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Abstract

Though deep neural networks (DNNs) achieve
remarkable performances in many artificial intel-
ligence tasks, the lack of training instances re-
mains a notorious challenge. As the network goes
deeper, the generalization accuracy decays rapidly
in the situation of lacking massive amounts of
training data. In this paper, we propose novel
deep neural network structures that can be inher-
ited from all existing DNNs with almost the same
level of complexity, and develop simple training
algorithms. We show our paradigm successfully
resolves the lack of data issue. Tests on the CI-
FAR10 and CIFAR100 image recognition datasets
show that the new paradigm leads to 20% to 30%
relative error rate reduction compared to their base
DNNs. The intuition of our algorithms for deep
residual network stems from theories of the par-
tial differential equation (PDE) control problems.
Code will be made available.

1. Introduction
Over the last few decades, many initialization, optimiza-
tion, regularization, and many other techniques have been
invented (Bengio et al., 2007; Hinton et al., 2006) to make
deep neural networks (DNNs) easily applicable to solv-
ing challenging artificial intelligence tasks (Lecun et al.,
2015). Nevertheless, classical DNNs like VGG networks
(Simonyan & Zisserman, 2014) have the problem of degra-
dation, i.e., when the network goes deeper both training and
testing errors increase even with sufficient training data (He
et al., 2016a). Deep residual networks (ResNets), especially
the pre-activated ones (He et al., 2016a;b), proposed by He
et al. employ shortcut connections to learn residuals only
and keep a clean information path which efficiently solve the
aforementioned degradation problem. Furthermore, deep
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ResNets enable generalization accuracy improvement for
networks up to 1000 layers.

Many advances have been made after the emergence of the
deep ResNets. These include both theoretical analysis and
algorithmic development. In the original work of He et al
(He et al., 2016b), the pre-activated ResNets are formulated
as discrete dynamical systems. This dynamical system point
of view leads to an elegant analysis on the optimality of
the identity map in the ResNets. Hardt and Ma (Hardt &
Ma, 2017) use matrix factorization techniques to analyze
the landscape of the linear ResNets and its representation
power. E considers the deep ResNets as a control problem
of a class of continuous dynamical systems (E, 2017). New
network structures development is as thriving as theoretical
analysis. Instead of using a single shortcut to connect two
consecutive residual blocks, densely connect convolutional
networks employ shortcut connections to connect all the
distinct blocks (Huang et al., 2017). The wide residual
networks (Zagoruyko & Komodakis, 2016) increase the
width of the layers in the original ResNets. Both dense nets
and wider ResNets have certain amount of improvement
compared to the ResNets. Dual path networks is another
family of interesting improvement over both ResNets and
dense nets (Chen et al., 2017).

The accuracy of the DNN externally depends on massive
amounts of training data. The lack of sufficient training
data typically leads to another degradation problem. Sig-
nificant accuracy reduction tends to occur as the network
goes deeper, which will be further demonstrated in this pa-
per. Many regularization techniques explored to attempt
to tackle this challenge(Zhu et al., 2017; Srivastava et al.,
2014; Wen et al., 2016), but satisfactory results are rare.
Most existing strategies can be classified to either loss func-
tion regularization or network structure regularization. None
of these considered the specificity of the data which is of
critical importance in data analysis(Bishop, 2006).

In this paper, we try to solve the issue of lacking enough
training data by using the information of data as a prior
to train the DNNs. We will first build the connection be-
tween the deep ResNets and the partial differential equation
(PDE) control problems. Well-posedness theories of PDE
control problems suggest us to take data dependent acti-
vations in DNNs. To make the data dependent activation
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Figure 1. The building block of the pre-activated ResNets.

trainable, we propose surgeries to the existing DNNs to
construct new data dependent implicitly activated DNNs.
Efficient algorithms to train and test the model are investi-
gated. Numerical results on the CIFAR10 dataset with quite
limited and randomly selected instances show great suc-
cess of our paradigm in solving the challenge of insufficient
data. Another successful achievement of our framework
is regarding the generalization error reduction. On the CI-
FAR10 and CIFAR100 datasets we receive 30% and 20%
error reduction, respectively, compared to the base DNNs
which includes VGG, ResNet, and pre-activated ResNet
families. Our method provides an alternative towards model
compression which is important for applications on mobile
devices.

