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Previous work has shown that in a two-dimensional periodic medium under focusing or defocusing cubic

nonlinearities, gap solitons in the form of low-amplitude and slowly modulated single-Bloch-wave packets can

bifurcate out from the edges of Bloch bands. In this paper, linear stability properties of these gap solitons near

band edges are determined both analytically and numerically. Through asymptotic analysis, it is shown that

these gap solitons are linearly unstable if the slope of their power curve at the band edge has the opposite sign

of nonlinearity �here focusing nonlinearity is said to have a positive sign, and defocusing nonlinearity to have

a negative sign�. An equivalent condition for linear instability is that the power of the gap solitons near the

band edge is lower than the limit power value on the band edge. Through numerical computations of the power

curves, it is found that this condition is always satisfied, thus two-dimensional gap solitons near band edges are

linearly unstable. The analytical formula for the unstable eigenvalue of gap solitons near band edges is also

asymptotically derived. It is shown that this unstable eigenvalue is proportional to the cubic power of the

soliton’s amplitude, and it induces width instabilities of gap solitons. A comparison between this analytical

eigenvalue formula and numerically computed eigenvalues shows excellent agreement.
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I. INTRODUCTION

Nonlinear wave phenomena in periodic media are receiv-

ing intensive studies in many branches of science and engi-

neering these days. Two prominent examples are nonlinear

optics and Bose-Einstein condensates. In nonlinear optics, a

periodic medium can be created by sophisticated fabrication

techniques �1,2�, by laser writing �3,4�, or by optical induc-

tion techniques �5–7�. In Bose-Einstein condensates, a peri-

odic trapping potential for the condensates can be introduced

by laser beams �8�. The motivation for the study of nonlinear

wave phenomena in these periodic media is that the periodic

media exhibit very novel dispersion �or diffraction�
behaviors—most notably the appearance of band gaps inside

the continuous spectrum �1,9�. These novel dispersion �dif-

fraction� behaviors, when coupled with self-focusing or self-

defocusing nonlinearity, give rise to new types of self-

trapped localized states �gap solitons�, which reside either in

the semi-infinite band gap or higher band gaps �5,10�, and

these gap solitons can be utilized for various applications

�8,12�. So far, a wide variety of gap solitons have been re-

ported either theoretically, or experimentally, or both. They

include fundamental and vortex solitons in the semi-infinite

gap �under focusing nonlinearity� �2,5,13–16�, fundamental

and vortex solitons in the first gap �under defocusing nonlin-

earity� �5,17,18�, reduced-symmetry solitons and vortex-

array solitons in the first gap �under focusing nonlinearity�
�19,20�, gap-wave solitons in the first gap �under defocusing

nonlinearity� �8,11�, embedded soliton trains �under either

focusing or defocusing nonlinearity� �21�, etc. Solitons in

ring lattices and quasiperiodic lattices have been explored as

well �22–24�. Analytically one-dimensional �1D� gap soli-
tons bifurcating from edges of Bloch bands were investi-
gated in �25�. It was found that the centers of such 1D gap
solitons can only be at two locations. One location is at a
potential minimum �also called a lattice site�, and such a

soliton is referred to as an on-site soliton. The other location

is between lattice sites, and such a soliton is referred to as an

off-site soliton �26�. In two dimensions, classifications of gap

solitons bifurcating from edges of Bloch bands were per-

formed in �10�. It was found that the centers of two-

dimensional �2D� gap solitons can only be at four locations:

one is on site, and the other three are off site. More impor-

tantly, it was revealed that near band edges with two Bloch

modes, the coupling between these Bloch modes gives rise to

many new types of gap solitons such as reduced-symmetry

solitons �19� and vortex-array solitons �20��. It has also been

recognized that some gap solitons �such as vortex solitons

�13,18�� do not bifurcate from the edges of Bloch bands

�27,28�.
Stability of gap solitons with respect to perturbations is an

important issue, because only stable solitons are promising

for experimental observations and physical applications. An

important criterion for the linear stability of solitary waves is

the Vakhitov-Kolokolov �VK� stability criterion, which says

that under a certain spectral condition, sign-definite solitary

waves are linearly unstable if and only if the slope of the

power curve is negative �29–34� �a related criterion in terms

of the Hamiltonian-power diagram for homogeneous media

was given in �35��. Most gap solitons, however, are not sign

definite, thus the VK criterion does not apply. Because of

that, other methods need to be developed. In one dimension,

asymptotic analysis has been carried out for the linear stabil-

ity of low-amplitude gap solitons near band edges �25�. It has

been shown that on-site gap solitons near band edges can be*Corresponding author; jyang@math.uvm.edu

PHYSICAL REVIEW A 78, 063812 �2008�

1050-2947/2008/78�6�/063812�15� ©2008 The American Physical Society063812-1

http://dx.doi.org/10.1103/PhysRevA.78.063812


linearly stable, while off-site solitons near band edges are
always linearly unstable due to drift instabilities induced by
translational-mode-related unstable eigenvalues �25�. Away
from band edges, additional instabilities can also arise. In
two dimensions, however, our knowledge on the stability of
gap solitons is much more limited. It is well known that
stability properties of solitary waves strongly depend on the
number of spatial dimensions. Thus 1D stability results may
not be carried over to the 2D case. Some limited stability
results of gap solitons have been obtained in two dimensions
recently. For instance, in the semi-infinite band gap under
focusing cubic nonlinearity, it has been shown numerically
that 2D on-site solitons are linearly stable away from the
band edge where the power curve has a positive slope, but
are linearly unstable near the band edge where the power
curve has a negative slope �13�. This result can be readily
explained analytically by the VK stability criterion since
these gap solitons are sign definite �29–34� �note that the

propagation constant in �13� was defined with the opposite

sign of that in �29,33�; in this paper we follow the definition

of �29,33��. For certain sign-indefinite gap solitons, limited

numerical stability analysis has been performed as well �for

instance, on out-of-phase dipole solitons and vortex solitons�
�13,36–38�. It was found that such solitons may be stable in

certain parameter regions. But stability properties of many

other sign-indefinite gap solitons, especially in higher band

gaps, are still unknown.

In this paper, we analytically determine the stability prop-

erties of 2D gap solitons near edges of Bloch bands in a

sinusoidal lattice potential under either the focusing or defo-

cusing cubic �Kerr� nonlinearity by asymptotic methods.

These gap solitons are low-amplitude slowly modulated

single-Bloch-wave packets. We show that these solitons are

linearly unstable if the slope of their power curve at the band

edge has the opposite sign of the nonlinearity. Specifically,

these gap solitons near a band edge are linearly unstable if

the power curve has a negative slope under the focusing

nonlinearity, or if the power curve has a positive slope under

the defocusing nonlinearity. This result generalizes and

modifies the VK stability criterion to sign-indefinite gap soli-

tons, and it reveals the important role the sign of nonlinearity

plays in the connection between linear stability and the

power slope. An equivalent condition for linear instability of

2D gap solitons near band edges is that the powers of these

solitons near band edges are lower than the limit power val-

ues on the band edges. Our numerical computations of the

power curves near many band edges indicate that this insta-

bility condition is all satisfied for both on-site and off-site

gap solitons, thus these 2D gap solitons near band edges are

linearly unstable. This contrasts the one-dimensional case

where on-site gap solitons near band edges can be linearly

stable �25�. The asymptotic expression for the unstable ei-

genvalue of 2D gap solitons near band edges is also derived.

We find that this unstable eigenvalue bifurcates from the

eigenmode of the 2D envelope soliton’s zero eigenvalue in-

duced by this envelope soliton’s variation with respect to its

propagation constant. This eigenmode with zero eigenvalue

for the 2D envelope soliton does not exist in one dimension,

thus this unstable eigenvalue of 2D gap solitons has no coun-

terpart in the 1D case. We also show that this unstable eigen-

value leads to width instabilities of 2D gap solitons, and its

magnitude is proportional to the cubic power of the soliton’s

amplitude. Lastly, the asymptotic expression for this unstable

eigenvalue is compared with numerically computed eigen-

values for both the focusing and defocusing nonlinearities,

and excellent agreement is obtained. We point out that our

instability results of 2D gap solitons near band edges do not

conflict with experimental observations of such solitons in

�5,17,19� because the observed solitons have high amplitudes

and do not reside near band edges.

