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We introduce a new adaptive method for analyzing nonlinear and nonstationary data.
This method is inspired by the empirical mode decomposition (EMD) method and the
recently developed compressed sensing theory. The main idea is to look for the spars-
est representation of multiscale data within the largest possible dictionary consisting
of intrinsic mode functions of the form {a(t) cos(θ(t))}, where a ≥ 0 is assumed to be
smoother than cos(θ(t)) and θ is a piecewise smooth increasing function. We formulate
this problem as a nonlinear L1 optimization problem. Further, we propose an iterative
algorithm to solve this nonlinear optimization problem recursively. We also introduce
an adaptive filter method to decompose data with noise. Numerical examples are given
to demonstrate the robustness of our method and comparison is made with the EMD
method. One advantage of performing such a decomposition is to preserve some intrinsic
physical property of the signal, such as trend and instantaneous frequency. Our method
shares many important properties of the original EMD method. Because our method is
based on a solid mathematical formulation, its performance does not depend on numer-
ical parameters such as the number of shifting or stop criterion, which seem to have a
major effect on the original EMD method. Our method is also less sensitive to noise
perturbation and the end effect compared with the original EMD method.

Keywords: Time-frequency analysis; instantaneous frequency; empirical mode decompo-
sition; sparse representation of signal; L1 minimization.

1. Introduction

Data are one of the most important links that we have with the physical world.
Developing effective data analysis methods is an important path through which
we can understand the underlying processes of natural phenomena. So far, most
data analysis methods use a pre-determined basis to process data. These methods
often assume linearity and stationarity of data. Time-frequency analysis has been
developed to overcome the limitations of the traditional techniques by representing
a signal with a joint function of both time and frequency. Time-frequency analysis
provides a revealing picture in the time-frequency domain and can be applied to
study nonstationary and nonlinear signals. The recent advances of wavelet analy-
sis opened a new path for time-frequency analysis. A significant breakthrough of
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wavelet analysis was the use of multiscales to characterize signals. This technique
has led to the development of several wavelet-based time-frequency analysis tech-
niques [Daubechies (1992); Jomes and Parks (1990); Mallat (2009)].

In real-world experimental and theoretical studies, we often deal with signals
that have ever-changing frequency. A typical example is chirp signals used by bats
as well as in radar. To better understand the physical mechanisms hidden in data,
one needs to develop effective methods that can handle the nonstationarity and
nonlinearity of the data. Such methods should be adaptive to the nature of the
data, which requires the use of an adaptive basis that is not determined a priori.
Instead, the basis should be derived from the data.

An important development in time-frequency analysis is to study instantaneous
frequency of a signal. Some of the pioneering work in this area was due to Van
der Pol (1946) and Gabor (1946), who introduced the so-called analytic signal (AS)
method which uses the Hilbert transform to determine instantaneous frequency of a
signal. This AS method has received a lot of attention and is one of the most popular
ways to define instantaneous frequency. Until very recently, this method works
mostly for monocomponent signals in which the number of zero-crossings is equal to
the number of local extrema [Boashash (1992)]. There were other attempts to define
instantaneous frequency such as the zero-crossing method [Meville (1983); Rice
(1944); Shekel (1953)] and the Wigner–Ville distribution method [Boashash (1992);
Lovell et al. (1993); Qian and Chen (1996); Flandrin (1999); Loughlin and Tracer
(1996); Picinbono (1997)]. However, most of these methods are rather restrictive.
More substantial progress has been made only recently with the introduction of the
empirical mode distribution (EMD) method [Huang et al. (1998)] and the Hilbert
spectral representation based on the wavelet projection [Olhede and Walden (2004)].

The main idea of EMD is to first compute the local median of a signal via
a shifting procedure and then subtract the local median from the signal before
applying the AS method to define its instantaneous frequency. The EMD method
provides a powerful tool to decompose a signal into a collection of intrinsic mode
functions (IMFs) that allow well behaved Hilbert transforms for computation of
physically meaningful time-frequency representation. In spite of its considerable
success, there is still a lack of mathematical understanding of the EMD method
such as its convergence property and dependence on the number of shifting, the
stopping criteria, and its stability to noise perturbation. We remark that there has
been some recent progress in developing a mathematical framework for an EMD like
method using synchrosqueezed wavelet transforms by Daubechiesa et al. (2011), see
also the paper entitled “One or Two Frequencies? The Synchrosqueezing Answers”
by Wu, Flandrin, and Daubechies in this same special issue of AADA as our paper.
This is a very interesting line of work. For the examples they consider, their method
produces excellent results.

Inspired by the EMD method and the recently developed compressed sensing
theory [Candes and Tao (2006); Candes et al. (2006a); Donoho (2006)], we propose
a new adaptive data analysis method. This method has a beautiful mathematical
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structure and is fully adaptive to the data. It can be seen as a nonlinear version of
compressed sensing and provides a mathematical foundation of the EMD method.

Our adaptive data analysis method is motivated by the observation that the mul-
tiscale data have an intrinsic sparse structure in the time-frequency plane, although
its representation in the physical domain could be rather complicated. The chal-
lenge is that such sparsity structure is valid only for certain multiscale basis, which
is adapted to the data and is unknown a priori. Thus, one of the main challenges
is to find such nonlinear multiscale basis under which the multiscale data have a
sparse representation. This is very different from the compressed sensing problem
because the basis under which the data have a sparse representation is assumed to
be known a priori. Traditionally, the adaptive basis is derived by learning the data.
This approach requires a large number of data samples that share the similar phys-
ical property. This does not apply to our problem since we deal with only a single
signal. In our approach, the adaptivity is achieved by adopting the largest possible
dictionary. Then, the decomposition has enough freedom to choose the basis from
this dictionary that provides the best match to the data. The trade-off is that the
decomposition is not unique. We need to exploit the intrinsic sparse structure of
the data to select the best one among all the possible decompositions.