This paper is structured as follows: In section 2, we present
the connection of the PDE control problems with the deep
ResNets, and some improvements of deep ResNets moti-
vated by the PDE theory. Data interpolation on a general
manifold in a harmonic extension manner is reviewed in sec-
tion 3. Our DNN surgeries, along with their training/testing
procedures, will be presented in section 4. To validate our
algorithms, a large variety of numerical results are demon-
strated in section 5. The summary of this work and future
directions are discussed in section 6.

2. Deep Residual Networks and PDE Control
Problem

Deep ResNets, especially the pre-activated ResNets (Pre-
ActResNets), are realized by adding shortcut connections
to connect the consecutive residual blocks in the classical
convolutional neural networks (CNN). This can also be re-
garded as a cascade of the residual block, as shown in Fig.1,
followed by the final flatten and activation layers. Mathe-
matically, a residual block is formulated as:

y = F(x, {Wi}) + x, (1)

where x and y are the input and output tensors of the block,
the function F(x, {Wi}) represents the residual mapping
to be parametrized.

To build the connection between the deep ResNets and PDE

control problems, let us consider the terminal value problem
of the linear transport equation in Rd:{

∂u
∂t + v(x, t) · ∇u = 0 x ∈ Rd, t ≥ 0

u(x, 1) = f (x) x ∈ Rd,
(2)

where v(x, t) is a given velocity field, d is the dimension
of the flattened input tensor, f is the composition of the
activation function and the fully connected layer. If we use
the softmax activation function,

f(x) = softmax(WFC · x), (3)

where WFC is the weight in the fully connected layer, and
the softmax function is given by

softmax(x)i =
exp(xi)∑
j exp(xj)

,

which models the posterior probability of the instance be-
longing to each class.

It is well-known (Evans, 2010) that the solution at t = 0
can be solved along the characteristics:

dX(t;x)

dt
= v (X(t;x), t) , X(0;x) = x. (4)

We know that along the characteristics, u is a constant (Set
T = 1 below):

u(x, 0) = u (X(1;x), T ) = f(X(1;x)).

Let {tk}Lk=0 with t0 = 0 and tL = 1 be a partition of [0, 1].
The characteristics of the transport equation Eq.(4) can be
approximately solved by using the simple forward Euler
discretization from X0(x) = x:

Xk+1(x) = Xk(x) + ∆tv(Xk(x), tk), (5)

where ∆t is the time step. If we choose the velocity field
such that

∆tv(x, t) = W(2)(t) · σ
(
W(1)(t) · σ(x)

)
, (6)

where W(1)(t) and W(2)(t) corresponds to the “weight”
layers in the residual block, σ = ReLU ◦ BN, one step
in the forward Euler discretization Eq.(5) is equivalent to
advancing one layer in the deep ResNets, (see Fig. 1). The
numerical solution of the transport equation Eq.(2) at t = 0
is given by

u(x, 0) = f(XL(x)), (7)

which is exactly the output we get from the ResNets.

Let x be a point from the training data with its label g(x).
Training the ResNet is equivalent to finding the parameters
in the velocity field Eq.(6) and the terminal value so that the
output in Eq.(7) matches the label g(x)
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In summary, the training process of the deep ResNets can
be regarded as solving the following control problem of a
transport equation in Rd:

∂u
∂t + v(x, t) · ∇u(x, t) = 0 x ∈ Rd, t ≥ 0

u(x, 1) = f(x) x ∈ Rd

u(xi, 0) = g(xi) xi ∈ T,

(8)

where T denotes the training set, g(xi) is the label of in-
stance xi. This control problem is uniquely determined
by the terminal value u(x, 1) = f(x) and the velocity field
v(x, t). Conventionally, the corresponding terminal value of
the transport equation is selected to be a softmax activation
function as shown in (3). From the control problem point
of view, the softmax function may not be a good terminal
condition, since it is pre-determined and maybe far from the
real value . The ideal terminal function should be a smooth
function and close to the labeled value in the training set .
Based on this observation, the weighted nonlocal Laplacian
(Shi et al., 2017) seems to provide a good choice for the
terminal function.