II. LOW-AMPLITUDE 2D GAP SOLITONS

NEAR BAND EDGES

The mathematical model we consider is the 2D nonlinear

Schrödinger �NLS� equation with a periodic potential as fol-

lows:

iUt + Uxx + Uyy − V�x,y�U + ��U�2U = 0, �2.1�

where U�x ,y , t� is a complex function, the potential V�x ,y� is

periodic in x and y �it is also called a lattice potential�, and

�= �1 is the sign of nonlinearity. When �=1, the nonlin-

earity is of self-focusing type, while when �=−1, the non-

linearity is of self-defocusing type. This model arises in

Bose-Einstein condensates trapped in a 2D optical lattice

�where t is time� �18,39� as well as light propagation in a

periodic Kerr medium under paraxial approximation �where t

is the distance of propagation�. In certain optical materials

�such as photorefractive crystals�, the nonlinearity is of a

different �saturable� type. But those different nonlinearities

often give qualitatively similar results as the cubic nonlin-

earities above in a periodic lattice �13,15,16,36�.
In this paper we take the lattice potential as

V�x,y� = V0�sin2 x + sin2 y� , �2.2�

whose periods along the x and y directions are both equal to

�. This square-lattice potential can be readily engineered in

Bose-Einstein condensates �8,18� and optics �5,6�. This po-

tential is separable, which makes our theoretical analysis a

little easier. Similar analysis can be repeated for other types

of periodic potentials with minimal changes.

Gap solitons in Eq. �2.1� are sought in the form

U�x,y,t� = u�x,y�ei�t, �2.3�

where the amplitude function u�x ,y� is real valued and sat-

isfies the following equation:

uxx + uyy − �F�x� + F�y��u − �u + �u3 = 0. �2.4�

Here F�x�=V0 sin2 x, and � is a propagation constant. Note

that the propagation constant in the above definition is the

same as that in most papers on the stability theory of solitary

waves in NLS-type equations �29,33�. This is convenient for

the comparison between our stability results in this paper and

those in previous papers. In our previous publications on 2D

gap solitons �10,13�, the propagation constant was defined

with the opposite sign of that above. This should be kept in

mind when quoting the results of �10,13�.
When the amplitude of the gap soliton is infinitesimal, the

nonlinear term in Eq. �2.4� drops out. Solutions of the re-
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maining linear equation are Bloch modes, and the corre-

sponding propagation constants form Bloch bands. Between

Bloch bands, band gaps may appear if the lattice potential is

strong enough �see �10� for details�. When the amplitude of a

gap soliton is small but not infinitesimal, the propagation

constant lies near an edge of a Bloch band �inside a band

gap�, and the gap soliton is a slowly modulated packet of the

Bloch wave at this band edge. In this paper, we consider the

stability properties of low-amplitude 2D gap solitons near

edges of Bloch bands. We restrict ourselves to gap solitons

that are slowly modulated single-Bloch-wave packets. At

some band edges where two linearly independent Bloch

modes exist, nonlinear coupling between the two Bloch-

wave packets could generate more complex gap solitons

such as vortex-array solitons and dipole-array solitons

�10,20�. Such solitons consisting of two Bloch-wave packets

are excluded from discussion in this paper.

Below we determine single-Bloch-wave packet solitons

near a band edge �0. This derivation is a special case of our

more general derivation in �10� �see also �40��, and is thus

only summarized here. This summary and proper extension

are needed for the stability analysis in the next section.

Since the potential V�x ,y� is separable, a Bloch wave at

this band edge has the form p1�x�p2�y�, where p1,2�x� are 1D

Bloch waves at 1D band edges �1,2 with

pn� − F�x�pn − �npn = 0, n = 1,2, �2.5�

and �0=�1+�2. The first few 1D band-edge values �n and

profiles of the corresponding Bloch waves pn�x� have been

displayed in �10� �for V0=6�. These 1D Bloch functions have

either period � or 2� depending on the band edge, and

pn�x+��= � pn�x�. Since the sinusoidal potential F�x� is

symmetric, Bloch functions pn�x� are either symmetric or

antisymmetric, i.e., pn�−x�= � pn�x�. Gap solitons in the

form of a low-amplitude and slowly modulated packet of the

Bloch wave p1�x�p2�y� have the following asymptotic expan-

sions:

u = �u0 + �2u1 + �3u2 + ¯ , �2.6�

and

� = �0 + ��2, �2.7�

where ��1 is a soliton amplitude parameter,

u0 = A�X,Y�p1�x�p2�y� �2.8�

is the leading-order solution, A�X ,Y� is a real-valued slowly

varying envelope function,

X = ��x − x0�, Y = ��y − y0� �2.9�

are slow spatial variables, and �x0 ,y0� is the center position

of the envelope function. In order to simplify notations, we

define the following operator:

L0 =
�

2

�x2
+

�
2

�y2
− �F�x� + F�y�� − � + �u2�x,y� ,

�2.10�

then the solitary wave equation �2.4� becomes

L0u�x,y� = 0. �2.11�

Since function u�x ,y� contains fast and slow variables �x ,y�
and �X ,Y�, in our multiscale asymptotic analysis below, it is

necessary to separate derivatives to these fast and slow vari-

ables in L0, so that L0 is rewritten as

L0 = M0 + �M1 + �2M2 + �2��u0 + �u1 + ¯ �2,

�2.12�

where

M0 =
�

2

�x2
+

�
2

�y2
− �F�x� + F�y�� − �0, �2.13�

M1 = 2� �
2

�x�X
+

�
2

�y�Y
� , �2.14�

M2 =
�

2

�X2
+

�
2

�Y2
− � . �2.15�

Here the partial derivatives to x and y in M0 and M1 are with

respect to the fast variables x and y only. Substituting the

expansions �2.6� and �2.12� into the solitary wave equation

�2.11�, we get the following equations for the solutions un at

various orders of �:

�1: M0u0 = 0, �2.16�

�2: M0u1 = − M1u0, �2.17�

�3: M0u2 = − M1u1 − �M2 + �u0
2�u0, �2.18�

�4: M0u3 = − M1u2 − �M2 + 3�u0
2�u1, �2.19�

�5: M0u4 = − M1u3 − �M2 + 3�u0
2�u2 − 3�u0u1

2.

�2.20�

The first-order equation �2.16� is satisfied automatically. The

second-order equation �2.17� satisfies the Fredholm condi-

tion, i.e., its inhomogeneous periodic term M1u0 �in fast vari-

ables x and y� is orthogonal to the homogeneous periodic

solution p1�x�p2�y� over a period of functions p1�x� and

p2�y�.

�
0

2� �
0

2�

p1�x�p2�y�M1u0dxdy = 0. �2.21�

Here the upper limits are taken as 2� rather than � because

Bloch functions p1,2�x� may have period 2� rather than �

�see above�. Hence Eq. �2.17� admits a periodic solution,

which is found to be

u1 =
�A

�X
	1�x�p2�y� +

�A

�Y
p1�x�	2�y� , �2.22�

where 	n�x� is the periodic solution of the equation

	n� − F�x�	n − �n	n = − 2pn��x�, n = 1,2. �2.23�

To make 	n�x� unique, we require its symmetry to be the

same as that of pn��x�, i.e., the opposite of that of pn�x�. Here
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we did not add to u1 the homogeneous solution of Eq. �2.17�.
The reason is that this homogeneous solution of Eq. �2.17� is

of the form B�X ,Y�p1�x�p2�y�. If this term were added to u1

in Eq. �2.22�, then the u2 solution would contain terms with

the same symmetry of p1�x�p2�y� in fast �x ,y� variables, plus

the term BX	1�x�p2�y�+BYp1�x�	2�y�. By using the Fredholm

condition of the u3 equation �2.19� and the symmetry prop-

erties of individual terms in fast variables as well as the

relation �2.27�, we would find that L1
eB=0, where operator

L1
e is defined in Eq. �3.21�. Hence the B function would be

a linear combination of AX and AY in the view that function

A satisfies Eq. �2.24�. Then the resulting term

B�X ,Y�p1�x�p2�y� could be lumped into the leading-order

term u0 by slightly shifting the center position of A�X ,Y�,
and thus could be removed from u1. Now we insert the above

expressions of u0 and u1 into the u2 equation �2.18�. In order

for this u2 equation to admit a bounded �periodic� solution in

fast variables x and y, the Fredholm condition gives the en-

velope equation for A�X ,Y� as �10�

D1

�
2A

�X2
+ D2

�
2A

�Y2
+ �A − �
0A3 = 0, �2.24�

where

Dn 	 
1

2

d2�

dk2 

�=�n

, n = 1,2, �2.25�

are the second-order dispersion coefficients at 1D band edges

�n, and


0 =

�
0

� �
0

�

p1
4�x�p2

4�y�dxdy

�
0

� �
0

�

p1
2�x�p2

2�y�dxdy

� 0. �2.26�

In this derivation, we have used the relation �10,25�

�
0

�

�2	n��x� + pn�x��pn�x�dx = − Dn�
0

�

pn
2�x�dx ,

�2.27�

where n=1,2. In the integrals of Eqs. �2.26� and �2.27�, the

upper limits are taken as � rather than 2� of �10� since the

integrands here are periodic functions with period � even

when the Bloch functions p1,2�x� have period 2�.

