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Abstract. We derive generalizations of McShane’s identity for higher ranked
surface group representations by studying a family of mapping class group in-
variant functions introduced by Goncharov and Shen which generalize the no-
tion of horocycle lengths. In particular, we obtain McShane-type identities for
finite-area cusped convex real projective surfaces by generalizing the Birman–
Series geodesic scarcity theorem. More generally, we establish McShane-type
identities for positive surface group representations with loxodromic boundary
monodromy, as well as McShane-type inequalities for general rank positive rep-
resentations with unipotent boundary monodromy. Our identities are system-
atically expressed in terms of projective invariants, and we study these invari-
ants: we establish boundedness and Fuchsian rigidity results for triple and cross
ratios. We apply our identities to derive the simple spectral discreteness of
unipotent-bordered positive representations, collar lemmas, and generalizations
of the Thurston metric.

1. Introduction

The aim of this paper is to generalize McShane identities for higher Teichmüller
theory, a goal previously considered by Labourie and McShane in [LM09]. The
McShane identities we obtain are expressed in terms of geometric quantities such
as simple root lengths, triple ratios and edge functions, and naturally gener-
alize those employed by Mirzakhani in her computation of Weil–Petersson vol-
umes of moduli spaces of bordered hyperbolic surfaces of fixed boundary lengths
[Mir07a] and her proof [Mir07b] of the Witten–Kontsevich theorem. We estab-
lish geometric applications for our identities, yielding properties of simple root
lengths and triple ratios along the way.

Let S = Sg,m denote a genus g oriented surface with m > 1 boundary compo-
nents and negative Euler characteristic. In the classical hyperbolic setting, horo-
cycle lengths define regular functions on Penner’s decorated Teichmüller space
of horocycle-decorated hyperbolic metrics on Sg,m [Pen87], and the decomposi-
tion of horocycle lengths leads to the classical McShane identities [McS98]. The
natural analog of this picture in higher Teichmüller theory is that of Goncharov
and Shen’s family of mapping class group invariant regular functions [GS15] on
the Fock–Goncharov A moduli space ASLn,S [FG06]. The Goncharov–Shen poten-
tial (Definition 2.26) is the starting point for our family of McShane identities for
positive surface group representations into PGLn(R).
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1.1. The classical McShane identity. In his doctoral dissertation, McShane [McS91]
established the following stunning result:

Theorem (McShane identity [McS91]). Given an arbitrary 1-cusped hyperbolic torus
Σ1,1, let C1,1 denote the collection of unoriented simple closed geodesics γ̄ on Σ1,1 up to
homotopy and let `(γ̄) denote their respective hyperbolic lengths.∑

γ̄∈C1,1

2
1 + e`(γ̄)

= 1.(1)

The above theorem has led to an ever-growing list of identities for rich families
of hyperbolic geometric objects including the following direct generalizations of
McShane’s identity [AMS04, AMS06, Bow97, Bow98, Hua15, Hua18, LS13, McS98,
Mir07a, Nor08, TWZ06, TWZ08], as well as the closely related Basmajian identity
[Bas93], the Bridgeman-Kahn identity [BK10, Bri11] and the Luo-Tan dilogarithm
identity [LT11]. There has also been progress in establishing similar identities
for higher Teichmüller theory [FP16, He19, LM09, VY17] and super Teichmüller
theory [HPZ19].

1.2. McShane identity for bordered hyperbolic surfaces. Let us highlight the
McShane identity for bordered hyperbolic surfaces due independently to Mirza-
khani [Mir07a] and Tan–Wong–Zhang [TWZ06]. For simplicity, we state this iden-
tity only for genus g hyperbolic surfaces Σg,1 with a single geodesic border ᾱ:

Theorem (McShane identity for bordered hyperbolic surfaces [Mir07a], [TWZ06]).
Let Pᾱ denote the collection of homotopy classes of embedded pairs of pants which contain
ᾱ as an unoriented boundary component. Then,

∑
(β̄,γ̄)∈Pᾱ

2 log

(
e
`(ᾱ)

2 + e
`(β̄)+`(γ̄)

2

e
−`(ᾱ)

2 + e
`(β̄)+`(γ̄)

2

)
= `(ᾱ).(2)

Equation (2) is the basis for arguably the most celebrated application of McShane
identities: Mirzakhani’s integration scheme and volume recursion formula for the
Weil-Petersson volume of moduli spaces of hyperbolic surfaces of fixed boundary
length [Mir07a].

1.3. Labourie–McShane’s identity for Hitchin representations. The Hitchin com-
ponent Hitn(Sg,0) [Hit92] is a contractible component of the representation variety

Hom(π1(Sg,0), PGLn(R))/PGLn(R),

characterized as the deformation space of the n-Fuchsian representations of π1(Sg,0)
— compositions of any Fuchsian representation with an irreducible representa-
tion from PSL2(R) to PGLn(R). Representations in the Hitchin component are
referred to as Hitchin representations and are the central object in higher Teich-
müller theory1.

In [LM09], Labourie and McShane generalized the notion of a Hitchin compo-
nent Hitn(Sg,m) for bordered surfaces, and established a very general family of
McShane-type identities for these Hitchin representations of bordered surfaces

1We highly recommend Wienhard’s beautiful overview [W18] of higher Teichmüller theory.
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via ordered cross ratios [Lab07]. In the Sg,1 setting, their identity takes the follow-
ing form:

Theorem (Labourie–McShane identity [LM09]). Consider a Hitchin representation
ρ : π1(Sg,1) → PGLn(R) and let α denote the boundary component of Sg,1 oriented so
that Sg,1 is on the left of α. Given any ordered cross ratio Bρ defined with respect to ρ,∑

(β,γ)∈Pα

logBρ(α−,α+,γ+,β+) = `B
ρ

(α), where

• Labourie–McShane define Pα as the collection of homotopy classes of embed-
dings of a fixed pair of pants into Sg,1 whose image is marked by simple homo-
topy classes α,β,γ satisfying αβ−1γ = 1, for α a homotopy representative of the
oriented boundary. We interpret Pα as the set of boundary-parallel pairs of pants
on Sg,1 which contain α (Definition 1.5).

• The summands are logarithms of the Bρ ordered cross ratio of quadruples of ideal
points arising as attracting and/or repelling fixed points of α,β and γ.

• The quantity `Bρ(α) is a length-type quantity defined via cross ratios.

It is perhaps more accurate to view Labourie and McShane’s formula as very
powerful machinery for producing McShane-type identities. The summands
logBρ(α−,α+,γ+,β+) — often referred to as gap functions — are generally com-
plex expressions of standard moduli of ρ restricted to the underlying pair of
pants. As an example, some summands for the rank n weak cross ratio [LM09,
Section 10] for n = 3 Hitchin representations require fifteen lines to state [LM09,
Equation (55)], let alone for n > 4 and above.

We offer up identities which structurally resemble Equations (1) and (2).

1.4. Positive representations. Two of the main directions in which Hitchin rep-
resentations have been generalized are positive representations (Definition 2.9) and
Anosov representations. The former, due to Fock and Goncharov [FG06], is based
upon an algebraic property called positivity, whereas the latter hails from Labourie’s
[Lab06] dynamical approach to higher Teichmüller theory via Anosov flows.

Positive and Anosov representations share key traits which make their theoretical
development interesting and tractable. For example, both approaches yield dis-
crete and faithful representations. As another example, consider the loxodromic
property:

Definition 1.1 (Loxodromic matrices). An element in PGLn(R) is loxodromic if
and only if it has a lift into SLn(R) such that it is conjugate to a diagonal matrix with
eigenvalues

λ1 > · · · > λn > 0.

Fock and Goncharov show that:

Theorem 1.2 ([FG06, Theorem 9.3]). Given any positive representation ρ : π1(Sg,m)→
PGLn(R), for any non-trivial γ ∈ π1(Sg,m),

• if γ is non-peripheral then ρ(γ) is conjugate to a totally positive matrix and thus
loxodromic;

• if γ is peripheral then ρ(γ) is conjugate to a totally positive upper triangular
matrix.
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Labourie [Lab06] also shows that non-trivial non-peripheral homotopy classes for
Anosov representations are loxodromic.

One powerful geometric consequence of this loxodromic property is that it en-
ables us to define the notion of i-th lengths for curves on Sg,m.

Definition 1.3 (i-th length). Given a positive representation ρ : π1(Sg,m)→ PGLn(R),
for any non-trivial γ ∈ π1(Sg,m), we denote the eigenvalues of ρ(γ) by

λ1(ρ(γ)) > · · · > λn(ρ(γ)) > 0.

For i = 1, . . . ,n− 1 we define the i-th length (also called simple root length) of γ with
respect to ρ as

`i(γ) := log
(
λi(ρ(γ))

λi+1(ρ(γ))

)
.

Note that whilst loxodromic elements always produce positive i-th lengths, it is
possible for peripheral γ to admit i-th length `i(γ) = 0 (e.g.: when the boundary
is unipotent).

We focus on positive representations, and denote the PGLn(R)-positive represen-
tation variety by Posn(S) (Definition 2.10). For closed surfaces Sg,0, the positive
representation variety Posn(Sg,0) is the Hitchin component Hitn(Sg,0) [FG06, The-
orem 1.15]. More generally, for bordered surfaces Sg,m it includes Hitchin repre-
sentations (Remark 2.11), and hence the n-Fuchsian representations.

1.5. McShane identities for convex real projective 1-cusped tori. The theory
of strictly convex RP2 surfaces, which generalizes the Beltrami-Klein approach
to hyperbolic surfaces, is an important geometric manifestation of non-Fuchsian
higher Teichmüller theory. To clarify: positive representations ρ : π1(S)→ PGL3(R)
of closed surfaces and surfaces with unipotent boundary monodromy are holo-
nomy representations of strictly convex RP2 surfaces Σ. Namely, Σ may be ex-
pressed as Ω/ρ(π1(S)) where Ω is a strictly convex domain in RP2 preserved by
the properly discontinuously action of ρ(π1(S)) [G90, CG93, Mar10].

Ideal triangles are fundamental building pieces for hyperbolic and convex real
projective surfaces. It is well-known that all hyperbolic ideal triangles are isomet-
ric. In contrast, oriented convex real projective ideal triangles are geometrically
richer and are classified by their triple ratios T ∈ R>0 [FG06]. In Figure 1, the

Figure 1. The triple ratio of ∆.

triple ratio of the anticlockwise-oriented ideal triangle 4 inside the convex do-
main Ω ⊂ RP2 is defined as T = s1s2s3

r1r2r3
, where the sj and rk denote Euclidean
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segment lengths which are possible to be infinite. We denote the logarithm of
the triple ratio by τ(∆) := log(T(∆)) ∈ R, and refer to this quantity as the triangle
invariant [BD14, BD17].

We establish McShane identities for all (finite-type) cusped strictly convex RP2

surfaces (Theorems 5.25, 5.26). For 1-cusped tori, our result takes the form:

Theorem 1.4 (McShane identity for convex real projective 1-cusped tori, Theo-
rem 5.13 and Proposition 5.20). Given a strictly convex RP2 1-cusped torus Σ, let C1,1
be the set of oriented simple closed geodesics on Σ up to homotopy. Then∑

γ∈C1,1

1
1 + e`1(γ)+τ(γ)

=
∑
γ∈C1,1

1
1 + e`2(γ)−τ(γ)

= 1,(3)

where τ(γ) is the triangle invariant for either of the two oriented ideal triangles on Σ with
one side being the unique ideal geodesic disjoint from γ and the other two sides spiraling
parallel to γ (see Figure 2).

Figure 2. Cutting the shaded pair of half-pants on the left figure
along the spiraling geodesic depicted produces an ideal triangle
4γ, and we use it to define τ(γ) = τ(4γ). The right figure de-
picts a single lift (p̃,γ · p̃,γ+) of 4γ to the universal cover of Σ.

We make two remarks before moving on to more general identities:
• For 3-Fuchsian representations, Equation (3) recovers the classical Mc-

Shane identity (Remark 5.17).
• There are in fact two possible ideal triangles4γ and4 ′γ with one side be-

ing the unique ideal geodesic disjoint from γ and the other two sides spi-
raling parallel to γ, and provided that one marks them to agree with the
lift (p̃,γ · p̃,γ+) (Figure 2), their triple ratios agree and τ(γ) is well-defined
(Remark 5.28). Moreover, we show in Lemma 5.19 that τ(γ−1) = −τ(γ)
and `1(γ−1) = `2(γ), which leads to the “two” McShane identities above
(see Proposition 5.20). We study these a priori unexpected symmetries for
S1,1, n = 3 positive representations in §5.4.4.

1.6. McShane identities for general convex real projective surfaces. We begin
by introducing the requisite summation index.
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Definition 1.5 (Boundary-parallel pairs of pants). Assume that Sg,m is endowed with
an auxiliary hyperbolic metric and let p be a distinguished cusp of Sg,m. An (embedded)
boundary-parallel pairs of pants containing p is a pair (β,γ) of (disjoint) oriented
closed geodesics so that p,β,γ bound a pair of pants on Sg,m, and β,γ are positioned
and oriented as per Figure 3). We denote the collection of all boundary-parallel pairs of
pants on S containing p up to homotopy by Pp. We similarly define Pα for bordered
hyperbolic surfaces by supplanting the role of the cusp p by a distinguished oriented
boundary geodesic α.

Figure 3. Cutting along the spiraling geodesics on the boundary-
parallel pair of pants (β,γ) (left figure) results in an ideal quadri-
lateral whose lift is the marked quadrilateral (p̃,β+,β · p̃ =
γ · p̃,γ+) (right figure).

Fock and Goncharov [FG06, Section 9] parameterize Posn(Sg,m) by two types of
projective invariants: the triple ratios (Definition 2.13) and edge functions (Defini-
tion 2.17), the latter of which generalize Thurston’s shearing coordinates [Thu98].
We have already seen the importance of the former in defining triangle invariants,
and we now introduce the latter in the guise of edge invariants.

Definition 1.6 (Edge invariants). For any boundary parallel pair of pants (β,γ) ∈ Pp,
let γp = βp denote the unique boundary-parallel oriented simple bi-infinite geodesic
on (β,γ), with both ends going up p, which separates (β,γ) into two boundary-parallel
pairs of half-pants (β,βp), (γ,γp) ∈ Hp. On (β,βp), there is a unique simple bi-infinite
geodesic which emanates from p and spirals towards β (in the same direction as β) and
likewise on (γ,γp) there is also such a geodesic spiraling towards γ. Cutting (β,γ)
along these two spiral geodesics results in an ideal quadrilateral �β,γ (see Figure 3). Let
(γ+,γp̃,β+, p̃) be anticlockwise oriented ideal quadrilateral lift of �β,γ. We define edge
invariants

d1(β,γ) := log
(
D1(p̃,γp̃,β+,γ+)

)
and e1(β,γ) := log

(
D2(p̃,γp̃,β+,γ+)

)
,

where the Di are edge functions (Definition 2.17) of (p̃,γp̃,β+,γ+).
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Theorem 1.7 (McShane identity for general cusped convex real projective sur-
faces, Theorem 5.26). Let ρ : π1(Sg,m) → PGL3(R) be a positive representation with
unipotent boundary monodromy and let p be a distinguished cusp on Sg,m. Then,∑

(β,γ)∈Pp

(
1 +

cosh e1(β,γ)

2

cosh d1(β,γ)

2

· e
1
2 (`1(β)+τ(β,βp)+`1(γ)+τ(γ,γp))

)−1

= 1.(4)

where d1(β,γ) := log (D1(x,γx,β+,γ+)) and e1(β,γ) := log (D2(x,γx,β+,γ+)) are
edge invariants (Definition 1.6), and τ(γ,γp) and τ(β,βp) are triangle invariants (Def-
inition 5.8).

In the (g,m) = (1, 1) case, the quantity d1(β,γ) = −e1(β,γ) and Equation (4)
simplifies to Equation (3). See Remark 5.28 for concrete details.

1.7. McShane identities of loxodromic bordered positive representations. We
again state the McShane identity only in the special case of positive representa-
tions with one (loxodromic) boundary to simplify notation.

Theorem 1.8 (McShane identities for loxodromic bordered positive representa-
tions, Theorem 7.19). Let ρ : π1(Sg,1) → PGLn(R) be a positive representation with
loxodromic boundary monodromy, and let α be a distinguished oriented boundary com-
ponent of Sg,1 such that Sg,1 is on the left of α. For each i = 1, · · · ,n− 1, we have:

∑
(β,γ)∈

−→
P α

log

(
e
`i(α)

2 + e
2φi(β,γ)+κi(β,β

α−)+`i(β)+κi(γ,γ
α−)+`i(γ)

2

e
−`i(α)

2 + e
2φi(β,γ)+κi(β,β

α−)+`i(β)+κi(γ,γ
α−)+`i(γ)

2

)
= `i(α),(5)

where
• κi(δ, δα−), for δ = β or γ, is the logarithm of a rational function of triple ratios

associated to an ideal triangle embedded in (β,γ), and
• φi(β,γ) is an analytic function of triple ratios and edge functions associated

with the boundary parallel pair of pants (β,γ).