3. Manifold Interpolation-A Harmonic
Extension Approach

In this section, we will briefly discuss smooth interpo-
lation on a general smooth manifold, and give a suffi-
cient condition on the number of samples needed to make
sure this interpolation has enough representation diver-
sity. Consider the following interpolation problem: Let
P = {p1,p2, · · · ,pn} be a set of points in a manifold
M⊂ Rd and S = {s1, s2, · · · , sm} be a subset of P . Sup-
pose we have the labels for the data in S, and we want to
extend the label function u to the entire dataset P . Har-
monic extension is a natural approach, which minimizes the
following Dirichlet energy functional:

E(u) =
1

2

∑
x,y∈P

w(x,y) (u(x)− u(y))
2
, (9)

with the boundary condition:

u(x) = g(x), x ∈ S,

where w(x,y) is a weight function, typically chosen to be
the Gaussian weight w(x,y) = exp(− ||x−y||

2

σ2 ), and σ is a
scaling parameter.

The Euler-Lagrange equation for Eq.(9) is:{∑
y∈P (w(x,y) + w(y,x)) (u(x)− u(y)) = 0 x ∈ P/S

u(x) = g(x) x ∈ S,
(10)

which indeed is a boundary value problem for the graph
Laplacian (GL). It is observed in the work (Shi et al., 2017),

that adding a scale on the GL effectively tames the issue
of highly unbalanced data, which leads to the following
weighted nonlocal Laplacian (WNLL):
∑

y∈P (w(x,y) + w(y,x)) (u(x)− u(y)) +(
|P |
|S| − 1

)∑
y∈S w(y,x) (u(x)− u(y)) = 0 x ∈ P/S

u(x) = g(x) x ∈ S,
(11)

In order to guarantee the representability of the WNLL, the
labeled data should cover all types of instances in the data
pool. For this, we give a necessary condition in Theorem 1.

Theorem 1. (Representability) Suppose we have a data
pool formed byN classes of data uniformly, with the number
of instances of each class to be sufficiently large. If we want
all classes of data to be sampled at least once, on average
at leastN

(
1 + 1

2 + 1
3 + · · ·+ 1

N

)
data need to be sampled

from the data pool. In this case, the number of data sampled
for each class is 1 + 1

2 + 1
3 + · · ·+ 1

N , in expectation.

Proof. Let Xi, i = 1, 2, · · · , N , be the number of addi-
tional data needed to obtain the i-type after (i− 1) distinct
types have been sampled. The total number of instances
needed is:

X = X1 +X2 + · · ·+XN =

N∑
i=1

Xi.

For any i, i− 1 distinct types of instances have already been
sampled. It follows that the probability of a new instance
being of a different type is 1− i−1

N = N−i+1
N . Essentially, to

obtain the i-th distinct type, the random variable X follows
a geometric distribution with p = N−i+1

N and E[Xi] =
N

N−i+1 . Thus, we have

E[X] =

N∑
i=1

E[Xi] =

N∑
i=1

N

N − i+ 1
.

Asymptotically, E[X] ≈ N lnN for sufficiently large N .

