should be noted that

using cubic spline fitting, EEMD also has its end-point

problem, but it is significantly less serious than that of

EMD (Wu and Huang 2009).

A detailed description of the treatment of the end-point

problem can be found in ‘‘Appendix 2’’. Here we briefly

summarize the procedures. Whenever necessary, data are

first masked to ensure that modes will not be strongly dis-

torted by highly asymmetric events like stratospheric sudden

warming (SSW). After the DMP decomposition, EEMD is

employed to extract the remaining signals near the ends of

the time series. The IMFs extracted by EEMD are masked by

a plateau-like weighting function and are then combined

with IMFs extracted by DMP whenever they are found to

have similar frequency components. After this, residuals

from DMP and EEMD are combined to become time series

used for the next round of extraction. This process is repe-

ated multiple times to ensure complete extraction. In the

next step, EEMD is employed multiple times to extract low-

frequency signals from the residual. The last IMF is taken as

the summation of all the low-frequency IMFs, and the trend

is taken as the EEMD trend from the last round of extraction.

Finally, highly asymmetric events, if any, are combined with

the residual to become the final residual labeled as IMF1.

Modes obtained by such treatment are well separated with

little scale mixing, and trends obtained by such treatment

can effectively avoid the strong influence of the asymmetric

ENSO and SSW.

To give an estimation of the uncertainty of the IMFs, an

ensemble of decompositions is performed by adding white

noises to data. In our analysis, the ensemble number is

typically taken to be 1,000. Each noise-added time series is

decomposed using the combined DMP/EEMD described

above. The ensemble means of the DMP/EEMD modes

will be taken as the final decomposition in the following

discussions. The 1-r standard deviations of the ensemble

decompositions give an estimation of the statistical sig-

nificance of the decomposition. Since IMF 1 is usually

noise (except in good cases like Channel 9; see Sect. 4.2),

in our analysis the input noise level is chosen to be the

standard deviation of the masked IMF 1 of the original time

series. Technical details of EJME are presented in

‘‘Appendix 2’’.

3.3 Amplitudes and phases

The amplitude of an IMF is defined by its standard devi-

ation because the IMFs may be irregular and not perfectly

harmonic. The phase difference between two time series

will be defined as the averaged difference in time when the

local maxima of the respective time series occur; a more

mathematical definition of the occurrence time of a local

maximum is given in ‘‘Appendix 3’’.

4 Results

As discussed in Introduction, our aim is to study the rich-

ness of the TB variability imprinted in currently the longest

record of microwave measurements by AMSU-A/Aqua.

Below, we will first present the general features of the

monthly averages (Sect. 4.1). Then we will present the

decomposed IMFs by EJME (Sect. 4.2). Note that

the analyses below use TB over tropical oceans only.

4.1 Monthly averages

The monthly-averaged time series for AMSU-A/Aqua

Channels 5–14 are plotted in Fig. 1a. Their Fourier spectra,

which have been used for estimating cos[hk
0(t)], are dis-

played to their right in Fig. 1b. The dotted, dashed and the

dash-dotted lines are the 99, 95, and 90 % confidence

levels, respectively. The power spectra are normalized such

that the total area under each spectrum equals the variance

of its corresponding time series.

Channel 5 is most sensitive to TB variations in the lower

troposphere near 700 hPa (Table 1). The peak-to-trough

variability acquired by this channel is *1 K. Its Fourier

spectrum has a significant peak at 1 year, which is due to

the annual cycle. The spectrum also has a broad peak for

periods 3–5 years, which is likely due to the ENSO. There

is a peak at *1.6 years, which is significant at a 95 %

confidence level. This may be due to a less-known near-

annual mode in the SST (Jin et al. 2003), which then

modulates the air temperature near the ocean surface. We

will discuss some possible mechanisms responsible for this

near-annual mode in Sect. 5.5. The TB time series acquired

by Channels 6 (corresponding to variations in the mid-

troposphere at 400 hPa) is very similar to that acquired by

Channel 5, with a peak-to-trough variability of *1 K. The

spectral peaks of the annual cycle, the near-annual mode,

and the ENSO are also apparent.

Channels 7–8 and 9–10 are most sensitive to the TB

variations in the tropical tropopause region between 150

and 250 hPa and the lower stratosphere region between

50 and 90 hPa, respectively. In both of the regions, the

annual cycles are the most dominant, having a peak-to-

trough amplitude of 3–4 K. The effects of the near-annual

cycle and the ENSO here are relatively weak compared

to the annual variability and are not apparent without

filtering.
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Moving to the middle stratosphere (10–25 hPa), where

the TB variations are effectively measured by Channels 11

and 12, the annual cycle also shows an amplitude of 3–4 K.

In addition, a semi-annual oscillation (SAO) becomes

apparent, which has amplitude a few times smaller than

that of the annual cycle. From the TB variations in the upper

stratosphere (2.5–5 hPa) measured by Channels 13 and 14,

the SAO completely dominates while the annual cycle

becomes the second dominant TB variability; the overall

amplitude of the TB variability is again 3–4 K.

It should be noted that the effects of QBO, which is the

most dominant form of the inter-annual variability in the

tropical stratosphere, are not apparent in these spectra.

Therefore, certain filtering techniques are required to

observe the effects of QBO, as we will do in the next

section using EJME.

We also note that the tropically-averaged TB from Chan-

nels 5–8 all show variability of amplitudes within ±1.5 K.

Therefore the tropical troposphere and tropopause are

amazingly stable in terms of TB.

4.2 EJME decomposition

EJME is employed to separate weak signals (e.g. QBO)

from other dominant signals (e.g. the seasonal cycle).

In Fig. 2a, the monthly-averaged time series of TB

acquired by AMSU-A/Aqua Channel 5 is shown at the top.