Our method consists of two steps. First, we construct a highly redundant dic-
tionary:

D = {a(t) cos θ(t) : θ′(t) ≥ 0, a(t) is smoother than cos θ(t)} . (1)

Then, the signal is decomposed over this dictionary by looking for the sparest
decomposition. The sparest decomposition can be obtained by solving a nonlinear
optimization problem:

P : Minimize M

Subject to: f(t) =
M∑

k=1

ak(t) cos θk(t), ak(t) cos θk(t) ∈ D, k = 1, . . . , M.

(2)

This optimization problem can be seen as a nonlinear version of the l0 minimization
problem which has been studied extensively in the compressed sensing literature
[Bruckstein et al. (2009)]. By generalizing the numerical method to solve the l0 min-
imization problem, we propose an iterative algorithm to solve the above nonlinear
optimization problem.

The above nonlinear optimization problem is very challenging. We introduce a
recursive iterative scheme to solve this nonlinear optimization problem. Like the
EMD method, we would like to first decompose a signal into its local median,
a0(x), and its fluctuation (IMF), a1(x) cos(θ1(x)), with a1 cos(θ1) ∈ D. One way to
impose sparsity of the decomposition, i.e., minimizing M , is to find the smoothest
possible local median, a0, so that a1 cos(θ1) ∈ D. If we can find the smoothest
possible a0 to decompose f = a0 + a1 cos(θ1), then it is reasonable to expect that



September 2, 2011 11:18 WSPC/1793-5369 244-AADA
S1793536911000647

4 T. Y. Hou & Z. Shi

we can decompose the local median, a0, into smallest number of IMFs aj cos(θj)
(j = 2, . . . , M) over D. This would give rise to a recursive iterative scheme to find
a sparse decomposition of f into its IMFs over D.

One way to measure smoothness of a0 is to use the total variation norm, which
is defined as the L1 norm of its first derivative. Another reason for using an L1 norm
is that L1 minimization tends to give a sparse representation of data [Bruckstein
et al. (2009); Candes and Tao (2006); Candes et al. (2006a); Candes et al. (2006b);
Donoho (2006)]. However, it is well known that minimizing the total variation of a
signal tends to produce a piecewise constant function, the so-called staircase effect.
In order to preserve some high-order information (e.g., curvature) of a signal, we
propose to use the third-order total variation, which is defined as the total variation
of the third derivative of a function, to measure smoothness. This produces a much
better result. Incidentally, the third-order total variation tends to favor cubic spline
interpolations of a0 and a1. As a result, our method can reproduce some of the best
results obtained by the EMD method in many cases.

One drawback of using a high-order total variation norm in our optimization
problem is that it is more sensitive to noise. This is also the case for the original
EMD method since a0 and a1 are approximated by interpolating the local extrema
of the signal by using cubic splines. To overcome this sensitivity to noise, we develop
a nonlinear adaptive filter and couple it with our iterative optimization solver. This
considerably reduces the sensitivity of our method to noise. We also make a special
effort to reduce the approximation error near the two end-points of a signal, the
so-called end-point effect. For our method, this amounts to finding a good initial
guess for the phase function θ for our iterative scheme.

An important issue in the implementation of our method is to use an effective
L1 minimization solver since we need to solve a discrete L1 minimization prob-
lem within each nonlinear iteration. Like compressed sensing, the performance of
our method depends on the efficient implementation of the L1 minimization. We
have applied both the interior point method for large-scale L1-regularized least
square method developed recently by Kim et al. (2007) and the split Bregman iter-
ation developed by Goldstein and Osher (2009). For large-scale data, we find that
the split Bregman iteration is more efficient than the L1-regularized least square
method.

We perform extensive numerical experiments to test the convergence and the
accuracy of our method for both synthetic data and some real data. Our results show
that the L1-based nonlinear optimization can indeed decompose a multiscale signal
into a sparse collection of IMF. For those data that satisfy certain scale separation
condition, our method can recover the IMFs and their instantaneous frequencies
accurately. We also compare our method with the original EMD method. In most
cases, we find that our method gives results that are either comparable to or more
superior than those obtained by the EMD method. In comparison with the EMD
method, our method has the advantage of being insensitive to numerical parameters
such as the number of shifting or the stopping criterion. These parameters seem to
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have a major effect on the performance of the EMD method. Moreover, our method
has a better stability property for noisy data than the EMD method. For the data
we consider here, our method seems to provide better accuracy in approximating the
instantaneous frequency of noisy data than the recently developed EEMD method
[Wu and Huang (2005, 2009)].

The remaining part of the paper is organized as follows. We review the concept of
instantaneous frequency and the EMD method in Sec. 2. In Sec. 3, we introduce our
L1-based nonlinear optimization method, its numerical algorithm, and provide some
details of its implementation issues. In Sec. 4, we illustrate the convergence property
of our method for various nonlinear, nonstationary data. In Sec. 5, we introduce
our adaptive filter to decompose noisy data and demonstrate the robustness of the
modified nonlinear optimization method which uses the adaptive filter within each
iteration. Some concluding remarks are made in Sec. 6.

2. A Brief Review of the AS Method and the EMD Method

In this section, we give a brief review of the AS method and the EMD method. The
EMD method was motivated by the AS method to some extent and our method is
in turn inspired by the EMD method. Thus, it is natural for us to first understand
the main ideas behind these two methods.

