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Abstract
Vibration signals of most civil infrastructures have sparse characteristics (i.e. only a few modes contribute to the vibra-
tion of the structures). Therefore, the vibration data usually have sparse representation. Additionally, the vibration data
measured by the sensors placed on different locations of structure have almost the same sparse structure in the fre-
quency domain. On basis of the group sparsity of the structural vibration data, we proposed a group sparse optimization
algorithm based on compressive sensing for wireless sensors. Different from the Nyquist sampling theorem, the data are
first acquired by a nonuniform low-rate random sampling method according to compressive sensing theory. We then
developed the group sparse optimization algorithm to reconstruct the original data from incomplete measurements. By
conducting a field test on Xiamen Haicang Bridge with wireless sensors, we illustrate the effectiveness of the proposed
approach. The results show that smaller reconstruction errors can be achieved using data from multiple sensors with
the group sparse optimization method than using data from only single sensor. Even using only 10% random sampling
data, the original data can be reconstructed using the group sparse optimization method with a small reconstruction
error. In addition, the modal parameters can also be identified from the reconstruction data with small identification
errors.
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Introduction

Wireless sensors and sensor networks for structural
health monitoring

Structural health monitoring (SHM) technology was
developed several decades ago, and a lot of civil infra-
structures have been installed with some SHM systems
all over world.1–4 In a wired sensors–based SHM sys-
tem, the wired connection between sensors and the data
acquisition system increases the system cost and causes
great difficulties for maintenance and replacement. As
reported, the wired monitoring system on the Bill
Emerson Memorial Bridge in Cape Girardeau, MO,
USA, costs more than US$15,000 per sensor,5 and a
large portion of that cost was related to the wired data
transmission cables. Wireless sensors and the wireless
network have intelligent data processing capabilities
with an embedded algorithm that do not have cables,
which greatly reduces the sensor’s installation cost. In
comparison with traditional wired sensor–monitoring

systems, wireless sensors and wireless networks possess
several advantages that make them attractive alterna-
tives for monitoring large civil infrastructure.

In SHM, great efforts have been made to explore
wireless sensing systems. Some academic and commer-
cial smart sensor prototypes have been developed and
used in the field of SHM.6–13 Straser and Kiremidjian6

first developed smart wireless sensors for application in
civil engineering structures. A more exhaustive review is
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given by Lynch and Loh7 and Spencer et al.8 Recently,
wireless sensors have been used on many bridges for
SHM purposes. On Jindo Bridge, a cable-stayed bridge
in Korea, 70 Imote2 smart wireless sensors have been
installed for SHM.9 On Geumdang Bridge, a continu-
ous beam bridge, Lynch et al.10 installed 28 wireless
sensors for SHM. The Stork Bridge in Switzerland,11

Ferriby Road Bridge in England,12 and Rock Island
Arsenal Government Bridge in the United States13 are
all installed with some wireless sensor–based SHM
system.

Compared with wired sensors, wireless sensor and
sensor networks need additional energy acquisition
technology to ensure the power supply to the sensors.
In addition, in the long-term monitoring of the struc-
ture, large amounts of data acquisition and wireless
transmission likely cause the instability of the wireless
sensor networks. The wireless data transmission process
will consume most of the energy of the sensor battery.
Therefore, it is necessary to embed a data compression
algorithm to reduce the amount of data transmission as
much as possible to minimize energy consumption and
prolong the service life of wireless sensor. The tradi-
tional data compression method, which is based on the
sampling theorem, has its limitations: it first completes
data collection, and then it compresses the data. For
wireless sensors, the data compression process con-
sumes part of the energy. Therefore, new data compres-
sion methods are needed to effectively improve the
wireless sensors and wireless sensor network for long-
term SHM.

Compressive sensing for wireless sensors and SHM

To avoid information loss when uniformly sampling a
signal, the Shannon–Nyquist sampling theorem
requires a sampling frequency at least two times that of
the signal’s bandwidth. For high-frequency signals,
long-term real-time SHM with uniform sampling pro-
duces a large volume of data and results in the high
cost of data sampling, storage, and transmission.