Remark 1.9. We highlight the fact that both our summands as well as those from the
McShane identity for bordered hyperbolic surfaces, see Equation (2), take the following
general form

D(x,y, z) = log

(
e
x
2 + e

y+z
2

e
−x

2 + e
y+z

2

)
.(6)

For the bordered hyperbolic surface identity, (x,y, z) equals (`(ᾱ), `(β̄), `(γ̄)), whereas
for our identity, we take

(x,y, z) = (`i(α),φi(β,γ) + κi(β,βα−) + `i(β),φi(β,γ) + κi(γ,γα−) + `i(γ)).

Moreover, for n-Fuchsian representations,

κi(β,βα−) = κi(γ,γα−) = φi(β,γ) = 0,

`i(β) = `j(β), `i(γ) = `j(γ) for all i, j = 1, · · · ,n− 1,

and hence each of our family of (n− 1) McShane identities reduces to Equation (2).

Remark 1.10. We direct those curious about the precise relationship between Theorem 1.8
and the Labourie–McShane identity for the rank n weak cross ratio to Corollary 7.15.
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1.8. Birman–Series theorem and McShane-type inequalities for n > 4 unipo-
tent bordered representations. The Birman–Series theorem [BS85] asserts the
sparsity of complete simple geodesics on hyperbolic surfaces, and is a crucial
ingredient (albeit sometimes only implicitly appearing) in almost all proofs of
McShane identities. For example, the classical McShane identity has a probabilis-
tic interpretation: the summand 2(1 + e`(γ̄))−1 is precisely the probability that a
geodesic uniformly randomly launched from the cusp of a 1-cusped torus self-
intersects before intersecting γ̄. In order for the classical McShane identity to
hold true, it is necessary that the event of a geodesic launched from the cusp
never self-intersecting has probability 0. This is ensured by the Birman–Series
theorem.

Labourie and McShane also depend on the classical Birman–Series theorem in es-
tablishing identities for rank n weak cross ratios associated to Hitchin represen-
tations [LM09, Theorem 4.1.2.1]. For representations with loxodromic boundary
monodromy, they combine the Birman–Series theorem and the Anosov property
(see Remark 7.4) in order to prove the identity is indeed an equality. As Hitchin
representations with loxodromic boundary monodromy deform to positive repre-
sentations with unipotent boundary monodromy, however, the Anosov property
is lost. In this setting, they establish their identity under a regularity hypothe-
sis [LM09, Definition 4.2.1]. Loxodromic bordered positive representations are
Hitchin (Remark 2.11) and we are able to employ the same trick as Labourie
and McShane to establish Theorem 1.8 (or rather, Theorem 7.19). However, it is
generally unknown if unipotent bordered positive representations satisfy their
regularity hypothesis and in order to prove our McShane identities for cusped
convex real projective surfaces, we generalize the Birman–Series theorem:

Theorem 1.11 (Birman–Series theorem for convex real projective surfaces, Theo-
rem 6.10). Given a strictly convex RP2 surface Σ, the Birman–Series set defined as

BS(Σ) := {x ∈ Σ | x lies on a complete simple geodesic on Σ}

is nowhere dense, closed and has 0 Hilbert area.

Remark 1.12. We owe Benoist an enormous debt of gratitude for helping us to prove the
above result. Particularly in explaining to us the proof for the exponentially shrinking
ball property (Lemma 6.9).

Unfortunately, we are currently unable to formulate (let alone prove) a natural
Birman–Series-type theorem for n > 4 unipotent bordered positive representa-
tions. Thus, instead of a McShane identity, we obtain the following McShane-type
inequality:

Theorem 1.13 (Inequalities for unipotent bordered positive representations, The-
orem 7.29). Given a positive representation ρ ∈ Posn(Sg,m) with unipotent boundary
monodromy, for the cusp p and i = 1, · · · ,n− 1, we have∑

(β,γ)∈Pp

1

1 + eφi(β,γ)+ 1
2 (κi(γ,γp)+`i(γ)+κi(β,βp)+`i(β))

6 1.

We conjecture that the above (non-strict) inequality should indeed by an equality,
and outline a possible strategy of proof based upon establishing and obtaining
enough control on the polynomial growth rate of i-th lengths, see Theorem 7.41
for details.
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1.9. Triple ratio boundedness and rigidity. Of the three types of invariants we
use to express our identities, i-th lengths directly generalize hyperbolic lengths,
edge invariants generalize Thurston’s shearing coordinates and so in some sense
triangle invariants, or rather, triple ratios are perhaps the most mysterious. We
undertake to dispel a little of this mystery by demonstrating that triple ratios
satisfy a boundness property. Let us begin with an observation in the n = 3
case, where triangle invariants and p-areas on convex real projective surfaces are
related as follows:

Theorem 1.14 ([AC15, Proposition 0.3]). Let m be the Lebesgue measure with respect
to the standard inner product on R2. Set

K = Supa,b∈R2,||a||,||b||61m({p · a + q · b | 0 6 p, q 6 1})).

The p-area is ω||·|| = K
−1m.

Given an embedded ideal triangle 4 ⊂ Σ on a finite p-area convex RP2 surface Σ, the
p-area Parea(4) of 4 satisfies:

Parea(4) > 1
8 (π

2 + τ(4)2).

For any PGL3(R)-positive representation ρwith unipotent boundary monodromy,
by [Mar10], the strictly convex real projective surface with holonomy representa-
tion ρ has finite Hilbert area with respect to the Hilbert metric. The p-area and the
Hilbert area are uniformly comparable because of the Benzécri compactness the-
orem [B60], and thus the p-area for ρ is also finite. An immediate consequence of
this result is that the triangle invariant τ(4) = log(T(4)) of any embedded ideal
triangle on Σ is necessarily bounded between

±
√

8Parea(4) − π2.

Remark 1.15. One immediate corollary of this observation is that the collection of tri-
angle invariants which arise in any given McShane identity, such as {τ(γ)}

γ∈C1,1
in

Equation (3), is bounded and hence the convergence properties of Equation (3) are gov-
erned purely by the growth rates of the i-th lengths. We shall see that this phenomenon
extends to arbitrary n.

Before proceeding, we clarify that, in the context of positive representation theory,
triple ratios are actually functions defined on a finite ramified cover of Posn(Sg,m)
called the Fock–Goncharov X-moduli space Xm(Sg,m) (Definition 2.37). The covering
is bijective over unipotent-bordered positive representations, and we implicitly
made use of this when stating our McShane identities in terms of triple ratios.
For loxodromic bordered positive representations, there is a canonical lift (Defini-
tion 2.40) of the positive representation variety to Xn(Sg,m), thus also enabling
us to consider triple ratios of loxodromic-bordered positive representations. As a
further clarification: triple ratios Ti,j,k : Xn(Sg,m)→ R>0 are indexed by triples of
positive integers i, j,k summing to n (Definition 2.13).

Theorem 1.16 (Triple ratio boundedness, Theorem 3.4). Given any unipotent or
loxodromic-bordered positive representation ρ : π1(S) → PGLn(R), the set of triple
ratios taken over

• all lifts (ρ, ξ) of ρ in Xm(Sg,m),
• all triple ratio indices i, j,k summing to n, and
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• all embedded ideal triangles on S

is bounded within a compact interval [Tξρmin, Tξρmax] ⊂ R>0.

Remark 1.17. The closed surface case for Theorem 1.16 is due independently to François
Labourie and Tengren Zhang via private communication. Our proof for the above result is
essentially topological and holds also for the positive representations with quasihyperbolic
boundary monodromy.

Remark 1.18. The κi(β,βα−) terms in Equation (5) are logarithms of positive rational
functions of triple ratios (Equation (32)). Thus, Theorem 1.16 ensures that the spectrum
{κi(β,βα−), κi(γ,γα−)}

(β,γ)∈Pα
of κi-terms is bounded in R. This informs us that the

convergence properties of the McShane identity series are governed by the i-th lengths
and the edge functions.

When a given positive representation ρ is n-Fuchsian, by Lemma 3.11, there exists
a lift (ρ, ξ) ∈ Xn(Sg,m) such that all of its triple ratios are equal to 1. We show
that this is in fact a characterizing condition for n-Fuchsian representations:

Theorem 1.19 (Fuchsian rigidity, Theorem 3.20). A positive representation ρ ∈
Posn(Sg,m) with unipotent boundary monodromy (including S being a closed surface) is
n-Fuchsian if and only if all of its triple ratios are equal to 1.

The following corollary is somewhat unrelated to the theme of our paper. We
state it due to independent interest: ellipsoid characterization is a classical area
of research with over a century’s worth of history (see [Guo13] for a nice survey).
For any k-dimensional strictly convex open domain Ω ⊂ Rk with C1 boundary,
one can define an alternative generalization of the notion of triple ratios. Specif-
ically, any oriented ideal triangle 4 (i.e.: a Euclidean triangle with all vertices on
∂Ω) lies on the intersection ofΩ and a unique 2-dimensional affine plane H ⊂ Rk.
One may then define the triple ratio for 4 as the triple ratio of 4 in the strictly
convex planar domain Ω ∩H.

Corollary 1.20 (Ellipsoid characterization). A k-dimensional C1 open strictly convex
domain in Rk is a k-dimensional ellipsoid if and only if the triple ratios for all of its ideal
triangles are equal to 1.

1.10. Applications of the McShane identity. We have already alluded to Mirza-
khani [Mir07a]’s spectacular application of McShane identities to derive a recur-
sive algorithm for computing the volumes of moduli spaces of Riemann surfaces.
In [Sun20b], the second author builds upon Mirzakhani’s ideas and employs The-
orem 1.8 and [SZ17, Corollary 8.18] to study the volumes of certain bounded
subspaces of the mapping class group quotient of fixed boundary monodromy
subslices of Posn(Sg,m).

We are aware of the following applications for the McShane-type identities in the
literature:

• various authors [AMS04, AMS06, Bow98, Bow97, Hua18, LS13] use them
to study the geometry of the convex core or the cuspidal tori for various
hyperbolic 3-manifolds;

• Miyachi uses them to bound the Teichmüller distance between two marked
surfaces [Miy05].
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We illustrate several novel applications of the McShane identity.

To begin with, a refinement (Theorem 7.29) of Theorem 1.13, combined with The-
orem 1.16 and Lemma 8.2, yields the following:

Theorem 1.21 (Simple `i-spectrum discreteness). For m > 1, let ρ : π1(Sg,m) →
PGLn(R) be a positive representation with unipotent boundary monodromy. For any i =
1, · · · ,n−1, the simple `i-spectrum for ρ is discrete. As a consequence, let ` =

∑n−1
i=1 `i,

then the simple `-spectrum for ρ is discrete.

Remark 1.22. For a positive representations with (only) loxodromic boundary mon-
odromy, the above result can be obtained via the Anosov property [Lab06]. However,
positive representations with unipotent boundary monodromy are not Anosov. In partic-
ular, our proof uses positivity in a fundamental way.

When n = 3, we strengthen the above result in two different directions (Appen-
dix B), we show that:

• both the simple i-length and the `-length spectra of every unipotent bor-
dered positive representation ρ ∈ Posu3 (Sg,m) grow polynomially of order
6g− 6 + 2m, and

• both the i-length and the `-length spectra of every ρ ∈ Posu3 (Sg,m) is
discrete.

Kim utilizes different techniques in [Kim19] to generalize the above discreteness
of the `-spectrum for all n.

Theorem 1.23 ([LZ17], Collar lemma, Theorem 8.6). Given any positive representa-
tion ρ ∈ Pos3(S), the Hilbert lengths of any two intersecting simple closed curves β,γ
satisfy the following inequality:

(e
1
2 `(β) − 1)(e

1
2 `(γ) − 1) > 4.

Remark 1.24. The above collar lemma is due to Lee and Zhang [LZ17, Equation (3-
2)]. Naturally, the above result translates into a collar lemma for convex real projective
surfaces with cusps (unipotent boundary) and/or closed geodesic boundaries (loxodromic
boundary).

1.11. Applications to Thurston-type metrics. The remaining applications are all
related to asymmetric ratio metrics on various character varieties. These results
require the full strength of the McShane-type identity and not just an inequality.
We begin with our results for the Fuchsian representations:

Theorem 1.25 (Fuchsian non-domination). Given two marked hyperbolic surfaces
Σ1,Σ2 ∈ Teichg,m(L1, . . . ,Lm) with fixed boundary lengths L1, . . . ,Lm > 0. Then the
simple closed geodesic spectrum for Σ1 dominates the simple closed geodesic spectrum Σ2
if and only if Σ1 = Σ2.

Non-domination fails when the boundary length is allowed to vary [PT10], mean-
ing that naive length ratio-based generalizations of Thurston’s length ratio metric
do not satisfy positivity (compare with [Thu98, Theorem 3.1]). Liu–Papadopoulos–
Su–Théret resolve this by introducing the arc metric. We do so by fixing boundary
lengths:
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Corollary 1.26 (Length ratio metric for fixed bordered hyperbolic surfaces). The
non-negative real function dTh : Teichg,m(L1, . . . ,Lm) × Teichg,m(L1, . . . ,Lm) → R>0
defined by

dTh(Σ1,Σ2) := log sup
γ̄∈Cg,m

`Σ1(γ̄)

`Σ2(γ̄)
,

is a mapping class group invariant asymmetric metric on the Teichmüller space Teichg,m
(L1, . . . ,Lm) of genus g surfaces with m boundaries of fixed lengths L1, . . . ,Lm.

Let Posu3 (Sg,m) be the PGL3(R)-positive representation variety with unipotent
boundary monodromy, which corresponds to the moduli space of strictly convex
cusped RP2 structures on Sg,m. We propose the following candidate for a metric
on the space Posu3 (S1,1):

dGap(ρ1, ρ2) := log sup
γ∈C1,1

log(1 + e`
ρ1
1 (γ)+τρ1(γ))

log(1 + e`
ρ2
1 (γ)+τρ2(γ))

.

Theorem 1.27 (Gap metric for Posu3 (S1,1)). The non-negative function dGap defines
a mapping class group invariant asymmetric metric on Posu3 (S1,1). Moreover, the re-
striction of the metric dGap to the Fuchsian locus of Posu3 (S1,1) is equal to the Thurston
metric.

We also generalize the notion of a gap metric to include Posu3 (Sg,m) (Defini-
tions 8.15 and 8.16). The resulting asymmetric metric is mapping class group
invariant. When restricted to the Fuchsian locus, the novel metric is at least as
large as the Thurston metric, but it remains to be seen whether these two metrics
are equal.

1.12. Section overview and reading guide. This paper consists of the following:

§2: Preliminary. We introduce positive representations (Definition 2.9), triple
ratios (Definitions 2.13 and edge functions (Definition 2.17), and Fock and Gon-
charov’s theory of positive higher Teichmüller spaces (2.37).

§3: Properties of projective invariants. We show that the set of triple ratios
associated to any given positive representation is bounded (Theorem 3.4). We
then show that triple ratios all being equal to 1 or edge functions along the same
edge being all the same are characterizing properties for n-Fuchsian representa-
tions (Proposition 3.14 for n = 3, 4, Proposition 3.15 for n = 3 and Theorem 3.20
for general n with unipotent boundary monodromy).

§4: Goncharov–Shen potentials. We introduce and familiarize ourselves with
Goncharov–Shen potentials.

§5: Identities for PGL3(R)-representations with unipotent boundary. We
describe the strategy for proving McShane-type identities, before rigorously es-
tablishing the McShane identity for all PGL3(R)-positive representation with unipo-
tent boundary monodromy (Theorem 5.26). A key ingredient of the proof — the
Birman–Series geodesic sparsity theorem for cusped convex real projective sur-
faces is delayed to §6. We focus on the 1-cusped torus case (5.13), highlighting
certain surprising symmetries (5.4.4). We also introduce a finer McShane-type
identity (Theorem 5.25) summing over half-pants rather than pants.
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§6: Geodesic sparsity for convex real projective surfaces. We prove the
Birman–Series geodesic sparsity theorem for convex real projective surfaces (The-
orem 6.10).

§7: McShane identities for higher Teichmüller space. We show that ratios of
Goncharov–Shen potentials are projective invariants (Proposition 7.14). We dub
these objects i-th potential ratios and relate them to rank n weak cross ratios
(Corollary 7.15) and simple root lengths (Corollary 7.17).

We adapt (Theorem 7.10) Labourie and McShane’s ideas from [LM09] to estab-
lish a family of McShane identities for loxodromic-bordered positive represen-
tations of arbitrary rank (Theorem 7.19), deriving regular expressions for their
summands in terms of i-th lengths, triple ratios and edge functions using i-th
potential ratios. We then obtain McShane-type inequality for unipotent-bordered
positive representations of arbitrary rank (Theorem 7.29) by deforming the lox-
odromic bordered identities. We pose a conjectural condition which would pro-
mote these inequalities to identities (Theorem 7.41).

§8: Applications. We employ our McShane identities to show the discreteness of
simple i-th length spectrum (Theorem 8.3), to demonstrate the collar lemma (The-
orem 8.6) for PGL3(R)-positive representations and to generalize the Thurston
metric (Theorem 8.13 and Definition 8.15) for cusped strictly convex real projec-
tive surfaces.