The IMFs obtained by the EJME decomposition are shown

below. In each figure, the black line is the ensemble mean

and the shaded area is 1-r ensemble deviation. The FFT

spectra are displayed on the right in Fig. 2b. IMF 1

(residual of the EJME decomposition) appears to be a high-

frequency mode, which in this case is mostly noise. IMF 2

is a mixture of the SAO and some high-frequency com-

ponents; the large ensemble deviation indicates that the

SAO is not well established in the troposphere. IMF 3 is the

(a) (b)Fig. 1 a Raw monthly-

averaged brightness temperature

(TB) acquired by Channels 5–14

of AMSU-A/Aqua. Each

channel is sensitive to a

different altitude/pressure level,

which is shown on the left.

b The Fourier spectra of the

time series. The dotted, dashed,

and dash-dotted lines are the 99,

95, and 90 % confidence levels,

respectively. The period is in

unit of years. The time series

have been padded with zeros

before the spectra are obtained

such that total length of the time

series becomes 2n?2, where n is

the smallest power of 2 that is

greater than or equal to the

original number of time steps
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annual cycle. IMF 4 is the near-annual variability with a

single peak at *1.6 years in its spectrum. IMF 5 has a

period of 2–3 years and IMF 6 has a period of 3–6 years.

Finally, IMF 7 at the bottom of Fig. 2a represents the

overall trend during 2002–2011. It shows a 9-year cooling

trend of -0.1 ± 0.1 K/decade. The statistical significance

of this cooling trend (as well as the trends at other altitudes)

will be discussed further in Sect. 5.4.

Both IMFs 5–6 characterize an inter-annual variability

in the troposphere which is likely related to the ENSO. To

verify this, the sum of IMFs 5–6 (blue solid line) is com-

pared to the Multi-variate ENSO Index (MEI; red/orange

shades; Wolter and Timlin 2011) in Fig. 2c. In 2002–2007,

there is a weak persistent El Niño (i.e. warming) event in

the eastern Pacific, indicated by the small oscillating

positive MEI values, except for a short period at the end of

2005, where the MEI shows a small negative value, rep-

resenting a weak La Niña (i.e. cooling) event in the eastern

Pacific during that period. The strong La Niña events in

2008 and 2010–2011 and the strong El Niño event in 2009

are apparent in the MEI index. The variations of the MEI

index are well reflected in the sum of IMFs 5–6, except that

the cooling during 2010 seems to have occurred

*5 months later (when the cross-correlation is maxi-

mized). However, it is not clear whether the 5-month lag is

physical.

The application of EJME to the TB data acquired by

Channels 6–8 yields similar IMFs (Figs. S1–S3), with

IMFs having different amplitudes and relative phases that

will be discussed in Sect. 5. Similar to those of Channel 5,

(a) (b)

(c)

Fig. 2 a The IMFs of TB

measured by AMSU-A/Aqua

Channel 5. The raw monthly-

averaged time series is shown at

the top. Modes and trend are

listed underneath. The solid

lines are the means of the

ensemble decomposition and

the shaded areas are the 1-r
ensemble deviations. b Fourier

spectra for ensemble means.

The area under curves equals

the variance of the time series.

The period is in unit of years.

c The blue line is the sum of

IMFs 5 and 6 shown in a. The

orange shade is the Multivariate

El Niño/Southern oscillation

Index (MEI)
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IMFs 5 and 6 of Channel 6 TB likely characterize the inter-

annual variability related to ENSO.

For Channel 9 (Fig. 3), IMF 1 is not purely noise.

Although the data have been averaged monthly, SSW in

Antarctic winter 2002 (Allen et al. 2003) and Arctic winter

2009 (Yoshida and Yamazaki 2011) can still be seen from

the time series (Fig. 3a, top panel). As discussed in

Methods, these highly asymmetric events have been first

removed from the original time series and then added back

to IMF 1 to avoid strong interference with the low-fre-

quency modes during the EJME decomposition. A domi-

nant peak at *0.3 year can be seen in the spectra of IMF 1.

(This peak persistently exists for Channels 9–14.) IMF 2 is

dominated by the SAO; however, the large ensemble

deviation indicates that the SAO is weak and is comparable

to noise at that level. IMF 3 is the annual cycle that

dominates the TB variations in the tropopause. IMF 4 is the

near-annual variation and IMF 5 is the QBO. IMF 6 is

small compared to other modes and the last IMF shows a

significant warming trend of 0.5 ± 0.2 K/decade during

2002–2011. Channel 10 is sensitive to the stratospheric

variability at 50 hPa. The IMFs corresponding to Chan-

nel 10 (Fig. S4) are very similar to those acquired by

Channel 9.

Channels 11–14 are most sensitive to the upper strato-

spheric variability at 25, 10, 4, and 2.5 hPa. Eight IMFs are

obtained from their TB measurements, which are very

similar (Figs. S5–S7; Fig. 4). Take Channel 14 as an

example. The TB time series acquired by Channel 14 is

dominated by an asymmetric SAO (Fig. 4a, top panel). For

this channel, IMF 1 is characterized by SSWs, which

appear as wiggles in the monthly-averaged time series

(Fig. 4b). IMF 2 is contaminated by SSWs and it has a

dominant peak at *0.3 year in its FFT spectrum. IMF 3 is

dominated by the SAO. IMFs 4–6 are the annual cycle

(period = 1 year), QBO-annual beats (QBO-AB; peri-

od & 20 months or 1.7 years) and QBO (QBO; peri-

od & 28 months or 2.3 years), respectively. IMF 7

characterizes an interannual variability (period & 3 years).

The last IMF shows a cooling of -0.9 ± 0.3 K during

(a) (b)Fig. 3 Same as Fig. 2a, b

except for Channel 9
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2002–2011, to which the solar cycle may have partially

contributed.

5 Discussions

In the previous section, the temperature time series

acquired by the ten channels of AMSU-A/Aqua have been

decomposed into IMFs using EJME. Their climatology and

their significance to climate studies will be discussed in this

section.

The decomposed IMFs can be combined to give the ver-

tical structures of individual variability. For example, the

vertical structures of the IMF amplitudes provide important

information where the signal may have been originated from

and amplified/damped; the vertical structures of the IMF

phase differences may reveal the propagation of the signal.

5.1 The annual cycle

Figure 5a shows the time–height pattern of the extracted

annual cycles from Channels 5–14 of AMSU-A/Aqua at

approximate pressure levels. The annual cycle is one of the

most natural variabilities in Earth’s atmosphere, which is a

response to the Earth’s non-zero obliquity while it is

orbiting around the Sun once a year; the annual cycles

deviate only slightly from a perfect harmonic due to

dynamical influences (Sela and Wiin-Nielsen 1971).

