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Abstract

This work is to propose an iterative method of choice to compute a
stable subspace of a regular matrix pencil. This approach is to define a
sequence of matrix pencils via particular left null spaces. We show that
this iteration preserves a discrete-type flow depending only on the initial
matrix pencil. Via this recursion relationship, we propose an accelerated
iterative method to compute the stable subspace and use it to provide
a theoretical result to solve the principal square root of a given matrix,
both nonsingular and singular. We show that this method can not only
find out the matrix square root, but also construct an iterative approach
which converges to the square root with any desired order.

Keywords: Stable subspace, Sherman Morrison Woodbury formula, Matrix
square root, Accelerated iterative method, Q-superlinear convergence

1 Introduction

Throughout this paper we shall use the following notation to facilitate our dis-
cussions. λ(A) and λ(A,B) denote the sets of eigenvalues of the matrix A and
the matrix pencil A − λB, respectively, and let ρ(A) be the spectral radius of
the square matrix A. C+ and C− represent the open right and left half complex
planes.

Given a regular n×n matrix pencil A−λB (i.e., det(A−λB) is not identically
zero for all λ) and an integer m ≤ n, we want to find in this work a full rank
matrix U ∈ Cn×m such that

AU = BUΛ, (1)

where Λ ∈ Cm×m and ρ(Λ) < 1.
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Note that the column space U = Span{U} is called the stable deflating
subspace of A − λB. Specially, U is called the stable invariant space if B is
the identity matrix. Over the past few decades, considerable attention has
been paid to study the property of the invariant and deflating subspace [7].
In application, one can obtain the solutions of algebraic Riccati-type matrix
equations by computing its corresponding stable deflating subspaces or stable
invariant subspaces, e.g., [18, 5]. Particularly, this problem is related to the
so-called generalized spectral divide and conquer (SDC) problem [2, 5], which is
to find a pair of left and right deflating subspaces L and R such that

AR ⊂ L, BR ⊂ L,

corresponding to eigenvalues of the pair A − λB in a specified region D ⊂ C.
That is, find two nonsingular partitioned matrices UL =

[
UL1

, UL2

]
and UR =[

UR1 , UR2

]
with L = span(UL1

) and R = span(UR1
) so that

AUR = UL

[
A11 A12

0 A22

]
, BUR = UL

[
B11 B12

0 B22

]
,

and the eigenvalues of A11−λB11 are the eigenvalues of A−λB in the region D.
We notice that if A11 − λB11 has no infinite eigenvalues, then B11 is invertible
and

AUR1 = BUR1(B−111 A11);

if A11 − λB11 has no zero eigenvalues, then A11 is invertible and

AUR1(A−111 B11) = BUR1 .

Note that the region D in the SDC problem is generally assumed in the
interior (or exterior) of the unit disk. Otherwise, the Möbius transformations
(αA+ βB)(γA+ δB)−1 can be applied to transform original region as a rather
general region [2].

One direct method to solve (1) (not requires ρ(Λ) < 1), is to apply the
so-called QZ algorithm. That is, through the QZ algorithm, the matrix A is
reduced to triangular or upper quasi-triangular form and B to upper triangular
form. One is then able to compute eigenvectors through the reduced form
(see [1, 8, 16] for the details). Unlike the direct method, we propose in this
work an iterative method, AB-algorithm, to solve (1). This method is done by
defining a sequence of matrix pencils {Ak − λBk} with (A1, B1) = (A,B) and
(Ak, Bk) = (Mk−1Ak−1,Nk−1B1) for any integer k > 1. Here, (Nk−1,Mk−1)

is a solution belonging to the left null space of

[
A1

−Bk

]
, that is,

NkA1 =MkBk. (2)

Due to the specific structure embedded in the matrix pencil A1 − λBk, some
(Nk,Mk) can be designed such that {Ak − λBk} have the same structure. We
refer the reader to [21, 5] and to the references therein. In these works, iterative
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algorithms for computing invariant subspace of structured matrix pencil A1 −
λBk are provided with a quadratic convergence for solving algebraic Riccati and
related matrix equations.

Observe that A1U = B1UΛ1. Suppose this process can be continually iter-
ated to obtain the new pencil Ak − λBk such that AkU = BkUΛk. It must be
that

Ak+1U = MkAkU =MkBkUΛk

= NkA1UΛk = NkB1UΛk+1 = Bk+1UΛk+1. (3)

This implies that if ρ(Λ) < 1, and if the sequence {Bk} is uniformly bounded,
then lim

k→∞
AkU = 0. Once the sequence {Ak} also converges, say A∞ :=

lim
k→∞

Ak, we are able to solve the solution U by computing the the right null

space of A∞. We notice that this AB-algorithm theoretically not only preserves
a discrete-type flow property (see Theorem 2.3) but can be accelerated with
the rate of convergence of any desired order. To demonstrate the capability of
this algorithm, we use it to provide a theoretical result to compute the matrix
square root as an example. It is known that matrix square root is not unique
(even up to sign) or even exists, for example,[

1 0
0 1

]
=

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]2

for any θ ∈ R and

[
0 1
0 0

]
does not have a square root. Indeed, let S ∈ Cn×n

be a matrix having no nonpositive real eigenvalues. Then the quadratic matrix
equation