4. Network Structure & Training Algorithms
Deep ResNets enable hierarchical representation learning
which leads to fabulous performance on many artificial intel-
ligence tasks. WNLL is a harmonic extension approach for
manifold extension analytically and adaptable even when
the labeled instances are extremely scarce. As illustrated
in the connection between deep ResNets and PDE control
problems, a data dependent terminal value in the control
problem, i.e., data dependent activation function in the deep
ResNets, should be better than the ad hoc activation func-
tions, e.g., softmax or linear activations. In this section, we



Deep Learning with Data Dependent Implicit Activation Function

will discuss how to efficiently perform label extension in
a harmonic extension manner and put the WNLL into the
deep ResNets. The new framework has the following ben-
efits: the deep ResNet to learn optimal representations for
the WNLL interpolation; simultaneously with the WNLL
as the activation layer, the learned deep representations can
be better utilized than the classical activation functions. We
will show that this on-the-fly coupling via information feed-
forward and error back propagation solves the lack of data
issue and achieves great accuracy improvement compared
to the existing DNNs.

Let us first discuss the numerical approach to solve the
WNLL interpolation given in Eq.(11). The numerical ap-
proach is straight forward with two computational burdens
involved: finding the weights w(x,y) for any x,y ∈ P ,
and solving the resulting linear system. To find the pairwise
weights, we need to perform the nearest neighbor searching.
A brute-force approach is of quadratic scaling, however,
there are many fast algorithms with sub-linear scaling for
this purpose, e.g., KD-Tree, Ball-Tree, etc. Here we adopt
the approximate nearest neighbor (ANN) searching algo-
rithm which is scalable to extremely large scale and high
dimensional data(Muja & Lowe, 2014). The resulted linear
system is sparse and positive definite which is efficiently
solved by the conjugate gradient method in this work. It
is worth emphasizing that in order to guarantee the WNLL
interpolation is suitable to represent all classes of instances,
the labeled instances should be at least around N lnN with
N be the number of classes.

The most important component of our algorithm is to put
the WNLL activation layer into the DNNs, and design ef-
ficient algorithms for information feed-forward propaga-
tion and error back-propagation. Our information and error
propagation paths are demonstrated in Fig.2. The standard
DNN, e.g., VGG, ResNet, is plotted in Fig.2 (a), the ’DNN’
block represents all the layers except the last softmax ac-
tivation function. A naive approach to place the WNLL
into the DNN is to simply replace the softmax function by
WNLL. However, in this case though the information can
be feed-forwarded, the error cannot be back-propagated,
since WNLL implicitly defines an activation function on
the learned representation, and the gradient is not explic-
itly available. To efficiently train the network with WNLL
activation, we introduce a new structure inherited from the
standard DNN as depicted in chart (c) of Fig.2. Our structure
is quite flexible which can be inherited from any existing
DNN. We equip two new blocks to the standard DNN, a
buffer block and a WNLL activation function, where the
buffer block is simply chosen to be a composition of a fully
connected layer which preserves the dimension of the input
tensor followed by a ReLU function(Nair & Hinton, 2010).
The buffer block can be made more complicated. After
the buffer block, the tensor is passed into two activations,

a linear activation and a WNLL function, in parallel. Our
training algorithm for the network in Fig.2(c) is an iterative
procedure among the following three steps:

• Step 1. Train the network with only the linear activa-
tion functions to steady state. For this purpose, we do
not feed the data to the WNLL activation.

• Step 2. Run a few training epochs on the network
which we freeze the “DNN” and ”Linear Activation”
blocks, and only fine tune the ’Buffer Block’. In order
to back-propagate the error between the ground-truth
and the WNLL interpolated results, we feed the data
into the pre-trained linear activation function, and use
the corresponding computational graph to perform er-
ror back-propagation.

• Step 3. Unfreeze the entire network, and train the
network with data only feeding to the linear activation
to the steady state again.

With the trained network, during the generalization step, we
use the WNLL activation to get the final inference. Our
algorithm is designed in a greedy fashion. The following
numerical results validate the efficiency of our training al-
gorithm and the superiority of our network structure. The
training and testing procedures of our proposed network are
summarized in Algorithms 1 and 2, respectively.

Remark 1. During the back-propagation, we use the com-
putational graph of the linear function to approximate that
of the WNLL function since the linear functions are the
simplest nontrivial harmonic functions. Mixed Gaussian
seems to be a more appealing approximation, since it is com-
patible with the WNLL. We will continue to explore better
approximations in our subsequent work.