(a) (b)Fig. 4 Same as Fig. 2a, b

except for Channel 14
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The amplitudes of the exacted annual cycles are dis-

played in Fig. 5b. The dot represents the ensemble mean of

EJME and the horizontal bar is 1-r ensemble deviation.

The amplitude profile shows a peak of 1.3 K at the tro-

popause (50–100 hPa) and the amplitude drops to 0.1 K in

the lower troposphere and 0.5 K in the upper troposphere.

The relatively large annual cycle near the tropopause has

long been noticed (Kerr-Munslow and Norton 2006; Reed

and Vlcek 1969). In the tropical tropopause, the TB annual

cycle is driven by the annual variation in the upwelling

branch of the Brewer–Dobson circulation and by the con-

sequent dynamic cooling at the tropopause (Kerr-Munslow

and Norton 2006; Norton 2006; Taguchi 2009). Since the

upwelling becomes much weaker immediately above the

tropopause (Randel et al. 2008), the amplitude of the

annual cycle decreases with altitude in the stratosphere. It

is also possible that the annual and SAO move the tropo-

pause up and down considerably, thereby causing the

maximum changes there.

The relative phase profile is shown in Fig. 5c. The tri-

angles are the relative phases determined by the local

maxima of the time series (‘‘Appendix 3’’), which are

statistical consistent with those determined by the local

minima within the error bars (not shown). A modulo of

1 year has been applied such that the phase at 700 hPa

(Channel 5) is zero. This phase profile bears an intuitive

explanation. Having larger heat capacity, the surface lags

behind the stratosphere in response to solar forcing, and

since energy is transported to the tropopause from the

surface and the stratosphere, the annual cycle near the

tropopause lags behind both of them.

5.2 The semi-annual oscillation (SAO)

Figure 6 shows the extracted SAO modes and the associ-

ated amplitude and phase profiles. The SAO in stratosphere

and mesosphere, first discovered in 1960s, is a consequence

of a series of complicated wave forcings. The detailed

mechanism for equatorial SAO involves the wave–zonal

flow interaction with alternating accelerations of the east-

erly flow by planetary Rossby waves and the westerly flow

by Kelvin waves (Hirota 1980), as well as contributions

from eddy forcing and the propagating gravity waves

(Jackson and Gray 1994).

(a) (c)(b) (d)

Fig. 5 a The ensemble means of the annual cycles extracted from the

TB data acquired from Channels 5–14. The time series are plotted at

their approximated pressure levels. b The corresponding amplitude

profiles. The dots are ensemble means and the horizontal bars are 1-r
ensemble deviations. c The corresponding phase profiles. The

triangles are ensemble mean phases determined from local maxima

of the filtered time series; see ‘‘Appendix 3’’. The horizontal bars are

1-r ensemble deviations. The phases are defined relative to that at

700 hPa (Channel 5). d The averaged period; see ‘‘Appendix 3’’
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(a) (b) (c) (d)
Fig. 6 Same as Fig. 5 except

for the semi-annual mode and

that the phases are defined

relative to that at 25 hPa

(Channel 11)

(a) (b) (c) (d)

Fig. 7 Same as Fig. 5 except for the QBO modes and that the phases are defined relative to that at 25 hPa (Channel 11)
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As can be seen from Fig. 6b, the amplitude of the SAO

is negligibly small in the troposphere and grows quite large

in the middle of the stratosphere. Because the SAO in the

troposphere are not well established, the relative phases in

the troposphere may not be robust and will not be dis-

cussed. A modulo of 0.5 year has been applied and the

phase of Channel 11 is defined to be zero. From the phase

profile, the SAO appears to be propagating slightly

downward, which agrees with the observations made by

Huang et al. (2006).

5.3 The QBO

Figure 7a shows evolution of the IMFs related to the

stratospheric QBO. In the stratosphere, the QBO is the most

dominant inter-annual variability, which is characterized by

alternating downward-propagating easterly and westerly

winds, driven by propagating waves confined to the equa-

torial regions. Although the QBO is mainly tropical, it

affects the whole stratosphere and even the surface in both

dynamics and chemical constitution (Baldwin et al. 2001).

It is worth noting that the extracted QBO from the AMUS-

A/Aqua TB above and below 10 hPa behaves quite differ-

ently. The amplitude of IMFs reaches minimum and has a

sudden phase jump at *10 hPa (Fig. 7b, c). Using the data

acquired by the Sounding of the Atmosphere using Broad-

band Emission Radiometry (SABER), Huang et al. (2006)

found that the amplitude of QBO in temperature had two

maxima in the stratosphere at 28 and 37 km and had a phase

jump at 33 km during 2002–2004; meanwhile, using data

acquired by the Microwave Limb Sounder (MLS) aboard the

Upper Atmosphere Research Satellite (UARS), they found

that the amplitude of QBO in temperature had two peaks at

4.5 and 48 hPa and a phase jump at 9 hPa during 1992–1994.

These results qualitatively agree with ours.

In Fig. 7a, we overlay the standardized zonal wind

anomalies at 30 hPa (u30hPa) and 50 hPa (u50hPa) (Naujokat

1986). The QBO modulations of AMSU-A/Aqua TB at 30

and 50 hPa lag behind those of u30hPa and u50hPa by 3 and

5 months, respectively. This lag relation is also apparent in

a ground-based measurement in the tropics, from which

Kumar et al. (2011) showed that the QBO modulations in

winds and temperature are almost 90� out of phase in the

stratosphere and are of different downward propagation

rates, as well as amplitudes and phases.

5.4 Long-term variations

The last IMFs characterize the long-term variations of TB

during 2002–2011. We derive the TB trends by fitting a

straight line to the last IMFs; the slope of the fitted line is

taken as the trend. This fitting is done for every member of

the ensemble calculation during EJME. The ensemble

mean of the fitted slopes are shown as a blue triangle in

Fig. 8, with the error bar representing the 1-r ensemble

deviation. Note that these long-term variations may not

necessarily be the multi-decadal trends that are related to

the anthropogenic emission of CO2. On time-scales shorter

than a decade, the Pacific decadal oscillation, the Atlantic

multi-decadal oscillation, the 11-year solar cycle, ENSO,

and sporadic volcanic aerosol emissions may all contribute.