2.1. The AS method

The concept of instantaneous frequency has been used in adaptive signal analysis
for many years. Some of the pioneering work in this area was due to Van der Pol
(1946) and Gabor (1946), who introduced the so-called AS method to determine
instantaneous frequency of a signal. Gabor’s approach is summarized as follows:
given a signal x(t), we define its imaginary part through the Hilbert transform,
i.e., y(t) = H(x)(t). Then, we can express the original signal as the real part of an
AS, z(t)

z(t) = x(t) + iy(t) = a(t)eiθ(t),

where a(t) =
√

x2(t) + y2(t) and θ(t) = tan−1 y(t)
x(t) . The instantaneous frequency is

then defined as ω(t) = d
dtθ(t). This AS method has received a lot of attention and is

one of the most popular ways to define instantaneous frequency. Until very recently,
this method works mostly for monocomponent signals in which the number of zero
crossings is equal to the number of local extrema [Boashash (1992)].

There are several difficulties in applying the AS method to extract the instan-
taneous frequency. First of all, not all the data are monocomponent. One has to
remove the local median or local trend before one applies the Hilbert transform to
the signal. Even though decomposing the data into a collection of monocomponent
functions is now available by wavelet decomposition [Olhede and Walden (2004)]
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or the EMD method [Huang et al. (1998)], there are other difficulties. One of the
most serious ones is that the AS method implicitly assumes that

H(a(t) cos(θ(t))) = a(t)H(cos(θ(t)). (3)

This is in general not valid unless the Fourier spectra of the envelope a(t) and
the carrier cos(θ(t)) are nonoverlapping as pointed out by Bedrosian (1963). This
imposes a much sharper condition on the data: the data have to be not only mono-
component, but also narrow band. A more fundamental difficulty is that even if
a(t) = 1, we know that H(cos(θ(t))) = sin(θ(t)) is not true for arbitrary function
θ(t) as pointed out by Nuttall (1966) unless θ(t) is linear. This difficulty has been
ignored by most investigators using the Hilbert transform to compute instantaneous
frequency [Huang et al. (2009)].

2.2. The EMD method

The EMD method [Huang et al. (1998)] is an adaptive, temporally local data anal-
ysis method. We refer to [Huang et al. (2009, 1999); Wu and Huang (2005, 2009);
Wu et al. (2007)] for more detailed discussions on EMD and its latest developments.
The main idea of EMD is to first subtract the local median of a signal x(t) before
applying the AS method to define its instantaneous frequency. The EMD method
provides an approximation to the local median via a shifting procedure. Specifically,
the EMD method uses a cubic spline polynomial to interpolate all the local maxima
of x(t) to obtain an upper envelope, and a cubic spline to interpolate all the local
minima to obtain a lower envelope, then average the upper and lower envelopes to
obtain an approximate median m1(t). One then decides whether or not to accept
the obtained m1(t) as our local median depending on whether c1(t) = x(t)−m1(t)
satisfies the following two conditions: (1) there must be one zero crossing between
two local extrema and the number of zero crossings and the number of extrema
must be equal and (2) c1 is “symmetric” with respect to zero. If x(t) − m1(t) does
not satisfy these conditions, one can treat x(t) − m1(t) as a new signal and repeat
the same procedure until a satisfactory c1 is found, which is defined as an IMF.
This is called the shifting procedure.

Currently, the EMD method can be justified only under certain very restric-
tive assumptions that are seldom satisfied by practical data. The performance also
depends sensitively on the number of shifting and the stopping criteria. The EMD
method is also known to be very sensitive to noisy data. The recently introduced
EEMD [Wu and Huang (2005, 2009)] has addressed some of these issues, but some
essential difficulties remain.

3. Adaptive Data Analysis Based on the Sparsest Time-Frequency
Representation of Signals

Our adaptive data analysis method is based on finding the sparsest decomposition
of a signal by solving a nonlinear optimization problem. First, we need to construct
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a large dictionary which can be used to obtain a sparse decomposition of a sig-
nal. In principle, the larger the dictionary is, the more adaptive (or sparser) the
decomposition is. In this paper, we define the redundant dictionary as follows

D = {a(t) cos θ(t): θ′(t) ≥ 0, a(t) is smoother than cos θ(t)} . (4)

In some sense, the above dictionary can be seen as a collection of all possible IMFs,
which makes our method as adaptive as the EMD method. Since the dictionary D
is highly redundant, the decomposition over this dictionary is not unique. We need
a criterion to pick up the “best” one. We observe that the multiscale data have an
intrinsic sparse structure in the time-frequency plane, although its representation
in the physical domain could be rather complicated. Based on this observation,
we adopt sparsity as our criterion to choose the best decomposition. This criterion
yields the following nonlinear optimization problem

P0 : Minimize M

Subject to: f(t) =
M∑

k=1

ak(t) cos θk(t), ak(t) cos θk(t) ∈ D, k = 1, . . . , M.

(5)

After this optimization problem is solved, we get a very clear time-frequency rep-
resentation:

Instantaneous frequency: ωk(t) = θ′k(t), Amplitude: ak(t). (6)

We remark that the EMD method typically decomposes a signal into a few IMFs,
which provides a sparse decomposition of the signal implicitly.

3.1. Adaptive decomposition based on a third-order total variation

The nonlinear optimization (P0) stated above is too difficult to solve numerically.
In this section, we propose a recursive scheme to solve the nonlinear optimization
problem (P0) approximately.

First of all, we observe that after extracting the highest-frequency IMF,
a1(t) cos θ1(t), the local median would become much smoother than the original
signal, f(t). Based on this observation, we propose the following alternative method
to solve the original nonlinear optimization problem: looking for a1(t) cos θ1(t) ∈ D
that gives the smoothest local median, a0(t) = f(t)−a1(t) cos θ1(t). This idea yields
the following optimization problem

Find the smoothest a0(t)

Subject to: a0(t) + a1(t) cos θ1(t) = f(t), (7)

θ′1(t) ≥ 0, a1(t) is smoother than cos θ1(t).