5. Numerical Results
To validate the accuracy, efficiency, and robustness of the
proposed model, we present the numerical results of dif-
ferent tests on the CIFAR10 and CIFAR100 (Krizhevsky,
2009), MNIST(LeCun, 1998) and SVHN dataset(Netzer
et al., 2011). It is generally believe that the difficulty of
these datasets are ranked as CIFAR100 followed by CI-
FAR10, then SVHN, and the easiest one is MNIST. In all of
our numerical experiments, we take the standard data aug-
mentation that is widely used for both CIFAR datasets (He
et al., 2016a; Huang et al., 2017; Zagoruyko & Komodakis,
2016). For MNIST and SVHN, we use the raw data without
any data augmentation. In order to use the computational
graph of the linear function to approximate that of WNLL,
we need the dynamical computational graph. For this pur-
pose, we implement our algorithm on the PyTorch platform
(Paszke et al., 2017), where automatic differentiation is used
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Figure 2. Illustration of the DNN architectures. Panel (a) depicts the standard DNN, where the “DNN” block represents the layers except
the last activation layer in the network. Panel (b) plots the standard network with the last layer replaced by the WNLL layer. Panel (c)
shows the network structure used in our work, detailed explanation is presented in the paper.

instead of the symbolic computation used in TensorFlow
(Abadi et al., 2016) and many other systems. All compu-
tations are done on a machine using only a single Nvidia
Titan Xp graphics card.

Before diving into the performance of the DNNs, we first
compare the performance of WNLL interpolation and other
shallow classifiers on different datasets. Table 1 lists the
performance of k-nearest neighbors (KNN) (the optimal k
is listed in the table), support vector machine (SVM) with
RBF kernel, softmax regression and WNLL interpolation
function. For the WNLL interpolation, in order to speed up
the computation, we only keep 15 nearest neighbors, and
the 8th neighbor’s distance is used to normalize the weight
matrix. Both KNN and WNLL can be regarded as nonpara-
metric approaches. WNLL outperforms the other methods
except SVM. KNN, in general, is better than softmax regres-
sion which demonstrates the importance of the manifold
structure of the data. These results show the potential of
using WNLL instead of softmax as the activation function
in the DNNs.

Table 1. Accuracy of simple classifiers over different datasets

Dataset KNN SVM Softmax WNLL

Cifar10 32.77% (k=5) 57.14% 39.91% 40.73%

MNIST 96.40% (k=1) 97.79% 92.65% 97.74%

SVHN 41.47% (k=1) 70.45% 24.66% 56.17%

We run 400 epochs when training the vanilla DNN, i.e.,
standard DNN, with the initial learning rate being 0.05
and halved after every 50 epochs for Cifar10 and Cifar100
datasets. We also train 5 epochs of the WNLL DNN, i.e.,
WNLL activated DNN. Since at this stage, the DNN is al-
ready well trained, we use a smaller learning rate 0.0005.
For the Cifar datasets, these hyper-parameters are chosen
based on cross validation. We keep alternating the above
three steps with the learning rate being one fifth of that in the

previous stages. The batch size in training the vanilla DNN
is set to 128 for all experiments. In the SVHN experiments,
we use the same hyperparameters as reported in (Huang
et al., 2016). The batch size is set to 2000 when training the
WNLL DNN. By Theorem 1, this number is big enough to
sample all types of instances for even CIFAR100 with 100
classes of images. All the optimizations are carried out by
a simple SGD solver with the default Nesterov momentum
acceleration.

5.1. Resolving the Challenge of the Lack of Training
Data

When we do not have sufficient training data, the generaliza-
tion accuracy typically decays as the network goes deeper.
This phenomenon is illustrated in Fig.3. The left and right
panels plot the cases when the first 1000 and 10000 data
in the training set of CIFAR10 are involved in training the
vanilla and WNLL DNNs. We believe the increase of the
generalization error is due to the data not being sufficient to
parametrize the deep networks. With suitable regularization
techniques, the deep networks can be better parametrized
by a small amount of training data. WNLL activation which
involves the information of the data’s geometric structures
is one of such regularizers. With the WNLL activation,
the generalization error rate decays persistently as the net-
work goes deeper. The generalization accuracy between the
vanilla and WNLL DNN can differ up to 10 percent within
our testing regime.