There is a cooling trend of -1±0.4 K/decade at 2.5 hPa

in the upper stratosphere, which drops to zero at 25 hPa.

The cooling trend in the upper stratosphere is consistent

with previous studies (Randel et al. 2009; Santer et al.

2003). The trend becomes positive in the upper troposphere

and attains a maximum of 1 K/decade at 90 hPa in the

tropopause, which seems to contradict with previous find-

ings, which suggest a cooling trend (-0.5 K/decade) in

the tropopause (Seidel et al. 2001). Lastly, there are cool-

ing trends of -0.1 ± 0.1 K/decade (c.f. Sect. 4.2) and

-0.25 ± 0.15 K/decade are observed at 700 and 500 hPa,

respectively.

To test the robustness of the extracted trends, we per-

form another line fitting using the deseasonalized raw data

(orange dotted line in Fig. 8). These trends are consistent

with those extracted by EJME. In addition, we further

examine the uncertainty due to the finiteness of the time

series by repeating the line fitting for September 2003–

August 2010 only. The results are shown as the red dash-

dotted line in Fig. 8. The trends in the troposphere obtained

using the shortened data becomes slightly positive

(\0.1 K/decade). The trends remain positive and negative

in the tropopause and the stratosphere. The negative trends

in the middle stratosphere between 2.5 and 25 hPa seems to

be more robust but is weaker than that obtained using the

Fig. 8 Nine-year trends for Channels 5–14. The blue triangles are

EJME ensemble means. The horizontal bars are 1-r ensemble

deviations. The orange dot line and red dash-dotted lines are linear

trends of deseasonalized raw data
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longer data. These results suggest that the trends are highly

dependent on the time range. In particular the trends in and

below the tropopause may not be significant due to the

aforementioned decadal variability in the atmosphere and

the ocean (Thorne et al. 2011).

The stratospheric trends we found from the AMSU-A/

Aqua data are more robust. There have been discussions on

the cooling trends observed in the stratosphere. Randel

et al. (2009) used the multi-variate linear analysis to show a

cooling of -0.5 K/decade in the lower stratosphere using

radiosonde and satellite data between 1979 and 2007, and a

cooling between -0.5 and -1.5 K/decade in the middle

and upper stratosphere using Stratospheric Sounding Unit

(SSU) data between 1979 and 2005. These values are

consistent with our values derived from EJME and the raw

fitting using data for September 2002–August 2010. Part of

the cooling trend in the stratosphere may be due to an

increase in the tropopause height (Santer et al. 2003).

5.5 Stratospheric QBO-AB and tropospheric

near-annual variability

The near-annual variability exists in both troposphere and

stratosphere, which are imprinted in the third-last IMF of

the time series of all channels and are shown in Fig. 9a.

Figure 9b shows that the amplitudes reach maximum

around the tropopause, which is similar to that of the

annual mode. The phase profile is shown in Fig. 9c, which

shows that while there are little phase differences between

the time series within the stratosphere and the troposphere,

there is a 6-month lag of the stratospheric data with respect

to the tropospheric data.

The stratospheric near-annual variability is likely due to

the QBO-AB, which was first reported by Baldwin and

Tung (1994) and is the most pronounced QBO-related

harmonics. It has periods of *20 and *8.6 months (Tung

and Yang 1994) and is believed to be produced from the

non-linear interaction between QBO and annual mode

(Jiang et al. 2005).

The tropospheric near-annual mode appears as a new

variability that has not been previously reported. Here we

present another evidence of the near-annual variability in

the assimilated air temperature. In Fig. 9a, we overlaid the

time–altitude pattern of NCEP air temperature data, which

have been filtered by a Fourier band-pass filter with the

band window set between 14 and 22 months and have been

averaged longitudinally between 5�S–5�N and 160�E–

270�E. Note that the NCEP data do not extend beyond

(a) (b) (c) (d)
Fig. 9 Same as Fig. 5 except

for the near-annual cycles. The

phases are defined relative to

that at 700 hPa (Channel 5). In

a, NCEP air temperature data

averaged between 5�S and 5�N

and zonally between 160�E and

270�E are overlaid. The NCEP

data have been filtered by the

Fourier band-pass filter for

14–22 months
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10 hPa. The positions of maxima and minima of the NCEP

data match with those of the time series quite well. The

spatial patterns of the NCEP data also reveal that the near-

annual modes in the troposphere and the stratosphere (i.e.

QBO-AB) behave differently and are separated by the

tropopause at *100 hPa. While QBO-AB propagates

downward, the near-annual mode in the troposphere

appears to propagate slightly upward and is much weaker.

The amplitude of the near-annual signal in the troposphere

reaches a maximum at about 300 hPa and quickly dimin-

ishes above 200 hPa.

The tropospheric near-annual mode may be related to a

near-annual mode in the ocean. Jin et al. (2003) found a

near-annual mode in the central eastern Pacific Ocean by

applying a 22-month high-pass filter and the wavelet

analysis to the NCEP assimilated SST during 1990–2001.

Their later work (Kang et al. 2004) reproduced similar

results by removing the climatological annual cycle and the

local linear trend in SST, zonal wind, zonal current, and sea

level height during the period of late 1998 through the end

of 2001. This same mode, referred to as sub-ENSO by

Keenlyside et al. (2007), was also identified during 1990

and 2004 by Multichannel Singular Spectrum Analysis.

Using a harmonic extraction scheme, the near-annual mode

was also observed from 1985 to 2003 by Chen and Li

(2008) as a mode well separated from ENSO.

Interestingly, none of these works mentioned the better-

known tropospheric biennial oscillation (TBO) in the SST

and surface wind, which has a period of *2 years. TBO

was first discovered in the south Asia and Indian monsoon

and may interact broadly with other tropical and extra-

tropical processes (Tomita and Yasunari 1996). It is

thought to be local in the tropical Pacific and Indian Ocean

regions and has a tendency to alternate between strong and

weak years (Pillai and Mohankumar 2010). In fact, the

spectral analysis of SST and surface wind by Rasmusson

and Carpenter (1982) of the eastern Pacific showed peaks

at *24 months for 1953–1974 data. This TBO was further

studied by Meehl (1987) using Indian monsoon rainfall as a

long-term index. Meehl observed that this signal was not

strictly biennial and that it was accompanied by anomalies

in the westerly wind in the western Pacific, which were

then followed by anomalies in the SST in eastern Pacific.