However, we need to give a quantitative measurement of smoothness in the above
optimization problem (7) before we can solve it numerically.
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A possible way to measure smoothness of a function is to minimize its total
variation:

TV (g) =
∫ b

a

|g′(x)|dx. (8)

The total variation norm has been used widely in shock capturing and PDE-based
imaging analysis. On the other hand, it is also well known that minimizing the total
variation would generate the “stair case.” The stair case on the local median, a0,
introduces artificial high frequency information into the signal. To enforce a higher-
order regularity of the local median, we propose to use a high-order total variation
to measure smoothness. For this reason, we define the nth-order total variation as
follows

TV n(g) =
∫ b

a

|g(n+1)(x)|dx, (9)

where g(n+1)(x) is the (n + 1)th derivative of g.
In this paper, we adopt the third-order total variation to measure smoothness of

a0 and a1. We note that minimizing the third-order total variation of a function g

tends to produce a piecewise constant approximation to the third-order derivative
of g. Thus, our TV (3)-based minimization tends to produce a cubic spline approx-
imation for a0 and a1. In this sense, our method shares some property similar to
that of the EMD method.

Now, the TV (3)-based optimization problem (5) can be written in the following
form

Minimize TV 3(a0)

Subject to: a0(t) + a1(t) cos θ(t) = f(t),

θ′(t) ≥ 0, a1 is smoother than cos θ(t).

(10)

On the other hand, we need to enforce the condition that a1 is smoother than
cos(θ1). This can be done by using a Lagrangian multiplier approach. We choose the
Lagrangian multiplier parameter to be one and reformulate the above optimization
problem into the following form

(P ) Minimize TV 3(a0) + TV 3(a1),

Subject to: a0(t) + a1(t) cos θ(t) = f(t), θ′(t) ≥ 0.
(11)

In the next section, we propose an iterative algorithm to solve this nonlinear opti-
mization problem.

3.2. An iterative algorithm

In this section, we introduce a Newton type of iteration method to solve the non-
linear optimization problem (11) proposed in the previous section.

Initialization: θ0 = θ0.
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Main iteration:

Step 1: Update an
0 , an

1 , and bn
1 by solving the following linear optimization

problem:

Minimize TV 3(an
0 ) + TV 3(an

1 ) + TV 3(bn
1 ), (12)

Subject to: an
0 + an

1 cos θn−1(t) + bn
1 sin θn−1(t) = f(t). (13)

Step 2: Update the phase function θ:

θn = θn−1 − µ arctan
(

bn
1

an
1

)
, (14)

where µ ∈ [0, 1] is chosen to enforce that θn is an increasing function:

µ = max
{

α ∈ [0, 1] :
d

dt

(
θn−1

k + α arctan
(

bn
1

an
1

))
≥ 0

}
. (15)

Step 3: If ‖θn − θn−1‖2 ≤ ε0, stop. Otherwise, go to Step 1.

3.3. Normalization to obtain an initial guess for θ

It remains to find a good initial guess for θ(t) to start our iterative algorithm
to solve for the nonlinear optimization problem. In this section, we introduce a
normalization operator to obtain a good initial guess for θ(t) from f(t).

First of all, it is easy to prove the following proposition.

Proposition 3.1. If g(t), t ∈ [a, b] is continuous, and satisfies the following
conditions:

(1) |g(t)| ≤ 1, ∀ t ∈ [a, b];
(2) All local maximums of g are equal to 1;
(3) All local minimums of g are equal to −1.

then there exists θ(t) such that θ′(t) ≥ 0 and g(t) = cos θ(t).

We now introduce the normalization operator. Suppose zi, zi+1 (zi < zi+1) are
two adjacent extrema of f(t) with f(zi) being the local minimum and f(zi+1)
the local maximum. Then, f(t) can be normalized to satisfy the condition in
Proposition 3.1 by using the following normalization operator

Φc[f ](t) =
2f(t) − (f(zi+1) + f(zi))

f(zi+1) − f(zi)
, t ∈ [zi, zi+1]. (16)

It is easy to check that for any continuous function f(t), the normalized function
Φc[f ] satisfies the three conditions in Proposition 3.1. So, there exists a phase
function θ0(t) such that θ′0(t) ≥ 0 and

Φc[f ](t) = cos θ0(t). (17)

This phase function θ0 can be used as the initial guess of the nonlinear iteration
method that we propose in the previous section.
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We can prove that for the signals that satisfy the following scale-separation prop-
erty, the normalization operator, Φc, defined above provide a good approximation
to the exact phase function.

Assumption 3.1. (Scale-separation). The decomposition f(x) = a0(x) + a1(x)
cos θ1(x) is said to satisfy the scale-separation property if a0, a1 are smoother than
cos(θ1(x)).

Throughout this paper, we say that g1(x) is smoother than g2(x) if the amplitude
of the first-order derivative of g1 is much smaller than that of g2.

Proposition 3.2. Let f = a0 + a1 cos θ. Assume that xj , 0 ≤ j ≤ m1 are the local
maxima of f, and zj , 0 ≤ j ≤ m2 the local minima. Define

ε = max
1≤j≤m1

( |a′
0(xj)| + |a′

1(xj)|
|a1(xj)||θ′(xj)|

)
+ max

1≤j≤m2

( |a′
0(zj)| + |a′

1(zj)|
|a1(zj)||θ′(zj)|

)
.