The envelope equation �2.24� is the familiar 2D NLS

equation with constant coefficients. For the existence of gap

solitons, the envelope function A must be a solitary wave,

which decays to zero as �X ,Y� approaches infinity. This re-

quires that

sgn�D1,2� = − sgn��� = − sgn��� . �2.28�

Under these conditions, the envelope equation �2.24� admits

a sign-definite ground-state 2D solitary wave which is bell

shaped �also called Townes profile�. It also admits other

types of excited-state solutions such as vortices. In this pa-

per, we only consider the ground-state solitary wave solution

of the envelope equation �2.24�. This ground-state envelope

solution leads to the simplest gap-soliton solutions in the

lattice system �2.4�.
It must be pointed out that at some 2D band edges with

two linearly independent Bloch modes, the two Bloch modes

can resonate with each other. In such cases, single-Bloch-

wave packet solitons cannot exist �see band edge E in �10��.
The envelope equation �2.24� has constant coefficients.

Thus it seems to suggest that the center of the envelope func-

tion A can move about freely in the �x ,y� plane. This is not

so, however. We have shown in �10� that due to an additional

constraint on the solution, the center of the envelope function

can only be located at four locations of the 2D lattice,

�x0,y0� = �0,0�,�0,
�

2
�,��

2
,0�,��

2
,
�

2
� . �2.29�

The first location �x0 ,y0�= �0,0� is at a lattice site �minimum

of potential V�x ,y��, hence the corresponding gap soliton is

called an on-site soliton. The other locations are between

lattice sites and correspond to off-site solitons. Notice that

the second and third locations are equivalent to each other

due to the symmetry of the lattice, thus they will be treated

as the same. For illustration purposes, these three types of

gap solitons near the two edges of the first Bloch band under

focusing and defocusing nonlinearities are displayed in the

upper and lower rows of Fig. 1, respectively �with V0=6�.
Their propagation constants are marked by circles in Fig. 2.

We see that in both cases, on-site solitons have a single in-

tensity peak �maximum�, while off-site solitons have two or

four equal intensity peaks. The difference between focusing

and defocusing nonlinearities is that under focusing nonlin-

earity �in the semi-infinite band gap�, those intensity peaks

are all in phase �see the upper row of Fig. 1�, while under

defocusing nonlinearity �in the first band gap�, the intensity

(A) (B) (C)

(D) (F)(E)

FIG. 1. �Color online� Upper row: three gap solitons near the

right edge of the first Bloch band �with focusing nonlinearity�,
where all the intensity peaks of solitons are in phase with each

other. Lower row: three gap solitons near the left edge of the first

band �with defocusing nonlinearity�, where adjacent intensity peaks

of solitons are out of phase with each other. The propagation con-

stants of these solitons are marked as red circles in the power curves

of Fig. 2. Circles on the background here represent locations of

lattice sites. Some circles in �A� and �D� are skipped to show the

solitons better. ��A� and �D�� On-site gap solitons. ��B�, �C�, �E�,
and �F�� Off-site gap solitons.
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peaks are out of phase between adjacent sites �see the lower

row of Fig. 1�.
The power curve of gap solitons near band edges will

prove to be very important in our stability analysis of the

next section. Indeed, for sign-definite solitary waves, the VK

stability criterion links the linear stability directly to the sign

of the slope of the power curve �29,33�. For sign-indefinite

gap solitons near band edges, we will show in the next sec-

tion that this link also exists, but with important modifica-

tions depending on the sign of nonlinearity �i.e., focusing or

defocusing�. The power of the soliton �2.3� is defined as

P��� = �u,u� , �2.30�

where the inner product is defined as

�f ,g� = �
−�

� �
−�

�

f�x,y�g�x,y�dxdy . �2.31�

Here the complex conjugate of f is not used since most vari-

ables involved in our inner products are real valued. For

low-amplitude gap solitons near band edges, their power

curve can be calculated asymptotically. By combining Eqs.

�2.6�, �2.8�, and �2.22�, the asymptotic expansion for the gap

soliton is

u�x,y ;X,Y� = �A�X,Y�p1�x�p2�y�

+ �2
 �A

�X
	1�x�p2�y� +

�A

�Y
p1�x�	2�y�� + O��3� .

�2.32�

Substituting this expansion into Eq. �2.30�, we get the power

function P��� as

P��� = P0 + �P1 + �2P2 + ¯ , �2.33�

where

P0 = �2�
−�

+� �
−�

+�

A2�X,Y�p1
2�x�p2

2�y�dxdy , �2.34�

P1 = 2�3�
−�

+� �
−�

+�

A�X,Y�p1�x�p2�y�


 
 �A

�X
	1�x�p2�y� +

�A

�Y
p1�x�	2�y��dxdy , �2.35�

and so on. The integrands of the above integrals are products

between periodic Bloch functions in fast variables �x ,y� and

localized envelope functions in slow variables �X ,Y�. Using

the formula in the Appendix, we find that the expressions of

P0 and P1 for ��1 are

P0 = G�
−�

� �
−�

�

A2�X,Y�dXdY , �2.36�

P1 = 0, �2.37�

where

G =
1

�2�
0

� �
0

�

p1
2�x�p2

2�y�dxdy � 0 �2.38�

is the average value of the squared Bloch-wave function

p1
2�x�p2

2�y�. The errors in these expressions are exponentially

small in �, thus they do not affect the power series expansion

�2.33� of the power function P���. Notice that the integral in

Eq. �2.36� is the power of the envelope solution A in the 2D

constant-coefficient NLS equation �2.24�. By variable scal-

ings, it is easy to find that

�
−�

� �
−�

�

A2�X,Y�dXdY =
C0

�D1D2


0

, �2.39�

where

C0 = 11.70 �2.40�

is the power of the ground-state soliton in the 2D NLS equa-

tion with unit dispersion and nonlinearity coefficients. Insert-

ing this formula into Eq. �2.36�, we get

P0 =
C0G�D1D2


0

. �2.41�

This P0 is the limit power value of gap solitons on the edge

of a Bloch band, and it is finite rather than infinite. Since

P1=0, then in view of �−�0=O��2� out of Eq. �2.7�, the

power series expansion �2.33� gives

P��� = P0 + O��� − �0�� , �2.42�

which indicates that the power curve near a band edge is a

linear function of �.

It is noted that in the above asymptotic calculations of the

power curves, the calculation results for the expansion coef-

ficients Pn do not depend on whether the solitons are on site

or off site. Indeed, the difference between on-site and off-site

solitons is that the slow-variable functions �such as A�X ,Y��
in the perturbative solutions un�x ,y ,X ,Y� are centered at dif-

ferent positions but have the same profiles, and these slow-

variable functions are separated from the fast-variable func-

tions. Thus when calculating the soliton’s power, by using

the integral formula of the Appendix, we see that the coeffi-

cients Pn would be the same for both on-site and off-site

solitons. This means that near band edges, the power differ-

ence between on-site and off-site solitons is exponentially

small in the soliton amplitude �.

To compute the whole power curve of gap solitons both

near and far away from band edges, the numerical methods

need to be used. Here we use the modified squared-operator

iteration method proposed in �41�, which can converge to

any gap soliton efficiently. The power curves of on-site soli-

tons �see Figs. 1�a� and 1�d�� bifurcating from the two edges

of the first Bloch band under focusing and defocusing non-

linearities are displayed in Fig. 2 �with V0=6�. We see that

both power curves attain a minimum value inside the band

gaps, and the shapes of these curves resemble the letter “v.”

In addition, these power curves increase as � approaches

band edges. These features of the power curves appear to be

common for 2D gap solitons bifurcated from band edges �see

�10� for further examples�. Note that the powers of these gap
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solitons are much less than the power C0=11.70 of 2D soli-

tons in Eq. �2.4� without the lattice potential. This means that

these 2D gap solitons will not suffer the critical collapse of

lattice-free 2D Kerr solitons �42�. The insets in Fig. 2 show

that these power curves approach a straight line near the

band edges, which agrees with the analytical results in Eq.

�2.42�. As � approaches the right edge of the first band, the

numerical power curve approaches a limit value P0=1.9649,

which agrees with the analytical formula �2.41�. Similarly, as

� approaches the left edge of the first band, the numerical

power curve approaches a limit value P0=1.9567, which also

agrees with the analytical formula �2.41�.