Remark 1.28. Readers mainly interested in convex real projective surfaces (Pos3(S))
may wish to focus on §5, §6 and the McShane identity applications in §8. On the other
hand, those with background in and predominantly interested in (arbitrary rank) Fock–
Goncharov higher Teichmüller theory may be primarily interested in §3, §4, §5 and §7,
with secondary interests in our McShane identity applications in §8.
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2. Preliminary

The results we derive in this article center on positive representations — focal objects
in Fock and Goncharov’s approach to the higher Teichmüller theory [FG06]. We
review the definition of positive representations, projective invariants associated
to them, as well as their relationship to Fock and Goncharov’s X and A moduli
spaces.

2.1. Positive representations. The notion of positive surface group representa-
tions are motivated by totally positive matrices and positive configurations of
flags. We first present these concepts.

Let S = Sg,m be a topological surface of genus g with m holes, with negative
Euler characteristic χ(Sg,m) = 2 − 2g − m < 0. Moreover, consider the vector
space Rn endowed with the standard Euclidean volume form ∆.

Definition 2.1 (Flags and decorated flags). A flag F in Rn is a maximal filtration of
vector subspaces of Rn:

{0} = F(0) ⊂ F(1) ⊂ · · · ⊂ F(n−1) ⊂ F(n) = Rn, dim F(i) = i.

A basis for a flag F is a basis (f1, . . . , fn) for Rn such that, for any i = 1, . . . ,n, the first
i basis vectors form a basis for Fi.

A decorated flag (F,ϕ) is a pair consisting of a flag F and a collection ϕ of (n − 1)
non-zero vectors

ϕ =
{
f̌i ∈ F(i)/F(i−1)

}
i=1,...,n−1

.

A basis for a decorated flag (F,ϕ) is a basis (f1, . . . , fn) for the vector space Rn such that

fi + F
(i−1) = f̌i ∈ F(i)/F(i−1) for i = 1, . . . ,n− 1.

We refer to the set B of flags in Rn as the flag variety and the set A of decorated flags in
Rn as the principal affine space. We note the obvious “forgetful" projection map

(7) π : A→ B, (F,ϕ) 7→ F.

Notation 2.2. Given a basis (f1, . . . , fn) for a flag or a decorated flag F, for i = 1, · · · ,n,
we use fi to denote:

fi := f1 ∧ f2 ∧ · · ·∧ fi−1 ∧ fi.
We set f0 = 1 by convention. Moreover, without loss of generality, we only consider bases
such that fn satisfies ∆(fn) = 1.

Definition 2.3 (Generic position). For an integer d > 2, We say that a d-tuple of
flags (F1, · · · , Fd) is in generic position if, for any collection of non-negative integers
n1, · · · ,nd ∈ Z>0 satisfying n1 + · · ·+ nd 6 n, the sum

∑d
i=1 F

(ni)
i of vector spaces is

a direct sum. Likewise, a d-tuple of decorated flags is in generic position if the underlying
d-tuple of flags is in generic position.

In [Lu94], Luztig expanded upon the theory of totally positive matrices originally
developed by Gantmacher–Krein [GK41] and Schoenberg [Sch33] to include arbi-
trary semi-simple real Lie groups. For our purposes, it means the following:

Definition 2.4 (Totally positive matrices (see, e.g., [FG06, §1.5])). A real matrix
is totally positive if and only if all of its matrix minors are positive. A real upper
triangular matrix is totally positive if and only if all of its minors, apart from those which
are necessarily 0 are positive.



MCSHANE IDENTITIES FOR HIGHER TEICHMÜLLER THEORY AND THE GS POTENTIAL 15

Positive d-tuples of flags are defined in [FG06, Definition 1.4] for a very general
context. Again, we restrict to the PGLn(R) case (e.g.: [SWZ20, Definition 2.14]).

Definition 2.5. For d > 3, a generic d-tuple of flags (F1, · · · , Fd) is positive if for some
fixed basis B = {fi}

n
i=1 of Rn such that fi ∈ F(i)1 ∩ F

(n−i+1)
2 for i = 1, · · · ,n,

(1) there are projective transformations u1, · · · ,ud−2 in PGLn(R) that are totally
positive upper triangular unipotent matrices with respect to the basis B, and

(2) there exists a g ∈ PGLn(R) which fixes F1 and F2

such that

g(F1, F2, F3, · · · , Fd) = (F1, F2,u1 · F2, · · · ,u1 · · ·ud−2 · F2).

Note that if (F1, · · · , Fd) is positive, then for any collection of indices 1 6 i1 <
· · · < il 6 d, the l-tuple of flags (Fi1 , · · · , Fil) is positive.

Definition 2.6 (Auxiliary metric). Let S = Sg,m be a surface of genus g with m holes
with negative Euler characteristic. For any discrete faithful representation ρ : π1(S) →
PGLn(R), we say that a complete hyperbolic metric hρ on S is an auxiliary metric for
ρ if it satisfies the following conditions:

(1) if the monodromy ρ(α) of a boundary component α of S is unipotent, then choose
hρ such that the boundary α is a cusp;

(2) if the monodromy ρ(α) of a boundary component α of S is non-unipotent, then
choose hρ such that the boundary α is a closed geodesic (of strictly positive
length).

Definition 2.7 (Boundary at infinity). Consider a surface S with negative Euler char-
acteristic and let hρ denote an auxiliary metric for a discrete faithful representation
ρ : π1(S) → PGLn(R). Further let (S̃, h̃ρ) denote the universal cover of (S,hρ). We
define the boundary at infinity ∂∞π1(S,hρ) = ∂∞π1(S) for ρ as the intersection of
RP1 = ∂H2 with the set of metric completion points of (S̃, h̃ρ).

To clarify: when every boundary component of (S,hρ) is cuspidal (including the
scenario when S is closed), then the boundary at infinity ∂∞π1(S) is homeomor-
phic to a circle. Conversely, when (S,hρ) has non-cuspidal boundary compo-
nents, the boundary at infinity ∂∞π1(S) is homeomorphic to a Cantor set (re-
garded as a subset of a circle).

Definition 2.8 (Positive maps). Consider a subset X ⊆ RP1, we say that a map ξ :
X→ B from X to the flag variety B is a positive map if and only if: for any collection of
distinct points x1, . . . , xd ∈ X cyclically anti-clockwise ordered around RP1, the d-tuple
of flags (ξ(x1), · · · , ξ(xd)) is a positive d-tuple of flags.

Definition 2.9 (Positive representations). We say that a representation ρ : π1(Sg,m)→
PGLn(R) is a positive representation if and only if there exists a ρ-equivariant positive
map

ξρ : ∂∞π1(Sg,m)→ B.

In situations where we wish to emphasize that a positive representation ρ maps into
PGLn(R), we refer to ρ as a PGLn(R)-positive representation.

By [FG06, Theorem 1.14], the above ρ-equivariant positive map ξρ is continuous.
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2.2. Representation varieties. We create specialized notation for three types of
positive representation varieties. Strictly speaking, the elements constituting
these representation varieties are PGLn(R)-conjugacy classes of PGLn(R)-positive
representations. However, it is standard nomenclature to simply refer to these
spaces as representation varieties.

Definition 2.10 (Positive representation varieties). We adopt the following notation:
• PGLn(R)-positive representation variety: Posn(Sg,m) denotes the space of

PGLn(R)-conjugacy classes of PGLn(R)-positive representations ρ : π1(Sg,m)→
PGLn(R).

• loxodromic-bordered PGLn(R)-positive representation variety: Poshn(Sg,m)
denotes the subspace of Posn(Sg,m) consisting of (conjugacy classes of) PGLn(R)-
positive representations with loxodromic boundary monodromy for all m bound-
ary components.

• unipotent-bordered PGLn(R)-positive representation variety: Posun(Sg,m)
denotes the subspace of Posn(Sg,m) consisting of PGLn(R)-positive representa-
tions with unipotent boundary monodromy for all m boundary components.

Before venturing further, we first elucidate the relationship between positive rep-
resentations and Hitchin representations [Hit92]. To begin with, for the closed
surface Sg,0, Fock and Goncharov [FG06, Theorem 1.15] show that the Hitchin
representation variety Hitn(Sg,0) is equal to the positive representation variety
Posn(Sg,0). When the underlying surface has boundaries, however, the situation
is as follows:

Remark 2.11 (Hitchin versus positive for Sg,m>1). In [LM09, §9], Labourie and
McShane generalize the notion of Hitchin representations to the negative Euler char-
acteristic bordered surface Sg,m context by defining them as representations which have
loxodromic boundary and are deformed along a path of loxodromic-bordered representa-
tions from a n-Fuchsian representation. Thanks to [LM09, Theorem 9.1], we know
that

Hitn(Sg,m) := {ρ | ρ : π1(Sg,m)→ PGL is a Hitchin representation } /PGLn(R)

⊆ Poshn(Sg,m).

Conversely, any positive representation ρ ∈ Poshn(Sg,m) may be extended to a positive
representation dρ for the doubled surface S2g−1+m,0 via a canonical doubling construc-
tion described in [LM09, Definition 9.2.2.3] (or more generally, via constructions de-
scribed in [FG06, §7] based on gluing conditions defined in [FG06, Definition 7.2]).
Since positive representations for closed surfaces are Hitchin [FG06, Theorem 1.15], the
representation dρ definitionally deforms to a n-Fuchsian representation via a path {dρt}.
The restriction of dρt to π1(Sg,m) 6 π1(S2g−1+m,0) all have loxodromic boundary and
deform from ρ to a n-Fuchsian representation of π1(Sg,m) along a path of loxodromic-
bordered representations. Therefore,

Hitn(Sg,m) = Poshn(Sg,m), for m > 1.

2.3. Configuration space and projective invariants.

Definition 2.12 (Configuration space). We denote the space of generic d-tuple of flags
up to diagonal projective transformations by Confd, and refer to elements of Confd as
configurations. We further denote the subspace of Confd consisting of positive d-tuple
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of flags up to diagonal projective transformations by Conf+d . The elements of Conf+d are
positive configurations.

In the classical (i.e.: n = 2) setting, the (pure) mapping class group is trivial and
the positive configuration space is equal to both the moduli space and the Teich-
müller space of hyperbolic ideal d-gons. The positive configuration space serves
as a building block for Teichmüller spaces of surfaces of greater topological com-
plexity, a similar picture persists for general n. This in turn means that projective
invariants of d-tuples of flags, which define functions on Confd, are candidates
for local and/or global coordinates for higher Teichmüller spaces. We focus on
two types of projective invariants: triple ratios and edge functions.

Definition 2.13 (Triple ratio). Consider a triple of flags (F,G,H) in generic position,
with bases

(f1, · · · , fn), (g1, · · · ,gn), (h1, · · · ,hn).

Then for any triple of positive integers (i, j,k) with i + j + k = n, the triple ratio
Ti,j,k(F,G,H) is defined as:

Ti,j,k(F,G,H) :=
∆
(
fi+1 ∧ gj ∧ hk−1

)
∆
(
fi−1 ∧ gj+1 ∧ hk

)
∆
(
fi ∧ gj−1 ∧ hk+1

)
∆ (fi+1 ∧ gj−1 ∧ hk)∆ (fi ∧ gj+1 ∧ hk−1)∆ (fi−1 ∧ gj ∧ hk+1)

.

Properties of determinants ensure the following cyclic symmetry:

Ti,j,k(F,G,H) = Tj,k,i(G,H, F) = Tk,i,j(H, F,G).

Remark 2.14. For n = 3, the triple (i, j,k) is necessarily equal to (1, 1, 1). We will often
omit the indices (1, 1, 1) and simply write T(F,G,H).

We give an interpretation for the triple ratio, noting that it serves also as a geo-
metrically flavored definition:

Remark 2.15 ([FG07], Geometric definition for the triple ratio). Consider three flags

A = (a,L1),B = (b,L2),C = (c,L3)

in RP2 in generic position. Let u = L2∩L3, v = L1∩L3, w = L1∩L2 (see Figure 4), and
let | · | denote the Euclidean distance. We stated in the introduction that the triple ratio of
(A,B,C) is given by

T(A,B,C) :=
|wb| · |uc| · |va|
|bu| · |cv| · |aw|

,(8)

where the Euclidean distance of the segments may be infinite.
To interpret triple ratios for flags A,B,C ∈ B in higher rank contexts, we project Rn
down to the following 3-dimensional vector space

Rn/
(
A(i−1) ⊕ B(j−1) ⊕ C(k−1)

)
,

and note that A,B,C project to flags in the quotient vector space. The triple ratio
Ti,j,k(A,B,C) is then equal to the triple ratio of the respective projected flags for A,B,C.

Remark 2.16. For n = 3, Ceva’s theorem asserts that T(A,B,C) = 1 if and only if the
lines au, bv, cw intersect at one point.
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Figure 4. Triple ratio.

Definition 2.17 (Edge function). Let (X, Y,Z,W) be quadruple of flags in generic
position, and choose bases

(x1, · · · , xn), (y1, · · · ,yn), (z1, · · · , zn), (w1, · · · ,wn).

For i = 1, · · · ,n− 1, the edge function is defined as

Di(X, Y,Z,W) := −
∆
(
xn−i ∧ yi−1 ∧ z1

)
∆ (xn−i−1 ∧ yi ∧ z1)

·
∆
(
xn−i−1 ∧ yi ∧w1

)
∆ (xn−i ∧ yi−1 ∧w1)

.

Properties of determinants ensure the following symmetry:

Di(X, Y,Z,W) = Dn−i(Y,X,W,Z).

We once again emphasize that both triple ratios and edge functions are projective
invariants. Moreover, we emphasize that they are well-defined, which is to say
that their values do not depend on the chosen bases for the input flags.

Definition 2.18 (Marked ideal triangle). A marked ideal triangle on a hyperbolic
surface S is a pair (4, imm), where 4 is an oriented ideal triangle with vertices labeled
anticlockwise by 1, 2, 3 and imm : 4 → S is an isometric immersion of 4 into S. When
S is a subset of the hyperbolic plane H2 (e.g.: a hyperbolic ideal d-gon, or perhaps the
entire hyperbolic plane), the data of the immersion imm is equivalent to giving an ordered
3-tuple (v1, v2, v3) of ideal points vi ∈ ∂H2. We say that a marked ideal triangle is a
marked oriented ideal triangle if imm is orientation-preserving.

Notation 2.19. We henceforth adopt the following notation conventions:
• xy denotes the unoriented edge between x and y;
• xyz denotes an unoriented triangle;
• xyz denotes an oriented triangle;
• (x,y) denotes the oriented edge from x to y;
• (x,y, z) denotes a marked triangle;
• X̃ denotes the union of all lifts of an object X in S to the universal cover S̃ of S.

We continue to use this notation throughout the paper except when explicitly stated oth-
erwise, especially when carrying out computations.

Consider a hyperbolic ideal d-gon and label its d cusps, which may be regarded as
vertices, by {v1, · · · , vd}. To each such vertex v, we assign a flag F(v) ∈ B. Let T be
an ideal triangulation of the d-gon, and arbitrarily fix one marked (anticlockwise)
oriented ideal triangle 4 representative for each (unmarked) ideal triangle in
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the triangulation T and denote this collection of marked oriented ideal triangle
representatives by Θ. We represent each marked oriented ideal triangle4 ∈ Θ by
its ideal vertices (x,y, z) so that x,y, z ∈ {v1, · · · , vd} arise anticlockwise along the
boundaries of the d-gon. We associate to each triangle 4 ∈ Θ the 3-tuple F(4) of
flags associated to its vertices:

F(4) := F(x,y, z) := (F(x), F(y), F(z)).

Similarly, fix one oriented edge e representative for each (unoriented) interior
edge in T and denote the collection of oriented interior edges by Ξ. We represent
each oriented edge e ∈ Ξ by its ideal vertices (x, z) for x, z ∈ {v1, · · · , vd}. The
edge e ∈ E underlying e is shared by two triangles in T and hence arises as the
diagonal of an anticlockwise oriented ideal quadrilateral (x, t, z,y) with x, t, z,y ∈
{v1, . . . , vd}. We assign the following 4-tuple F(e) of flags:

F(e) := (F(x), F(y), F(z), F(t)).

Theorem 2.20 ([FG06, Theorem 9.1]). For the integers d > 3 and n > 2, the map

Conf+d → R(n−1)(n−2)(d−2)/2
>0 × R(n−1)(d−3)

>0

(F(v1), · · · , F(vd)) 7→
(
(Ti,j,k (F(4)))i+j+k=n;4∈Θ , (Dl (F(e)))l=1,...,n−1; e∈Ξ

)
is a real analytic diffeomorphism.

The above proposition gives an algebraic characterization of Conf+d : a d-tuple of
flags is positive if and only if there exists an ideal triangulation T of a d-gon such
that:

• for every marked ideal triangle4 ∈ Θ and every triple of positive integers
(i, j,k) summing to n, the quantity Ti,j,k (F(4)) is (strictly) positive and

• for every oriented interior edge e ∈ Ξ and every integer l = 1, · · · ,n − 1,
the quantity Dl (F(e)) is positive.