Even though we have only built the connection between the
deep ResNets and the PDE control problems, we also test
the performance of our surgeries and algorithms on other
base DNNs, e.g., VGG networks. In table 2 we list the
generalization error rates of 15 different DNNs from VGG,
ResNet, Pre-activated ResNet families on the entire, first
10000, 5000, and 1000 instances in the CIFAR10 training
set. It is easy to see that WNLL activated DNNs typically
has much more accuracy improvement for ResNets or pre-
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Algorithm 1 DNN with Data Dependent Activation: Training Procedure.
Input: Training set (T, lT ), where T is the set of features, lT is the label set.
Output: An optimized DNN with our surgeries, denoted as DNNs.
for iter = 1,. . . , N (where we let N = 2 for the entire data, N = 5 for the selected subset of the training set. do

Train the DNN with linear activation starting from the previous iteration. In the first step use the default initialized one.
Denote the temporary model as DNN1.
Split T into training and validation parts, T .

= TT
⋃
TV . We will treat instances in TV as unlabeled data when training

the model.
Partition TT and TV into nbatch1 and nbatch2 mini-batches, denoted as {TTi }nbatch1i=1 and {TVi }nbatch2i=1 , where
nbatch1 and nbatch2 are given integers.
for i = 1, 2, · · · ,nbatch2 do

for j = 1, 2, · · · ,nbatch1 do
Apply the model DNN1 to TTj

⋃
TVi to get T̂Tj

⋃
T̂Vi = DNN1(TTj

⋃
TVi ).

Apply the WNLL interpolation to T̂Tj
⋃
T̂Vi by solving the linear system

∑
xn∈TT

j

⋃
TV
i

(wmn + wnm)(um − un) +
|TTj

⋃
TVi |

|TVi |
∑

xn∈TV
i

wnm(um − ln) = 0, ∀xm ∈ TTj
⋃
TVi .

to obtain the inferred label uj
TV
i

end for
Voting on {uj

TV
i

}nbatch1j=1 to get the inferred label uTV
i

.
Back-propagate the loss(lTV

i
, uTV

i
) by using the computational graph of the linear activation function, and update

DNN1. For generally classification tasks, the loss is selected to be cross entropy between the exact and predicted
labels.

end for
end for

Table 2. Generalization error rate over the test set of the vanilla DNNs and the WNLL activated ones trained over the entire, the first
10000, 5000, and 1000 instances of the training set of CIFAR10. (Median of 5 independent trials)

Network Whole 10000 5000 1000

Vanilla WNLL Vanilla WNLL Vanilla WNLL Vanilla WNLL
VGG11 9.23% 7.35% 10.37% 8.88% 12.36% 10.49% 26.75% 24.10%
VGG13 6.66% 5.58% 9.12% 7.64% 10.89% 9.02% 24.85% 22.56%
VGG16 6.72% 5.69% 9.01% 7.54% 11.25% 9.13% 25.41% 22.23%
VGG19 6.95% 5.92% 9.62% 8.09% 11.76% 9.22% 25.70% 22.87%

ResNet20 9.06% 7.09% 12.83% 9.96% 14.30% 11.24% 34.90% 29.91%
ResNet32 7.99% 5.95% 11.18% 8.15% 12.75% 10.63% 33.41% 28.78%
ResNet44 7.31% 5.70% 10.66% 7.96% 11.84% 10.14% 34.58% 27.94%
ResNet56 7.24% 5.61% 9.83% 7.61% 12.39% 10.17% 37.83% 28.18%