III. LINEAR-INSTABILITY EIGENVALUES OF 2D GAP

SOLITONS NEAR BAND EDGES

In this section, we study the linear stability of low-

amplitude 2D gap solitons near band edges. These solitons

are not sign definite in general �see Fig. 1�, thus the VK

stability criterion �29,33� does not apply to them. In addition

to a zero eigenvalue, which is induced by the phase invari-

ance of Eq. �2.1�, these solitons also have three pairs of real

or purely imaginary �nonzero� eigenvalues. The reason for

this is that near band edges, gap solitons are governed by an

envelope equation, which is the familiar 2D NLS equation

with constant coefficients �see Eqs. �2.24� and �3.29� and

�10��. Solitons in this 2D envelope equation have a unique

discrete eigenvalue, which is zero. Corresponding to this

zero eigenvalue, there are four eigenfunctions. One is in-

duced by the phase invariance of the envelope soliton, an-

other two are induced by the translational invariance of the

envelope soliton �along the two spatial dimensions�, and the

fourth one is induced by the variation of the envelope soliton

with respect to its propagation constant. For gap solitons in

the full model �2.1�, the phase-invariance eigenmode of the

envelope soliton persists, but the other three eigenmodes of

the envelope soliton do not persist because the full model

�2.1� is not translation invariant or its gap solitons do not

have constant power. These three eigenmodes then have to

bifurcate out from the zero eigenvalue. The bifurcated eigen-

values always appear as pairs of real or purely imaginary

eigenvalues since the system is Hamiltonian. If the pair of

eigenvalues bifurcating from the propagation-constant-

variation eigenmode of the envelope soliton are unstable,

they lead to width instabilities of gap solitons where the

soliton width either steadily increases �the soliton decays� or

decreases and relaxes into a periodic bound state �the soliton

pulsates� depending on the initial power of the perturbed

soliton �13,43�. If the two pairs of eigenvalues bifurcating

from the translation-invariance eigenmodes of the envelope

soliton are unstable, they lead to drift instabilities where the

center of the soliton drifts away from its original location

under perturbations. In this section, we focus on the pair of

width-instability-type eigenvalues and derive their analytical

expression near band edges by perturbation methods. This

derivation does not depend on whether the gap solitons are

on site or off site, thus our analytical formula is valid for

both on-site and off-site solitons. This formula shows that

one of this pair of eigenvalues is unstable if the slope of the

power curve at the band edge has the opposite sign of non-

linearity �, or equivalently, if the soliton’s power near a band

edge is lower than the limit power value on the band edge.

Our computations of the power curves for a number of on-

site and off-site gap-soliton branches in the model �2.4� show

that this instability condition is always met under both focus-

ing and defocusing cubic nonlinearities �see Figs. 2 and 3 for

instance�, thus these on-site and off-site 2D gap solitons near

band edges are linearly unstable due to width instabilities.

Extensions of this analysis to other spatial dimensions �such

as 1D and 3D� will be discussed at the end of this section.

To study the linear stability of gap solitons u�x ,y�, we

perturb them in the normal-mode form as

U�x,y,t� = ei�t�u�x,y� + �v�x,y� − �−1w�x,y��ei�t

+ �v*�x,y� + �*−1w*�x,y��e−i�*t� , �3.1�

where v ,w�1 are normal-mode perturbations, and the su-

perscript * represents complex conjugation. Here we intro-

duced a factor �−1 in front of w, which gives the correct

scaling of the normal-mode eigenfunction associated with

the variation of the gap soliton with respect to its propaga-

tion constant for small eigenvalues �. Substituting the per-

turbed solution �3.1� into the original evolution equation

�2.1� and neglecting higher-order terms in �v ,w�, we obtain

the standard eigenvalue problem

L1v = w, L0w = �2
v , �3.2�

where L0 has been defined in Eq. �2.10�, and L1 is defined as

L1 =
�

2

�x2
+

�
2

�y2
− �F�x� + F�y�� − � + 3�u2�x,y� . �3.3�

Note that if �� ,v ,w� is an eigenmode of Eq. �3.2�, then so

are �−� ,v ,w�, ��* ,v* ,w*�, and �−�* ,v* ,w*� as well. Thus

eigenvalues of Eq. �3.2� always appear in pairs or qua-

−4−5 −4.5 −3.5

1

2

4

3

µ

P
o
w

e
r

semi−infinite gap1st−gap

FIG. 2. �Color online� Power curves of on-site 2D gap solitons

bifurcated from the first Bloch band under focusing and defocusing

nonlinearities, respectively �V0=6�. The asterisks “ *” are the ana-

lytical limit power values �2.41� at the band edges. The insets are

enlargements of the power curves showing linear dependence near

band edges. Soliton profiles at the right and left marked points �red

circles� are displayed in the upper and lower rows of Fig. 1,

respectively.

SHI et al. PHYSICAL REVIEW A 78, 063812 �2008�

063812-6



druples. In addition, we have the relation �2.11� as well as

the relation

L1u� = u . �3.4�

This second relation is obtained by taking the partial deriva-

tive of Eq. �2.11� with respect to �. Furthermore, by taking

the inner products of Eqs. �3.2� first equation with u� and the

second equation with u, and recalling the self-adjoint prop-

erties of operators �L0 ,L1� as well as the relations �2.11� and

�3.4�, we see that for nonzero eigenvalues �, functions u and

v are orthogonal to each other, and u� and w are orthogonal

to each other, i.e.,

�u,v� = 0, �3.5�

and

�u�,w� = 0. �3.6�

In our analysis below, we need to separate the partial de-

rivatives in L1 into those with respect to the fast and slow

variables as we have done for the operator L0. In doing so

we get

L1 = M0 + �M1 + �2M2 + 3�2��u0 + �u1 + ¯ �2, �3.7�

which is the analog of Eq. �2.12� for L0.

Our objective of this section is to determine the linear-

stability eigenvalues � and eigenfunctions �v ,w� for low-

amplitude 2D gap solitons near edges of Bloch bands. Before

detailed calculations, we first lay out our plans. The eigen-

values of these gap solitons are clearly small since the soli-

ton’s amplitude is low. Then in view of Eqs. �2.11� and �3.2�,
we see that w should be proportional to u to the leading

order. Indeed, we will find that w��u �see Eq. �3.50��. Cor-

respondingly, v��u� in view of Eqs. �3.2� and �3.4�. This

eigenmode is associated with the soliton’s variation with re-

spect to the propagation constant �. Indeed, we will show

that this mode bifurcates from the eigenmode of the 2D en-

velope soliton’s zero eigenvalue induced by this envelope

soliton’s variation with respect to its propagation constant

�see Eq. �3.32��. This mode leads to width instabilities of gap

solitons when it is unstable, and to width oscillations of gap

solitons when it is stable �13,43�. But w cannot be exactly

equal to �u, because w=�u cannot satisfy the orthogonality

condition �3.6� in view that the power curve’s slope is not

zero near band edges �see Fig. 2�. Calculation of the higher-

order correction to the leading term �u of w is a key step in

our analysis. Through systematic perturbative calculations,

we will manage to show that the higher-order correction to w

is given in Eq. �3.50�, where the function � is given by Eq.

�3.45� and is proportional to �2. Then by inserting this w

formula into the orthogonality relation �3.6�, the expression

for the eigenvalue �2 will be obtained. It is noted that one

can also determine the higher-order correction to the eigen-

function v and insert it into the orthogonality relation �3.5�,
which will produce the same expression for �2. But the

former approach is a little simpler and thus will be adopted.

Now we start to calculate the power series expansions for

the eigenmodes of low-amplitude gap solitons, which exist

near band edges. For this purpose, we expand these eigen-

functions and the eigenvalue into the following power series

of �:

v = v0 + �v1 + �2
v2 + ¯ , �3.8�

w = w0 + �w1 + �2w2 + ¯ , �3.9�

�2 = ��1 + �2�2 + ¯ . �3.10�

Inserting these expansions and those of L0 and L1 into the

eigenvalue problem �3.2�, at O�1� we get

M0w0 = 0, �3.11�

M0v0 = w0. �3.12�

From Eq. �3.11�, we see that w0=h0�X ,Y�p1�x�p2�y�. Due to

the Fredholm condition for Eq. �3.12�, one must have

h0�X ,Y�=0, thus w0=0. Then from Eq. �3.12�, we get

v0 = ��X,Y�p1�x�p2�y� . �3.13�

At O���, we get

M0w1 = �1v0, �3.14�

M0v1 = w1 − M1v0. �3.15�

Applying the Fredholm condition to Eq. �3.14�, we see that

�1=0, hence w1=h1�X ,Y�p1�x�p2�y�. Applying the Fredholm

condition to Eq. �3.15� and noticing that M1v0 and p1�x�p2�y�
have the opposite symmetry in fast �x ,y� variables and hence

the integral of their product is zero over one period of p1�x�
and p2�y�, we find that h1�X ,Y�=0, thus w1=0. In this case,

the solution v1 is

v1 =
��

�X
	1�x�p2�y� +

��

�Y
p1�x�	2�y� . �3.16�

Here we did not add Eq. �3.15�’s homogeneous solution of

the form h�X ,Y�p1�x�p2�y� into v1 because it turns out from

later calculations that such a homogeneous term must be

zero, thus we decided to leave it out at this early stage in

order to simplify the analysis.