X2 − S = 0 (4)

has a unique solutionX such that λ(X) ⊂ C+. This is called the principal square
root of S and denote it by

√
S [6, 10]. Numerical methods for computing the

matrix principal square root, including the (modified) Schur method, Newton’s
method, and its variants, have been widely discussed in the numerical linear
algebra community. See [17, 6, 9, 10, 11, 22, 12, 23] and the references therein.
Unlike conventional methods, this AB-algorithm can be modified to obtain the
square root efficiently, that is, the rate of convergence of this algorithm can be
of any desired order r. Specifically, our method is equivalent to the so-called
Newton’s method when r = 2. More precisely, though preserving a similar
convergence property like the Newton’s method, our algorithm can be shown
that, under mild adjustments, the speed of convergence can be q-superlinearly
with any order [15].

This work is organized as follows. In section 2 we provide properties of
the AB-Algorithm. In section 3 we modified this AB-Algorithm so that its
convergence can be of any order. In section 4 we report a numerical application
to solve the matrix square root, and the concluding remarks are given in section
5.
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2 The AB-Algorithm and Its Corresponding Prop-
erties

Recall that the idea of the AB-Algorithm depends heavily on the determination

of the left null space of

[
A1

−Bk

]
. Observe that B1(A1 + B1)−1A1 − A1(A1 +

B1)−1B1 = 0, if −1 6∈ λ(A1, B1) and (A1, B1) are two n× n matrices. That is,

(N1,M1) := (B1(A1 +B1)−1, A1(A1 +B1)−1) is the left null space of

[
A1

−B1

]
.

Using the same procedure, we would like to generate the matrix sequences {Ak}
and {Bk} by defining

Ak = A1(A1 +Bk−1)−1Ak−1, (5a)

Bk = Bk−1(A1 +Bk−1)−1B1, (5b)

once the process can be iterated.
It should be noted that ifMk−1 = Bk−1(A1+Bk−1)−1 and Nk−1 = A1(A1+

Bk−1)−1 for any integer k > 1, it can be seen that Bk−1(A1 + Bk−1)−1A1 =
A1(A1 + Bk−1)−1Bk−1, which satisfies the assumption (2). For simplicity, we
let ∆i,j := (Ai + Bj)

−1 so that the sequences {Ak} and {Bk} in (5) can be
rewritten as

Ak = A1∆1,k−1Ak−1 = Ak−1 −Bk−1∆1,k−1Ak−1, (6a)

Bk = Bk−1∆1,k−1B1 = B1 −A1∆1,k−1B1. (6b)

Based on (6), we propose the following AB-algorithm for computing the stable
subspace of the matrix pencil A1 − λB1:

Algorithm 2.1. (AB-Algorithm)

1. Given a pencil A1−λB1, initialize a tolerance τ > 0 and a positive integer
kmax.

2. For k = 2..., iterate until dist(Null(Ak−1),Null(Ak)) < τ or k > kmax.

(a) Ak = A1∆1,k−1Ak−1,

(b) Bk = Bk−1∆1,k−1B1,

Here, “Null(·)” denotes the null space of the given matrix and “dist(·, ·)”denotes
the distance between two subspaces [8].

Note that on the one hand, Algorithm 2.1 provides an alternative approach
for finding the stable invariant subspace U (i.e., A1U = UΛ and ρ(Λ) < 1) of
the matrix A1 by constructing A∞ (once it exists) directly as follows:
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Remark 2.1. If no breakdown occurs in Algorithm 2.1 and B1 = In, for any
integer k > 1 we have

Ak = Ak1(

k−1∑
j=0

Aj1)−1, (7a)

Bk = (

k−1∑
j=0

Aj1)−1. (7b)

In other words, to obtain the stable subspace of the matrix A1, we only need to
focus on the iterations generated by (7a).

On the other hand, once the iteration is available, we are interested in char-
acterizing the transformation of eigenvalues of the matrix pencil A1−λB1 after
each iteration. First, we give an observation about the relationship between the
eigenvalues of Ak − λBk and the eigenvalues of A1 − λB1. Since the proof can
be read off from (3), we omit our proof here.

Lemma 2.1. Let A1−λB1 be a regular matrix pencil, and let {Ak−λBk} be the
sequence of matrix pencils generated by Algorithm 2.1, if no breakdown occurs.
If λ ∈ λ(A1, B1) with λ ∈ C ∪ {∞}, then λk ∈ λ(Ak, Bk). (Here,∞k :=∞)

Subsequently, we have the following theorem which gives rise to the appear-
ance of new eigenvalues induced by the AB-algorithm.

Theorem 2.1. Let A1 − λB1 be a regular matrix pencil, and let {Ak − λBk}
be the sequence of matrix pencils generated by Algorithm 2.1, if no breakdown

occurs. Let {λ(i,k)1 , . . . , λ
(i,k)
n } be the set of eigenvalues of the matrix pencils

Ai − λBk for any two positive integers i and k. Then, for 1 ≤ j ≤ n, the set of
eigenvalues has the following properties:

1. λ
(1,k)
j =


k∑
s=1

(λ
(1,1)
j )s, λ

(1,1)
j ∈ C,

∞, λ
(1,1)
j =∞.