2.4. Fock–Goncharov moduli spaces XPGLn,Sg,m and ASLn,Sg,m . We have already
mentioned that Fock and Goncharov’s version of higher Teichmüller theory [FG06]
is deep and applies to a very broad context. We do not utilize the full force of
their machinery, and concern ourselves with higher Teichmüller spaces of the
form XPGLn,Sg,m and ASLn,Sg,m , where m > 1. The latter space ASLn,Sg,m is con-
cerned only with the representations with unipotent boundary monodromy, and
it will be convenient to regard the boundaries of Sg,m as either punctures or
cusps. The former space XPGLn,Sg,m is generically concerned with positive rep-
resentations with loxodromic boundary monodromy (although uipotent is also
permitted), and we generally regard the boundaries of Sg,m as holes. We shall
regard the boundaries of Sg,m flexibly throughout this paper.

A reductionist approach: flags and decorated flags
The flags and decorated flags are keys to Thurston’s enhanced Teichmüller theory
and Penner’s decorated Teichmüller theory [Pen87] respectively — the respective
classical archetypes for Fock–Goncharov’s XPGLn,Sg,m and ASLn,Sg,m moduli space
theory. Let mp denote the set of punctures of the topological surface Sg,m. The
central idea is that each element in XPGLn,Sg,m or ASLn,Sg,m moduli space may be
described in terms of:

(1) surface group representation ρ;



20 YI HUANG AND ZHE SUN

(2) the flags (or decorated flags) invariant with respect to the holonomy of ρ
at each puncture in mp.

Crucially, Fock and Goncharov realized that all of these necessary data may be
stored in terms of ρ invariant flags (or decorated flags) assigned to all the lifts m̃p
in the universal cover by deck transformations.

Fix a collection of m based homotopy classes α1, . . . ,αm ∈ π1(Sg,m, ∗), respec-
tively winding the punctures p1, . . . ,pm ∈ mp, oriented so that when Sg,m is
endowed with a geodesic-bordered hyperbolic metric, the surface lies on the left
of the respective geodesic representatives of αi.

Notation 2.21. In latter sections of this paper, we perform computations involving ob-
jects determined by ideal points (e.g.: ideal triangles), and we shall find it convenient to
canonically identify p1, . . . ,pm with the subset in ∂∞π1(Sg,m) (Definition 2.7) consist-
ing of the respective fixed points of α1, . . . ,αm. If the monodromy matrix ρ(αi) is

• unipotent, then αi has precisely one fixed point on ∂∞π1(Sg,m);
• loxodromic, then it has precisely one attracting fixed point α+

i and precisely one
repelling fixed point α−

i .
We choose α−

i between the two different fixed points to relate to pi. Such a choice corre-
sponds to a choice of the spiraling direction of the ideal edge of T going into αi when the
puncture pi deforms into the hole αi.

Definition 2.22 ([FG06, Definition 2.1], X-moduli space XPGLn,Sg,m ). A framed
PGLn-local system on Sg,m is a pair (ρ, ξ) consisting of

• a (surface group) representation ρ ∈ Hom(π1(Sg,m), PGLn), and
• a map ξ : mp → B, such that ρ(αi) fixes the flag ξ(pi) ∈ B for each i =

1, . . . ,m.
Two framed PGLn-local systems (ρ1, ξ1), (ρ2, ξ2) are equivalent if and only if there exists
some g ∈ PGLn such that ρ2 = gρ1g

−1 and ξ2 = gξ1. We denote the moduli space
(that is the space of equivalence classes) of all framed PGLn-local systems on Sg,m by
XPGLn,Sg,m .

Remark 2.23. Although the elements of the X-moduli space XPGLn,Sg,m are equivalence
classes, we choose to conflate notation and denote them by (ρ, ξ). We also adopt this
convention later for elements of the A-moduli space.

Definition 2.24 (Farey set). Endow Sg,m with an auxiliary complete hyperbolic metric
as in Definition 2.7. Let us assume for the moment that the surface S = Sg,m is cusped,
and let m̃p denote the set consisting of all the lifts m̃p of mp in the boundary at infinity
for the universal cover S̃. We refer to m̃p as the Farey set.

Definition 2.25 (Equivariant map for framed local systems). The data contained in
(ρ, ξ) ∈ XPGLn,Sg,m is equivalent to that contained in the ρ-equivariant map ξρ : m̃p →
B induced by deck transformations (ρ-action) applied to ξ. When ρ ∈ Posn(Sg,m), we
identify mp with a finite subset of ∂∞π1(S) by Notation 2.21, then by [FG06, Theorem
1.14], the map ξρ extends uniquely to a ρ-equivariant map, still denoted by ξρ, from
∂∞π1(S) to B.

The analogous definition for the ASLn,Sg,m moduli space is slightly more involved
(only) when n is even. Let T 1S denote the unit tangent bundle over S = Sg,m and
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fix an arbitrary point x̂ ∈ T 1
xS ⊂ T 1S over x ∈ S. Consider the short exact sequence

for the unit tangent bundle fibration:

1→ π1(T
1
xS) = Z = 〈σS〉 → π1(T

1S, x̂)→ π1(S, x),

where σS is either of the two generators for π1(T
1
xS), and define the quotient

group π̄1(S) = π̄1(S, x) := π1(T
1S, x̂)/〈σ2

S〉, and observe that π̄1(S) is the central
extension of π1(S, x) by Z/2Z. We fix the lifts α̂1, . . . , α̂m ∈ π̄1(S, x) respectively
covering α1, . . . ,αm.

Definition 2.26 ([FG06, Definition 2.4, page 38], A-moduli space ASLn,Sg,m ). A
decorated twisted SLn-local system on S = Sg,m is a pair (ρ̄, ξ̄) consisting of

• a (twisted surface group) representation ρ̄ ∈ Hom(π̄1(Sg,m), SLn) with unipo-
tent boundary monodromy, such that ρ̄(σ̄S) = (−1)n−1Idn×n, and

• a map ξ̄ : mp → A, such that each ρ̄(α̂i) fixes the decorated flag ξ̄(pi) ∈ A.

Two decorated twisted SLn-local systems (ρ̄1, ξ̄1), (ρ̄2, ξ̄2) are equivalent if and only if
there exists some g ∈ SLn such that ρ̄2 = gρ̄1g

−1 and ξ̄2 = gξ̄1. We denote the moduli
space of all decorated twisted SLn-local systems on Sg,m by ASLn,Sg,m .

Remark 2.27 (From ASLn,Sg,m to XPGLn,Sg,m ). Consider the following natural projec-
tion maps:

• pr : SLn → PGLn killing the center, and
• π : A→ B which forgets flag decorations.

Given a twisted surface group representation ρ̄ : π̄1(Sg,m)→ SLn, the representation pr◦
ρ̄ necessarily kills off ρ̄(σ̄S) as it’s in the center. Therefore, pr◦ ρ̄ induces a representation
ρ : π1(Sg,m) → PGLn. We intentionally conflate notation, and denote pr ◦ ρ̄ simply as
ρ, and refer to it as the underlying representation for ρ̄ or (ρ̄, ξ̄). This in turn induces
a projection map from ASLn,Sg,m to XPGLn,Sg,m given by

(ρ̄, ξ̄)→ (pr(ρ̄),π(ξ̄)) := (ρ, ξ),

whose image consists of all framed PGLn-local systems with (only) unipotent boundary
monodromy.

Definition 2.28 (Equivariant map for decorated twisted local systems). Let S1 be
the double cover of ∂H2 ∼= RP1. The data contained in a pair (ρ̄, ξ̄) ∈ ASLn,Sg,m is
equivalent to that contained in the ρ̄-equivariant map ξ̄ρ̄ from the double cover ¯̃mp of
the Farey set in S1 to the principle affine space A induced by the ρ̄ action applied to ξ̄.

Definition 2.29 (Positivity for ρ̄-equivariant maps). Let s be the antipodal involution
on S1, then ξ̄ρ̄(sx) = ρ̄(σ̄S)ξ̄ρ̄(x) for any x. By [FG06, Definition 8.5, page 121-122],
the notion of positivity can also be defined for maps from s-invariant subsets X of S1

to A, where the role of cyclically anticlockwise ordered d-tuples of points x1, . . . , xd ∈
X = X/s ⊂ RP1 (Definition 2.8) is replaced by coherent lifts of such d-tuples. To clarify:
we reinterpret any such cyclically anticlockwise ordered d-tuple x1, . . . , xd of points as
an embedded path in RP1 traversing from x1 to xd, a coherent lift of such a d-tuple
is a cyclically anticlockwise ordered d-tuple of points in X corresponding to a lift of the
path for x1, . . . , xd. Crucially, any ρ̄-equivariant map ξ̄ρ̄ is positive if and only if the
corresponding ρ-equivariant map ξρ is positive.
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2.5. Fock–Goncharov A-coordinates. We now introduce coordinates for XPGLn,Sg,m

and ASLn,Sg,m moduli spaces. Going forward, we only consider ξρ (ξ̄ρ̄ resp.)
which satisfy the following generic position condition: any pairwise distinct triple
(x,y, z) is mapped to a triple (ξρ(x), ξρ(y), ξρ(z)) of flags ((ξ̄ρ̄(x), ξ̄ρ̄(y), ξ̄ρ̄(z)) of
decorated flags resp.) in generic position (Definition 2.3).

Definition 2.30 (Ideal triangulation). Let mp denote the set of punctures of Sg,m. An
ideal triangulation T of Sg,m is a maximal collection of (unoriented) essential arcs which
join the elements of mp, such that these arcs are:

• pairwise disjoint on the interior of Sg,m and
• non-homotopic with respect to homotopies of Sg,m.

We regard ideal triangulations up to homotopy. Moreover, we identify an ideal triangu-
lation T with the graph (VT ,ET), where VT = mp is the set of vertices of T and ET is the
set of (unoriented) edges of T.

Definition 2.31 (n-Triangulation). Given an ideal triangulation T = (VT ,ET) of Sg,m,
we define the n-triangulation Tn of T to be the triangulation of Sg,m obtained by subdi-
viding each triangle of T into n2 triangles (as per Figure 5). We also identify Tn with the
graph (VTn ,ETn), just as we did for ideal triangulations.

Notation 2.32 (Vertex notation). We define the following vertex sets.

In :=
{
V ∈ VTn \ VT V lies on an edge e ∈ ET

}
and Jn := VTn \ (VT ∪ In) .

We also adopt the following vertex labeling conventions:
• we denote a vertex V ∈ In on an oriented ideal edge (x,y) by vx,y

i,n−i = vy,x
n−i,i,

where i > 1 is the least number of ETn edges from V to y (see Figure 5).
• we denote a vertex V ∈ In ∪ Jn on a triangle (x,y, z) by vx,y,z

i,j,k , where i > 0,
j > 0 and k = n − i − j > 0 respectively denote: the least number of ETn edges
from V to yz, from V to xz and from V to xy (see Figure 5).

Definition 2.33 (Quiver). Consider the largest subgraph of Tn with vertex set In ∪ Jn.
By placing orientations on this graph as per Figure 5, we obtain a quiver ΓTn .

Quivers are combinatorially useful both in defining Fock–Goncharov coordinates,
as well as in describing their coordinate transformations. We now describe Fock–
Goncharov A-coordinates.

Definition 2.34 ([FG06, §9] A-coordinates). Fix an ideal triangulation T of Sg,m and
its n-triangulation Tn. Let T̃ be all the lifts of T in the universal cover S̃g,m. Given a
vertex V = vi,j,k ∈ In ∪ Jn, let (f,g,h) be a marked ideal triangle in T̃ containing a lift
of V . For (ρ̄, ξ̄) ∈ ASLn,Sg,m , choose bases

(f1, ..., fn), (g1, ...,gn), (h1, ...,hn)

for the respective decorated flags ξ̄ρ̄(f̄), ξ̄ρ̄(ḡ), ξ̄ρ̄(h̄), where (f̄, ḡ, h̄) is a coherent lift
of the marked ideal triangle (f,g,h) in the double cover ∂∞π̄1(S) ⊂ S1 of ∂∞π1(S)
(Definitions 2.28 and 2.29). The vertex function for V is defined by

∆V(ρ̄, ξ̄) := ∆V := ∆
(
fi ∧ gj ∧ hk

)
.

The (Fock–Goncharov) A-coordinate AV(ρ̄, ξ̄) := AV is equal to ∆V up to sign.
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Figure 5. Left: an ideal triangulation for S1,1. Right: a (lift of a)
3-triangulation T3 for S1,1, with opposite edges identified. Edges
endowed with arrows constitute edges of the quiver ΓT3 . For ex-
ample: the edge vertices vx,y

1,2 and vz,t
2,1 identify to the same vertex

c when projected to S1,1. The interior vertices vx,y,t
1,1,1 and vy,z,t

1,1,1 re-
spectively correspond to the vertices d and e.

Remark 2.35. The choice of sign for AV is technical and dependent upon a choice of
spin structure on Sg,m [FG06]. In this paper, we focus on the part of ASLn,Sg,m where
all the A-coordinate are positive. In these cases, we have AV = |∆V |. Hence the complete
definition of AV is not necessary for the content of the paper.

2.6. Fock–Goncharov X-coordinates. There are two types of Fock–Goncharov X-
coordinates respectively corresponding to edge functions and triple ratios. The
former are labeled by vertices in In, correspond to degree four vertices in the
quiver ΓTn , and generalize Thurston’s shear coordinate [Bon96, Thu98]. The latter
are labeled by vertices in Jn and are degree 6 vertices in ΓTn .

Definition 2.36 ([FG06, §9] X-coordinates). We define one X-coordinate for each ver-
tex in In ∪ Jn. For a vertex V ∈ In, let (x,y) denote an oriented edge in ET̃ containing
a lift Ṽ = vn−i,ix,y of V . Further let xyz and xty denote the two (anticlockwise) oriented
ideal triangles in T̃ which contain the edge xy. The (Fock–Goncharov) X-coordinate
for V , evaluated at (ρ, ξ) ∈ XPGLn,Sg,m , is defined as the edge function in Definition 2.17:

XV(ρ, ξ) := XV := Di(x,y, z, t) := Di(ξρ(x), ξρ(y), ξρ(z), ξρ(t)).

For a vertex V ∈ Jn, let (f,g,h) be a marked (anticlockwise) oriented ideal triangle in T̃

containing a lift Ṽ = vf,g,h
i,j,k of V . The (Fock–Goncharov) X-coordinate XV , evaluated

at (ρ, ξ) ∈ XPGLn,Sg,m , is defined as the triple ratio in Definition 2.13:

XV(ρ, ξ) := XV := Ti,j,k(f,g,h) := Ti,j,k(ξρ(f), ξρ(g), ξρ(h)).

As with configuration spaces, the X-coordinates are crucial examples of projective
invariants as rational functions of A-coordinates and define rational functions on
the X-moduli space.

2.7. Positivity for X and A-moduli spaces.
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Definition 2.37 ([FG06] Positive higher Teichmüller spaces). The positive Fock–
Goncharov higher Techmüller space An(Sg,m) and Xn(Sg,m) are the respective subsets
of ASLn,Sg,m and XPGLn,Sg,m consisting of points which are positive in every coordinate
with respect to some A or X-coordinate chart.

One key advantage of the Fock–Goncharov approach to higher Teichmüller the-
ory is that we can explicitly write down rational functions specifying the tran-
sition maps between coordinate patches. This aspect of the story is an example
of the powerful theory of cluster ensembles [FG06, §10]. We do explicitly utilize
these coordinate transformations in our derivation of McShane identities — espe-
cially the A-coordinate transformations. It is worth noting that these coordinate
changes are always positive rational maps in the sense that they are fractions of two
polynomials (of A-coordinates) with positive coefficients, and hence send positive
coordinates to positive coordinates.

Definition 2.38 (Flips for n = 3). Consider two adjacent ideal triangles xyt and yzt
sharing a common edge yt. A flip along yt produces a new ideal triangulation by re-
placing yt with xz. For n = 3, we now explicitly write down the corresponding co-
ordinate change for such a flip (See Figure 6): denote the A-coordinates for ASL3,S1,1 by
{a,b, c,d, r, s,q,w}. After successive mutations at the vertices corresponding to r, s,p,q,
we obtain new coordinates {a,b, c,d, r ′, s ′,q ′,w ′} given by:

r ′ = bq+cw
r

, s ′ = aw+dq
s

, w ′ = as′+cr′

w
, q ′ = br′+ds′

q
.(9)

Figure 6. For ASL3,S1,1 , given an ideal triangulation T with VT =

{x,y, z, t} and ET = {xy,yt, tx,yz, zt}, we have its n-triangulation
Tn.