Compressive sensing (CS) provides a new sampling
theory to reduce data acquisition when using the nonu-
niform low-rate random sampling method, which said
that the sparse or compressible signals can be exactly
reconstructed from highly underdetermined sets of
measurements under the assumption of signal sparsity
and under certain conditions on the measurement
matrix.14,15 The potential of CS for SHM has been
investigated widely, and many CS applications have
been presented. Bao et al.16 investigated the CS for the
acceleration data collection of SHM, finding that the
sparsity of the vibration acceleration response data of
the structures is the main factor affecting data recon-
struction accuracy. Mascarenas et al.17 studied the

compressed sensing techniques to detect structure
damage. In their research, they developed compressed
sensor to collect compressed coefficients from measure-
ments and send them to an off-board processor for sig-
nal reconstruction using l1 norm minimization; then,
they implemented a compressed version of the matched
filter onboard the sensor node to detect structural dam-
age. Peckens and Lynch18 proposed a bio-inspired CS
technique to acquire data for SHM. O’Connor et al.19

explored CS to reduce power consumption in wireless
sensors for SHM. They modified the wireless sensor
node to perform random sampling of data according to
CS theory. Then, the randomly sampled data were
transmitted off-site to a computational server for data
reconstruction using the compressive sampling match-
ing pursuit (CoSaMP) recovery algorithm and were
processed further to extract the structure’s mode
shapes. Bao et al.20 explored the use of CS to recover
the lost data collected by wireless sensors for SHM, in
which the random lost data are equivalent to the com-
pressed CS data. The lost data were reconstructed
using the sparse optimization method with high accu-
racy. Furthermore, they embedded the CS-based algo-
rithm into Imote2 wireless sensor using a random
demodulator technique; the field test results on the
Songpu Bridge in Harbin, China, showed the successful
recovery of the lost CS-based data.21

The CS method has been explored not only for data
acquisition but also for structural modal identification,
structural damage identification, and loads identifica-
tion. Park et al.22 proposed a novel method for modal
identification directly using compressed sensing mea-
surements. Yang and Nagarajaiah23 proposed an
output-only modal identification method combined
with blind source separation (BSS) techniques and CS.
In this method, the nonuniform low-rate random sam-
ples are used directly for modal identification. Wang
and Hao24 proposed a new CS-based damage identifi-
cation scheme by damage identification problems as
pattern classification problems. On the basis of the
sparsity symposium of structural damage, the l1
sparse optimization methods of CS theory also are used
to identify structural damage.25–27 In addition, Bao
et al.28 presented a sparse optimization of CS theory–
based approach to identify the distribution of moving
heavy vehicle loads on cable-stayed bridges.

In SHM, not only do most vibration signals of civil
infrastructures have sparse characteristic but also the
measured vibration data at different locations of the
structure have a similar sparse structure in the fre-
quency domain. In this article, we call this property
group sparsity. To further increase the data reconstruc-
tion accuracy of CS in SHM, the group sparsity of
data from multiple sensors is explored to form a
group sparse optimization method for high-accuracy
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reconstruction of compressed sampling data by wireless
sensors. This group sparsity has been exploited in dif-
ferent areas and also has different names in different
applications, including, for instance, joint sparsity,29,30

simultaneous sparsity,31,32 and group least absolute
shrinkage and selection operator (LASSO).33 In SHM,
Yang and Nagarajaiah34 proposed a data recovery
method of structural vibration responses resulting from
incomplete data. This method used the data from mul-
tiple sensors to form a low-rank matrix to recover the
missing data. In their approach, however, the group
sparsity of multiple sensors vibration data is not men-
tioned. In this article, using the special structure of the
Fourier basis, we develop an efficient algorithm based
on the augmented Lagrange multiplier (ALM) method.
In this algorithm, only fast Fourier transform (FFT) or
soft shrinkage is involved, making this method effi-
cient. Section ‘‘CS based on group sparse optimization
algorithm’’ gives the details of this algorithm.

CS based on group sparse optimization
algorithm

Principle of the method

Unlike traditional Nyquist uniform sampling, the CS
enables nonuniform low-rate random sampling as
shown in Figure 1. The Nyquist sampling needs to
sense N samples of a signal to avoid information loss
as shown in Figure 1(a); however, CS randomly senses
much fewer M � N , as shown in Figure 1(b).
According to the CS theory, if the original signal is
sparse, CS is able to exactly recover it from far fewer
incoherent random measurements than what is
required by the Shannon sampling theorem.

Suppose that K sensors are implemented in the struc-
ture. The acceleration is measured at discrete time
tj, j = 1, . . . ,M by each sensor. Here, we assume the entire
time span of the samples is ½0, T �, and the sample time is
distributed uniformly, that is, tj = jT=M , j = 1, . . . ,M . By

collecting all the data together, we get the M3K matrix,
U as follows

U=

u11 u12 � � � u1K

u21 u22 � � � u2K

..