2. λ
(i,1)
j =


(λ

(1,1)
j )i

i−1∑
s=0

(λ
(1,1)
j )s

, λ
(1,1)
j ∈ C,

∞, λ
(1,1)
j =∞.

3. λ
(i,k)
j =


(λ

(1,1)
j )i

k−1∑
s=0

(λ
(1,1)
j )s

i−1∑
s=0

(λ
(1,1)
j )s

, λ
(1,1)
j ∈ C,

∞, λ
(1,1)
j =∞.
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Proof. Assume without loss of generality that A1 and B1 are upper triangular
matrices. Otherwise, let U and V be two unitary matrices such that UHA1V
and UHB1V both are upper triangular matrices. Upon using (5), it can be seen
that Ak and Bk are also upper triangular, and

λ
(1,k)
j =

{
(1 + λ

(1,k−1)
j )λ

(1,1)
j , λ

(1,1)
j ∈ C,

∞, λ
(1,1)
j =∞,

λ
(i,1)
j =


λ
(i,i)
j

1 + λ
(1,i−1)
j

, λ
(1,1)
j ∈ C,

∞, λ
(1,1)
j =∞.

Moreover,

λ
(i,k)
j =

{
(1 + λ

(1,k−1)
j )λ

(i,1)
j , λ

(1,1)
j ∈ C,

∞, λ
(1,1)
j =∞,

for i, k ≥ 2. We remark that λ
(1,i−1)
j 6= −1 since Ai − λBi is well-defined, and

from Lemma 2.1, we have λ
(i,i)
j = (λ

(1,1)
j )i, which completes the proof of the

theorem.

We notice that Algorithm 2.1 is workable if and only if the sum of matrices
A1 and Bk−1, for any integer k > 1, is invertible, that is, −1 6∈ λ(A1, Bk−1), for
any integer k > 1. This capacity can be completely characterized by the pth
roots of unity, except itself.

Theorem 2.2. Let A1 − λB1 be a regular matrix pencil, and let

Sk =
⋃

2≤p≤k+1

{e
2qπi
p : 1 ≤ q ≤ p− 1}.

If
Sk ∩ λ(A1, B1) = φ,

then the sequence of matrix pencils Ak − λBk, for any integer k ≥ 1, can be
generated using Algorithm 2.1, or, generally, all sequences of matrices {Ak −
λBk} generated by iterations (5) with the initial matrix pencil A1− λB1 are no
breakdown, if

S∞ ∩ λ(A1, B1) = φ. (8)

Corollary 2.1. For any positive integers i, j and k, we have Ak−Bk = A1−B1,
that is, Ai −Aj = Bi −Bj, provided that Smax{i,j,k} ∩ λ(A1, B1) = φ.
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Proof. The proof is by induction on k. When k = 1, the result is evident. Sup-
pose we have proved this corollary for k = `. Then, by the induction hypothesis

A`+1 −B`+1 = A` −B`∆1,`A` −B`∆1,`B1

= A` −B`∆1,`(A` +B1) = A` −B` = A1 −B1.

This completes the proof.

From Corollary 2.1, each step of Bk can be obtained by Bk = Ak +B1−A1.
We conclude that the counts of Algorithm 2.1 for one iteration is 14

3 n
3 flops.

This is because the computation is preliminary determined by the product of
two n×n matrices, the calculation of the Gaussian elimination with partial piv-
oting, and the performance of solving n lower triangular systems and n upper
triangular systems. Hence, the calculation of the counts contains a PLU fac-
torization (cost : 2

3n
3 flops) and two multiplication (cost : 4n3 flops). Here, we

ignore any O(n2) operation counts and the memory counts. We notice that the
computational cost of QZ algorithm is about 46n3 flops (the right eigenvectors
are desired). On the other hand, it follows from Theorem 2.2 that Algorithm 2.1
is well-defined, once (8) is satisfied. Here, we use Gaussian elimination with par-
tial pivoting, which is known to perform well and usually eliminate the numerical
instability in practice [13], to compute the matrix inverse so that the iteration
will not terminate prematurely. To perform the error analysis and decide the
numerical stability of Algorithm 2.1, the reader is referred to [14] for a similar
discussion.

We remark that Corollary 2.1 also implies that lim
k→∞

Ak exists if and only

if lim
k→∞

Bk exists. Note that in (5), the iterations of the matrix pencils Ak −
λBk, for k ≥ 1, are relative to the initial pencil A1 − λB1. We would like to
derive a more general iterative method, which are easily accessible through any
initial pencil Ai−λBi. To this purpose, we shall first introduce the well-known
Sherman Morrison Woodbury formula (SMWF).

Lemma 2.2. [4] Let A and B be two arbitrary matrices of size n, and let
X and Y be two n × n nonsingular matrices. Assume that Y −1 ± BX−1A is
nonsingular. Then, X ±AY B is invertible and

(X ±AY B)−1 = X−1 ∓X−1A(Y −1 ±BX−1A)−1BX−1.

This lemma gives a useful method to prove the following result.