At O��2�, we get

M0w2 = �2v0, �3.17�

M0v2 = w2 − M1v1 − �M2 + 3�u0
2�v0. �3.18�

Applying the Fredholm condition to Eq. �3.17�, we get �2

=0. Thus

w2 = ��X,Y�p1�x�p2�y� . �3.19�

The Fredholm condition for Eq. �3.18� is

�
0

2� �
0

2�

�w2 − M1v1 − �M2 + 3�u0
2�v0�


 p1�x�p2�y�dxdy = 0. �3.20�

Utilizing the expressions �3.13�, �3.16�, and �3.19� for
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�v0 ,v1 ,w2� as well as the relation �2.27�, the above Fredholm

condition reduces to

L1
e� = − � , �3.21�

where

L1
e 	 D1

�
2

�X2
+ D2

�
2

�Y2
+ � − 3�
0A2. �3.22�

Next we proceed to higher orders of �. We will see that

the equations for the next few higher-order terms in w are

decoupled from the higher-order terms in v, thus we will

consider higher-order terms in w only. At O��3�, we have

M0w3 = �3v0 − M1w2. �3.23�

Its Fredholm condition shows that �3=0 �since the integral

of M1w2 multiplying p1�x�p2�y� is zero over one period of

p1�x� and p2�y��. In this case, the solution w3 is then

w3 =
��

�X
	1�x�p2�y� +

��

�Y
p1�x�	2�y� . �3.24�

Here we did not add Eq. �3.23�’s homogeneous solution of

the form h�X ,Y�p1�x�p2�y� into w3 either because such a

term turns out to be zero as in the v1 case.

At O��4�, we have

M0w4 = �4v0 − M1w3 − �M2 + �u0
2�w2. �3.25�

Its Fredholm condition gives

�
0

2� �
0

2�

��4v0 − M1w3 − �M2 + �u0
2�w2�


 p1�x�p2�y�dxdy = 0. �3.26�

Utilizing the expressions �3.13�, �3.19�, and �3.24� for

�v0 ,w2 ,w3� as well as the relation �2.27�, the above Fred-

holm condition reduces to

L0
e� = − �4� , �3.27�

where

L0
e 	 D1

�
2

�X2
+ D2

�
2

�X2
+ � − �
0A2. �3.28�

Now it is important to recognize that the two equations

�3.21� and �3.27� form the eigenvalue problem for the linear

stability of ground-state envelope solitons Q�X ,Y ,T�
=A�X ,Y�ei�T in the 2D envelope NLS equation �10�

iQZ − D1QXX − D2QYY + �
0�Q�2Q = 0. �3.29�

The linear-stability spectrum of these ground-state solitons in

this 2D constant-coefficient NLS equation is well known. It

has a single discrete eigenvalue, which is zero. Thus �4=0.

Corresponding to this zero eigenvalue, there are three dis-

crete eigenfunctions.

� = AX, � = 0, �3.30�

� = AY, � = 0, �3.31�

and

� = A�, � = A . �3.32�

The eigenfunctions �3.30� and �3.31� are induced by the

translational invariance of the envelope soliton in the enve-

lope equation �3.29�, while the eigenfunction �3.32� is in-

duced by the variation of this envelope soliton with respect

to its propagation constant �. It is noted that this envelope

soliton also has a phase-invariance-induced eigenfunction at

zero eigenvalue. But this phase-induced eigenmode does not

satisfy the eigenvalue equations �3.21� and �3.27� of the en-

velope soliton, because these eigenvalue relations are ob-

tained with the eigenfunction scalings as used in Eq. �3.1�,
which is not appropriate for the phase-induced eigenmode

whose eigenvalue is always zero for both the envelope soli-

ton and any gap soliton. Of the above eigenmodes of enve-

lope solitons, we should point out that the propagation-

constant-variation-induced eigenfunction �3.32� with

eigenvalue zero only exists in two dimensions because 2D

envelope solitons in Eq. �3.29� have constant powers for all

propagation constants. This mode does not exist in other spa-

tial dimensions �such as 1D or 3D� because powers of enve-

lope solitons are not constant in such cases.

As we have mentioned earlier, the eigenvalues we will

calculate in this section bifurcate from the eigenmode of the

2D envelope soliton’s zero eigenvalue induced by this enve-

lope soliton’s variation with respect to its propagation con-

stant, thus we will take Eq. �3.32� for the following analysis.

In this case, by comparing the expressions �3.13�, �3.16�, and

�3.19�, and �3.24� for �v0 ,v1 ,w2 ,w3� with the expressions

�2.8� and �2.22� for �u0 ,u1�, we see that

v0 = u0�, v1 = u1�, �3.33�

w0 = w1 = 0, w2 = u0, w3 = u1. �3.34�

In addition,

�1 = �2 = �3 = �4 = 0. �3.35�

Next we continue to pursue higher-order terms in the

power series expansions of the eigenfunction w and eigen-

value �2. The function w4 satisfies Eq. �3.25�. Utilizing Eqs.

�2.18�, �3.34�, and �3.35�, we find that

w4 = u2 + ��X,Y�p1�x�p2�y� . �3.36�

Here the inclusion of the homogeneous solution

��X ,Y�p1�x�p2�y� in w4 is necessary, and in fact crucial, in

our analysis. To obtain the equation for w5, we expand the

eigenvalue problem �3.2� to O��5� and get

M0w5 = �5v0 − M1w4 − �M2 + �u0
2�w3 − 2�u0u1w2.

�3.37�

Inserting the expressions �3.13�, �3.34�, and �3.36� for

�v0 ,w2 ,w3 ,w4� into the above equation and utilizing the

Fredholm condition on the u3 equation �2.19�, one can

readily show that the Fredholm condition for Eq. �3.37� is

satisfied only when �5=0. In this case, by utilizing the u3

equation �2.19�, the solution w5 can be found to be
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w5 = u3 +
��

�X
	1�x�p2�y� +

��

�Y
p1�x�	2�y� + ��X,Y�p1�x�p2�y� .

�3.38�

Here the � term will not enter the leading-order asymptotic

expression of the eigenvalues, and thus does not need much

attention.

Next we proceed to the equation for w6, whose Fredholm

condition will determine the function ��X ,Y� in the expres-

sion �3.36� of w4. The equation for w6 can be obtained by

expanding the eigenvalue problem �3.2� to O��6�, and we get

M0w6 = �6v0 − M1w5 − �M2 + �u0
2�w4 − 2�u0u1w3

− ��2u0u2 + u1
2�w2. �3.39�

Its Fredholm condition is

�
0

2� �
0

2�

��6v0 − M1w5 − �M2 + �u0
2�w4 − 2�u0u1w3

− ��2u0u2 + u1
2�w2�p1�x�p2�y�dxdy = 0. �3.40�

Inserting the expressions �3.13�, �3.34�, �3.36�, and �3.38� of

�v0 ,w2 ,w3 ,w4 ,w5� into the above condition and utilizing the

Fredholm condition on the u4 equation �2.20� as well as the

relation �2.27�, we find that the above Fredholm condition

�3.40� reduces to

L0
e� = − �6A�. �3.41�

This equation determines the function �. Notice that A satis-

fies Eq. �2.24�, i.e., L0
eA=0, thus Eq. �3.41� has a homoge-

neous solution A. This homogeneous solution is orthogonal

to the inhomogeneous term A� since the power of envelope

solitons A in Eq. �2.24� is independent of the parameter �.

Thus Eq. �3.41� admits a localized solution �. This � solution

is not unique because �+
A is also a solution of Eq. �3.41�
for any constant 
. Recalling Eqs. �2.8�, �3.34�, and �3.36�,
we see that the homogeneous term 
A in the � solution leads

to a scaling of the eigenfunction w from w to �1+�2
�w,

which does not affect the eigenvalue at all. This can be fur-

ther confirmed by Eqs. �3.53�–�3.59�, where it is seen that

any homogeneous term 
A in � has zero contribution to the

eigenvalue formula.