. ..
. . .

. ..
.

uN1 uN2 � � � uNK

2
6664

3
7775 ð1Þ

where umk is the data measured by the kth sensor at
time tm.

Then, the compressed sensing signal matrix, U is
usually an incomplete matrix. Let V = f(m, k) :
Um, k is availableg and PO : RM3K ! RM3K is the zero
padding operator, that is, Y = POU, as follows

ym, k =
um, k , m, kð Þ 2 O

0, otherwise

�
ð2Þ

Then, the problem we are facing is how to calculate
the original signal matrix U from the given signal
Y= POU 2 RM3K

The signal matrix U can be represented as

U= CX ð3Þ

where C is a Fourier matrix

C =

ei2pt1=T ei4pt1=T � � � ei2Mpt1=T

ei2pt2=T ei4pt2=T � � � ei2Mpt2=T

..

. ..
. . .

. ..
.

ei2ptM=T ei4ptM=T � � � ei2MptM=T

2
6664

3
7775 ð4Þ

where X 2 CM3K are the Fourier coefficients of the
original signal that has only a few nonzero rows. This
representation gives us an alternative way to recover
the signal matrix U, which is so-called group sparsity.
Generally speaking, a matrix X is said to be group
sparse, if the entries of X are classified as many groups
and only a few groups are nonzero. In different appli-
cations, the classification may be different. More

Figure 1. Nyquist sampling and CS sampling: (a) Nyquist samples and (b) CS samples.
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precisely, in our application, one group corresponds to
one row of X.

Considering the measurement noise, equation (3) is
changed to

U= CX+ e ð5Þ

where e 2 RM3K is a Gaussian noise matrix.
The group sparse reconstruction problem has been

well-studied recently in the literature.29–33 A favorable
approach is using the mixed jj � jjp, q norm as regulariza-
tion, where

Xk kp, q =
XM
m = 1

xmk kq
p

 !1=q

ð6Þ

One of the most popular choices of p, q is p = 2, q = 1,
and we also use these values in this article. Then, the
Fourier coefficients matrix X is recovered by solving
the following optimization problem

min
X2CM3K

Xk k2, 1 +
m

2
PO CXð Þ � POUk k2

Fro ð7Þ

Once the optimal solution Xrec is obtained, the recov-
ered signal matrix is given by

Urec = CXrec ð8Þ

Next, we will derive an efficient algorithm to solve
the group sparse reconstruction problem in equation (7)
based on the ALM35 and split Bregman iteration.36

Algorithm

In this section, we give an iterative algorithm to solve
the optimization problem of equation (7). First, we
introduce an auxiliary variable Z to equation (7) as
follows

min
X2RM3K ,
Z2RM3K

Xk k2, 1 +
m

2
Zk k2

Fro, subject to : POZ= CX� POU

ð9Þ

We next use the ALM algorithm to solve equation
(9). The ALM algorithm solves a constrained problem
by iteratively solving a sequence of unconstrained prob-
lem. For a general constrained optimization problem35

minF xð Þ, subject to : g xð Þ = 0 ð10Þ

The ALM algorithm solves equation (10) by the fol-
lowing iterative process

xk = argmin
x

F xð Þ+
t

2
g xð Þ+

vk

t

����
����

2

2

vk + 1 = vk + tg xk
� �

where t is a parameter in ALM. It is well-known that
the convergence of ALM algorithm is robust to the
choice of this parameter.

Applying the ALM algorithm to equation (9), we get
an iterative algorithm

Xk + 1,Zk + 1
� �

= arg min
X2CM3K ,
Z2RM3K

Xk k2, 1 +
m

2
POZk kFro +

t

2

Z�CX+ POU+
Qk

t

����
����

2

Fro

ð11Þ

Qk + 1 =Qk + t Zk + 1 �CXk + 1 + POU
� �

ð12Þ

To further simplify the algorithm, we use the split
Bregman iteration36 to compute Xk + 1, Zk + 1 separately,
as follows

Xk + 1 = arg min
W2CM3K

Xk k2, 1 +
t

2
Zk �CX+ POU+

Qk

t

����
����

2

Fro

ð13Þ

Zk + 1 = arg min
Z2RM3K

m

2
POZk k2

Fro +
t

2

Z�CXk + 1 + POU+
Qk

t

����
����

2

Fro

ð14Þ

Qk + 1 =Qk + t Zk + 1 �CXk + 1 + POU
� �

ð15Þ

Notice that both equations (13) and (14) have an
explicit solver. In equation (13), using Parseval’s equal-
ity in Fourier transform, we have