Theorem 2.3. Let the assumption (8) holds and {Ak − λBk} be the sequence
of matrix pencils obtained by (5) with initial A1 − λB1. Then,

Ai+j = Ai(Ai +Bj)
−1Aj , (9a)

Bi+j = Bj(Ai +Bj)
−1Bi, (9b)

where i and j are any two positive integers.



8

Proof. This proof is divided into two parts. We first fix j = 1 and show that
the statement (9) is true for any positive integer i. We prove by induction on i.
When i = 1, the statement (9) is definitely true from the definition of A2 and
B2. Suppose (9) is true for i = s. It follows from Lemma 2.2 that

∆1,s+1 = (A1 +Bs −As∆s,1Bs)
−1

= ∆1,s + ∆1,sAs(As +B1 −Bs∆1,sAs)
−1Bs∆1,s

= ∆1,s + ∆1,sAs∆1+s,1Bs∆1,s,

∆1+s,1 = (As −Bs∆1,sAs +B1)−1

= ∆s,1 + ∆s,1Bs(A1 +Bs −As∆s,1Bs)
−1As∆s,1

= ∆s,1 + ∆s,1Bs∆1,s+1As∆s,1.

Thus, we have

A(s+1)+1 = A1+(s+1) = As+1 −Bs+1∆1,s+1As+1

= A1 −B1 [∆s,1 + ∆s,1Bs∆1,s+1As∆s,1]A1

= A1 −B1∆s+1,1A1 = As+1∆s+1,1A1,

B(s+1)+1 = B1+(s+1) = B1 −A1∆1,s+1B1

= B1 −A1 [∆1,s + ∆1,sAs∆s+1,1Bs∆1,s]B1

= Bs+1 −As+1∆s+1,1Bs+1 = B1∆s+1,1Bs+1,

which completes the proof of the first part.
Now suppose that (9) is true for j = s and any i. In particular,

∆i,s+1 = (Ai +Bs −As∆s,1Bs)
−1

= ∆i,s + ∆i,sAs(As +B1 −Bs∆i,sAs)
−1Bs∆i,s

= ∆i,s + ∆i,sAs∆i+s,1Bs∆i,s,

∆i+s,1 = (As −Bs∆i,sAs +B1)−1

= ∆s,1 + ∆s,1Bs(Ai +Bs −As∆s,1Bs)
−1As∆s,1

= ∆s,1 + ∆s,1Bs∆i,s+1As∆s,1.

This implies

Ai+(s+1) = A(i+s)+1 = A1 −B1∆i+s,1A1

= A1 −B1 [∆s,1 + ∆s,1Bs∆i,s+1As∆s,1]A1

= As+1 −Bs+1∆i,s+1As+1 = Ai∆i,s+1As+1,

Bi+(s+1) = B(i+s)+1 = Bi+s −Ai+s∆i+s,1Bi+s

= Bi −Ai [∆i,s + ∆i,sAs∆i+s,1Bs∆i,s]Bi

= Bi −Ai∆i,s+1Bi = Bs+1∆i,s+1Bi,

which completes the proof of the theorem.
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Two things are required to be noted. First, Theorem 2.3 implies that the
iterative sequence {Ak−λBk} can be formulated explicitly from any two matrix
pencils Ai − λBi and Aj − λBj , where i + j = k. The formula also gives rise
to a discrete-type flow and can be used to accelerate the iterations given in
Algorithm 2.1. Second, it follows from Corollary 2.1 and Theorem 2.3 that
Ak = Ak−1∆1,k−1A1 = A1∆1,k−1Ak−1 = Ak−1∆k−1,1A1 = A1∆k−1,1Ak−1. It
shows that the iterations Ak and Bk, regardless of the assumptions (5), have
the following four equivalent forms by using the same initial matrix pencil:

1.
A

(1)
k = A

(1)
1 (A

(1)
1 +B

(1)
k−1)−1A

(1)
k−1,

B
(1)
k = B

(1)
k−1(A

(1)
1 +B

(1)
k−1)−1B

(1)
1 ;

2.
A

(2)
k = A

(2)
1 (B

(2)
1 +A

(2)
k−1)−1A

(2)
k−1,

B
(2)
k = B

(2)
k−1(A

(2)
1 +B

(2)
k−1)−1B

(2)
1 ;

3.
A

(3)
k = A

(3)
1 (A

(3)
1 +B

(3)
k−1)−1A

(3)
k−1,

B
(3)
k = B

(3)
k−1(B

(3)
1 +A

(3)
k−1)−1B

(3)
1 ;

4.
A

(4)
k = A

(4)
1 (B

(4)
1 +A

(4)
k−1)−1A

(4)
k−1,

B
(4)
k = B

(4)
k−1(B

(4)
1 +A

(4)
k−1)−1B

(4)
1 .

The next theorem is to know how the eigeninformation is transferred during
the iterative process.

Theorem 2.4. Let A1 − λB1 be a regular matrix pencil, and let {Ak − λBk}
be the sequence of matrices generated by Algorithm 2.1. Suppose that the con-
dition (8) holds and A1U = B1UΛ. Then,

(a) A1U = BkU
k∑
j=1

Λj.

(b) AkU = BkUΛk. In particular, if 1 6∈ λ(Λ), then

AkU = (B1 −A1)UΛk(In − Λk)−1. (10)

(c) AiU
i∑

j=1

Λj = BkUΛi
k∑
j=1

Λj, for any two positive integers i and k.