If ε is small, which implies implicitly that a0, a1, and cos(θ) satisfy the scale-
separation condition, then we have

cos θ(xj) ≈ 1 + O(ε2), 0 ≤ j ≤ m1 (18)

cos θ(zj) ≈ −1 + O(ε2), 0 ≤ j ≤ m2. (19)

Proof. Since f ′(xj) = 0, we have

f ′(xj) = a′
0(xj) + a′

1(xj) cos θ(xj) − a1(xj)θ′(xj) sin θ(xj) = 0. (20)

Solving for sin θ(xj) from the above equation yields

sin θ(xj) =
a′
0(xj) + a′

1(xj) cos θ(xj)
a1(xj)θ′(xj)

. (21)

Thus, we have

|sin θ(xj)| =
∣∣∣∣a′

0(xj) + a′
1(xj) cos θ(xj)

a1(xj)θ′(xj)

∣∣∣∣
≤ |a′

0(xj)| + |a′
1(xj)|

|a1(xj)||θ′(xj)| ≤ ε. (22)

Notice that

|cos θ(xj) − 1| = |1 −
√

1 − (sin θ(xj))2| = O(| sin θ(xj)|2) = O(ε2). (23)

Similarly, we have

|cos θ(zj) + 1| = O(ε2). (24)

The above analysis shows that the local extrema of the signal f give us the
approximation to the upper envelop a0 + a1 and the lower envelope a0 − a1. Once
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the extrema are identified, the upper and lower envelopes can be approximated by
interpolating local maxima and minima. To improve the accuracy of our approx-
imation to the upper and lower envelopes, we may use a high-order interpolation
method, such as the cubic spline method.

Let us denote by U(t) and L(t) the cubic spline interpolation of the upper and
lower envelopes, respectively. We may define a high-order normalization operator,
Φs, as follows

Φs[f ](t) =
2f(t) − (U(t) + L(t))

U(t) − L(t)
. (25)

Clearly, the accuracy of the normalization operator is based on the scale-separation
property of the signal and the accuracy of the interpolation used to construct the
envelopes. If the error introduced by the interpolation is smaller than the error
introduced by the lack of scale separation, then the accuracy of the normalization
cannot be improved by using a high-order interpolation. For this reason, we do not
try to use an interpolation polynomial with order higher than the cubic spline.

One drawback in using the cubic spline interpolation to approximate U(t) and
L(t) is that Φs[f ] may not satisfy the conditions in Proposition 3.1. If it is the
case, the lower-order normalization operator, Φc, is applied to Φs[f ]. Thus, the
final normalization operator is defined as the composition of Φc and Φs:

Φ[f ] = Φc ◦ Φs[f ]. (26)

The initial guess of θ is obtained by taking arccos:

θ0(t) = arccos(Φ[f ]). (27)

3.4. Implementation

In this section, we provide further details for the implementation of our iterative
algorithm for solving the nonlinear optimization problem. First of all, we observe
that in each step of the iterative algorithm, one third-order total variation mini-
mization problem needs to be solved. This third-order total variation minimization
problem can be written as an L1 minimization problem, which has been well studied
in the compressed sensing literature.

Suppose the signal is uniformly sampled at ti, i = 1, 2, . . . , N . Then, the third-
order total variation minimization problem can be reformulated as follows

min ‖Φx‖1, subject to: Ax = f . (28)

where

Φ =
[
D4,D4,D4

]
, x =

an
0

an
1

bn
1

, A =
[
I, diag(cos θn−1), diag(sin θn−1)

]
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and D4 ∈ R
(N−4)×N is the matrix, which is obtained by discretizing the fourth-

order derivative by a finite difference method

D4 =


1 −4 6 −4 1 0 · · · · · · 0
0 1 −4 6 −4 1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 1 −4 6 −4 1 0
0 · · · · · · 0 1 −4 6 −4 1

 (29)

I ∈ R
N×N is the identity matrix, and diag(cos θn−1) and diag(sin θn−1) are diagonal

matrices:

diag(cos θn−1) =


cos θn−1(t1) 0 · · · · · · 0

0 cos θn−1(t2) 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 cos θn−1(tN−1) 0
0 · · · · · · 0 cos θn−1(tN )


(30)

diag(sin θn−1) =


sin θn−1(t1) 0 · · · · · · 0

0 sin θn−1(t2) 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · 0 sin θn−1(tN−1) 0
0 · · · · · · 0 sin θn−1(tN )

.

(31)

To solve the above L1 minimization problem, we can use either the interior point
method for large-scale L1-regularized least square method developed recently by
Kim et al. (2007) or the split Bregman iteration developed by Goldstein and Osher
(2009). For large-scale data, we find that the split Bregman iteration is more efficient
than the L1-regularized least square method.

Another issue we need to consider in the implementation is the end effect. In
the normalization process, we need to estimate the upper and lower envelopes of
the signal at the two boundary points of the time domain. We have tried different
methods to reduce this end effect, including the method proposed by [Wu and
Huang (2009)].

4. Numerical Results

In this section, we perform a number of numerical experiments to test the conver-
gence and accuracy of the proposed adaptive data analysis method for a number of
examples involving a variety of multiscale data.

4.1. Synthetic data

We first apply our method to several synthetic data. The advantage of using the
synthetic data is that we know what is the exact sparse decomposition that we try
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to recover using our method. For real data, we do not have the luxury to know what
is the correct decomposition. We can only use the underlying physical property of
a signal as a guidance whether our decomposition captures the hidden physical
property of the signal.

Example 1. First, we test our method for a simple nonstationary function given by

f(t) = 6t + cos(8πt) + 0.5 cos(40πt). (32)

The original signal is shown in Fig. 1, and the results are shown in Figs. 2
and 3. As one can see, we have recovered the three components of the original
signal accurately. The first IMF corresponds to the highest-frequency component,
0.5 cos(40πt), and the second IMF corresponds to cos(8πt). The last component
represents the trend, 6t. Figure 2 also gives the comparison between the results
obtained by our method and those obtained by the EMD method. In most part
of the domain, the IMFs and trend obtained from these two methods agree very
well. Near the two boundary end points, the performance of our method is slightly
better than that of the EMD method.