Xk + 1 = arg min
W2CM3K

Xk k2, 1 +
t

2

Xk �C�1 Z+ POUð Þ+
Qk

t

����
����

2

Fro

=

S1=t C�1 Zk + POU+
Qk

t

� �� �
ð16Þ

where S1=t : RM3K ! RM3K is a shrink operator. Let W
be the M3K matrix and wj, j = 1, . . . ,M be rows of W.
For each w 2 CK

Sm wð Þ=
wk kFro � m

� �
w

wk kFro
, if wk kFro � m

0, otherwise

�
ð17Þ

Then, Sm for matrix is defined as follows
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Sm Wð Þ=

Sm w1ð Þ
Sm w2ð Þ

..

.

Sm wMð Þ

2
6664

3
7775 ð18Þ

Direct calculation gives the formula of Zk + 1 as
follows

Zk + 1 =Wk + 1 � m

m + t
POW

k + 1 ð19Þ

where

Wk + 1 = CXk + 1 � POU�
Qk

t
ð20Þ

Summarizing this derivation, we get an iterative
algorithm to solve the optimization problem in equa-
tion (7). First, let Q0 =Z0 = 0 and choose a value of t,
and then conduct the following iteration until the solu-
tion converges

Xk + 1 = S1=t C�1 Zk + POU+
Qk

k

� �� �
ð21Þ

Wk + 1 = CXk + 1 � POU�
Qk

k
ð22Þ

Zk + 1 =Wk + 1 � m

m + t
POW

k + 1 ð23Þ

Qk + 1 =Qk � t CXk + 1 � Zk + 1 � POU
� �

ð24Þ

In this algorithm, only FFT, inverse FFT, and the sim-
ple shrink operator are used, which make this algorithm
quite efficient.

Field test of a bridge

Description of the test

We conducted a field test on Xiamen Haicang Bridge.
The bridge is a steel-box-girder suspension bridge with
a span distribution of 230 m + 648 m + 230 m, as
shown in Figure 2. The bridge has two towers with a
height of 140 m and the width of the bridge deck is
32 m. To avoid disturbing the normal traffic, the test is
carried out at midnight. The test schemes are shown in
Figure 3. The tests are repeated nine times and tested a
total of 62 test points. Test 1 had seven test points (Nos
1–6 and No. 26); wireless sensors are placed on the
seven test points to measure the vibration data. The
time duration of each test was 20 min. After the test is
completed, the wireless sensors were moved to Test 2,
which also included seven test points (Nos 7–12 and
No. 26). Considering the effective wireless data trans-
mission distances, test point No. 26 was selected as the
reference point for all tests. In the same way, Test 2 to
Test 9 are conducted. The test used nine commercial
wireless velocity sensors, as shown in Figure 4, and the
sampling frequency for data acquisition was 100 Hz.

Figure 2. Xiamen Haicang Bridge.

Figure 3. The placement of test points.
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The representative data sets measured from the
bridge are shown in Figure 5(a). The Fourier spectrum
at the measured response is shown in Figure 5(b), which
shows that the data from multiple sensors almost have
similar sparsity in the frequency domain. To further

illustrate the similar sparsity of the data from multiple
sensors, the cross-correlation of the Fourier amplitude
spectrum is calculated by

gXY =

PN
i = 1

Xi � �Xð Þ Yi � �Yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1

Xi � �Xð Þ
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1

Yi � �Yð Þ
2

s ð25Þ

Table 1 shows the results, which indicates that the
minimal and maximal cross-correlation coefficients are
0.5117 and 0.9589, respectively. Most cross-correlation
coefficients are within a range of [0.7, 0.95]. These
cross-correlation coefficients further indicate the group
sparsity of the signal.

Data sampling by CS

Because CS sensors are not yet commercially available,
the behavior of CS sensors are simulated. The proce-
dure of CS data sampling is shown in Figure 6, which
demonstrates that data are randomly sampled.

Figure 4. (a) The wireless sensor node and (b) wireless base
station.