Proof. Clearly, (a) is true for k = 1. Suppose that the statement is true for a
positive integer k = s; that is,

A1U = BsU

s∑
j=1

Λj .

We notice that

A1U −Bs∆1,sA1U = (A1 +Bs)∆1,sA1U −Bs∆1,sA1U

= Bs∆1,sA1U

s∑
j=1

Λj = Bs∆1,sB1U

s+1∑
j=2

Λj ,
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so that

A1U = Bs∆1,sB1UΛ +Bs∆1,sB1U

s+1∑
j=2

Λj = Bs+1U

s+1∑
j=1

Λj .

The result of the first part of (b) has been given in our introduction. We
thus omit the proof here. Since

AkU = BkUΛk = (Ak +B1 −A1)UΛk = AkUΛk + (B1 −A1)UΛk,

we see that (10) holds, while 1 6∈ λ(Λ). Here, the second equality follows from
Corollary 2.1.

To prove (c), we first show that for any positive integer i,

A1UΛi = AiU

i∑
j=1

Λj .

By Theorem 2.3, since Ai = A1−B1∆i−1,1A1 and Bi = B1∆i−1,1Bi−1, we have

(A1 −Ai)U = (B1∆i−1,1A1)U = B1∆i−1,1Bi−1U

i−1∑
j=1

Λj = BiU

i−1∑
j=1

Λj .

Or, equivalently,

A1UΛi = AiUΛi +BiUΛi
i−1∑
j=1

Λj = AiU

i∑
j=1

Λj ,

since AiU = BiUΛi.
Second, from (a), we have already proved (c) for i = 1 and a given positive

integer k. Assume (c) is true for i = s; that is,

AsU

s∑
j=1

Λj = BkUΛs
k∑
j=1

Λj .

Then

As+1U

s+1∑
j=1

Λj = A1UΛs+1 = (AsU

s∑
j=1

Λj)Λ = BkUΛs+1
k∑
j=1

Λj .

3 Modified AB-Algorithm

Let {Ak−λBk} be the sequence of matrices generated by Algorithm 2.1. Before
we move on, we should emphasize that the structure of the matrix pencil Ak −
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λBk is invariant once the subscripts i + j = k; that is, the generation of the
sequence {Ak − λBk} is independent of the subscript in Ai, Aj , Bi and Bj .
To fully take advantages of this invariance, we would like to design algorithms
by applying Theorem 2.3 to generate accelerated iterations with convergence of
any desired order as follows.

Algorithm 3.1. (Modified AB-Algorithm)

1. Given a positive integer r > 1, a tolerance τ > 0, and a positive integer
kmax, let (Â1, B̂1) = (A1, B1);

2. For k = 2, . . . , iterate until dist(Null(Âk−1),Null(Âk)) < τ or k > kmax.

Âk = A
(r−1)
k−1 (A

(r−1)
k−1 + B̂k−1)−1Âk−1,

B̂k = B̂k−1(A
(r−1)
k−1 + B̂k−1)−1B

(r−1)
k−1 ,

until convergence, where (A
(r−1)
k−1 , B

(r−1)
k−1 ) is defined in step 3.

3. For ` = 1, . . . , r − 2, iterate

A
(`+1)
k−1 = A

(`)
k−1(A

(`)
k−1 + B̂k−1)−1Âk−1,

B
(`+1)
k−1 = B̂k−1(A

(`)
k−1 + B̂k−1)−1B

(`)
k−1,

with (A
(1)
k−1, B

(1)
k−1) = (Âk−1, B̂k−1).

For clarity, a thing should be emphasized here. The AB algorithm has
been developed to obtain the stable deflating subspace of the generalized eigen-
value problem A1U = B1UΛ. However, the sequence {AkU} provided in Al-
gorithm 2.1 converges only r-linearly to 0, once the spectral radius of Λ is less
than 1, and the sequence {Bk} is uniformly bounded. From Algorithm 3.1 it
follows that

A
(`+1)
k−1 U = B

(`+1)
k−1 UΛ(`+1)rk−2

, (11a)

ÂkU = B̂kUΛr
k−1

, (11b)

for k = 2, . . ., and ` = 1, . . . , r − 2, and (Âk, B̂k) = (Ark−1 , Brk−1). It follows
from Theorem 2.4 that

‖ÂkU‖ ≤
‖(B1 −A1)U‖
1− ‖Λ‖rk−1 ‖Λ‖r

k−1

,

where ‖.‖ is a matrix induced norm such that ‖Λ‖ < 1. Thus the sequence

{ÂkU} converges to 0 with r-order r. For a full account of the definition of the
rate of convergence, the reader is referred to [15].

Note that given two initial n × n matrices A1 and B1, the overall cost for

computing the modified AB-algorithm per iteration is 14(r−1)
3 n3 flops. The
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computation cost of the modified AB-algorithm with positive integer r defi-
nitely increases as r increases. Theoretically, Algorithm 3.1 provide a r-order
convergence sequence which approximates the solution of the stable subspace of
A − λB. Numerically, if ρ(Λ) is not sufficiently close to 1, choosing r = 2 will
be fast enough.