For general n as well as for the X-moduli space, the coordinate changes for a flip
are described in [FG06, §10.3, pg. 147].
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2.7.1. Relation to positive representation varieties. The set consisting of the underly-
ing PGLn(R)-representations (see Definitions 2.28 and 2.29) of decorated twisted
SLn-local systems in An(Sg,m) is precisely the unipotent-bordered PGLn(R)-
positive representation variety Posun(Sg,m). Moreover, the set consisting of the
underlying PGLn(R)-representations of positive PGLn-local systems in Xn(Sg,m)
is precisely the PGLn(R)-positive representation variety Posn(Sg,m). The map
from Xn(Sg,m) to Posn(Sg,m) which takes (ρ, ξ) to ρ is a finite to one map. In
fact, it is generically a finite covering map in the following sense:

Proposition 2.39 ([FG06, Proposition 7.1] and [LM09, Proposition 10.2.1.1]). Let
W be the Weyl group of PGLn(R). For any ρ ∈ Poshn(Sg,m), there exists |W|m = (n!)m

many lifts of ρ in Xn(Sg,m), where the lifts are parameterized by Wm.

Definition 2.40 (Canonical lift). For any ρ ∈ Poshn(Sg,m) with loxodromic boundary
monodromy, there is a canonical lift (ρ, ξ) ∈ Xn(Sg,m) with the following property:
for any peripheral δ ∈ π1(Sg,m) around a boundary component p ∈ mp of Sg,m oriented
such that Sg,m is on the left of δ,

• by Theorem 1.2 there exists a lift of ρ(δ) into SLn(R) with eigenvectors δ1, · · · , δn
and corresponding eigenvalues λ1, · · · , λn labeled in decreasing magnitude

λ1 > . . . > λn > 0;

• (δn, · · · , δ1) is a basis for the flag ξ(p) = ξρ(δ−) (Notation 2.21).

Note that (δ1, · · · , δn) is also a basis for ξρ(δ+). Further note that every other lift
of ρ can be obtained by the group action of Wm given by permuting the basis
(δn, · · · , δ1) for the flag ξ(p) for each of the m boundaries.
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3. Properties of projective invariants

3.1. Uniform boundedness of the triple ratio. Let S = Sg,m be a topological sur-
face of genus g with m holes with negative Euler characteristic. Given a positive
representation ρ ∈ Posn(S), recall that we define ∂∞π1(S) (Definition 2.7) for ρ
by taking the boundary at infinity for an auxiliary complete hyperbolic metric hρ
(Definition 2.6) chosen so as to satisfy the following:

• when ρ admits at least one boundary with non-unipotent monodromy, the
auxiliary hyperbolic metric (S,hρ) has geodesic boundary components (as
well as possibly cusps), and the boundary at infinity for ρ is homeomor-
phic to the Cantor set;

• for all other positive ρ, the auxiliary hyperbolic metric (S,hρ) is cusped
(or closed) surface, and the boundary at infinity ∂∞π1(S) for ρ is homeo-
morphic to RP1.

In either case, the inclusion of ∂∞π1(S) as a subset of ∂H2 imposes an anticlock-
wise cyclic ordering on ∂∞π1(S).

Definition 3.1 (Set of marked ideal triangles). We define the set of marked (oriented)
ideal triangles on the universal cover S̃ of S by:

Tri(S̃) := Tri(S̃, h̃ρ) :=
{
(a,b, c) ∈ (∂∞π1(S))

3 a,b, c are distinct elements arranged
in anticlockwise order along ∂∞π1(S)

}
.

We define the set of ideal triangles on S as

Tri(S) := Tri(S,hρ) := Tri(S̃)/π1(S),

where π1(S) acts diagonally on Tri(S̃). Moreover, we denote the π1(S) orbit of (a,b, c)
representing an element in Tri(S,hρ) by [a,b, c]ρ. We regard each [a,b, c]ρ as an im-
mersed marked ideal triangle on S and denote its anticlockwise-oriented sides by [a,b]ρ,
[b, c]ρ and [c,a]ρ.

Fact 3.2 (e.g.: [BCS18, Section 4.1, pg. 7]). When S is closed, the set Tri(S) of marked
(oriented) ideal triangles on S is homeomorphic to the unit tangent bundle T 1S on S.

Definition 3.3 (k-intersecting ideal triangle). Given an auxiliary complete hyperbolic
metric hρ on S for a positive representation ρ ∈ Posn(S), we say that an ideal triangle
[a,b, c]ρ on S is k-intersecting if the unique geodesic representatives of each of the three
sides [a,b]ρ, [b, c]ρ, [c,a]ρ of [a,b, c]ρ on (S,hρ) have:

• at most k self-intersections, and
• at most k pairwise intersections.

We denote the set of k-intersecting ideal triangle on S by Trik(S) := Trik(S,hρ).

The goal of this subsection is to prove the following:

Theorem 3.4 (Triple-ratio boundedness). Let S = Sg,m be a surface with negative
Euler characteristic. For a positive framed PGLn-local system (ρ, ξ) ∈ Xn(S) where
ρ ∈ Posn(S), let us consider the unique ρ-equivariant map ξρ : ∂∞π1(S)→ B associated
to (ρ, ξ) by Definition 2.25. For any triple of positive integers (i0, j0,k0) satisfying
i0 + j0 + k0 = n, by Definition 2.13, the triple ratio function Tξρ : Tri(S)→ R>0 of the
form:

Tξρ(x,y, z) := Ti0,j0,k0(ξρ(x), ξρ(y), ξρ(z)),(10)
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restricted to the set Trik(S) of k-intersecting ideal triangles on S, is bounded within some
closed interval [Tξρmin(k), T

ξρ
max(k)] ⊂ R>0.

Remark 3.5. We need not only ρ but also ξ to induce ξρ : ∂∞π1(S) → B which
provides enough data to define Tξρ . The above theorem can be also stated for any ρ ∈
Poshn(S) ∪ Posun(S), since for ρ ∈ Poshn(S) we choose a canonical lift (ρ, ξ) ∈ Xn(S)
(Definition 2.40), and for ρ ∈ Posun(S) (including S being a closed surface) we have a
unique lift (ρ, ξ) ∈ Xn(S).
It is clear that Tξρ defines a strictly positive function on Tri(S̃). However, triple ratios
are projective invariants and hence invariant with respect to the diagonal action of the
fundamental group π1(S) on Tri(S̃) and hence Tξρ descends to a well-defined continuous
function on Tri(S).

Remark 3.6 (Boundedness under flips). Consider the mapping class group orbit2 of
an arbitrary point in the X-moduli space XPGLn,Sg,m , Theorem 3.4 then asserts that the
triple ratio coordinates of this orbit of points are all bounded away from 0 and∞. In other
words, from the cluster dynamic point of view, triple ratios are bounded under the flips.
We believe this to be a novel observation.

Let us first consider the special case when S is closed. The following argument
comes from François Labourie and also independently from Tengren Zhang:

Proposition 3.7 (Labourie, Zhang). When S = Sg,0 is a closed surface, the triple ratio
function Tξρ is bounded within some closed interval [Tξρmin, Tξρmax] ⊂ R>0.

Proof. The proposition follows from the simple fact that the domain Tri(S) ∼= T 1S
is compact when S is compact. �

We now proceed onto the general case where (S,hρ) has geodesic boundary holes
and punctures. Our proof in this case is also based on compactness, with the
adjustment that the role of Tri(Sg,0) is supplanted by Trik(Sg,m).

Proposition 3.8. For S = Sg,m with negative Euler characteristic, let ρ : π1(S) →
PGLn(R) be a positive representation and let hρ denote an auxiliary hyperbolic metric
for ρ (see Definition 2.6). The set Trik(S) of k-intersecting ideal triangles on S is a
compact subset of Tri(S).

Proof. Let us first consider the case when none of the boundary monodromies
of ρ are unipotent. In this case, (S,hρ) is a hyperbolic surface with m closed
geodesic boundary components and no cusps. Let (dS,dhρ) denote the closed
orientable double of (S,hρ), then the inclusion isometric embedding

ι : (S,hρ) ↪→ (dS,dhρ)

induces an embedding of ideal triangles ι∗ : Tri(S) ↪→ Tri(dS). In particular,
observe that ι∗(Tri(S)) is precisely the set of ideal triangles on dS which lie com-
pletely on ι(S). The intersection of the closed condition of being contained on ι(S)
and the closed condition of being a k-intersecting ideal triangle is a closed con-
dition. To see that being a k-intersecting ideal triangle is a closed condition, we
show that the complement is an open condition. Consider the lifts of the relevant
geodesics to the universal cover which has at least (k + 1) self-intersections or

2Or more generally, any group/groupoid of which the mapping class group is a finite-index sub-
group, e.g.: the Ptolemy groupoid.
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at least (k + 1) pairwise intersections. Each intersection depends purely on how
their end points are configured. Hence small perturbations in the vertices of an
ideal triangle can only increase the number of intersection points and therefore
describes an open condition. Thus, Trik(S) is a closed subset of Tri(dS). Since
Tri(dS) is compact, the set Trik(S) must be compact.

We now consider the case when one or more of the boundary monodromies of
ρ are unipotent, which is to say that the auxiliary metric hρ is cuspidal at those
corresponding boundary components. The boundary at infinity ∂∞π1(S,hρ) for
the universal cover (S̃, h̃ρ) of (S,hρ) is equal to the set of limit points with respect
to the holonomy representation action of π1(S,hρ) on H2. The second main the-
orem of [Flo80, pg. 207] tells us that there is a π1(S)-equivariant map from the
Floyd boundary of π1(S) to the boundary at infinity ∂∞π1(S,hρ) which is injective
everywhere except over parabolic fixed points, where the map is 2 : 1. Moreover,
the Floyd boundary of π1(S) is homeomorphic to the Gromov boundary of the
hyperbolic group π1(S) [BK09, see, e.g., Corollary 2.3]. The Gromov boundary
of π1(S) naturally identifies with ∂∞π1(S,h0) where h0 is a geodesic bordered
hyperbolic metric on S, and we therefore obtain a continuous π1(S)-equivariant
map

u : ∂∞π1(S,h0)→ ∂∞π1(S,hρ).

The image of u is:

• closed, since ∂∞π1(S,h0) is compact, and
• dense in ∂∞π1(S,hρ), since parabolic fixed points are dense.

Therefore, u is surjective and defines a quotient map from ∂∞π1(S,h0) to ∂∞π1(S,hρ)
which identifies the 2 lifts of each parabolic fixed point in ∂∞π1(S,hρ). In fact,
u in turn induces a continuous map u∗ : Trik(S,h0) → Trik(S,hρ). It is crucial to
note that u∗ is well-defined on Trik(S,h0), for any k, but does not extend to a map
Tri(S,h0)→ Tri(S,hρ) because

u∗([a,b, c]0) = [u(a),u(b),u(c)]ρ

does not produce a triangle if u(a),u(b) and u(c) are not pairwise distinct. This
cannot happen to a triangle [a,b, c]0 ∈ Trik(S,h0): if (without loss of generality)
a and b are the two endpoints of a lift of a boundary geodesic of (S,h0), then the
geodesics [b, c]0 and [c,a]0 spiral toward the same boundary in opposite direc-
tions and hence intersect infinitely often. Finally, since Trik(S,hρ) is the image of
a compact set, it is compact. �

Proof of Theorem 3.4 for Sg,m, m > 1 case. The triple ratio function Tξρ : Tri(S) →
R>0 restricts to a positive continous function Tξρ |Trik(S) defined over the compact
set Trik(S). We then take Tξρmin(k) and Tξρmax(k) to be the respective minimum and
the maximum for the restricted function Tξρ |Trik(S). �

Remark 3.9. Our proof is essentially topological, and so Theorem 3.4 holds true even for
(ρ, ξ) ∈ X3(S) where ρ is the holonomy representation of a convex real projective surface
with quasihyperbolic boundary monodromy (see, e.g., [Mar12]).

3.2. n-Fuchsian rigidity conditions. We now shift from the study of triple ratio
boundedness to that of Fuchsian rigidity.
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Remark 3.10. A n-Fuchsian representation ρ is a composition of the discrete faithful
homomorphism ρ0 from π1(S) to PSL2(R) with the unique irreducible representation ι
from PSL2(R) to PGLn(R). There exists a ρ0-equivariant map ξ0 from ∂∞π1(S) to RP1.
The Veronese curve is v : RP1 → RPn−1

[x,y] 7→ [xn−1, xn−2y, · · · ,yn−1].

The unique irreducible representation ι is defined by

v(M · [x,y]T ) = ι(M) · [xn−1, xn−2y, · · · ,yn−1]T .

Thus the ρ-equivariant map v ◦ ξ0 for ρ = ι ◦ ρ0 is a reparameterization of the Veronese
curve.

The following lemma is probably well-known to the experts, but we do not find
a proper reference.

Lemma 3.11. For a n-Fuchsian representation ρ = ι ◦ ρ0, there exists a lift (ρ, ξ) ∈
Xn(Sg,m) such that all the triple ratios of (ρ, ξ) are equal to 1, and for any quadrilateral
with a diagonal edge, the (n− 1) edge functions along the diagonal edge are equal.

Proof. Take (ρ, ξ) ∈ Xn(Sg,m) such that the ρ-equivariant map ξρ : ∂∞π1(S) → B

is the osculating curve of the ρ-equivariant map v ◦ ξ0 : ∂∞π1(S) → RPn−1 in
Remark 3.10. For any triple ratio Ti,j,k(A,B,C) where A,B,C are in the im-
age of ξρ, let us use the notations in Remark 2.15 and consider the space Q =

P
(
Rn/

(
A(i−1) ⊕ B(j−1) ⊕ B(k−1)

))
. The projection of the Veronese curve in Q is

a conic, thus a circle up to projective transformations. Thus

|wb| = |aw|, |uc| = |bu|, |va| = |cv|.

Hence

Ti,j,k(A,B,C) =
|wb| · |uc| · |va|
|bu| · |cv| · |aw|

= 1.

The proof for the edge functions is similar. �

We propose the following candidate conditions for characterizing when a positive
representation (or a positive framed local system) is a n-Fuchsian one:

Definition 3.12 (Candidate n-Fuchsian characterizing conditions). We define the
following conditions for positive framed PGLn-local system (ρ, ξ) ∈ Xn(Sg,m):

Triple ratio rigidity: for every ideal triangle in every ideal triangulation, the triple
ratios (Definition 2.36) are all equal to 1.

Strong triple ratio rigidity: the (n − 1)(n − 2)/2 triple ratio functions Tξρi,j,k :

Tri(S)→ R>0 are identically equal to 1.
Edge function rigidity: for every (interior) ideal edge on every ideal triangula-

tion, the (n− 1) edge functions (Definition 2.36) along said edge are equal.
Strong edge function rigidity: for each diagonal of every ideal quadrilateral (i.e.:

quadrilateral with cyclically ordered vertices in ∂∞π1(S)), the (n− 1) edge func-
tions along the diagonal are all equal.

Furthermore, whenever there exists a map ξ such that (ρ, ξ) ∈ Xn(S) satisfies one of
the above stated conditions, we say that the underlying positive representation ρ (also)
satisfies the corresponding condition.
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Remark 3.13. By Lemma 3.11, all four of the above rigidity conditions are necessary
conditions for n-Fuchsian representations. Conversely, the triple ratio rigidity and edge
function rigidity combine to give defining equations for a n-Fuchsian slice of Xn(Sg,m).
Therefore, to show that the triple ratio rigidity condition characterizes n-Fuchsian repre-
sentations, we need only to show that triple ratio rigidity implies edge function rigidity,
or vice versa. Using these observations, we show:

Proposition 3.14 (Triple ratio rigidity for n = 3, 4). For n = 3, 4, a positive repre-
sentation ρ ∈ Posn(Sg,m) is n-Fuchsian if and only if ρ satisfies the triple ratio rigidity
condition.

Proposition 3.15 (Edge function rigidity for n = 3). For n = 3, a positive represen-
tation ρ ∈ Posn(Sg,m) is n-Fuchsian if and only if ρ satisfies the edge function rigidity
condition.

We establish Propsitions 3.14 and 3.15 via explicit algebraic computation (see
Appendix A). The advantage of such a proof is not merely in its simplicity, but
also in its extensibility:

• it applies to Xn(Ŝ) [FG07, Definition 1.2], where Ŝ is a surface with marked
points on the boundary;

• it applies to the universal higher Teichmüller space context [FG07, Defini-
tion 1.9];

• and it also applies to general coefficient fields.
This method of proof does, however, quickly become difficult upon increasing n.

3.2.1. Strong triple ratio rigidity. We will show that the strong triple ratio rigidity
condition characterizes n-Fuchsian representations for positive representations
with unipotent boundary monodromy. We turn to the geometry of Frenet curves
to help establish these rigidity conditions.

Definition 3.16 ([Lab06] Frenet curve and osculating curve). A continuous curve
ξ1 : RP1 → RPn−1 is called a Frenet curve if there exists a curve

ξ = (ξ1, . . . , ξn−1) : RP1 → B

such that for every k-tuple of positive integers (j1, . . . , jk) such that j1 + . . .+ jk = j 6 n,
the curve ξ satisfies the following properties

• hyperconvexity: for every k-tuple of distinct points x1, . . . , xk ∈ RP1, the follow-
ing sum is direct

k⊕
i=1

ξji(xi) ⊂ Rn.