The solution � of Eq. �3.41� can be derived more explic-

itly as follows. By differentiating Eq. �2.24� with respect to

�, we find that

L1
eA� = − A . �3.42�

When this relation is combined with Eq. �3.41�, we get

L1
e
L0

e� = �6A . �3.43�

By introducing normalized variables

X̄ = 
 �

D1


1/2

X, Ȳ = 
 �

D2


1/2

Y, Ā = 

0

�

1/2

A

�3.44�

to the above equation and noticing the conditions �2.28� on

the signs of D1, D2, �, and � for solitary waves in the enve-

lope equation �2.24�, we find that the function � can be ex-

pressed as

� =
�6

����
0���
�̄�X̄,Ȳ� , �3.45�

where �̄�X̄ , Ȳ� is a symmetric solution of the following

parameter-free equation:

L̄1L̄0�̄�X̄,Ȳ� = Ā . �3.46�

Here Ā�X̄ , Ȳ� is the unique ground-state solution of the fol-

lowing parameter-free 2D NLS equation

L̄0Ā�X̄,Ȳ� = 0, �3.47�

and L̄0 , L̄1 are the normalized linear operators

L̄0 	
�

2

�X̄2
+

�
2

�Ȳ2
− 1 + Ā2, �3.48�

L̄1 	
�

2

�X̄2
+

�
2

�Ȳ2
− 1 + 3Ā2. �3.49�

To summarize the above results, we insert the expressions

�3.34� and �3.36� for �w2 ,w3 ,w4� into the perturbation series

expansion �3.9�, and find that the asymptotic formula for the

eigenfunction w is

w = ��u + �3��X,Y�p1�x�p2�y� + O��4�� , �3.50�

where � is given by Eq. �3.45�. The reader is reminded here

that the leading-order term of u is O��� �see Eq. �2.6��.
Now we insert the above perturbation-series solution of w

into the orthogonality relation �3.6�. To leading orders, we

get

�u�,u + �3��X,Y�p1�x�p2�y�� = 0. �3.51�

Notice that

�u�,u� =
1

2
P���� , �3.52�

where P is the power of the soliton defined in Eq. �2.30�. By

taking the leading-order term �u0 of u and using the relation

�2.7� between � and �, we find that to the leading order,

�u�,�3��X,Y�p1�x�p2�y��

= �2�A��X,Y�p1�x�p2�y�,��X,Y�p1�x�p2�y�� .

�3.53�

Using the integral formula in the Appendix, the above equa-

tion becomes

�u�,�3��X,Y�p1�x�p2�y�� = G�
−�

� �
−�

�

A��X,Y���X,Y�dXdY ,

�3.54�

where G is the average value of the squared Bloch-wave

function p1
2�x�p2

2�y� as defined in Eq. �2.38�. To evaluate the

integral in the right-hand side of the above equation, we see

from Eq. �3.41� and Eqs. �3.44�–�3.46� that
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A� =
�

�
0���
L̄1

−1Ā�X̄,Ȳ� . �3.55�

Then using the normalized variables �3.44� as well as the

above expression �3.55� for A� and expression �3.45� for �,

one finds that

�
−�

� �
−�

�

A��X,Y���X,Y�dXdY = −
�6C1

�D1D2


0�3
,

�3.56�

where

C1 	 − �
−�

� �
−�

�

�̄�X̄,Ȳ�L̄1
−1Ā�X̄,Ȳ�dX̄dȲ = 0.8684.

�3.57�

Inserting the expressions �3.52�, �3.54�, and �3.56� into Eq.

�3.51�, we obtain the coefficient �6 as

�6 =
P���0�
0�3

2C1G�D1D2

. �3.58�

Substituting this expression into the expansion �3.10� of �2

and recalling the relation �2.7� as well as the power formula

�2.41�, we finally obtain the leading-order asymptotic expres-

sion for �2 as

�2 =
C0

2C1

P���0�

P��0�
�� − �0�3, �3.59�

where P��0�= P0 is the limit power value at the band edge

�0 �see Eq. �2.41��, and constants �C0 ,C1� are given in Eqs.

�2.40� and �3.57�. This asymptotic formula is the most im-

portant result of this paper. It has far-reaching consequences,

which we will elaborate on below.

First this formula shows that �2 is always real. If �2 is

positive, then � is real and stable, while if �2 is negative,

then � is purely imaginary and unstable. In view of Eqs.

�2.7� and �2.28�, we see that sgn��−�0�=sgn���, thus the

formula �3.59� also shows that

sgn��2� = sgn��P���0�� . �3.60�

This relation tells us that for the focusing nonlinearity �where

�=1�, the eigenvalue � is unstable if P���0� is negative, i.e.,

if the slope of the power curve at the band edge is negative.

This is analogous to the VK stability criterion �although the

gap soliton here is sign indefinite in general�. But for the

defocusing nonlinearity �where �=−1�, this eigenvalue is un-

stable if P���0� is positive. This is just the opposite of what

the VK criterion says. These results generalize and modify

the VK stability criterion to sign-indefinite gap solitons, and

reveal the important role the sign of nonlinearity plays in the

connection between stability and the power slope.

The above conditions for linear instability can be com-

bined into one equivalent but simpler condition. Notice that

under focusing nonlinearity, gap solitons bifurcate out at the

right-hand side of a band edge. Thus when P���0��0, the

powers of gap solitons near the band edge are lower than the

limit power value P0 at the band edge. Under defocusing

nonlinearity, gap solitons bifurcate out at the left-hand side

of a band edge. Thus when P���0��0, the powers of gap

solitons near the band edge are also lower than the limit

power value P0 at the band edge. As a result, our results

above for linear instability of gap solitons for both focusing

and defocusing nonliearities can be condensed into the fol-

lowing simple statement: gap solitons near band edges are

unstable if their powers are lower than the limit power val-

ues on the band edges.

Formula �3.59� also tells us that the eigenvalue � is pro-

portional to ��−�0�3/2. Recalling Eq. �2.7�, we see that ��
−�0�3/2 is proportional to �3, where � is the amplitude of the

gap soliton. Thus the eigenvalue � is proportional to the

cubic power of the soliton’s amplitude.

Now we check if the above instability condition on the

power curve is satisfied or not for 2D gap solitons. First we

examine the on-site gap solitons near the left and right edges

of the first Bloch band, whose power curves have been plot-

ted in Fig. 2. A quick inspection of this figure shows that for

both families of gap solitons, their powers near band edges

are lower than the limit powers on the band edges, thus these

solitons near band edges are linearly unstable. In order to

check if this instability condition is satisfied for other

branches of gap solitons, we consider the on-site single-

Bloch-wave gap solitons near the left and right edges of the

second Bloch band for the defocusing and focusing nonlin-

earities �V0=6�. The power curves of these solitons are plot-

ted in Fig. 3�a�, and typical soliton profiles near band edges

are displayed in Figs. 3�b� and 3�c�. These solitons are very
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FIG. 3. �Color online� �A� Power curves of on-site single-Bloch-

wave gap solitons bifurcated from the right and left edges of the

second Bloch band under focusing and defocusing nonlinearities,

respectively �V0=6�. ��B� and �C�� Profiles of gap solitons at the left

and right red circles of the power curves in �A�.
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broad along one direction and very narrow along the or-

thogonal direction, and they have been called reduced-

symmetry solitons in �19� �see also �10��. Here again, the

instability condition is satisfied for both branches of gap soli-

tons, thus these solitons near band edges �such as those dis-

played in Figs. 3�b� and 3�c�� are linearly unstable as well.

For off-site gap solitons near these band edges of Figs. 2 and

3, since their power curves are asymptotically the same as

those of on-site solitons �see discussions near the end of the

previous section�, we conclude that off-site gap solitons near

these band edges are linearly unstable as well.

The above analytical prediction of unstable eigenvalues

for gap solitons near band edges is fully confirmed both

qualitatively and quantitatively by our direct numerical com-

putations. For gap solitons near band edges, the unstable

eigenvalues are very small. In order to accurately determine

these small eigenvalues, several well known methods �such

as simulating the linearized wave equation of Eq. �2.1� to

pick up its exponential growth or discretizing the operator

eigenvalue problem �3.2� into a matrix eigenvalue problem�
are inefficient. Here we use our newly developed iteration

method, which can obtain small eigenvalues efficiently and

accurately �44�. With this method, we indeed found unstable

eigenvalues for gap solitons of Figs. 2 and 3 near band

edges, confirming the qualitative analytical predictions

above. To make quantitative comparisons, we consider the

two branches of on-site gap solitons near edges of the first

Bloch band under focusing and defocusing nonlinearities,

which are displayed in Figs. 1�a�, 1�d�, and 2. The numeri-

cally obtained unstable eigenvalues for these gap solitons are

plotted in Figs. 4�a� and 4�b� �solid lines�. To compare with

the asymptotic formula �3.59�, we first rewrite Eq. �3.59� as

� = � i��� − �0�3/2, � 	 
 C0

2C1

�P���0��

P��0�
�1/2

.