4 Application of the AB-Algorithm for Solving
the Matrix Square Root

We notice that only recently, the modified AB-Algorithm with r = 2 have
been adjusted specifically for solving a kind of Sylvester matrix equations [20]
and the palindromic generalized eigenvalue problem [19]. In this section, we
show that the AB-algorithm provide an alternative way to compute the matrix
square root. In particular, the speed of convergence of the AB-algorithm can be
of any desired order. As mentioned before, numerical methods for solving the
matrix square root are numerous. Comparison of numerical performance among
different methods is something worthy of our investigation and is in process.
In (11a) we see that the sequence {ÂiU} converges with r-order r to 0. We then
in this section use this accelerated techniques to solve the quadratic matrix
equation defined in (4), i.e., find the principle square root

√
S of the matrix

S with λ(S) ⊂ C+. To this end, we relate (4) to the generalized eigenvalue
problem

A

[
In√
S

]
= B

[
In√
S

]√
S, (12)

where A =

[
0 In
S 0

]
and B = I2n. Since λ(S) ⊆ C+, there is no guarantee

that the AB-algorithm will converge. To remedy this situation, this matrix
√
S

in (12) must be retreated. One way is to apply the Möbius transformation

C√S(γIn) = (γIn −
√
S)(γIn +

√
S)−1,

where γ > 0 and −1 6∈ λ(γIn−λ
√
S), i.e., −1 is not an eigenvalue of the matrix

pencil γIn − λ
√
S; that is, recast (12) in the following equation

A1

[
In√
S

]
= B1

[
In√
S

]
C√S(γIn), (13)

where A1 = γB − A and B1 = γB + A. Observe that ρ(C√S(γIn)) < 1 since
λ(S) ⊆ C+. Upon using the AB-algorithm, it can be easily checked that for any
integer k ≥ 1, Ak and Bk can be expressed as

Ak =

[
Qk −In
−S Qk

]
, Bk =

[
Qk In
S Qk

]
, (14)
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respectively, where the sequence {Qk} satisfies QiQj = QjQi, for any integers
i, j > 0, and the following iteration

Qk+1 = (γQk + S)(γIn +Qk)−1 (15)

with Q1 = γIn. Note that once Qk =
√
S for some k, it follows that Q` =

√
S

for all ` ≥ k.
Specifically, let Cγ(λ) = γ−λ

λ+γ be the Möbius transformation with a parameter
γ 6= 0 and λ 6= −γ. Then, the inverse scalar Möbius transformation can be
written as

C−1γ (λ) = γ
1− λ
1 + λ

, λ 6= −1.

Let λ = e
2jπi
n ∈ Sn\{−1}, where 1 ≤ j < n. It follows that the real part of the

square of a := C−1γ (λ) is a real negative number, since

a2 = γ2(
1− e

2jπi
n

1 + e
2jπi
n

)2 = −γ2 tan2(
jπ

n
) < 0. (16)

From (16) and Theorem (2.2), it follows that the AB-algorithm will ter-
minate prematurely only if λ(S) ⊆ C−; that is, once λ(S) ⊆ C+, or even,
λ(S) ⊆ C+ ∪{0}, the sequence of matrix pencils {Ak −λBk}, initiated by (13),
is well-defined.

With an eye on the structure of the matrix pencil Ak − λBk, we look for an
accelerated iteration induced by the assumption of Âk − λB̂k in Algorithm 3.1.

Algorithm 4.1. (Iteration for solving the matrix square root)

1. Given a positive integer r > 1, a tolerance τ > 0, and a positive integer
kmax, let Q̂1 = Q1 = γIn;

2. For i = 2, . . ., iterate until ‖Q̂k −
√
S‖ < τ or k > kmax.

Q̂k := (S + Q̂k−1Q
(r−1)
k−1 )(Q̂k−1 +Q

(r−1)
k−1 )−1,

until convergence, where Q̂
(r−1)
k−1 is defined in step 3.

3. For ` = 1, · · · , r − 2, iterate

Q
(`+1)
k−1 := (S + Q̂k−1Q

(`)
k−1)(Q̂k−1 +Q

(`)
k−1)−1,

with Q̂
(1)
k−1 = Q̂k−1.

Note that Q̂k = Qrk−1 for k ≥ 1, and with the assumption of the existence of
iterative sequences, we immediately have the following iterative formulae. We
omit the proof here because the result can be straightforwardly shown by using
induction.



14

Theorem 4.1. Assume that the sequences generated by Algorithm 4.1 can be
constructed with no break down. Then, we have the following two iterative for-
mulae.

1. When r is even, let q = r
2 . We have

Q̂k+1 = (

q∑
j=0

(
r

2j

)
Q̂r−2jk Sj)(

q−1∑
j=0

(
r

2j + 1

)
Q̂r−2j−1k Sj)−1. (17)

2. While r is odd, let q = r−1
2 . We have

Q̂k+1 = (

q∑
j=0

(
r

2j

)
Q̂r−2jk Sj)(

q∑
j=0

(
r

2j + 1

)
Q̂r−2j−1k Sj)−1, (18)

where the notation
(
n
k

)
denotes the number of k-combinations from the set S =

{1, 2, · · · , n} of n elements.