The boundary effect is clearer in the result of instantaneous frequencies (Fig. 3).
The instantaneous frequency obtained by the EMD method (and EEMD) is com-
puted by the open source MATLAB program ifndq.m, which is available from the
Web site http://rcada.ncu.edu.tw/research1 clip program.htm. The instantaneous
frequencies obtained by our method are relatively close to the exact instantaneous

0 0.2 0.4 0.6 0.8 1
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6

7

8

Time

Fig. 1. Original data in Example 1.
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Fig. 2. IMFs and trend in Example 1. Red: analytical results; Blue: our method; and Black:
EMD method.
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Fig. 3. Instantaneous frequency in Example 1. Red: analytical results; Blue: our method; and
Black: EMD method.

frequencies. On the other hand, the results obtained by the EMD method tend to
produce many small high frequency oscillations.

Example 2. The second example we consider is a little more complicated. It is
a superposition of a signal with a discontinuous instantaneous frequency, a chirp
signal, and a quadratic trend:

θ(t) =

{
60πt, 0 ≤ t ≤ 0.5

80πt− 15π, 0.5 < t ≤ 1.

f(t) = 6t2 + cos(10πt + 10πt2) + cos θ(t).

(33)

The original signal is shown in Fig. 4 and the results are shown in Figs. 5 and 6,
respectively. The three components are recovered very well by our method. We plot
the instantaneous frequencies in Fig. 6. Both the EMD method and our method
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Fig. 4. Original data in Example 2.
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Fig. 5. IMFs and trend in Example 2. Red: analytical results; Blue: our method; and Black:
EMD method.
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Fig. 6. Instantaneous frequency in Example 2. Red: analytical results; Blue: our method; and
Black: EMD method.
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capture accurately the position of the jump discontinuity of the instantaneous fre-
quency of the first IMF (see the right plot). Again, we observe that the instantaneous
frequency given by the EMD method has a large number of small oscillations while
our method gives a much smoother result. The instantaneous frequency function
for the chirp signal is almost perfect except near the end points due to the end
effect.

Example 3. In this example, we try to decompose a signal that has intrawave
frequency modulation, which is given as follows

f(t) =
1

1.2 + cos(2πt)
+

1
1.5 + sin(2πt)

cos(32πt + 0.2 cos(64πt)). (34)

This is very similar to the data obtained as the solution of the Duffing equation,
which was first considered by Huang et al. (1998). This signal is challenging because
the instantaneous frequency itself has very high frequency modulation (Fig. 7). In
fact, the instantaneous frequency, θ′(t) is more oscillatory than cos(θ(t)) itself. This
makes it extremely challenging for the nonlinear optimization problem.

We demonstrate that our method still applies to this challenging case with
reasonable accuracy. As we can see from Fig. 8, our method can still extract the
instantaneous frequency very well. The key for the success is that we need to obtain
a good initial guess for θ in our iterative method. In the case with no noise pol-
lution, we can come up with a relatively accurate initial guess for θ by using our
normalization operator. However, the problem would become much harder if the
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Fig. 7. Original data and local median of Example 3.
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Fig. 8. Instantaneous frequency of the signal in Example 3. Red: analytical results; Blue: our
method; and Black: EMD method.

signal is polluted with noise since it would be very hard to separate the physical
instantaneous frequency, which contains very high-frequency information, from the
high-frequency contribution due to noise.

4.2. Real data

In the previous section, we use several synthetic data to test the convergence and
accuracy of our method. In this section, we apply our method to decompose two
sets of real data. The first one we consider is the length of the day (LOD) data.
Here, we only consider a segment of the LOD data in 700 consecutive days. This
example has been used by a number of researchers as a prototype test case because
it contains a number of hidden physical scales in this signal. In Fig. 9, we plot the
original signal. The IMFs obtained by our method are shown in Fig. 10. Just like
the EMD method, our method can recover almost all the physically meaningful
IMFs. For example, the first component C1 captures the semi monthly tides while
the second component C2 represents the monthly tides. Similarly, C3 captures the
semi annual cycle and C4 captures the annual cycle.

The second example we consider is the annual global surface temperature (GST)
data from 1880 to 2009. The original signal is shown in Fig. 11. The historical record
shows clear evidence of a warming trend over the last century. We are interested in
understanding the warming rates, the causes of warming, and an accurate approx-
imation of the trend.



September 2, 2011 11:18 WSPC/1793-5369 244-AADA
S1793536911000647

18 T. Y. Hou & Z. Shi

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

Time (day)

Le
ng

th
-o

f d
ay

 d
ev

ia
tio

n 
(m

s)

Fig. 9. LOD in 700 days.

0 100 200 300 400 500 600 700
−0.5

0

0.5

C
1

0 100 200 300 400 500 600 700
−0.5

0

0.5

C
2

0 100 200 300 400 500 600 700
−1

0

1

C
3

0 100 200 300 400 500 600 700
−1

0

1

C
4

0 100 200 300 400 500 600 700
0

2

4

C
5

Fig. 10. The IMFs decomposed from LOD data.



September 2, 2011 11:18 WSPC/1793-5369 244-AADA
S1793536911000647

Adaptive Data Analysis via Sparse Time-Frequency Representation 19

1880 1900 1920 1940 1960 1980 2000
13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

15

Year

A
nn

ua
l G

S
T

 (
°C

)

Fig. 11. Annual GST from 1880 to 2009.

Figure 12 shows the IMFs obtained by our method. Various trends, including
the linear trend, the overall adaptive trend (the residual component C6), and the
multidecadal trend (the sum of C5 and C6), are plotted in Fig. 13. Here, the overall
adaptive trend is the trend derived by using our method over the whole data span,
and the multidecadal trend is the remainder after IMFs of periods shorter than
multidecades are removed from the GST, which can be regarded as the union of
the trends derived from consecutive multidecadal sections of GST. In Fig. 13, a
comparison among the different fittings also is illustrated. The intrinsically deter-
mined overall adaptive trend shows that the rate of global warming is slower than
the prediction given by the linear fitting. The multidecadal trend is most interest-
ing. It catches essentially the meaningful variability and change associated with the
annual GST. The multidecadal trend seems to suggest that the GST may reach a
potential local maximum at the present time. If this were true, it may imply that
the rate of global warming could slow down in the near future. On the other hand,
the trend obtained by linear regression over the data from 1980 to 2009 tends to
over estimate the rate of global warming.