�3.61�

From Fig. 2, we see that for solitons in the semi-infinite gap,

P��0�=1.9649 and P���0�=−18.6414, thus the coefficient

�=7.9942, while for solitons in the first gap, P��0�
=1.9567 and P���0�=12.4885, thus �=6.5572. Inserting

these values into the asymptotic formula �3.61�, these

leading-order analytical results are also plotted in Figs. 4�a�
and 4�b� �dashed lines� for comparison. As we can see, the

numerical curves approach the analytical ones as � ap-

proaches the band edges, confirming the asymptotic formula

�3.61�. A more accurate way to confirm the formula �3.61� is

to plot the function �� / ��−�0�3/2� against �−�0 from the

numerical data. According to the asymptotic formula �3.61�,
�� / ��−�0�3/2� should approach the constant � as � ap-

proaches the band edge �0. To verify this, we have taken the

numerically obtained unstable eigenvalues and plotted the

functions �� / ��−�0�3/2� in Figs. 4�c� and 4�d�. The theoreti-

cal � values from Eq. �3.61� are also shown by the asterisk

symbols. It is seen that at both band edges, the functions

�� / ��−�0�3/2� indeed approach the theoretical � values as �
approaches the band edges. This agreement unambiguously

confirms the asymptotic formula �3.61� and its equivalent

form �3.59�.
Away from band edges, the leading-order asymptotic for-

mula �3.59� will become less accurate. In such cases, the

numerical method of �44� can be utilized to obtain the whole

curve of unstable eigenvalues. For the two branches of on-

site gap solitons shown in Fig. 2, these whole curves of

unstable eigenvalues are plotted in Fig. 5. The most impor-

tant feature of these two curves is that these eigenvalues are

only unstable near the band edges, but become stable some

distance away from the band edges. This makes the unstable-

eigenvalue curve to be shaped roughly like the letter “n.”

The location where this eigenvalue changes from unstable to

stable is precisely where the slope of the power curve is zero,

i.e., where the power attains its minimum value. This ex-

change of stability at the minimum power point is already

indicated by the VK stability criterion for sign-definite gap

solitons. For sign-indefinite gap solitons where the VK crite-

rion does not apply, one can still show by other methods

�such as the asymptotic method� that a width-instability-

related eigenvalue changes from unstable to stable at every
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FIG. 4. �Color online� ��A� and �B�� Unstable eigenvalues of

on-site gap solitons near the left and right edges of the first Bloch

band in Fig. 2. Solid lines: numerical results; dashed lines: analyti-

cal formulas �3.61�. The shaded regions represent the first Bloch

band. ��C� and �D�� Curves of �� / ��−�0�3/2� vs �−�0 for the two

branches of unstable eigenvalues in �A� and �B�. * represents the

theoretical � value from Eq. �3.61�.
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FIG. 5. �Color online� Whole curves of unstable eigenvalues for

the two branches of on-site gap solitons in Fig. 2. Solid lines: nu-

merical results; dashed lines: modified analytical formula �3.62�.
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power extremum point, which explains our numerical results

in Fig. 5. If one wants to obtain an analytical formula which

can well approximate the entire n-shaped eigenvalue curve of

Fig. 5, he would need to calculate higher-order corrections to

the leading-order eigenvalue formula �3.59�, which will be

expensive to do. Below, motivated by the form of the

asymptotic formula �3.59� as well as the fact of exchange of

stability at a power extremum point, we propose an approxi-

mate eigenvalue formula for the whole range of � values as

�2 =
C0

2C1

P����

P���
�� − �0�3. �3.62�

Here instead of using the power and its slope values at the

band edge �0, we use such values at the local point � where

the eigenvalue is calculated. This modified eigenvalue for-

mula has two main properties. One property is that near a

band edge �0, this new formula asymptotically approaches

the previous formula �3.59�. The other property is that at a

power extremum point, the eigenvalue of this modified for-

mula changes from unstable to stable, which qualitatively

agrees with the fact mentioned above. Due to these two prop-

erties, this modified formula would give quantitatively accu-

rate eigenvalues near band edges and qualitatively accurate

eigenvalues away from band edges. To compare this modi-

fied eigenvalue formula with the numerical values, we use

the power curves of Fig. 2, which enable us to calculate these

modified eigenvalues. The results are displayed in Fig. 5 as

dashed lines. When compared to the numerically obtained

eigenvalues �solid lines�, we find that this modified formula

gives a decent approximation for the unstable eigenvalues

over the whole range of the � intervals.

We emphasize that the above asymptotic eigenvalue for-

mula �3.59� holds identically for both on-site and off-site gap

solitons near band edges. Indeed, in all our calculations of

power series expansions, we did not use any information on

the center locations of gap solitons. This means that the dif-

ference in eigenvalues between on-site and off-site solitons

near band edges is smaller than any power of the soliton

amplitude �, i.e., is exponentially small in �.

As we have mentioned earlier in this section, the eigen-

values calculated above bifurcate from the eigenmode �3.32�
of the 2D envelope soliton’s zero eigenvalue induced by this

envelope soliton’s variation with respect to its propagation

constant. These eigenvalues, if unstable, lead to width insta-

bilities. We should point out that gap solitons also possess

other eigenvalues, which bifurcate from the eigenmodes

�3.30� and �3.31� of the envelope soliton’s zero eigenvalue

induced by this envelope soliton’s variation with respect to

its spatial positions. These eigenvalues, if unstable, lead to

drift instabilities. In one dimension, it has been shown that

for gap solitons near band edges, these position-variation-

induced eigenvalues are exponentially small with the soli-

ton’s amplitude. In addition, these eigenvalues are stable for

on-site solitons but unstable for off-site solitons �25�. In the

2D case, similar results hold, i.e., these position-variation-

induced eigenvalues are also exponentially small, and they

are stable for on-site solitons but unstable for off-site solitons

�details omitted�. Physically speaking, the centers of off-site

solitons are at a local maximum of the lattice potential

V�x ,y�, thus they are unstable, and their centers tend to drift
from a potential maximum �off site� to a potential minimum
�on site�. In two dimensions, since we have shown that both
on-site and off-site gap solitons suffer width instabilities near
band edges �based on the power curves we have obtained,
see Figs. 2 and 3�, the presence or absence of these drift
instabilities will not change the unstable nature of gap soli-
tons near band edges.

In the above analysis, we have established both analyti-
cally and numerically that 2D gap solitons near band edges
are linearly unstable. Then how will these unstable solitons
evolve under perturbations? Here we briefly address this
question. For on-site 2D gap solitons, the instability is only
the width-instability type, and drift instabilities are absent.
The nonlinear evolution of such on-site solitons under per-
turbations has been illustrated in �13�. If the initial perturba-
tion reduces the power of the soliton, the soliton will decay,
and its width will steadily increase. But if the initial pertur-

bation increases the power of the soliton, the soliton will

shrink into a narrower but higher hump. These two scenarios

can be heuristically understood from the envelope dynamics

of these gap solitons, which are governed by the 2D NLS

equation �3.29�. It is well known that in this 2D NLS equa-

tion for the Bloch-wave envelope, if the initial condition is a

reduced �envelope� soliton, then the solution will disperse

away; but if the initial condition is an amplified soliton �so

that the energy of the initial state is negative�, then the solu-

tion will become singular in finite time �critical collapse�
�42�. This envelope dynamics in the 2D NLS equation ex-

plains the gap-soliton dynamics near band edges under per-

turbations �during the initial stage of evolution�. In the sec-

ond case where the gap soliton shrinks and steepens

�corresponding to critical collapse in the envelope of the gap

soliton�, since the total power of the gap soliton is less than

the critical power �i.e., C0=11.70� of lattice-free Kerr soli-

tons �see Figs. 2 and 3�, critical collapse in the lattice model

�2.1� cannot happen �42�. Thus this steepened solution has to

retreat and evolve into an oscillating bound state where the

solution pulsates. This behavior is qualitatively similar to

that in a 1D model under dual-power-law nonlinearities �43�.
For off-site gap solitons, however, the drift instabilities

are also present. Due to both the width and drift instabilities,

a perturbed off-site soliton will generally drift to a lattice site

�in an oscillatory manner�. At the same time, it will decay

away or relax into a pulsating bound state.