In the subsequent studies, Meehl and his collaborators

(Meehl 1993, 1997; Meehl and Arblaster 2011; Meehl et al.

2003) proposed mechanisms involving coupled land–

atmosphere ocean processes over a large area of the Indo–

Pacific region. It is still not clear whether the near-annual

mode observed during recent decades and the biennial

mode observed in earlier decades are in fact the same mode

with changed period. It is not even clear, having so few

data, whether the TBO reported before was indeed bien-

nial. Nonetheless, whatever it may be, the near-annual

mode in the ocean, which has amplitude C1 K (Jin et al.

2003), will inevitably propagate into the atmosphere.

To demonstrate the coherence between the near-annual

mode in the ocean and the near-annual mode in the

atmosphere, we present in Fig. 10 the Hovmöller diagrams

of the near-annual variability in NCEP surface air tem-

perature at 1,000 hPa (colour contours) and the observed

SST from TRMM. The data have been filtered by the same

Fourier band-pass for 14–22 months and have been aver-

aged between 5�S and 5�N. The near-annual signal in the

NCEP surface air temperature is most pronounced in the

eastern Pacific region and appears to be propagating

westward. Maxima and minima of the SST pattern

Fig. 10 Hovmöller diagrams of the near-annual variability in NCEP-

1 surface air temperature at 1,000 hPa (colour shades) and sea surface

temperature (SST) before December 2009 observed by the Tropical

Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI;

black contour lines) All data have been band-pass filtered for

14–22 months and averaged between 5�S and 5�N. The green box

encloses the longitude bands where the near annual variability is the

strongest. Notice the absence of the SST data over the continents
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synchronize with those of the air temperature pattern. The

amplitude of the near-annual mode in the ocean is also

coherent with that of the near-annual mode in the

atmosphere.

6 Conclusions

Nine years of atmospheric brightness temperature of

unprecedented quality acquired from AMSU-A are used for

studying climate change. We have presented a detailed

description of the variability and the long-term variations

imprinted in the AMSU data. These variabilities have been

extracted using the non-linear, adaptive method called the

Ensemble Joint Multiple Extraction (EJME), which is

empirical and does not require any prior knowledge of the

system.

EJME combines the advantages of DMP and EEMD.

The former can effectively avoid scale mixing while the

latter has less end-point effects for finite time series. Before

applying EJME to the AMSU temperature data, strong and

highly asymmetric events in the time series related to SSW

were first removed. With this preprocessing, we show that

EJME can successfully extract the known atmospheric

variabilities, including SAO, annual cycle, near-annual

mode, QBO, QBO-AB and ENSO. Using ensembles of

decompositions, the statistical stability of EJME has been

demonstrated.

The amplitudes and the phase relationships of the

extracted modes as functions of altitudes from the lower

troposphere to the upper stratosphere have been examined.

The amplitude of the SAO decreases with decreasing alti-

tude. This is consistent with the stratospheric origin of

SAO. The annual mode has a peak amplitude of *1 K at

the tropopause, which may be a combined effect of the

dynamical cooling due to the upwelling below and the

annual variations of the tropopause height. The QBO mode

has a bimodal amplitude structure, having a minimum of

*0.1 K at 10 hPa and maxima of *0.3 K at 2 and 50 hPa,

which agrees with previous studies. The ENSO mode is the

strongest at 700 hPa, showing an amplitude of *0.3 K and

good correlation with the MEI index lagged by 0.24 year.

The long-term variations of the temperature show a

significant cooling trend in the upper stratosphere during

2002–2011; it ranges from -0.4 K at 10 hPa to -0.8 K at

1 hPa during the 9-year observational period. The trend

shows some warming near the tropopause and slightly

negative in the troposphere, but these trends are not sta-

tistically significant.

EJME is also capable of extracting a new tropospheric

near-annual mode. The near-annual mode has peak

amplitude of 0.4 K at the tropopause; its amplitudes are

relatively small at other altitudes, 0.1 and 0.2 K in the

troposphere and the stratosphere, respectively. While the

near-annual mode in the stratosphere is likely to be a

manifestation of the QBO-AB, its origin in the troposphere

is not clear, although previous studies also found similar

near-annual variability in the SST and zonal wind. We

have confirmed its existence in the troposphere from the

NCEP air temperature data using a simple FFT filter that

captures signals with periods between 14 and 22 months.

The AMSU data are an example of what we could learn

from a high quality dataset. While more detailed analyses

of AMSU data, including spatial distributions of modes and

trend, are awaiting, it is already a challenge for climate

models to simulate the tropically averaged principal modes

of natural variability and trends, the success of which

would raise our level of confidence in climate models

(Forest et al. 2002; Huang et al. 2011).

Acknowledgments We thank Dr. Dong L. Wu for critical com-

ments and two anonymous referees for constructive criticisms that

improved this paper. YS was supported by Overseas Research Fel-

lowship of the Faculty of Science and Department of Physics, The

University of Hong Kong. The extraction of the AMSU-A/Aqua data

from the Atmospheric InfraRed Spectrometer (AIRS)/AMSU-A data

archive was supported by a research grant administered by Dr. Ra-

mesh Kakar, EOS Aqua Programme Scientist at NASA Headquarter

and the Keck Institute for Space Studies at California Institute of

Technology. We also thank Dr. Thomas Hearty for proofreading our

paper and sharing his results on AIRS data. The TMI SST data were

downloaded from ftp://ssmi.com/tmi/. The standardized zonal winds

at 30 and 50 hPa (u30hPa and u50hPa) were downloaded from

http://www.cpc.ncep.noaa.gov/data/indices/. The MEI index for

ENSO was downloaded from http://www.esrl.noaa.gov/psd/enso/mei/

. YLY designed the approach; HHA provided the monthly-averaged

AMSU-A/Aqua data; TYH and ZS provided the DMP package; ZS

and YS developed the EJME package; YS performed the time series

decomposition; KFL, YLY, and YS interpreted the results and wrote

most of the manuscript.