We remark that the above analysis is preliminary. More careful analysis of other
data that could contribute to global warming needs to be carried out before a def-
inite conclusion can be reached. It is also essential to compare the results obtained
by various other data analysis methods. What we demonstrate here is to show that
our method has the potential to be applied to such an important dataset. The con-
clusion from analyzing this type of geophysical data may have a significant impact
on our environment and society.
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Fig. 12. IMFs decomposed from GST data.
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Fig. 13. The trends of the GST data. Red: trend obtained from our method (last IMF); Blue: last
second trend (summation of last and last second IMF); Green: trend obtained by linear regression;
and Purple dash: trend obtained by linear regression over the data from 1980 to 2009.
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5. An Adaptive Filter for Noisy Data

As we demonstrated in the previous section, our TV (3)-based nonlinear optimiza-
tion method gives results that are either better than or comparable to those
obtained by the EMD method. However, the use of the normalization process to
obtain the initial guess also makes our method sensitive to numerical noise. This
is because our normalization process depends on accurate approximations of the
local extrema. This step shares some similarity with the EMD method, which also
suffers from the same type of numerical instability for noisy data. To overcome this
numerical instability to noise perturbation, we introduce an adaptive filter in our
method to make it more stable to noise.

One way to deal with noisy data is to first remove the noise from the data, then
apply our method to the denoised data. We observe that if we are interested in
computing the instantaneous frequency associated with the phase function θ(t), we
may treat those components with frequencies higher than cos θ(t) as noise. Based
on this observation, we can design an adaptive low-pass filter based on the current
phase function θ to remove the high-frequency components. This filter does not
harm the physical instantaneous frequency of interest at the level given by the
phase function θ. More specifically, if θ(t) is a linear function, then we can choose
the Meyer scaling function as a low-pass filter (Fig. 14):

χ̂(k) =


1, |k| ≤ 1

1
2

(1 − cos (πk)) , 1 < |k| < 2

0, |k| > 2.

(35)

-3 -2 -1 0 1 2 3
0

1

2

k

χ(
k)

Fig. 14. The low-pass filter given in Eq. (35).
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where χ̂ is the Fourier transform of χ and k is the wave number. For any phase
function θ, notice that in the iterative process, the phase function θ(t) is always
monotonically increasing. Then, we can use θ(t) as a new coordinate. In this new
coordinate, θ(t) is a simply linear function of θ. Thus, we can use the low-pass
filter given in Eq. (35) in the θ-coordinate. Now, we have an adaptive filter strategy
based on the phase function θ(t) as follows

Step 1. Interpolating f(t) to the uniform mesh of θ-coordinate to get fθ(θj):

fθ(θj) = Interpolate (θ(ti), f(ti), θj), (36)

where θj , j = 1, . . . , N are uniformly distributed in θ-coordinate.
Step 2. Applying the low-pass filter on the Fourier transform of fθ

f̄θ = F−1[f̂θ(k)χ̂(k)], (37)

where the low-pass filter is given in Eq. (35).
Step 3. Transforming f̄θ back to the t- coordinate to get the data after filtering:

f̄(ti) = Interpolate (θj , f̄θ(θj), ti), (38)

Combining this adaptive filter strategy with the previous third-order total variation
minimizing method, we obtain the following generalized iterative algorithm

Initialization: θ0 = θ0.
Main iteration:

Step 1. Interpolating f(t) to the uniform mesh of θn−1 coordinate to get
fn−1

θ (θn−1
j ):

fn−1
θ (θn−1

j ) = Interpolate (θn−1(ti), f(ti), θn−1
j ), (39)

where θn−1
j , j = 1, . . . , N are uniformly distributed in θn−1 coordinate.

Step 2. Applying the low-pass filter on the Fourier transform of fn−1
θ

f̄n−1
θ = F−1[f̂n−1

θ (k)χ̂(k)], (40)

where the low-pass filter is given in Eq. (35).
Step 3. Transforming f̄n−1

θ back to the t-coordinate to get the data after filtering:

f̄n−1(ti) = Interpolate (θn−1
j , f̄n−1

θ (θn−1
j ), ti), (41)

Step 4. Update an
0 , an

1 , and bn
1 by solving the following linear optimization

problem

Minimize TV 3(an
0 ) + TV 3(an

1 ) + TV 3(bn
1 ), (42)

Subject to: an
0 + an

1 cos θn−1(t) + bn
1 sin θn−1(t) = f̄n−1(t). (43)

Step 5. Update the phase function θ:

θn = θn−1 − µ arctan
(

bn
1

an
1

)
, (44)
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where µ ∈ [0, 1] is chosen to enforce that θn is increasing

µ = max
{

α ∈ [0, 1] :
d

dt

(
θn−1

k + α arctan
(

bn
1

an
1

))
≥ 0

}
. (45)

Step 6. If ‖θn − θn−1‖2 ≤ ε0, stop. Otherwise, go to Step 1.

In the above algorithm, we need to perform the Fourier transform to apply the
adaptive filter. In principle, this operation is only valid for periodic data. For a non-
periodic signal, we extend the signal by a mirror reflection and treat the extended
signal as a periodic signal. To get a smoother extension, we find that it is better to
extend the signal from a point of local maximum or local minimum since its first
derivative vanishes there.