ResNet110 6.41% 4.98% 8.91% 7.13% 13.45% 10.05% 42.94% 28.29%
ResNet18 6.16% 4.65% 8.26% 6.29% 10.38% 8.53% 27.02% 22.48%
ResNet34 5.93% 4.26% 8.31% 6.11% 10.75% 8.65% 26.47% 20.27%
ResNet50 6.24% 4.17% 9.64% 6.49% 12.96% 8.76% 29.69% 20.19%

PreActResNet18 6.21% 4.74% 8.20% 6.61% 10.64% 8.18% 27.36% 21.88%
PreActResNet34 6.08% 4.40% 8.52% 6.34% 10.85% 8.44% 23.56% 19.02%
PreActResNet50 6.05% 4.27% 9.18% 6.05% 10.64% 8.35% 25.05% 18.61%

activated ResNets. Significant accuracy improvement can
still be observed when our surgeries and training algorithms
are applied to the VGG networks. Except for VGG networks,

we can achieve relatively 20% to 30% testing error rate
reduction. All the results presented here and in the rest of
this paper are the median of 5 independent trials to reduce
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Algorithm 2 DNN with Data Dependent Activation: Testing Procedure.
Input: Testing set W and training set (T, lT ), where W and T are features, lT are the labels of the instances in T . And
the trained DNN with our surgeries, denoted as DNNs.
Output: The predicted labels for the test set W .
Partition T and W into nbatch1 and nbatch2 number of mini-batches, denoted as {Ti}nbatch1i=1 and {Wi}nbatch2i=1 , where
nbatch1 and nbatch2 are given integers.
for i = 1, 2, · · · ,nbatch2 do

for j = 1, 2, · · · ,nbatch1 do
Apply the model DNNs to Tj

⋃
Wi to get T̂j

⋃
Ŵi = DNNs(Tj

⋃
Wi)

Apply the WNLL interpolation to T̂j
⋃
Ŵi by solving the linear system∑

xn∈Tj
⋃
Wi

(wmn + wnm)(um − un) +
|Tj
⋃
Wi|

|Wi|
∑

xn∈Wi

wnm(um − ln) = 0 ∀xm ∈ Tj
⋃
Wi.

to obtain the inferred label ujWi

end for
Voting on {ujWi

}nbatch1j=1 to get the inferred label uWi .
Output the predicted label uW =

⋃nbatch2
i=1 uWi

.
end for

(a) (b)

Figure 3. Taming of the degeneration problem of vanilla DNN by
WNLL activated DNN. Panels (a) and (b) plot the generation error
when 1000 and 10000 training data are used to train the vanilla
and the WNLL activated DNN, respectively. In each plot, we test
three different networks: PreActResNet18, PreActResNet34, and
PreActResNet50. It is easy to see that when the vanilla network
becomes deeper, the generation error does not decayed, while
WNLL activation resolves this degeneracy. All tests are done on
the Cifar10 dataset.

the influence of stochasticity.

5.2. Error Rate Reduction in Base DNNs

We next present the superiority of our deep network in terms
of the generalization accuracy when compared to its base
network. Figure. 4 plots the generalization accuracy evolu-
tion during the training procedure. Panels (a) and (b) plot
the cases for the ResNet50 and WNLL activated ResNet50
when only the first 1000 CIFAR10 training data are utilized.
Charts (c) and (d) are for the cases when the first 10000
CIFAR10 training instances are used to train the vanilla
pre-activated ResNet50 and WNLL activated version. Af-

ter around 300 epochs, the accuracies of the vanilla DNNs
plateaued and cannot improve any more. However, in stage
2, once we use the WNLL activation, there is a jump in
the generalization accuracy; during stage 3, even though
initially there is an accuracy reduction, with the training con-
tinuing, the accuracy keeps climbing for a while. The gener-
alization accuracy increases if finally we use the WNLL as
the activation function.