Appendix 1: Random re-sampling of AMSU-A/aqua

observations

Each day the Atmospheric InfraRed Sounder (AIRS) aboard

Aqua generates *3 million spectra, which are stored in 240

files totaling *20 GBytes of calibrated radiances each day.

Spatially co-located with the AIRS spectra are the brightness

temperatures from 15 AMSU channels, which add another

*120 MB. In order to reduce this data volume for opera-

tional calibration, *3,400 sample measurements from day-

time (1:30 p.m.) orbits and another 3,400 sample measure-

ments from night-time (1:30 a.m.) orbits have been randomly

selected and are stored in the AIRS Calibration Subset

Product (AIRXBCAL), which can be downloaded from

http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings. The pri-

mary objective of the Calibration Subset Product is to aid in

verifying the calibration of AIRS, AMSU and visible chan-

nel radiances relative to truth on the Earth’s surface.
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However, a part of the AIRXBCAL data save randomly

selected near-nadir (defined below) samples. It is this ran-

dom subset of AMSU-A/Aqua footprints collected in the

AIRXBCAL products which is used in this study.

The re-sampling of AMSU-A/Aqua radiances are based

on a random re-sampling algorithm for AIRS spectra. The

AIRS and AMSU-A/Aqua data from each day are grouped

in 32,400 cross-track scan line. The AIRS and AMSU-A/

Aqua scan lines have 90 and 30 footprints, respectively,

both covering ±49� from nadir (downward vertical line

from the satellite). Therefore, the cross-track resolution of

AIRS is 3 times finer than that of AMSU-A/Aqua. For

AIRS, 6 of the 90 footprints are located at ±0.55�, ±1.65�,

and ±2.75� from nadir; the measured spectra of these 6

footprints are referred to as the ‘‘near-nadir’’ spectra. Each

day, there are 194,400 (=32,400 9 6) near-nadir AIRS

spectra, from which *18,000 spectra are randomly selec-

ted as follows: Each scan line has an associated satellite

latitude h. Let q = [0,1] be a uniformly-distributed random

number. If q/cosh B 0.14, one of the 6 near-nadir AIRS

footprints is randomly selected from that scan line. The

q/cosh term removes the spatial over-sampling character-

istic of polar orbiting satellites. This is important for climate

application using global averages, so that 50 % of the ran-

domly re-sampled near-nadir spectra correspond to the area

between 30�S and 30�N, as expected by integrating over the

sphere. Finally, for a selected AIRS footprint that lies

within ?0.55� and ?2.75� of nadir, the corresponding

AMSU-A/Aqua footprint at ?1.65� will be taken, of which

the measured radiance will be used for operational purposes

such as determination of the presence of clouds. Similarly,

for a selected AIRS footprint that lies within -0.55� and

-2.75� of nadir, the corresponding AMSU-A/Aqua foot-

print at -1.65� will be taken.

Figure 11a shows the spatial coverage of 17,594 re-

sampled near-nadir AIRS footprints on 7 Janurary, 2007.

Note the thinning of the re-sampling density near the polar

regions. To further illustration the random re-sampling,

Fig. 11b shows a zoom-in of an Aqua swath near Hawaii

on the same day. For comparison, the full field-of-views

(FOV) of both AIRS and AMSU-A/Aqua span over ±49�
from nadir, which is shown as green in the figure. For the

AIRXCAL product, only AIRS footprints within ±3.3�
from nadir (shown as orange) are randomly selected. For

Hawaii

Randomly selected near-nadir AIRS footprints on 7 January, 2007

a

b

AIRS

AMSU-A

Nadir

   Footprint
Comparison

Along-track

Cross-track
direction

direction

Fig. 11 a The spatial

distribution of randomly

selected AIRS footprints

within ± 3.3� from nadir (i.e.

near-nadir observations) on

January 7, 2007. The random

selection is performed in the

way that more footprints closer

to the equator are selected such

that 50 % of the total selected

footprints come from the area

between 30�N and 30�S. Note

the thinning of density of the

selected footprints near the

poles; b A zoom-in of a

descending Aqua swath near

Hawaii. The blue dots

representing the randomly

selected AIRS footprints are the

same as those shown in a. Both

AIRS and AMSU-A/Aqua have

a full field-of-view (FOV)

of ± 49� from nadir (green).

Only footprints within ± 3.3�
from nadir (orange) are

randomly selected for

calibration purposes, which are

stored in the AIRXCAL product
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each cross-track scan line, none or more than one of the

AIRS footprints may be selected. The AMSU-A/Aqua

footprint (either at ?1.65� or -1.65� from nadir) closest to

the selected AIRS footprint is taken, as illustrated on the

right of Fig. 11b.

Same as the original data, the re-sampled orbit will repeat

in exactly 16 days. An example of the spatial coverage of the

re-sampled data points over the equatorial Indian Ocean is

shown in Fig. 12. This time period included 232 orbits, but

data 3.5 orbits are missing, seen as the thinner spatial cov-

erage, due to various spacecraft maneuvers.

Appendix 2: Ensemble joint multiple extraction

(EJME)

Mathematical formulation

To state the data analysis method in a clearer manner, let

X(ti), i = 1,2,…,N, be a time series. We replace data points

during SSW with moving monthly average. The time series

is then decomposed by X(ti) = X(0)(ti) ? S(ti), where

X(0)(t) is the masked data and S(t) is SSW events. The most

prominent peaks in the Fourier spectrum of X(0)(t) are

identified, and the initial guess of the phase function hk
0(t)

for DMP is estimated. Using DMP, X(0)(t) is decomposed

into m modes gk
(0)(t) and residual R(0)(t) as:

X 0ð Þ tið Þ ¼
Xm

k¼1

g
0ð Þ

k tið Þ þ R 0ð Þ tið Þ:

In our analysis, we identify characteristic time scales from

the spectra of the time series. For tropospheric data, four

initial guesses of hk
0(t) are used corresponding to harmonics

with periods of 0.5, 1.0, 1.6 and 2.2 years. For stratospheric

data, five initial guesses of hk
0(t) are used corresponding to

harmonics with periods of 0.3, 0.5, 1.0, 1.6, and 2.2 years. In

DMP iterations, if the retrieved period drifts away from the

initial guess, the initial guess will be slightly perturbed and

the DMP iterations will be repeated.