For noisy data, we cannot obtain a good initial guess using the normalization
operator. In our computations, we use some traditional time-frequency analysis
methods, including the Fourier transform, to generate our initial guess. In the fol-
lowing numerical examples, the initial guess is obtained by using the Fourier trans-
form. By estimating the wave number by which the high-frequency components are
centered around, we can obtain a reasonably good initial guess for θ. The initial
guess for θ obtained in this way is a linear function. We can see in the following
numerical examples that even using these relatively rough initial guesses for θ, our
algorithm still converges to the right answer with accuracy determined by the noise
level.

Next, we give several numerical examples to demonstrate how the above algo-
rithm performs. Let X(t) be a white noise with zero mean and variance σ2 = 1.

Example 1. In the first example, the signal is a superposition of a single IMF and
the Gaussian noise X(t):

f(t) = cos(60πt + 10 sin(2πt)) + X(t). (46)

In this example, the initial guess for θ is 60πt. Figure 15 shows the IMFs of the
above signal obtained by different methods. Although the noise level is pretty high
(the amplitude of the noise is O(1)), our nonlinear optimization method coupled
with the adaptive filter can still decompose the instantaneous frequency and the
corresponding IMF with reasonable accuracy (Figs. 15 and 16). Despite the large
noise level, the estimation of the instantaneous frequency is still quite accurate.
The amplitude of the IMF is less accurate, but the error is within the noise level.

As a comparison, we also show the IMF obtained by EEMD method in Fig. 15.
In the EEMD approach, the number of ensemble average is chosen to be 200 and the
standard deviation of the added noise is 0.2. In each ensemble average, the number of
shifting is set to be equal to 8. The IMF obtained by the EEMD method is shown in
Fig. 15. Among different components of IMFs, we select those components that are
closest to the exact IMF in L2 norm. As shown in Fig. 15, the IMF decomposed by
EEMD fails to capture the phase of the exact IMF in some region. As a consequence,
the accuracy of the instantaneous frequency is relatively poor.
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Fig. 15. (a) Noised data and (b) IMFs obtained by our method (blue), EEMD (black), and exact
one (red).
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Fig. 16. The instantaneous frequency. Red: analytical results and Blue: our method.

Example 2. The second example is a little more complicated. The signal is gen-
erated by adding the noise, X(t), to the signal given in Example 2 in the previous
section. More precisely, the signal is generated as follows

θ(t) =

{
60πt, 0 ≤ t ≤ 0.5

80πt − 15π, 0.5 < t ≤ 1.

f(t) = 6t2 + cos(10πt + 10πt2) + cos θ(t) + X(t).

(47)
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Fig. 17. The noised data.

The noisy signal is shown in Fig. 17. The initial guesses are 20πt and 80πt respec-
tively for these two IMFs. The IMF and the instantaneous frequencies are plotted
in Figs. 18 and 19, respectively. By comparing with the decomposition of the same
data without noise in Fig. 6, we find that we do not capture the discontinuity of
the instantaneous frequency for the noisy data as sharp as the data without noise.
But if we take into consideration of the large noise level, the accuracy is still quite
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Fig. 18. (a) First IMF with jump frequency and (b) Second IMF with chirp frequency. Blue: our
method; Black: EEMD; and Red: exact.
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Fig. 19. Instantaneous frequency of IMFs. (a) Jump instantaneous frequency of the first IMF
and (b) Chirp instantaneous frequency of the second IMF. Blue: our method and Red: exact.

reasonable (Fig. 19). If we compare the IMFs obtained by our method with those
obtained by EEMD, our result is actually pretty good (Fig. 18).

6. Concluding Remarks

In this paper, we developed a new adaptive data analysis method based on
an L1-based nonlinear optimization method. Adaptivity of our decomposition is
obtained by looking for the sparsest representation of signals in the time-frequency
domain from a largest possible dictionary that consists of all possible candidates
for IMFs. Solving this nonlinear optimization problem is, in general, very difficult.
We proposed an iterative algorithm and combined it with an efficient solver for
L1-minimization (the split Bregman method). Further, we introduced an adaptive
filter and combined our iterative algorithm with this adaptive filter. The combined
algorithm is more stable to noisy data. Numerical examples for both synthetic and
noisy data show that our method can provide a sparse decomposition of nonlinear
and nonstationary data without compromising the hidden physical property of the
signal. We also compared the performance of our method with the EMD method
and showed that our method gives results that are either comparable to or more
superior to those obtained by the EMD method.

We have also carried out some preliminary convergence analysis for the nonlinear
optimization method proposed in this paper. In the case when the signal has the
form, f(t) = a0(t) + a1(t) cos(θ(t)), we can show that if a0, a1, and θ have a sparse
representation in some given basis, then our iterative algorithm would converge to
the correct decomposition if some additional condition which measures the mutual
coherence of the iterative matrix is satisfied. The detail of this convergence analysis
will be reported elsewhere in the future.

There are still some limitations with the method presented here. One of the
more serious difficulties is the use of the TV (3) norm in our nonlinear optimization
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method. This makes our method more sensitive to noise. Although we proposed an
adaptive filter to alleviate this difficulty, our method still suffers some numerical
instability when the noise level is large. In a subsequent paper, we will introduce
another approach which is based on the matching pursuit approach. The nonlinear
optimization method based on the matching pursuit approach can be implemented
much faster than the current method and has a complexity of order O(N log N),
where N is the number of data sample points that we use to represent the signal.
When the signal satisfies the scale-separation property, it is also possible to obtain
a sparse decomposition of the signal using the undersampled data. The most impor-
tant advantage of this approach is that it is very stable to noise perturbation. This
enables us to apply it to a wider range of real data. Numerical experiments seem to
suggest that this new approach offers more superior performance than the EEMD
method. The paper with the results of this new approach will appear in another
journal [Hou and Shi (2011)].
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