Figure 5. The typical measurements and Fourier spectrum: (a) the measured velocity data of test points Nos 29–36 and the
reference point (No. 26) and (b) the Fourier spectrum of the measured velocity data of test points Nos 29–36 and the reference
point (No. 26).
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The typical measured velocity data by wireless sen-
sor are shown in Figure 7(a). We simulate the nonuni-
form low-rate random sampling of CS, and the data
with 10%, 20%, and 30% samples are shown in Figure
7(b) to (d).

Data reconstruction results

The data reconstruction results for 10%, 20%, and
30% samples are shown in Figures 8 to 10, respectively.
Figures 8(a), 9(a) and 10(a) are the reconstruction
results using data from one sensor, and Figures 8(b),
9(b) and 10(b) are the reconstruction results using data
from multiple sensors (nine sensors). These figures
show that the smaller reconstruction errors can be
achieved by considering data from multiple sensors
using the group sparse optimization method.

To investigate the relation between sampling ratio
and reconstruction error, the sampling ratios 10%,
15%, 20%, 25%, and 30% are considered. The recon-
struction error is calculated by

j =
û� uk k2

uk k2

ð26Þ

where û and u are the reconstruction data and the origi-
nal data, respectively. The results of the data recon-
struction error of the data taken from the nine sensors
in Test 5 are shown in Figure 11, illustrating that

reconstruction errors decrease with an increase in the
data sampling ratios for both the data from the single

Table 1. The cross-correlation coefficients matrix of the Fourier amplitude spectrum of multiple sensors data.

No. 29 No. 30 No. 31 No. 32 No. 33 No. 34 No. 35 No. 36 No. 26

No. 29 1 0.7534 0.9392 0.8091 0.9544 0.7663 0.9588 0.7934 0.5693
No. 30 1 0.7542 0.6222 0.7618 0.9632 0.7704 0.6353 0.5117
No. 31 1 0.8227 0.9589 0.7720 0.9584 0.8139 0.5754
No. 32 1 0.8265 0.6459 0.8422 0.9477 0.7864
No. 33 1 0.7677 0.9481 0.8128 0.5875
No. 34 1 0.7770 0.6434 0.5344
No. 35 1 0.8324 0.6127
No. 36 1 0.8012
No. 26 1

Figure 7. The sampling data by CS: (a) original data, (b) 10%
samples, (c) 20% samples, and (d) 30% samples.

Figure 6. The procedure of CS data sampling.
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sensor and the data from the multiple sensors using
group sparse optimization method. In addition, the
reconstruction errors using multiple sensors data by
group sparse optimization method are less than those
of using single sensor. These errors further indicate that
the group sparsity of the data from multiple sensors
can effectively increase the accuracy of CS data
reconstruction.

Figure 12 shows the relationships of the reconstruc-
tion error with the sensor number used in data recon-
struction based on the group sparse optimization
method under different sampling ratios. It is evident
that the reconstruction error decreases as the number
of sensors increases under different sampling ratios
from 10% to 30%.

The reconstruction errors in the time and frequency
domain of all test points data are shown in Figures 13
and 14, respectively. These figures show that multiple
sensors data–based group sparse optimization method
obviously decreases the data reconstruction error in
both the time and frequency domain. In the case of
10% samples, the minimal reconstruction error in all
reconstruction data using multiple sensors data–based
group sparse optimization method is 0.0717, which is
much lower than the 0.1401 following the method based
on a single sensor. In the case of 30% samples, the mini-
mal reconstruction error using multiple sensors data–
based group optimization method is 0.0344; however,
the error following the method based on a single sensor
is 0.0826.

Modal identification results

The power spectral densities (PSD) of the original sig-
nal and the reconstruction signal with 10% random
samples are shown in Figure 15. It is evident that PSD
results from reconstruction signal using data from the
single sensor and the reconstruction signal using data
from multiple sensors are quite close to those of the
original.

To investigate the influences of the data reconstruc-
tion error on the modal identification results, the modal
frequencies and mode shapes identified by the natural
excitation technique (NExT)37 and combined with
eigensystem realization algorithm (ERA) methods38 are
shown in Tables 2 and 3 and Figure 16, respectively.
The theoretical frequencies and mode shapes are calcu-
lated from the finite element model of the bridge. The
modal assurance criterion (MAC) values of the mode
shapes are calculated by

Figure 8. Data reconstruction results from 10% samples:
(a) reconstruction from single sensor data and (b)
reconstruction from multiple sensors data.

Figure 9. Data reconstruction results from 20% samples:
(a) reconstruction from single sensor data and
(b) reconstruction from multiple sensors data sets.