• for every x ∈ RP1, the following limit exists and satisfies

lim
(xi)→x

k⊕
i=1

ξji(xi) = ξ
j(x),

where the limit is taken over k-tuples (x1, . . . , xk) of pairwise distinct points.
We refer to ξ = (ξ1, . . . , ξn−1) as the osculating curve of the Frenet curve ξ1.

Frenet curves are central to the study of positive representations.
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Remark 3.17 (Positive representations that have Frenet curves). One important
geometric property of positive representations ρ is that for any positive framed PGLn(R)-
local system (ρ, ξ), by Definition 2.25, its respective associated map ξρ : m̃p → B

extends uniquely to the positive ρ-equivariant map ξρ : ∂∞π1(S) → B. When ρ only
admits unipotent boundary monodromy, ∂∞π1(S) ∼= RP1, then ξρ is the osculating
curve of a Frenet curve where hyperconvexity follows [FG06, Proposition 9.4] and sec-
ond Frenet property follows [Lab06, Lemma 5.1]. For positive representations with
only (at least one) loxodromic boundary monodromy, let dS denote the closed surface
obtained by taking S = Sg,m and an orientation-reversed copy of Sg,m and identifying
all corresponding boundary components. In this setting, there exists an osculating curve
dξ : ∂∞π1(dS) ∼= RP1 → B which restricts to ξρ on m̃p ⊂ ∂∞π1(S) ⊂ ∂∞π1(dS).
This extension is far from being unique, but the osculating curve dξ for Hitchin double
representation dρ [LM09, Definition 9.2.2.3] gives a canonical construction for such an
extended Frenet curve. The “extensions” we describe in this remark are all ρ-equivariant.

Remark 3.18. Frenet curves have low regularity. They are C1, and usually they are not
C∞. By [PS17, Theorem D] (or [Ben01, Proposition 6.1] for the n = 3 case), for a
positive (Hitchin) representation of a closed surface Sg,0 with g > 2, the Frenet curve ξ1

ρ

is C∞ if and only if ρ is a n-Fuchsian representation.

We now prove a “local” version of the claim that strong triple ratio rigidity con-
dition characterizes 3-Fuchsian representations.

Lemma 3.19 (Elliptical subarc). For n = 3, consider the restricted osculating curve

ξ = (ξ1, ξ2) : [0, 1]→ B

for a subarc of a Frenet curve. If the triple ratio T(ξ(0), ξ(1), ξ(s)) is equal to 1 for every
s ∈ (0, 1), then the image of ξ1 in RP2 is the subarc of an ellipse.

Proof. We first observe that we may freely apply PGL3(R) to ξ without affecting
the smoothness of ξ or its triples ratios. In particular, our degree of freedom is
high enough so that we may assume without loss of generality that

(1) the subarc maps to R2 = {(x,y)} ∼= {[x,y : 1]t ∈ RP2} ⊂ RP2;
(2) ξ1(0) and ξ1(1) are respectively positioned at (0, 0) and (1, 0);
(3) ξ2(0) and ξ2(1) are vertical lines x = 0 and x = 1 respectively;
(4) and ξ1 is parameterized so that ξ1(s) = (s, f(s)) for some C1 function f(s)

such that f(s) > 0 for s ∈ (0, 1).
Note that conditions (2) and (3) mean that the lines ξ2(0), ξ2(1) intersect at
[0, 1, 0]t. Further note that condition (4) is possible because Frenet curves are
necessarily hyperconvex and the subarc ξ1 is forced to be entirely on the upper
half plane or lower half plane of R2, then choosing one of the two possible cases
is equivalent up to a projective transformation. Consider the triple ratio rigidity
condition

T(ξ(0), ξ(1), ξ(s)) = 1.
Explicitly writing out this condition for a C1 curve (s, f(s)) yields the following:

(1 − s)(f(s) − sf ′(s))

s(f(s) + (1 − s)f ′(s))
= 1,

which leads to:

d(log f(s)) =
f ′(s)

f(s)
=

1 − 2s
2s(1 − s)

= 1
2d(log(s) + log(1 − s)).
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We conclude that the family of half-ellipses of the form f(s) = C0
√
s(1 − s) for a

positive constant C0 constitute the full set of possible solutions for this ODE. �

We use Lemma 3.19 to show the main result of this subsection:

Theorem 3.20 (Strong triple ratio rigidity characterizes n-Fuchsian). Given S =
Sg,m a surface with negative Euler characteristic and n > 2, a positive representation
ρ : π1(S)→ PGLn(R) with unipotent boundary monodromy (including S being a closed
surface) is n-Fuchsian if and only if ρ satisfies the strong triple ratio condition.

Proposition 3.21. Let ξ = (ξ1, · · · , ξn−1) : RP1 → B be an osculating curve of a
Frenet curve ξ1. If for every triple of distinct points in RP1 and any positive integers
i, j,k sum to n the triple ratio equals to 1, the Frenet curve ξ1 is the Veronese curve up
to projective equivalence.

Proof. Let X : [0, 1]→ RPn−1 be a subarc of ξ1. By applying the action of PGLn(R),
we assume without loss of generality that:

• the standard basis (e1, e2, . . . , en) is a basis for the flag ξ(0);
• the reversed standard basis (en, en−1, . . . , e1) is a basis for the flag ξ(1).

We identify X(t) with the following lift to Rn:

X(t) = x1(t)e1 + . . . + xn−1(t)en−1 + xn(t)en.

The hyperconvexity of ξ (Definition 3.16) ensures that, for i = 1, · · · ,n,

ξ(i−1)(0) + ξ1(t) + ξ(n−i)(1) = Rn.

Thus
xi(t) 6= 0 for t 6= 0, 1 and i = 1, · · · ,n.

We now show that there exists an algebraic relation among xn−k−1(t)
xn(t)

, xn−k(t)
xn(t)

and
xn−k+1(t)
xn(t)

for k = 1, . . . ,n− 2.
Step k: We know from the given assumption that the triple ratios

Tn−k−1,k,1(X(0),X(1),X(t)) = 1 for all t 6= 0, 1.

Remark 2.15 tells us that these triple ratios are still equal to 1 after projecting X(t)
into the orthogonal complement V⊥k of

Vk := Span{e1, e2, . . . , en−k−2, en−k+2, . . . , en}.

By Lemma 3.19, the projected image

projV⊥k (X(t)) = xn−k−1(t)en−k−1 + xn−k(t)en−k + xn−k+1(t)en−k+1

defines a subsegment of an ellipse when further projected into RP2. Thus there
exists an algebraic relation between xn−k−1(t)

xn−k+1(t)
and

xn−k(t)

xn−k+1(t)
=

(
xn−k(t)

xn(t)

)/(xn−k+1(t)

xn(t)

)
.

Hence there exists an algebraic relation among

xn−k−1(t)

xn(t)
=
xn−k−1(t)

xn−k+1(t)
· xn−k+1(t)

xn(t)
,

xn−k(t)
xn(t)

and xn−k+1(t)
xn(t)

for k = 1, · · · ,n− 2.
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Thus any subarc X of ξ1 is an algebraic arc. Hence the Frenet curve ξ1 from RP1

to RPn−1 is a reparameterization of an algebraic curve c. By hyperconvexity of
ξ1 in Definition 3.16:

(1) the algebraic curve c is nondegenerate since it does not lie in any hyper-
plane;

(2) for any mutually distinct points x1, · · · , xn−1 on the curve c, there exists a
unique hyperplane passing through these n−1 points, thus deg(c) > n−1;

(3) a generic hyperplane intersects c transversely and contains at most n − 1
points of c, thus deg(c) 6 n− 1.

Hence deg(c) = n − 1. If there is a singular point q in c, then a hyperplane
passing through q and any other n − 2 points will imply that deg(c) > n, which
is impossible. Thus the curve c is non-singular. Since ξ1 is continuous and RP1

is connected, the curve c is connected. Thus the non-singular algebraic curve c
is irreducible. By [GH78, Proposition in Chapter 1, Section 4, Line Bundles and
Maps to Projective Spaces, pg. 179], every irreducible nondegenerate algebraic
curve of degree n − 1 in RPn−1 is projectively isomorphic to the Veronese curve.
Thus the Frenet curve ξ1 is the Veronese curve up to projective equivalence. �

Proof of Theorem 3.20. For such positive representation ρ, the boundary at infinity
∂∞π1(S) is a circle RP1. By Proposition 3.21, the Frenet curve ξ1

ρ : ∂∞π1(S) →
RPn−1 is projectively equivalent to the Veronese curve after reparameterizing
∂∞π1(S). Hence ρ is a n-Fuchsian representation. �
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4. Goncharov–Shen potentials

The positive A-moduli space A2(S1,1) is better known as Penner’s decorated Te-
ichmüller space [Pen87]. The elements of this space correspond to marked hyper-
bolic surfaces decorated with a horocycle around its solitary cusp. Let (x,y, z) be
the A-coordinates (i.e.: λ-length coordinates) for A2(S1,1) ∼= {(x,y, z) ∈ R3

>0} with
respect to an ideal triangulation T of S1,1. Penner showed that the length P of the
decorating horocycle is a rational function of these coordinates:

P = 2
(
x

yz
+
y

xz
+
z

xy

)
.(11)

Any ideal triangulation T of S1,1 decomposes S1,1 into two ideal triangles, each
of which may be expressed as three different marked (oriented) ideal triangles.
The first coordinate of a marked ideal triangle distinguishes one of its vertices,
and (11) is obtained from summing the horocyclic segments at the distinguished
vertices of these 6 marked ideal triangles.

4.1. Goncharov–Shen potentials. Goncharov and Shen [GS15] generalize P for
Fock–Goncharov A-moduli spaces ASLn,Sg,m of surfaces S = Sg,m with negative
Euler characteristic and at least one boundary component (i.e.: m > 1) and re-
late to Knuston–Tao’s hives [KT98]. They associate n − 1 types of expressions
(Definition 4.2) to each marked ideal triangle and sum each type of expression
over the marked oriented ideal triangles to obtain n − 1 functions. The algebraic
assignment of these n− 1 expressions derives from the following fact:

Fact 4.1. For any triple of decorated flags (F,G,H) ∈ A3, if (F,G,H) are in generic
position, there is a unique linear transformation g, which can be expressed by an upper
triangular unipotent matrix with respect to any basis for F, such that

g · (F,π(G)) = (F,π(H)),

where π is the decoration-forgetting projection map from A to B (see Equation (7)).

Definition 4.2 (i-th character). For any generic triple (F,G,H) ∈ A3, let (gij) be the
upper triangular unipotent matrix for g in Fact 4.1 with respect to some basis for the
decorated flag F. For i = 1, · · · ,n − 1, we define the i-th character Pi(F;G,H) of
(F,G,H) to be

Pi(F;G,H) := gn−i,n−i+1,
which does not depend on the basis that we choose. The i-th character Pi satisfies the
following additive properties:

Pi(F;G,H) = Pi(F;G,W) + Pi(F;W,H);

Pi(F;G,H) = −Pi(F;H,G).

Remark 4.3 (i-th character for triangles). For a decorated twisted SLn-local system
(ρ̄, ξ̄) ∈ ASLn,S, recall the ρ̄-equivariant map from the double cover ¯̃mp ⊂ ∂∞π̄1(S) ⊂ S1

of m̃p ⊂ ∂∞π1(S) ⊂ RP1 to A in Definition 2.28. Recall w = ρ̄(σ̄S) := (−1)n−1Idn×n
in Definition 2.26. Since

wgw−1 · (wF,wπ(G)) = (wF,wπ(H))

and wgw−1 = g, we obtain

(12) Pi(F;G,H) = Pi(wF;wG,wH).
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Given a marked ideal triangle (f,g,h) in T̃ ( in the universal cover), we define

Pi(f;g,h) := Pi(ξ̄ρ̄(f̄); ξ̄ρ̄(ḡ), ξ̄ρ̄(h̄)),

to see that this is well-defined, we note that every marked ideal triangle (f,g,h) has
two coherent lifts (f̄, ḡ, h̄) and (sf̄, sḡ, sh̄) to the double cover of RP1 = S̃ (see Defini-
tion 2.29), related by the antipodal involution s : S1 → S1. Equation (12) then ensures
that

Pi(ξ̄ρ̄(f̄); ξ̄ρ̄(ḡ), ξ̄ρ̄(h̄)) = Pi(ρ̄(σ̄S)ξ̄ρ̄(f̄); ρ̄(σ̄S)ξ̄ρ̄(ḡ), ρ̄(σ̄S)ξ̄ρ̄(h̄))

= Pi(ξ̄ρ̄(sf̄); ξ̄ρ̄(sḡ), ξ̄ρ̄(sh̄)),

which is to say that Pi(f;g,h) is independent of the choice of coherent lift for (f,g,h).

Remark 4.4. Given a positive decorated twisted local system (ρ̄, ξ̄) ∈ An(S), for any
cyclically ordered (e, f,g,h) ∈ ∂∞π1(S), the i-th characters satisfy the following positiv-
ity property:

Pi(e; f,h)
Pi(e; f,g)

> 1.

Definition 4.5 ([GS15] Goncharov–Shen potential). Given (ρ̄, ξ̄) ∈ ASLn,Sg,m , we fix
an ideal triangulation T of Sg,m. Fix a puncture p ∈ mp of S and let Θp denote the set
of marked anticlockwise-oriented ideal triangles with the first vertex being p. For each
i = 1, · · · ,n − 1, the i-th Goncharov–Shen potential Ppi at p is a regular function
ASLn,Sg,m given by

Ppi :=
∑
∆∈Θp

Pi(∆).(13)

Goncharov and Shen show that Ppi is well-defined, independent of the chosen
ideal triangulation T and hence mapping class group invariant. They further
demonstrate the following beautiful fact:

Theorem 4.6 ([GS15, Theorem 10.7]). The m(n − 1) Goncharov–Shen potentials{
Ppi
}
p,i generate the algebra of mapping class group invariant regular functions on the

moduli space ASLn,Sg,m .

Remark 4.7. Goncharov and Shen refer to these potentials as Landau–Ginzberg par-
tial potentials because an important aspect of their hitherto unproven homological mirror
symmetry conjecture asserts that these potentials should correspond to Landau–Ginzburg
partial potentials from Landau-Ginzburg theory. We opt to refer to these potentials as
Goncharov–Shen potentials to acknowledge their contribution in discovering this geo-
metrically fascinating object.

4.2. Constructing Goncharov–Shen potentials. We now demonstrate how one
might motivate and construct the aforementioned Pi(F;G,H) expressions. This
is essentially taken from [GS15, Section 3] which can be understood as the A-
coordinate version of Fock–Goncharov’s snakes [FG06, Section 9]. We include
this section both for expositional completeness and because many of our later
derivations depend upon these foundational computations.

Consider a triple of decorated flags (F,G,H) ∈ A3 is in generic position with
respective bases (f1, · · · , fn), (g1, · · · ,gn), and (h1, · · · ,hn). For any non-negative
integers a,b, c with a+ b+ c = n, define a 1-dimensional vector space

Lb,c
a := Fa+1 ∩ (Gb ⊕Hc),
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and choose eb,c
a to be the unique vector in Lb,c

a such that eb,c
a − fa+1 ∈ Fa (to

clarify: ei,n−i0 = f1 for every i = 0, · · · ,n). Then

eb−1,c+1
a − eb,c

a ∈ Gb ⊕Hc+1,

eb−1,c+1
a − eb,c

a = (eb−1,c+1
a − fa+1) − (eb,c

a − fa+1) ∈ Fa.
Thus there exist αF;G,H

a,b,c ∈ R such that

eb−1,c+1
a − eb,c

a = αF;G,H
a,b,c · e

b,c+1
a−1 ∈ L

b,c+1
a−1 .(14)

Lemma 4.8 ([GS15, Lemma 3.1]).

αF;G,H
a,b,c =

∆
(
fa−1 ∧ hc+1 ∧ gb

)
· ∆
(
fa+1 ∧ hc ∧ gb−1

)
∆ (fa ∧ hc ∧ gb) · ∆ (fa ∧ hc+1 ∧ gb−1)

.

Remark 4.9. The above formula differs from Goncharov–Shen’s in that we construct g
satisfying g · (F,π(G)) = (F,π(H)), instead of g ′ such that g ′ · (F,π(H)) = (F,π(G)).

The following relationship between αF;G,H
a,b,c and Ti,j,k(F,G,H) is an immediate con-

sequence of Lemma 4.8:

Lemma 4.10. For positive integers a,b, c with a+ b+ c = n, we have

αF;G,H
a,b+1,c−1

αF;G,H
a,b,c

= Ta,b,c(F,G,H).

Equation (14) tells us that there is a change of bases

Na(α
F;G,H
a,b,c )·

(
ea+b−1,c+1

0 , · · · , eb,c+1
a−1 , eb,c

a , eb−1,c
a+1 , · · · , e1,c

a+b−1, e0,c
a+b, · · · , e0,1

n−1

)
=
(
ea+b−1,c+1

0 , · · · , eb,c+1
a−1 , eb−1,c+1

a , eb−1,c
a+1 , · · · , e1,c

a+b−1, e0,c
a+b, · · · , e0,1

n−1

)
encoded by unipotent matrices of the form

Na(x) =


Ida−1 0 0 0

0 1 x 0
0 0 1 0
0 0 0 Idb+c−1

 .