We notice that if S is a nonsingular matrix, then (17) and (18) can be simply
expressed by the following rule:

Q̂k+1 = VmU
−1
m ,

where

Vm =

[m2 ]∑
j=0

(
m

2j

)
Q̂m−2jk Sj =

1

2
((Q̂k +

√
S)m + (Q̂k −

√
S)m),

Um =

[m−1
2 ]∑
j=0

(
m

2j + 1

)
Q̂m−2j−1k Sj =

(
√
S)−1

2
((Q̂k +

√
S)m − (Q̂k −

√
S)m).

Importantly, under nonsingularity assumption, a strong result related to the
sequences {C√S(Qi)} and {C√S(Q̂i)} hold.

Lemma 4.1. Suppose that S is nonsingular. Let i, j, and k be any positive
integers, and 1 ≤ i, j ≤ k. Then the following properties hold.

1. For the sequence {Qk}, we have

a. Qk =
√
S(In + C√S(Q1)k)(In − C√S(Q1)k)−1,

b. C√S(Qi)
j = C√S(Qj)

i.

2. For the sequence {Q̂k}, we have

a. Q̂k =
√
S(In + C√S(Q̂1)r

k−1

)(In − C√S(Q̂1)r
k−1

)−1,

b. C√S(Q̂i)
rk−i = C√S(Q̂j)

rk−j .



15

Proof. It follows from Theorem 2.4 and Q1 = γIn that

AkU(In − C√S(Q1)k) = (B1 −A1)UC√S(Q1)k. (19)

Then, (14) and (19) yield

(Qk −
√
S)(In − C√S(Q1)k) = 2

√
SC√S(Q1)k. (20)

By adding 2
√
S(In − C√S(Q1)k) to both sides of (20), we have

(Qk +
√
S)(In − C√S(Q1)k) = 2

√
S. (21)

From (20) and (21) together, it must be that

Qk(In − C√S(Q1)k) =
√
S(In + C√S(Q1)k).

Since S is nonsingular, it follows that 1 6∈ λ(C√S(Q1)) so that

Qk =
√
S(In + C√S(Q1)k)(In − C√S(Q1)k)−1,

which is equivalent to

C√S(Q1)k = C√S(Qk).

Since k is an arbitrary positive integer, we have

(C√S(Qi))
j = C√S(Q1)ij = (C√S(Qj))

i,

for 1 ≤ i, j ≤ k.
Also, by Theorem 2.4, Algorithm 3.1, Q̂1 = γIn, we have

ÂkU = B̂kU(C√S(Q̂1))r
k−1

,

which then completes the proof of part 2a. and part 2b. by applying the same
strategies as above.

Indeed, this iteration in Algorithm 4.1 converges to
√
S with q-order r.

Theorem 4.2. Suppose that S is a nonsingular matrix. Let ‖.‖ be a matrix

induced norm such that ‖C√S(Q̂1)‖ < 1. Then,

‖Q̂k+1 −
√
S‖ ≤ µ‖Q̂k −

√
S‖r,

for some µ > 0; that is, Q̂k →
√
S with q-order r.

Proof. Using (20) and Q̂k = Qrk−1 , we see that

Q̂k −
√
S = 2

√
SC√S(Q1)r

k−1

(In − C√S(Q1)r
k−1

)−1.
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Without loss of generality we assume that Q̂k 6=
√
S for all k. Otherwise,

Q̂` =
√
S for all ` ≥ k. It follows that

‖Q̂k+1 −
√
S‖

‖Q̂k −
√
S‖r

≤
‖2
√
SC√S(Q1)r

k‖‖In − C√S(Q1)r
k−1‖r

‖2
√
SC√S(Q1)rk−1‖r(1− ‖C√S(Q1)rk‖)

≤
2‖
√
S‖‖C√S(Q1)r

k−1‖r‖In − C√S(Q1)r
k−1‖r

2r
‖C√S(Q1)r

k−1‖r

‖(
√
S)−1‖r (1− ‖C√S(Q1)rk‖)

≤ 21−r‖
√
S‖‖(

√
S)−1‖r sup

k≥1

(1 + ‖C√S(Q1)‖rk−1

)r

1− ‖C√S(Q1)‖rk

≤ µ :=
2‖
√
S‖

1− ‖C√S(Q1)‖r
‖(
√
S)−1‖r <∞.

Note that for r = 2 the iteration Q̂k+1 = (Q̂2
k +S)(2Q̂k)−1 = 1

2 (Q̂k +SQ̂−1k )

with initial Q̂1 = γIn, which is equivalent to the Newton’s method for solving
the matrix square root [12], converges to

√
S with quadratic convergence. For

r = 3 we have Q̂k+1 = (Q̂3
k+3Q̂kS)(3Q̂2

k+S)−1, which provides that a cubically

convergent iteration converges to
√
S with initial Q̂1 = γIn. Similarly, by

Algorithm 4.1 we can make Q̂k+1 converges to
√
S q-superlinearly with any

desired q-order r. However, without the accelerated technique, we can show in
the following that the original sequence {Qk} only converges to

√
S q-linearly.