Figure 10. Data reconstruction results from 30% samples:
(a) reconstruction from single sensor data and
(b) reconstruction from multiple sensors data sets.
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Figure 11. The reconstruction errors with different sampling ratios: (a) test point 33, (b) test point 34, (c) test point 35, (d) test
point 36, (e) test point 37, (f) test point 38, (g) test point 39, (h) test point 40, and (i) test point 26 (reference point).

Figure 12. The relationship of the reconstruction error with sensor number: (a) Test 5 and (b) Test 6.

Bao et al. 9



MAC=
uT

r ûr

� �2

uT
r ûr

� �
uT

r ûr

� � r = 1, 2, � � � n ð27Þ

where ur and ûr are the rth theoretical and identified
mode shape, respectively.

The results show that the identified first two fre-
quencies and mode shapes from the reconstruction data
are almost consistent with the identification results
from original data. This illustrates that the data recon-
struction errors of both the single and multiple sensors

data–based methods have less impact on modal identi-
fication results.

Conclusion

In this article, we first proposed a group sparse optimi-
zation method for CS data reconstruction of wireless
sensors for SHM. This method considers the group
sparsity of structural vibration data from multiple sen-
sors in the frequency domain to form a data

Figure 13. Reconstruction error in the time domain of all test
points data: (a) 10% samples, (b) 15% samples, (c) 20% samples,
(d) 25% samples, and (e) 30% samples.

Figure 14. Reconstruction error in the frequency domain of all
test points data: (a) 10% samples, (b) 15% samples, (c) 20%
samples, (d) 25% samples, and (e) 30% samples.
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Figure 15. The PSDs of the original signal and reconstruction signal: (a) original signal, (b) reconstruction signal from single sensor
data with 10% samples, and (c) reconstruction signal from group sensors data with 10% samples.

Table 2. Frequency.

No. Theoretical Identified from original data Identified from reconstruction data

10% 20% 30%

Single Group Single Group Single Group

1 0.2199 0.2049 0.2033 0.2039 0.2040 0.2034 0.2049 0.2050
2 0.3196 0.2816 0.2835 0.2829 0.2821 0.2822 0.2815 0.2818

Bao et al. 11



reconstruction optimization problem under a group
LASSO framework. For the specific problem consid-
ered in this article, an efficient algorithm based on
ALM and split Bregman iteration is developed. In this
algorithm, we need to calculate only an FFT and sim-
ple shrink operation, making the computation quite
fast. To verify the proposed method, we conducted
field tests on Xiamen Haicang Bridge using wireless
sensors. The following conclusions can be drawn:

1. The data from multiple sensors have similar spar-
sity in the frequency domain. This group sparsity is
verified by the cross-correlation coefficients, which
have values within the range of [0.7, 0.95]. This
indicates that the data have strong correlation in
the frequency domain.

2. The vibration data reconstruction results show that
the highly incomplete random sampling data can
be well-reconstructed using the group sparse opti-
mization method. Even using 10% random sam-
pling data, the original data can be reconstructed
by the group sparse optimization method with a
small reconstruction error. In both the time and
frequency domain, the reconstruction errors of the
multiple sensors data–based group sparse

optimization method are all less than the single sen-
sor data–based optimization method.

3. The modal identification results show that the
identified frequencies and mode shapes from the
reconstruction data are almost consistent with the
identification results from the original data, which
indicates that the reconstruction errors of both the
single and multiple sensors data–based methods
have less impact on modal identification results.

4. The proposed method can be used for compressive
sampling of structural vibration data. The effective-
ness for other types of data, such as strain and displa-
cement, still need to be investigated. Additionally, the
group sparsity of the vibration data found in this
study will be a useful feature in many SHM inverse
problems. The proposed group sparse optimization
method can also be used to recover the missing data
from wireless sensors and sensor networks and for
SHM error data correction. These applications will
be studied in the future.
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Figure 16. The first two identified mode shapes: (a) identification results by original signal and (b) identification results by
reconstruction signal from group sensors data with 10% samples.

Table 3. MAC.

No. Identified from original data Identified from reconstruction data

10% 20% 30%

Single Group Single Group Single Group

1 0.9877 0.8126 0.8688 0.9671 0.9845 0.9792 0.9808
2 0.9807 0.8428 0.9175 0.8192 0.8690 0.9607 0.9700

MAC: modal assurance criterion.
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