In the end of this section, we examine the implications of

our 2D stability analysis for other spatial dimensions. For

low-amplitude gap solitons near band edges, their linear-

stability eigenvalues bifurcate from eigenmodes of the enve-

lope soliton in the envelope equation. In the 1D case, the

envelope soliton in the envelope equation �i.e., 1D NLS

equation� has a single discrete eigenvalue, which is zero. At

this zero eigenvalue, there are only two discrete eigenfunc-

tions, which are induced by the phase and position invari-

ances of the envelope soliton. There does not exist the

propagation-constant-variation-type eigenmode �the counter-

part of Eq. �3.32��, thus the eigenvalues �3.59� we calculated

for 2D gap solitons have no counterpart in 1D gap solitons.

In the 3D case �i.e., “light bullet” gap solitons trapped in a

3D lattice and evolving with time�, the envelope soliton in
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the envelope equation �i.e., 3D NLS equation� has a zero

discrete eigenvalue and a pair of nonzero discrete eigenval-

ues �one of which is unstable�. This zero eigenvalue contains

four eigenfunctions �three induced by position invariance,

and one by phase invariance�, and these eigenmodes are not

related to the eigenvalues calculated in this paper. But the

nonzero eigenvalues of 3D envelope solitons are directly re-

lated to our stability analysis, and their bifurcations in 3D

gap solitons near band edges can be readily derived from our

existing formulas. Indeed, the counterpart of the envelope

soliton’s eigenvalue problem �3.21� and Eq. �3.27� in 3D has

a negative eigenvalue �4, thus one gets from Eq. �3.10� that

to leading order, �2=�4�4, thus �= � i���4��2. One of this

pair of eigenvalues is unstable, thus low-amplitude 3D gap

solitons near band edges are always linearly unstable. This

linear instability of the 3D gap solitons is directly caused by

the linear instability of 3D envelope solitons �comparatively,

2D envelope solitons are linearly neutrally stable and nonlin-

early unstable �42��. The magnitude of this unstable eigen-

value of 3D gap solitons is proportional to the square of the

soliton’s amplitude, which is larger than that of 2D gap soli-

tons.

IV. SUMMARY AND DISCUSSIONS

In this paper, linear stability properties of 2D low-

amplitude single-Bloch-wave packet gap solitons near edges

of Bloch bands in a cubic nonlinear medium has been deter-

mined both analytically and numerically. Through

asymptotic analysis, it has been shown that these gap soli-

tons are linearly unstable if the slope of their power curve at

the band edge has the opposite sign of the nonlinearity. This

generalizes and modifies the VK stability criterion to sign-

indefinite gap solitons under either focusing or defocusing

nonlinearities. Through numerical computations of the power

curves near several band edges, it has been found that this

condition is always satisfied, thus 2D gap solitons near band

edges are linearly unstable �for both focusing and defocusing

nonlinearities�. The analytical formula for this unstable ei-

genvalue of gap solitons near band edges has also been as-

ymptotically derived. It is shown that this eigenvalue is pro-

portional to the cubic power of the soliton’s amplitude, and it

induces width instabilities of gap solitons. Comparison be-

tween this eigenvalue formula and numerically computed ei-

genvalues shows excellent agreement.

We should emphasize that our instability results were de-

rived for 2D gap solitons near band edges where the soliton

amplitudes are small. Away from band edges �i.e., at higher

soliton amplitudes�, while off-site solitons will remain un-

stable since the drift instabilities will persist, on-site solitons,

however, can become stable. The reason for this stability is

that the width-instability eigenvalue will become stable when

the propagation constant crosses over a power minimum

point. This is illustrated clearly in Fig. 5 �see also �13��. Thus

high-amplitude on-site 2D gap solitons in a cubic nonlinear

medium can be stable and physically observable. In a satu-

rable photorefractive medium, such solitons in the semi-

infinite and first band gaps under both focusing and defocus-

ing nonlinearities have been observed in �5,6,17,19�.

The results of this paper shed much light on stability

properties of 2D gap solitons in a cubic nonlinear medium,

but some important questions still remain open. One question

is what will happen if the nonlinearity is not cubic but rather

saturable. This question is significant because many recent

optical experiments on periodic media were performed in

photorefractive crystals whose nonlinearity is saturable

�5,36�. Under the saturable nonlinearity, will the stability

properties of 2D gap solitons near band edges remain the

same as those for the cubic nonlinearity? Note that according

to the numerical results of �45�, powers of 2D gap solitons

on the band edges can be lower than those near band edges

under defocusing saturable nonlinearity �see their Fig. 6�.
Based on our stability results for cubic nonlinearities, this

could suggest that such gap solitons near band edges are

linearly stable. Motivated by this prospect, we redid their

power calculations in Fig. 6 using the recently developed

modified squared operator iteration method �41�. Our results

show that, different from their findings, the power of those

2D gap solitons on the band edge is still higher than that near

the band edge, similar to the cubic-nonlinearity case. Thus

we conjecture that low-amplitude 2D gap solitons near band

edges in the saturable model are linearly unstable as well—a

conjecture which needs substantiation. Another open ques-

tion is the following. In this paper, we only considered the

stability of 2D gap solitons in the form of single-Bloch-wave

packets. But it is known that near many 2D band edges, gap

solitons consisting of two coupled Bloch-wave packets exist

�10�. Examples include the dipole-array solitons and vortex-

array solitons near band edges “C” and “D” in �10�. Stability

properties of such coupled Bloch-wave packet solitons are

still unknown. These open questions lie outside the scope of

the present paper, but they certainly merit further studies in

the future.

Lastly, we would like to point out that the results of this

paper have direct ramifications to other areas of nonlinear

wave dynamics. For instance, in the theory of nonlinear wa-

ter waves, it was shown recently that two-dimensional wave-

packet solutions �lumps� can bifurcate from the edge of the

continuous spectrum in the fifth-order Kadomtsev-

Petviashivili �KP� equation �46�. The power curve of these

lumps has a v shape, and the lumps near the edge of the

continuous spectrum are linearly unstable �46�. These phe-

nomena closely resemble those of 2D gap solitons in the

model equation �2.1�. Clearly our stability analysis can be

extended to lumps in the fifth-order KP equation, and an

eigenvalue formula similar to Eq. �3.59� can be derived �ex-

cept that the constants C0 and C1 are now different�.
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APPENDIX: AN EXPONENTIALLY ACCURATE

INTEGRAL FORMULA

In the analysis of this paper, we often needed to calculate

integrals of functions, which are products between a slow-
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variable localized function and a fast-variable periodic func-

tion. To calculate such integrals, the following asymptotic

formulas have been used. These asymptotic formulas are ex-

ponentially accurate, thus they do not affect the power series

expansions in our analysis.

If f�x� is a T-periodic function, X=�x is a slow variable

with ��1, and F�X� is a smooth localized function of X,

then the following asymptotic formula holds:

�
−�

�

f�x�F�X�dx =
G

�
�

−�

�

F�X�dX + o��n� , �A1�

where

G 	
1

T
�

0

T

f�x�dx �A2�

is the average value of the periodic function f�x�, and n is

any integer. The arbitrariness of n indicates that the error in

the asymptotic approximation �A1� is exponentially small in

�.

The above formula can be easily proved as the following.

We first expand the periodic function f�x� into the Fourier

series as follows:

f�x� = �
n=−�

�

cnei2�nx/T. �A3�

Substituting this expansion into the left-hand side of Eq.

�A1�, we get

�
−�

�

f�x�F�X�dx = c0�
−�

�

F�X�dx + �
n�0

cn�
−�

�

F�X�ei2�nx/Tdx .

�A4�

Notice that

c0 =
1

T
�

0

T

f�x�dx = G , �A5�

thus the first term in �A4� is equal to the first term in the

formula �A1�. Regarding the remaining terms in Eq. �A4�,
we see that

�
−�

�

F�X�ei2�nx/Tdx =
1

�
�

−�

�

F�X�ei2�nX/�TdX =
1

�
F�−

n

�T
� ,

�A6�

where F�·� is the Fourier transform of F�X�. If F�X� is a

smooth function and n�0, it is well known that the Fourier

coefficient F at large wave number −n /�T is smaller than

any power of �. Thus formula �A1� is proved.

The 1D formula �A1� is simple to extend to higher dimen-

sions. The 2D counterpart of this formula is

�
−�

� �
−�

�

f�x,y�F�X,Y�dxdy =
G

�2�
−�

� �
−�

�

F�X,Y�dXdY

+ o��n� . �A7�

Here f�x ,y� is a T-periodic function in both x and y, X

=�x ,Y =�y are slow variables, F�X ,Y� is a smooth localized

function of �X ,Y�, and G is the average value of the periodic

function f�x ,y�.

G 	
1

T2�
0

T �
0

T

f�x,y�dxdy . �A8�
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