(a) (b)

(c) (d)

Figure 4. The evolution of the generation accuracy over the training
procedure. Charts (a) and (b) are the accuracy plots for ResNet50
with 1000 training data, where (a) and (b) are plots for the epoch
v.s. accuracy of the vanilla and the WNLL activated DNN. Pan-
els (c) and (d) correspond to the case of 10000 training data for
PreActResNet50. All tests are done on the Cifar10 dataset.
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For the street view house number recognition (SVHN) task,
we simply test the performance when the full training data
are used. Here we only test the performance of the ResNets
and pre-activated ResNets. There is a relatively 7%-10%
error rate reduction for all these DNNs. There is rela-
tively more improvement on pre-activated ResNets than
on ResNets, this is consistent with our basic PDE control
problem ansatz.

Table 3. Error rate of the vanilla DNN v.s. the WNLL activated
DNN over the whole SVHN dataset. (Median of 5 independent
trials)

Network Vanilla DNN WNLL DNN
ResNet20 3.76% 3.44%

ResNet32 3.28% 2.96%

ResNet44 2.84% 2.56%

ResNet56 2.64% 2.32%

ResNet110 2.55% 2.26%

ResNet18 3.96% 3.65%

ResNet34 3.81% 3.54%

PreActResNet18 4.03% 3.70%

PreActResNet34 3.66% 3.32%

Tables 2 and 4 list the error rate of 15 different vanilla net-
works and the WNLL activated networks. On CIFAR10,
the WNLL activated DNNs outperformed the vanilla ones
with around 1.5% to 2.0% absolute, or 20% to 30% relative
error rate reduction. We reproduced the results of the vanilla
DNNs on both datasets. Our results are consistent with the
original reports and other researchers’ reproductions (He
et al., 2016a;b; Huang et al., 2017). Interestingly, when
the task become harder, our improvement becomes more
significant. This builds our confident in trying harder tasks
in the future. Reducing the sizes of DNN models is an
important direction to make the DNN applicable for gen-
eralize purpose, e.g., auto-drive, mobile intelligence, etc.
So far the most successful attempt is DNN weights quan-
tization(Bengio & David, 2015). Our approach is a new
direction for reducing the size of the model: to achieve the
same level of accuracy, compared to the vanilla networks,
our model’s size can be tens of times smaller.

6. Concluding Remarks
Motivated by the connection between deep ResNets and
PDE control problems, we propose a novel DNN struc-
ture which can be inherited from any existing DNN. An
end-to-end greedy styled, multi-staged training algorithm is
proposed to train the novel networks. In order to efficiently
back propagate the errors, we utilized the computational
graph of a linear function dynamically to approximate that

Table 4. Error rate of the vanilla DNN v.s. the WNLL activated
DNN over the whole CIFAR100 dataset. (Median of 5 independent
trials)

Network Vanilla DNN WNLL DNN
VGG11 32.68% 28.80%

VGG13 29.03% 25.21%

VGG16 28.59% 25.72%

VGG19 28.55% 25.07%

ResNet20 35.79% 31.53%

ResNet32 32.01% 28.04%

ResNet44 31.07% 26.32%

ResNet56 30.03% 25.36%

ResNet110 28.86% 23.74%

ResNet18 27.57% 22.89%

ResNet34 25.55% 20.78%

ResNet50 25.09% 20.45%

PreActResNet18 28.62% 23.45%

PreActResNet34 26.84% 21.97%

PreActResNet50 25.95% 21.51%

for the manifold interpolation function. On one hand, our
new framework resolves the issue of the lack of big training
data, on the other hand, it provides great accuracy improve-
ment compared to the base DNNs. This improvement is
consistent for networks with different depths. Utilizing our
structure, it is very easy to get near state-of-the-art results
with very small model, which has great potential for the
mobile device applications. Nevertheless, there are many di-
rections for improvement: the current manifold interpolation
is still one of the computational bottlenecks, according to
the representability theorem for the data with many classes.
For instance, the batch size need to be very large for the
ImageNet dataset (J. et al., 2009), which poses memory
challenges. Another important issue is the approximation
of the gradient of the WNLL activation function. Linear
function is an option but it is far from optimal. We believe a
better harmonic function approximation can further lift the
model’s performance.
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