For c = 0, applying a n− 1 chain of such transformations, we obtain:

Nn−1(α
F;G,H
n−1,1,0) · · ·N1(α

F;G,H
1,n−1,0) ·

(
f1, en−1,0

1 , · · · , e1,0
n−1

)
=
(
f1, en−2,1

1 , · · · , e0,1
n−1

)
.

Similarly, for c = k, 1 6 k 6 n− 2, applying a n− 1− k chain of such transforma-
tions, we obtain:

Nn−1−k(α
F;G,H
n−1−k,1,k) · · ·N1(α

F;G,H
1,n−1−k,k)·

(
f1, en−1−k,k

1 , · · · , e1,k
n−k−1, e0,k

n−k, · · · , e0,1
n−1

)
=
(
f1, en−2−k,k+1

1 , · · · , e0,k+1
n−k−1, e0,k

n−k, · · · , e0,1
n−1

)
.

Precomposing the above n− 1 (chains of) transformations, starting from c = 0 all
the way until c = n− 1, we get:

g ·
(
en,0

0 , en−1,0
1 , · · · , e1,0

n−1

)
=
(
e0,n

0 , e0,n−1
1 , · · · , e0,1

n−1

)
,where

g :=

0∏
c=n−2

1∏
a=n−c−1

Na(α
F;G,H
a,b,c ), for b = n− a− c.(15)
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The above process explicitly constructs g so that g · (F,π(G)) = (F,π(H)), thereby
verifying Fact 4.1. In particular, the i-th character:

Pi(F;G,H) =
i−1∑
c=0

αF;G,H
n−i,i−c,c.(16)

As a consequence of Lemma 4.8

Corollary 4.11. Let (ρ̄, ξ̄) ∈ An(S) and γ ∈ π1(S). Then for any ideal triangle (f,g,h)
of T̃ in the universal cover,

Pi(γf;γg,γh). = Pi(f;g,h).

Example 4.12. Let us consider the simple example of the n = 3 case. We denote

Rfg,h := αF;G,H
2,1,0 , Sfg,h := αF;G,H

1,2,0 , Tfg,h := αF;G,H
1,1,1 .

Figure 7 encodes a schematic for the construction procedure for g we describe above. Each
“lozenge” (or diamond) here is labeled by one of the αF;G,H

i,j,k , which specifies the linear
transformation to pass from the basis (encoded by a colored path) on the left of the lozenge
to the right of the lozenge. In this particular case, Equation (15) yields:

g = N1(T
f
g,h) ·N2(R

f
g,h) ·N1(S

f
g,h) =

 1 Sfg,h + Tfg,h Tfg,hR
f
g,h

0 1 Rfg,h
0 0 1

 ,

and the i-th characters are

P1(F;G,H) = Rfg,h and P2(F;G,H) = Sfg,h + Tfg,h.

Figure 7. The above figures encodes how to construct the unipo-
tent matrix taking (F,π(G)) to (F,π(H)). Each colored path cor-
responds to a basis; basis 1 is blue, basis 2 is magenta, basis 3 is
red, and basis 4 is green.
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4.3. Goncharov–Shen potential and A-coordinates. One beautiful achievement
of Goncharov and Shen’s work we reviewed above is that (16) combined with
Lemma 4.8 (as well as and Notation 2.2) tells us how to express Goncharov–
Shen potentials in terms of rational functions of A-coordinates. Let us see this
explicated with an important example: the A3(S1,1) case.

Given (ρ̄, ξ̄) ∈ A3(S1,1) and an ideal triangulation T of S1,1, we lift T into the uni-
versal cover T̃. Choosing one fundamental domain, we denote the A-coordinates
as in Figure 8. In this case, we have P1(y; z, t) = w

br
. Then by Equation (13), we

have:

Pp1 = w
br

+ q
cr

+ w
ds

+ q
as

+ w
ac

+ q
bd

, and

Pp2 = bc
aw

+ rd
ws

+ bs
wr

+ ad
wc

+ ar
bw

+ cs
dw

+ ar
sq

+ cb
dq

+ dr
cq

+ bs
aq

+ ad
bq

+ cs
rq

.

Figure 8. The colored lozenges each correspond to the 1-
character P1(4) of a marked ideal triangle 4.

Goncharov–Shen potentials are invariant under flips, and so let us now observe
what happens to the above expressions of Pp1 and Pp2 under the change of A-
coordinates corresponding to a flip along the edge yt as depicted in Figure 8. We
saw previously (description adjacent to Figure 6) that such a flip is composed of
four successive cluster mutations. In fact, the algebraic relations for these four
mutation may be expressed in the following manner:

Lemma 4.13. Given A-coordinates for A3(S1,1) as depicted in Figure 8, we have

P1(y; z, t) + P1(y; t, x)= w
br

+ q
cr

= r′

bc
= P1(y; z, x),

P1(t; x,y) + P1(t;y, z)= q
sa

+ w
ds

= s′

ad
= P1(t; x, z),

P1(z; t,y)= w
ac

= s′

cw′
+ r′

aw′
= P1(z; t, x) + P1(z; x,y),

P1(x;y, t)= q
bd

= r′

dq′
+ s′

bq′
= P1(x;y, z) + P1(x; z, t).

There are analogous formulae for P2-related terms.

Lemma 4.13 tells us that, with respect to the A-coordinates after flipping in the
ideal edge corresponding to yt, the Goncharov–Shen potential Pp1 is equal to:

Pp1 = r′

bc
+ s′

ad
+ s′

cw′
+ r′

aw′
+ r′

dq′
+ s′

bq′
.
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We need not restrict ourselves to using just a single set of A-coordinates. For
instance, by utilizing both sets of coordinates, we obtain the following compact
expressions for Pp1 :

Pp1 = r′

bc
+ s′

ad
+ w
ac

+ q
bd

.
This an important idea that we make use of in the proofs of Theorem 5.13, (im-
plicitly in) Theorem 5.25 and Theorem 5.26.

Conversely, we may split the terms up as much as possible to obtain:

Pp1 = w
br

+ q
cr

+ q
sa

+ w
ds

+ s′

cw′
+ r′

aw′
+ r′

dq′
+ s′

bq′
.

We can then go further: flipping T in the edge covered by yz (or equivalently,
xt) produces yet another ideal triangulation and splits q

cr
and w

ds
into two new

summands each. Similar, flipping T in the edge covered by xy (or equivalently,
zt) splits w

br
and q

sa
into two new summands each. Of course, we need not stop

here, we can keep flipping to new ideal triangulations and deriving finer and
finer expressions of Pp1 as a (finite) series. It is natural, and tempting, to pose:

What happens if we flip to all possible ideal triangulations of S1,1 whilst always splitting
Pp1 as finely as possible?

In the Fuchsian (and indeed, quasi-Fuchsian [Bow98]) setting, Bowditch [Bow96]
shows that there is a precise sense in which this procedure limits to the McShane
identity for 1-cusped hyperbolic tori. This idea has been exploited in several
papers [Nor08, HN17, HSY18, HPZ19] to obtain McShane identities for various
types of geometric objects. We adopt this idea as a starting point, and show that
one does indeed obtain McShane identities for positive representations of surface
groups with unipotent boundary as a consequence (Theorems 5.13, 5.25 and 5.26).
However, the type of analysis conducted in [Bow96] is difficult to completely
replicate in our setting and we draw upon McShane’s classical strategy of proof.
We explain this in §5.1.
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5. Identities for PGL3(R)-representations with unipotent boundary

The goal of this section is to establish McShane identities for positive PGL3(R)-
representations of hyperbolic surface groups π1(Sg,m) with (only) unipotent bound-
ary monodromy. These representations are not Anosov and so many “standard”
higher Teichmüller theoretic techniques do not apply. Our proof takes advan-
tage of the fact that, for n = 3, positive representations with unipotent boundary
monodromy arise as the holonomy representations of finite-area cusped convex
real projective surfaces (see §6). The picture is then sufficiently geometric that
we may adapt the ideas of the classical proof of McShane’s identity with compu-
tational techniques availed by the cluster algebraic structure of Fock–Goncharov
coordinates.

5.1. Structure of proof in the classical case. We begin with an overview of the
general strategy for proving McShane identities in the hyperbolic case due to
McShane [McS91, McS98]. Let Sg,m denote a cusped hyperbolic surface with m >
1 cusps, and distinguish one of these cusps by labeling it as p. McShane’s identity
for Sg,m (and hence its Fuchsian holonomy representation) may be obtained via
the following steps:

Step 1: a probabilistic partition of geodesics.
The set of geodesics on Sg,m emanating from cusp p naturally identifies with the
length 1 horocycle η based at cusp p, and hence inherits a natural probability
measure via the horocyclic length measure on η. The points on η partition into:

• a Cantor set C corresponding to simple geodesics which emanate from p
and spiral towards a geodesic lamination;

• a countable set A corresponding to simple ideal geodesic arcs emanating
from p and ending also at a cusp;

• and a countable collection of open horocylic intervals, hitherto referred to
as gap intervals, corresponding to geodesics which self-intersect (generic)
as well as simple geodesics with both ends at p (non-generic, only count-
ably many such points).

The Birman-Series geodesic sparsity theorem ensures that C ∪ A has horocyclic
length measure 0 because its thickening to an ε-neighborhood of η has hyperbolic
area 0. The McShane identity then comes from expressing the total measure (i.e.:
1) of η as the sum of the horocyclic lengths of the gap intervals which make up
η− (C ∪ A).

Step 2: indexing the gap intervals
The aforementioned horocyclic gap intervals are in 4 : 1 correspondence with
embedded pairs of pants containing cusp p (as I1, I2, I3, I4 in Figure 9). In fact,
the subsegment of any geodesic launched from p within a given gap interval, up
to the first point of self-intersection, lies completely on the pair of pants corre-
sponding to the given gap interval. This can be shown, for example, via local
Gauss-Bonnet based arguments [Hua14, Lemma 4.6]. In any case, the classical
McShane identity is a series taken over the set of embedded pairs of pants on
Sg,m containing cusp p, with the summands given by the sum of the four inter-
vals referred to above.

Step 3: computing the lengths of the gaps.
The gaps I1, I2, I3, I4 are purely dependent upon the geometry of the pair of
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Figure 9. The red and yellow simple curves spiral around the
left side hole to the infinity in two different directions, while the
blue and the green simple curves spiral around the right side
hole to the infinity.

pants they lie on, and hence may be expressed purely in terms of the bound-
ary lengths of the relevant pair of pants. McShane computes this directly in
the Poincaré upper half plane model [McS98, page 619], whereas Mirzakhani
[Mir07a, Lemma 3.1] and Tan-Wong-Zhang [TWZ06, §7] do so by invoking hy-
perbolic trigonometric identities.

5.1.1. Adapting the proof for finite-area cusped convex real projective surfaces. The strat-
egy of proof of the McShane identity for a cusped convex real projective surface
Σg,m with m > 1 cusps, negative Euler characteristic and a distinguished cusp
p is fundamentally the same as for hyperbolic surfaces, but with the following
adjustments for each of the three steps:

Step 1: We again identify the set of geodesics emanating from cusp p with
a horocycle η (with respect to the Hilbert metric on Sg,m). We further
identify η with a Z quotient of ∂Ω− {p̃}, where
• Ω ⊂ RP2 is the convex domain universal cover of Σg,m;
• p̃ ∈ ∂Ω is a lift of the cusp p;
• the Z quotient is taken with respect to the stabilizer subgroup of p̃ in

the group of deck transformations π1(Σg,m) acting on Ω. This group
consists of unipotent linear transformations which preserve p̃ and Ω.

One inherits from this identification a partition of η into C, A and count-
ably gap intervals. We then normalize and reinterpret each of the i = 1, 2
Goncharov–Shen potentials as a probability measure on η — we refer to
these probability measures as Goncharov–Shen potential measures. We in-
voke our generalization of the Birman-Series theorem (Theorem 6.10) to
ensure that C ∪ A has measure 0 with respect to the Goncharov–Shen po-
tential measure. This is the basis for the McShane identity for cusped
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convex real projective surfaces: the total sum of the Goncharov–Shen po-
tential measures of the gap intervals is equal to 1.

Step 2: Although the gap intervals on η satisfy the same 4 : 1 correspon-
dence with the set of embedded pairs of pants on Σg,m (and hence may
again be used to index the McShane identity), we choose to adopt finer
summation indices. In the classical setting, the lengths of I1 and I4 are
the same (and the lengths of I2 and I3 are the same) due to all hyperbolic
pairs of pants admitting a boundary-component-fixing “reflection” isom-
etry. The richness of convex real projective structures generically breaks
this symmetry, and this is one reason why we instead sum over the set
Pp of boundary-parallel pairs of pants (Definition 1.5) containing cusp p,
which is a 2 : 1 covering set of the set Pp of pairs of pants on Σg,m. We
consider also a even finer summation index (Theorem 5.25), consisting of
boundary-parallel pairs of half-pants (Definition 5.6), which are in natural
bijection with the gap intervals.

Step 3: We use the cluster algebraic structure of Fock and Goncharov’s A-
coordinates to compute the Goncharov–Shen potential measure of gap in-
tervals (and pairs of gap intervals). This strategy is implicit in Bowditch’s
[Bow96], which essentially uses Penner’s λ-length to perform the requi-
site horocyclic length computations, albeit expressed in terms of traces of
Fuchsian holonomy representations for hyperbolic surfaces.

Remark 5.1. One key idea that we utilize in Step 3 is the derivation of gap terms for a
given positive representation ρ ∈ Posun(Sg,m) via decorated twisted local systems (ρ̄, ξ̄) ∈
An(Sg,m). To be precise, given such a positive representation ρ, we know by [FG06,
Theorems 1.12, 1.14] that there exists a positive decorated twisted SLn-local system
(ρ̄, ξ̄) ∈ An(Sg,m) such that the underlying framed PGLn-local system for (ρ̄, ξ̄) takes
the form (ρ, ξ) (see Remark 2.27). Generally speaking, the decorated twisted local system
(ρ̄, ξ̄) is not unique, however, by imbuing ρ with extra data, we enable computations
regarding the properties of ρ via the cluster algebraic language of Fock and Goncharov’s A-
coordinates. The resulting gap terms are purely expressed in terms of projective invariants
associated to ρ and hence depend only on ρ and not on any of the decorating data in (ρ̄, ξ̄).

We now go through each of these three steps in detail, starting with Step 1
(§5.2). Step 2 has already been covered after Definition 1.5 for McShane iden-
tities summed over boundary-parallel pairs of pants. We describe the boundary-
parallel half-pants case in §5.3. The majority of the remainder is focused on
steps 3 — the computation of the actual summands, which we shall handle on
a case-by-case basis depending on the type of summation index used (§5.4, §5.5,
§5.6).

5.2. Generalizing step 1: a probabilistic partition of geodesics. Let Sg,m denote
a genus g oriented surface with m > 1 boundary components, negative Euler
characteristic and a distinguished cusp p. For any PGL3(R) positive represen-
tation ρ : π1(Sg,m) → PGL3(R) with unipotent boundary monodromy, there is
a unique framed PGL3(R) local system (ρ, ξ) ∈ X3(Sg,m) with underlying holo-
nomy representation ρ. By Remark 3.17, the ρ-equivariant map ξρ : m̃p → B

extends uniquely to a positive map

ξρ = (ξ1
ρ, ξ2

ρ) : ∂∞π1(Sg,m)→ B.
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In particular, the image ξ1
ρ(π1(Sg,m)) is a C1 smooth curve in RP2 and bounds

a simply connected region Ω. The quotient of Ω by ρ(π1(Sg,m)) is a finite-area
cusped convex real projective surface Σg,m homeomorphic to Sg,m by [Mar10].
More accurately speaking, Ω defines a convex real projective structure on Sg,m
with ρ as the holonomy representation.

We henceforth identify ∂∞π1(Sg,m) with ∂Ω via the following result:

Theorem 5.2. The map ξ1
ρ : ∂∞π1(Sg,m)→ ∂Ω is a homeomorphism.

Proof. By [FG06, Theorem 1.14], the ρ-equivariant map ξρ : ∂∞π1(Sg,m) → B is
a continuous positive map. Thus ξ1

ρ : ∂∞π1(Sg,m) → ∂Ω is continuous order-
preserving injective map. By [Mar12, Theorem 6.14], ξ1

ρ is surjective. Hence ξ1
ρ is

a homeomorphism. �

Let p̃ ∈ ∂Ω = ξ1
ρ(∂∞π1(Sg,m)) denote a lift of the cusp p, and let αp̃ ∈ π1(Sg,m) be

the unique primitive peripheral homotopy class which fixes p̃ oriented such that
Sg,m is on the left side αp̃. In addition, let η denote a cusp p horocycle on Σg,m
small enough so as to be embedded, and let η̃ ⊂ Ω denote the unique lift of η
which limits to p̃ in both directions (see Figure 10). The “fan” of complete Hilbert
metric geodesics (i.e.: Euclidean straight lines) on Ω emanating from p̃ gives a
natural identification between: the horocycle η̃ and ∂Ω − {p̃}. This identifcation
is preserved under quotienting by αp̃ and hence descends to an identification
between:

• the set of (Hilbert metric) geodesics on Σg,m emanating from cusp p
• the (Hilbert metric) horocycle η, and
• the quotient curve (∂Ω− {p̃})/〈ρ(αp̃)〉.