Due to the end point problem of DMP, the residual R(0)(t)

may still contain signals at both ends of the time series. To

resolve the end issue, EEMD is employed to pick up signals

from the ends. Using EEMD, R(0)(t) is decomposed by

R 0ð Þ tið Þ ¼
Xn

j¼1

c
0ð Þ

j tið Þ þ r 0ð ÞðtiÞ

where cj
(0)(t) are IMFs and r(0)(t) is the EEMD residual. In our

analysis, the noise used in EEMD is 0.2 of the standard

deviation of the time series and the ensemble number used is

150. The ensemble number may seem to be small, but taking

into account that this process will typically be repeated more

than ten times, the total ensemble number is considerable.

Whenever the spectral correlation of cj
(0)(t) and gk

(0)(t) is

larger than 0.5, cj
(0)(t) is masked by a plateau-like weight-

ing function W(t) and combined with gk
(0)(t) to become the

k-th mode

f
0ð Þ

k tið Þ ¼ g
0ð Þ

k tið Þ þW tið Þc 0ð Þ
j ðtiÞ

where W(t) is chosen as

WðtÞ ¼ hðta � tÞ þ ð1� hðta � tÞÞe�aðta�tÞ2

þ hðt � tbÞ þ ð1� hðt � tbÞÞe�aðt�tbÞ2

Here (t) is the Heaviside step function and ta, tb and a are

some constants. In our analysis we choose ta = 2003.25,

tb = 2011.25 and a = 2. After recombination, the residual

X 1ð Þ tið Þ ¼ X 0ð Þ tið Þ �
Xm

k¼1

f
0ð Þ

k ðtiÞ

is used in place of X(0)(t) as the time series for the next

round of extraction.

Let e [ 0 be some preset small amplitude. The iteration

is terminated at the p-th cycle if for all k = 1, 2, …, m, the

standard deviation of f
pð Þ

k tið Þ; i ¼ 1; 2; � � � ;N
n o

is smaller

than e. In our analysis, e is chosen to be 0.1 % of the

standard deviation of X(0)(t).

The k-th mode of the original data is defined as the

summation of all the k-th extracted mode from each round

of extraction:

f0;kðtiÞ ¼
Xp�1

j¼0

f
jð Þ

k ðtiÞ

And the data is now decomposed by

Xð0ÞðtiÞ ¼
Xm

k¼1

f0;kðtiÞ þ XðpÞðtiÞ

In our case, after such treatment, the residual X(p)(t)

contains only very low frequency and very high frequency

Sri LankaMaldive Islands Indonesia

Fig. 12 The spatial coverage of the re-sampled AIRS footprints

between 1 January, 2007 and 16 January, 2007 over the equatorial

Indian Ocean. The major islands are labeled
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components, which are readily separable by EEMD. The

EEMD decomposition of Y(0)(t) = X(p)(t) is

Y ð0ÞðtiÞ ¼
Xn

k¼1

L
ð0Þ
k ðtiÞ þ T ð0ÞðtiÞ

where Lk
(0)(t) are the IMFs and T(0)(t) is the residual. In our

analysis, the noise used in EEMD is 0.2 of the standard

deviation of the time series and the ensemble number used

is 150. The anomaly mode A(0)(t) is obtained by summing

up all the low frequency IMFs:

A 0ð ÞðtiÞ ¼
Xn

k¼s

L
ð0Þ
k ðtiÞ

In our analysis, by the length of the time series, EEMD

chooses n = 6 and we choose s = 5. Since the

decomposition of low frequency components is usually

affected by high frequency ones, we put Y(1)(t) in place of

Y(0)(t) and repeat the EEMD extraction again. Here Y(1)(t)

is defined by

Y ð1ÞðtiÞ ¼ Y ð1ÞðtiÞ � Að0ÞðtiÞ

This process is terminated at the q-th cycle if the

standard deviation of A qð Þ tið Þ; i ¼ 1; 2; . . .;N
	 


is smaller

than e. In our analysis, e is chosen to be 0.1 % of the

standard deviation of the linearly detrended Y(0)(t). The

anomaly mode is obtained by

A0ðtiÞ ¼
Xq

j¼0

AðjÞðtiÞ

Finally, the data is decomposed by.

XðtiÞ ¼
Xm

k¼1

f0;kðtiÞ þ A0ðtiÞ þ T0ðtiÞ þ H0ðtiÞ

where T0(t) = T(q)(t) is taken as the trend, and the residual

H0(t) is the sum of high frequency components and S(t).

Since this method is far too complicated for direct

analysis, we employ the noise assisted method to control its

quality and test its stability. We obtain an ensemble of M

decompositions by adding white noise to the data

Xi(t) = X(t) ? Nj(r,t) where Nj(r,t) is some white noise

with standard deviation r. The decomposition ensemble

with input uncertainty r is

Eðr; tÞ ¼
(

Djðr; tÞ ¼ ðfj;kðtÞ;AjðtÞ; TjðtÞ;HjðtÞÞ : XjðtÞ

¼
Xm

k¼1

fj;kðtÞ þ AjðtÞ þ TjðtÞ þ HjðtÞ
)

The ‘‘true’’ decomposition D(r, t) with input uncertainty

r is taken to be the ensemble average

Dðr; tÞ ¼ 1

M

XM
j¼1

Djðr; tÞ ¼ ðfkðtÞ;AðtÞ; TðtÞ;HðtÞÞ

For each input uncertainty r, there will be some

associated uncertainty in the output. The relation between

input and output uncertainty is intrinsic to the data analysis

method.

End points problems in EJME

Both DMP and EEMD used in EJME have end points

problems. In DMP, the end points problem arises when one

periodically extends a non-periodic time series. Since FFT

is used as the iterative kernel in DMP, whenever the time

series is non-periodic, the infinitely extended time series

will be discontinuous at the end points. With only a finite

number of terms, energies near the discontinuities will not

be fully captured by FFT, and hence not by DMP. Typi-

cally, the end problem of DMP is manifested by the

attenuation of IMFs towards the ends. Examples can be

found in Hou and Shi (2011). In EEMD, the end problem is

caused mainly by cubic spline fitting, which artificially

deforms features of the time series especially at the ends.