Theorem 4.3. Suppose that S is a nonsingular matrix. Let ‖.‖ be a matrix

induced norm such that ‖C√S(Q̂1)‖ < 1. Then,

‖Qk+1 −
√
S‖ ≤ µ‖Qk −

√
S‖,

for some µ ∈ (0, 1) and sufficient large k; that is, Qk →
√
S q-linearly with

q-factor µ.

Proof. From (20), we have

Qk −
√
S = 2

√
SC√S(Q1)k(In − C√S(Q1)k)−1.

Thus,

‖Qk+1 −
√
S‖ = ‖(Qk −

√
S)(In − C√S(Q1)k)C√S(Q1)(In − C√S(Q1)k+1)−1‖

≤ ‖C√S(Q1)‖
1 + ‖C√S(Q1)‖k

1− ‖C√S(Q1)‖k+1
‖Qk −

√
S‖.

Since
1 + ‖C√S(Q1)‖k

1− ‖C√S(Q1)‖k+1
→ 1 as k →∞, there exists a constant k0 such that

‖C√S(Q1)‖
1 + ‖C√S(Q1)‖k

1− ‖C√S(Q1)‖k+1
< 1
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for k ≥ k0. Let µ =
1 + ‖C√S(Q1)‖k0

1− ‖C√S(Q1)‖k0+1
‖C√S(Q1)‖, which completes the proof.

In the next result, we show that the AB-algorithm still converges, while
solving the square root of a singular matrix, which is hard to be handled in
general. See [22] for further discussion.

Corollary 4.1. Suppose that S is a singular matrix having λ(S) ⊆ C+ ∪ {0}
and the null eigenvalues are semisimple. Then,

1. Qk →
√
S sublinearly,

2. Q̂k →
√
S q-linearly with q-factor 1

r .

Proof. Let P be an invertible matrix so that diag(0p, Jn−p) = P
√
SP−1 be the

Jordan canonical form of
√
S with λ(Jn−p) ⊂ C+. Upon the use of substitution

and Lemma 4.1, we have

PQkP
−1 = diag(Q

(11)
k , Q

(22)
k ),

where Q
(11)
k is derived directly by (15) and Q

(22)
k is followed from Lemma 4.1

such that

Q
(11)
k =

γIn
k
,

Q
(22)
k = Jn−p(I + CJn−p(γIn−p)

k)(I − CJn−p(γIn−p)
k)−1.

Since {Q(11)
k } converges to zero sublinearly and {Q(22)

k } converges to zero q-

linearly, {Qk} converges to
√
S sublinearly. In the similar way, we have

PQ̂kP
−1 = diag(Q̂

(11)
k , Q̂

(22)
k ),

where

Q̂
(11)
k =

γIn
rk

,

Q̂
(22)
k = J(In + CJ(γIn)r

k−1

)(In − CJ(γIn)r
k−1

)−1.

Since {Q̂(11)
k } converges to zero q-linearly with q-factor r, it follows that {Q̂k}

converges to
√
S q-linearly with q-factor r.

Remark 4.1. Once the spectral radius of
√
S in (12) is not less than 1, we can

apply the Möbius transformations to shift eigenvalues of S such that ρ(C√S(γIn))
in (13) is less than 1. We would like our γ to have a capacity such that the
optimal convergence speed in Algorithm 4.1 can be achieved. To this end, we
seek γ to be equal to the optimal solution γ0 of the following min-max problem

γ0 := min
γ>0

max
λ∈λ(S)

|
√
λ− γ√
λ+ γ

|. (22)
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This min-max problem is also known as the ADI min-max problem [25]. Nu-
merical approaches for solving (22) are numerous. Here we will not discuss it
further. The reader is referred to [3, 25, 24] for example.

5 Concluding remarks

By computing left null spaces, the contribution of this work is twofold. The-
oretically, it provides an iterative method, embedded with a discrete-type flow
property, to solve the stable deflating subspace of a matrix pencil A−λB. This
property then allows us to advance the iterative method. Numerically, we have
discussed with the numerical behavior of the AB-algorithm, including both low
computational cost and high numerical reliability. Since the solution of the ma-
trix square root can be interpreted in terms of the stable deflating subspace of
a matrix pencil, our method can be used to compute the matrix square root.
We show that the speed of convergence has q-order r, and even more, for the
singular case, where S is singular having no negative real eigenvalues, and the
null eigenvalues are semisimple, the iteration still succeeds with a linear rate of
convergence.

Particularly, since Algorithm 4.1 corresponds to Newton iteration with r = 2
and the initial guess γIn, the limiting accuracy should not be worse than κ(

√
S)ε,

where κ(
√
S) is the condition number of

√
S and ε is machine precision [12, Ta-

ble 6.2 on p.147]. Numerically, it is known that a stable variant of Newton
iteration, the IN iteration [12, (6.20) on p.142], has been proposed with the
limiting accuracy equal to ε. Whether the AB-algorithm for r = 2 has the
desired accuracy or even more for r > 2 is something worthy of further inves-
tigation. Numerically, modified AB-algorithms for r = 2 were also developed
for solving generalized continuous/discrete-time algebraic Riccati equations [19]
and ?-Sylvester matrix equation [20]. How to apply the accelerated techniques
in the work for solving other matrix equations (for example, matrix pth root)
leads to the work in future.
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