This problem is more serious for low-frequency modes,

which have very few numbers of maxima and minima for

constructing upper and lower envelopes, resulting in

unregulated wings at end points.

The end points problem in DMP leads to leakage of

signals at the ends. Moreover, when IMFs are attenuated,

the residual becomes significant towards the ends, and this

strongly interferes with the estimation of the trend and

makes the resolution of the end points problem indis-

pensable. Although EEMD has its end points problem as

well, the noise-assisted process tends to randomize the end

points so that deterministic errors can usually be reduced.

In practice, the end points problem of EEMD is signifi-

cantly less serious than that of DMP when applied to real

data. Hence in our analysis, in order to give a better esti-

mation of trends, we employ EEMD to ameliorate the end

points problem of DMP, and reduce the energy of the

residual near the end points at the expense of introducing in

them some possible arbitrariness. As a consequence, as can

be seen in Figs. 2, 4 and 5, the 1-r ensemble deviation is

typically larger at end points than in the middle of each

IMF, and yet the estimation of trend is made better, since

the end points of a time series, which interfere strongly

with the estimation of trend, have now been fully extracted.

Stability of EJME

Neither IMFs by EEMD nor DMP are perfect in the pres-

ence of noise. Using these two methods jointly, the
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reliability of EJME needs to be assessed before any result

obtained by it can be taken seriously. Since there is no

unique decomposition of any given time series, what can

be taken as a ‘‘true’’ decomposition is quite ambiguous. So

instead of asking whether the decomposition is ‘‘true’’, it is

more appropriate to ask how stable it is in response to

perturbations in the input and changing of parameters in the

data analysis method. Whenever a decomposition is veri-

fied to be stable, it is plausible to accept it as a reasonable

decomposition of a given time series.

Since DMP is an optimization algorithm, one may think

of mode decomposition as a process of searching for the

‘‘ground state’’ of a system, in which the iteration processes

could sometimes converge to some pseudo-stable state

instead of the lowest energy state. Although it is unlikely

that we can ever affirm a stable state to be the ground state,

we can always verify its stability by adding noise to the

test, and kick the system into some lower energy states

whenever they do exist in the vicinity. For any data anal-

ysis method, whenever the ‘‘thermal activation’’ is strong

enough, the system will always ‘‘ionize’’ and the results

will diverge. Yet for a good data analysis method, the

uncertainty in the results should be constrained for a range

of moderate perturbations.

Since parameters in EJME are chosen according to the

features of time series, they are not totally free to change.

While perturbing some parameters may be fatal to the

results, changing some others has limited effects. Hence in

this paper, we fix all parameters as stated in ‘‘Appendix

2.1’’ and investigate only the stability of mode decompo-

sition upon perturbations in the input. We perform a Monte

Carlo simulation, where an ensemble of EJME IMFs,

fIMFðtÞ : EJMEfXðtÞ þ arX
~NðtÞgg, is obtained by adding

an artificial white noise to the raw time series X(t), where
~N tð Þ is a Gaussian noise with unit standard deviation, rX

the standard deviation of the de-trended X(t), and a a

constant. Note that this is the second Monte Carlo simu-

lation that is similar to the one employed in EEMD during

EJME. The standard deviation of {IMF(t)}, denoted by

rIMF(t), characterizes as the sensitivity of EJME in

response to the measurement noise. For simplicity, we

define the sensitivity �S as the time average of rIMF(t).

Taking AMSU-A/Aqua Channel 5 as an example, �S is

plotted as a function of a in Fig. 13. Three tests are run for

each a, and the EJME ensemble number used in the noise

tests is 200. �S of IMF 1, denoted by �S IMF1ð Þ, is linearly

growing with a, indicating that �S IMF1ð Þ is simply the

artificial noise in the Monte Carlo simulation. �S IMF2ð Þ
shows a transition when a � 7%, after which the depen-

dence on a is much weaker. The same applies for other

IMFs 3–7: �Ssaturates and its dependence on a is much

weaker when a� 7%. This show that �S saturates a� 7%.

Here we have shown the noise test for monthly-averaged

data of AMSU Channel 5 only, and the results for other

channels are qualitatively similar. For our results presented

in Sects. 4 and 5, we used one standard deviation of IMF 1

for EJME, which is *0.25rX . That is, the perturbation we

have used in our work is taken within a range where �S is

insensitive to a.

Appendix 3: Amplitude and phase determinations

In Sect. 4.3 we discussed the amplitude and phase of an

extracted IMF using EJME. The amplitude has been

defined as the standard deviation of the time series. Below

we describe how the phase has been defined.

Given a time series with at least one local maximum, let

tmax
1 ; tmax

2 ; . . .; tmax
n be the time of the local maxima. For

example, consider the following fictitious biennial mode,

where n = 5 and tmax
i are approximately 2 years apart:

tmax
i = {2002.4, 2004.6, 2006.5, 2008.6, 2010.4}. We then

apply the following regression model to obtain an ‘‘average

period’’, xmax, and an ‘‘average time of maximum’’, umax,

from tmax
i : tmax

i ¼ xmax � ði� ½n=2�Þ þ umax, where x½ � is

the integer part of a real number x. In the above example,

xmax ¼ 2:0years and umax ¼ 2004:5. The phase difference

between two time series characterizing the temperature at

Fig. 13 Stability test for EJME using TB of AMSU-A Channel 5 as

an example. The amplitude of the artificial white noise is defined

relative to the standard deviation of the linearly de-trended data. Each

Monte Carlo simulation composed of 200 ensemble runs and the

standard deviation of the EJME IMFs was calculated at each time

coordinates; in this figure, the time-averaged uncertainty is shown so

that each run is represented by one circle. Three different Monte

Carlo simulations (all of sizes 200) were carried out
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two levels are thus defined as the difference between the

two resultant umax.

Similar calculation for the local minima can also be

performed to obtain an average time of minimum umin. In

EJME, an ensemble of umax and uminfor each IMF is

obtained from the noise-added time series. The ensemble

means and the 1-r standard deviations are shown in

Figs. 5, 6, 7, 9; S1–S4.
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