We intentionally conflate these sets and refer to them all as η.

Definition 5.3 (Goncharov–Shen potential measure). Consider the collection of closed
intervals on η with measure defined as follows: for i = 1 or 2, given an arbitrary closed
interval [q0,q1] ⊂ η, choose a lift [q̃0, q̃1] ⊂ ∂Ω (see Figure 10) and assign the outer
measure of [q0,q1] to be

Pi(p̃, q̃0, q̃1)/P
p
i .

The value so assigned is independent of the choice of the lift p̃ of p and the lift [q̃0.q̃1]
of [q0,q1] thanks to Corollary 4.11 and hence suffices to generate a well-defined Borel
measure on η by the Caratheodory procedure. We refer to this measure as the i-th
Goncharov–Shen potential measure.

Lemma 5.4. The Goncharov–Shen potential measure on the horocycle η is a probability
measure and is in the same measure class as the Hilbert length measure on η.

Proof. We know from Fact 4.1 that there is a unique unipotent matrix M that
takes (ξ̄ρ(p̃), ξρ(q̃0)) to (ξ̄ρ(p̃), ξρ(q̃1)). Fix a basis for ρ(p̃) and let M(t) denote
the path of unipotent matrices, expressed with respect to said basis,

M(t) :=

 1 m12(t) m13(t)
0 1 tPp1
0 0 1

 , such that:

• the parametrized path M(t) · q̃0 traces out the interval [q̃0, q̃1] on ∂Ω and
• M(t) takes the tangent space Tq̃0∂Ω to TM(t)·q̃0∂Ω.
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The entries m12(t) and tPp1 are unaffected by the choice of basis for ξ̄ρ(p̃). This
allows us pullback the M(t) · q0 parametrization of ∂Ω − {p̃} onto η̃. Note that
this is a parametrization of η̃ which is C1 compatible to the Hilbert length param-
eterization of η̃ because ∂Ω is C1-smooth. Moreover, the t ∈ [0, 1] parameter, by
construction, precisely parametrizes the Z-invariant lift of the Goncharov–Shen
measure on η to η̃, thereby telling us that the Goncharov–Shen potential mea-
sure on η is the Hilbert length measure on η weighted by an almost everywhere
positive C1 function. Thus, the two measures are in the same measure class.
Finally, the Goncharov–Shen potential measure of η is 1 by construction (see Ex-
ample 4.12). �

Figure 10. The lighter grey lines specify a C1 identification be-
tween η̃ and ∂Ω− {p̃}.

Lemma 5.5. The Goncharov–Shen potential measure of C ∪ A ⊂ η is 0.

Proof. In Theorem 6.10 (we postpone the proof until the next Section), we show
that the set of simple geodesics with respect to the Hilbert metric of Ω occu-
pies zero Busemann area on Sg,m. This implies that the set of points on an ε-
neighborhood of η which lie on simple geodesics occupies zero Busemann area.
For sufficiently small ε > 0, the neighborhood of η is annular and identifies with
η × (−ε, ε). The restriction of the Busemann area on η × (−ε, ε) is in the same
measure class as the product measure of the geodesic Hilbert length measure on
η multiplied by the Hilbert length measure on (−ε, ε) because they differ by a
strictly positive density function bounded away from 0 and ∞. This in turn tells
us that C ∪ A occupies 0 horocyclic Hilbert length measure on η. By Lemma 5.4,
the Goncharov–Shen potential measure of C ∪ A is 0. �

5.3. Generalizing step 2: indexing the gap intervals. We first emphasize that
C ∪ A, when regarded as a subset of the ideal boundary ∂∞π1(Sg,m), is a purely
topological condition (see [LM09, pg. 290 and 291]) and is independent of the
choice of auxiliary metric for Sg,m. Indeed, Labourie and McShane take advan-
tage of this fact to express their identities in [LM09] as series over homotopy
classes of embeddings of a given pair of pants into Sg,m. It is clear that Labourie
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and McShane’s summation index are in natural bijection with our boundary-
parallel pairs of pants simply by choosing, once-and-for-all, boundary orienta-
tions on the domain pair of pants in the Labourie–McShane summation scheme
so as to cause the domain to be a boundary-parallel pair of pants.

5.3.1. Summation indices. Our first summation scheme comes from a 2 : 1 corre-
spondence between the countable collection of open intervals in ∂∞π1(Sg,m)−(C∪
A) and the set of boundary-parallel pairs of pants on Sg,m in Definition 1.5. We
consider refined summation scheme over boundary-parallel pairs of half-pants in
Theorem 5.25. The idea of refining the summation scheme in this manner makes
an appearance in both [Hua15] and [Hua14, Theorem 4.5].

Definition 5.6 (Boundary-parallel pairs of half-pants). Given a surface Sg,m with
negative Euler characteristic, an (embedded) boundary-parallel pair of half-pants µ
containing p is one of the two pieces obtained by cutting along the unique simple bi-
infinite geodesic of an embedded pair of pants on Sg,m containing p, equipped with paral-
lel orientations on the simple bi-infinite geodesic and the boundary component. We denote
the collection of all boundary-parallel pairs of half-pants containing p up to homotopy by
Hp. When Sg,m is not a 1-cusped torus, knowing the oriented boundaries γ and γp of a
boundary-parallel pair of half-pants µ, where γ is closed and γp is bi-infinite, suffices to
uniquely specify µ and we adopt the notation µ = (γ,γp).

Figure 11. Cutting a boundary-parallel pair of pants into two
boundary-parallel pairs of half-pants µ = (γ,γp) and (β,βp).

Remark 5.7 (Notation for half-pants without boundary orientation). We write µ̄
to refer to the underlying pair of half-pants for a boundary-parallel pair of half-pants µ.
Similarly, we use (γ̄, γ̄p) (when Sg,m is not a 1-cusped torus) to refer to the underlying
pair of half-pants without boundary orientation for µ = (γ,γp). Finally, we denote the
collection of all pairs of half-pants containing p, up to homotopy, by Hp.

5.3.2. Geometric invariants. We now introduce two types of geometric invariants
of boundary-parallel pairs of half-pants used to express our McShane identity
summands. The first (triangle invariants) is based on triple ratios and the second
(half-pants ratios) is based on Goncharov–Shen potentials.
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Definition 5.8 (Triangle invariant for Hp). For each boundary-parallel pair of half-
pants µ = (γ,γp), the unique simple bi-infinite geodesic which shoots out from p and
spirals towards γ parallel to its orientation cuts the underlying pair of half-pants µ̄ into
a marked ideal triangle 4γ,γp as in Figure 12. We adopt the notation

T(γ,γp) := T(p̃,γ · p̃,γ+) and τ(γ,γp) := log T(γ,γp).

Figure 12. Cutting along the spiraling geodesic on the
boundary-parallel pair of half-pants (γ,γp) (left figure) results
in a marked ideal triangle 4γ,γp , and the marked triangle 4̃ =
(p̃,γ · p̃,γ+) (right figure) is a lift of 4γ,γp .

The next geometric invariant we consider is naturally phrased in terms of the
Goncharov–Shen potential measure.

Definition 5.9 (Half-pants ratio). Consider a surface Sg,m with negative Euler char-
acteristic endowed with a cusped strictly convex real projective surface structure Σg,m
(given via a holonomy representation which is positive and has unipotent boundary mon-
odromy). Given any embedded pair of half-pants µ̄ ∈ Hp on Sg,m. We define the i-th
half-pants ratio as the i-th Goncharov–Shen potential measure of the subinterval of any
embedded horocycle η around cusp p lying on (the unique geodesic bordered homotopy
representative of) µ̄, and denote it by Bi(µ̄). For any boundary-parallel pair of half-pants
µ with underlying pair of half-pants µ̄, we also define Bi(µ) := Bi(µ̄).

Remark 5.10. When Sg,m is not the once-punctured torus, pairs of half-pants µ̄ are
uniquely specified by its (unoriented) cuff γ̄ and its (unoriented) seam γ̄p (see Figure 11).
In these cases, we may write Bi(µ̄) as Bi(γ̄, γ̄p) and Bi(µ) as Bi(γ,γp).

Practically speaking, it is convenient to also be able to express half-pants ratios in
terms of A-coordinates.

Definition 5.11 ((µ, i)-Goncharov–Shen potential). For (ρ̄, ξ̄) ∈ ASLn,Sg,m , and a
pair of half-pants µ̄ with bi-infinite boundary γ̄p, let T be an ideal triangulation of
Sg,m which contains γ̄p as one of its ideal edges. Choose a collection Θp of marked
anticlockwise-oriented ideal triangles with the first vertex being p as per Definition 4.5.
Then, for µ̄ ∈ Hp, let Θµ̄ denote set of marked ideal triangles 4 ∈ Θp such that a small
neighborhood of the first cusp of 4 is contained in µ. We define (µ, i)-Goncharov–Shen
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potential to be

Pµi := Pµ̄i :=
∑

(f;g,h)∈Θµ

Pi(f;g,h).

Remark 5.12. The following relationship between the half-pants ratio and the (µ, i)-
Goncharov–Shen potential follows by definition:

Bi(µ) := Bi(µ̄) =
Pµi
Ppi

,

where Pµi is the (µ, i)-th Goncharov–Shen potential. Moreover, suppose that µ̄, µ̄ ′ ∈ Hp
have the same bi-infinite geodesic boundary and (hence) glue to an embedded pair of pants
containing p. Then we know from Lemma 5.4 that Bi(µ̄) + Bi(µ̄ ′) = 1, or equivalently:

Ppi = Pµi + Pµ
′

i .

5.4. Generalizing step 3: McShane identity for the S1,1 case. We begin by spelling
out the S1,1 case in detail. This is to motivate and familiarize readers to what
needs to occur in general. We show the following:

Theorem 5.13 (McShane identity for S1,1, n = 3). Let ρ : π1(S1,1) → PGL3(R)
be a positive representation with unipotent boundary monodromy. Let C1,1 denote the
collection of oriented simple closed curves up to homotopy on S1,1. Then∑

γ∈C1,1

1
1 + e`1(γ)+τ(γ)

= 1,(17)

where τ(γ) = log T(p̃,γp̃,γ+) is defined as per Figure 2.

Remark 5.14. There are unexpected (not just topological) “coincidences” (see Equa-
tions (23) and (29), and Remark 5.18) in the specialized A3(S1,1) setting which lead to
the above elegant expression over the (relatively simpler) summation index. Furthermore,
the identities obtained via the i = 1, 2 Goncharov–Shen potentials are equal (§5.4.4), this
is specialized to the S1,1 setting.

5.4.1. A sequence of ideal triangulations. Our strategy for obtaining the gap term
(i.e.: summands) of (17) indexed by γ ∈ C1,1 is to compute the Goncharov–
Shen potential measures of the intervals I1, I2, I3, I4 in Figure 9 by approxima-
tion. Namely, consider the following bi-infinite sequence of ideal triangulations
{Tk}k∈Z of S1,1. Let

• γp denote the unique oriented simple bi-infinite geodesic γp with both
ends going up cusp p such that γ and γp are the boundary components
of some boundary parallel pair of half-pants on S1,1;

• T0 be any ideal triangulation of S1,1 that contains γp as an ideal edge.
• Tk be the ideal triangulation of S1,1 obtained by applying the k-fold Dehn

twist twkγ along γ to T0.

We construct a bi-infinite sequence of marked ideal triangles {4k}k∈Z, where 4k
lies in Tk, such that 4k converges to 4γ as k tends to ∞ and to 4γ−1 as k tends
to −∞. We then express, using A-coordinates with respect to Tk, the Goncharov–
Shen potential measure of the horocyclic segment based at the first ideal vertex
of 4k and take the limit as k→ ±∞. In order to obtain a sensible limit, we then
need to have an understanding of the behavior of A-coordinates with respect to
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Tk as k → ±∞. This strategy was previously applied in [Hua14, Chapter 4.4.1]
to compute McShane identity summands for hyperbolic surface via the n = 2
Goncharov–Shen potential (i.e.: horocycle length).

5.4.2. Asymptotic behavior of A-coordinates under Dehn twists. In order to facilitate
our discussions regarding the behavior of A-coordinates with respect to Tk, we
first develop some notation.

To begin with, given a positive decorated twisted local system (ρ̄, ξ̄) ∈ A3(S1,1),
the underlying surface group representation ρ = pr ◦ ρ̄ (Remarks 2.27 and 4.3)
provides the ρ-equivariant map ξ̄ρ : ∂∞π1(S) → A by deck transformations. We
abuse notation slightly and let γ ∈ π1(S1,1) denote an arbitrary homotopy class
representative of the oriented simple closed geodesic γ. Further let

• x = p̃ be a lift of p such that there exists a path from x to the axes of γ
which projects to a simple path on S1,1;

• t := γ · x be another lift of p;
• y0 be yet another lift of p such that the oriented ideal triangle (x,y0, t) is

(the marked representative of) a lift of an ideal triangle in T0;
• {zk := yk+1 := γk+1 · y0} be the orbit of y0 with respect to the subgroup
〈γ〉 6 π1(S1,1) generated by γ.

Figure 13. A flip fk along the edge ykt.

It is straight-forward to verify the following topological consequences:
• the oriented geodesic from x to t and the oriented geodesics from yk to
zk are all lifts of the oriented bi-infinite geodesic γp;

• x,yk, zk, t constitute the ideal vertices of an ideal quadrilateral xykzkt,
which is a fundamental domain for S1,1;

• the ideal triangulation T̂k consisting of the two ideal triangles xykt,yktzk
is a lift of Tk (see Figure 13) and an ideal triangulation of xykzkt.

Let us coordinatize A3(S1,1) with respect to Tk (or T̂k) as per Figure 13. Then the
action of the Dehn twist twγ on A-coordinates with respect to Tk is:

(a1,a2,bk−1, ck−1, ck,bk,dk−1, ek−1) 7→ (a1,a2,bk, ck, ck+1,bk+1,dk, ek).
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Before continuing, we would like to thank Binbin Xu for clarifying our thinking
regarding the following lemma:

Lemma 5.15. Consider (ρ̄, ξ̄) ∈ A3(S1,1) and let γ be a non-peripheral oriented simple
closed curve on S1,1. By Theorem 1.2 we know that the eigenvalues of ρ(γ) satisfy

λ1(ρ(γ)) > λ2(ρ(γ)) > λ3(ρ(γ)) > 0.

Let {twkγ}k∈Z denote the bi-infinite sequence of Dehn-twists along γ, then the A-coordinates
(as per Figure 13) for A3(S1,1) under the action of {twkγ} satisfy the following:

lim
k→+∞ bk+1

bk
= lim
k→+∞ dk+1

dk
= lim
k→−∞ ck

ck+1
= lim
k→−∞ ek

ek+1
= λ1(ρ(γ)),(18)

and conversely,

lim
k→+∞ ck+1

ck
= lim
k→+∞ ek+1

ek
= lim
k→−∞ bk

bk+1
= lim
k→−∞ dk

dk+1
= λ1(ρ(γ

−1)),(19)

noting that λ1(ρ(γ
−1)) = λ1(ρ(γ))λ2(ρ(γ)). Moreover, the following limits exist and

yield strictly positive real numbers

lim
k→+∞ bk

dk
, lim
k→−∞ bk

dk
, lim
k→+∞ ck

ek
, lim
k→−∞ ck

ek
∈ R>0.(20)

Proof. Recall that t = γ · x, yk = γk · y0 and zk = γk+1 · y0. Let

(x1, x2, x3), (yk,1,yk,2,yk,3), (zk,1, zk,2, zk,3), (t1, t2, t3)

denote respective bases for the flags ξρ(x), ξρ(yk), ξρ(zk), ξρ(t) and let v1, v2, v3
denote the respective eigenvectors for the eigenvalues λ1(ρ(γ)), λ2(ρ(γ)), λ3(ρ(γ))
of ρ(γ). The A-coordinates (a1,a2,bk−1, ck−1, ck,bk,dk−1, ek−1) for (ρ̄, ξ̄) are
functions of these bases (Definition 2.34), and in particular, we have:

dk+1

dk
=

∣∣∣∣∣∆
(
x1 ∧ ρ(γ

k+2)y0,1 ∧ ρ(γ)x1
)

∆ (x1 ∧ ρ(γk+1)y0,1 ∧ ρ(γ)x1)

∣∣∣∣∣ .
Since y 6= γ−, the sequence of ideal points {γk · y} necessarily converges to the
attracting fix point γ+ as k approaches +∞, and hence the vector ρ(γk)y0,1 con-
verges to the eigenvector v1. Thus the ratio dk+1

dk
converges to λ1(ρ(γ)) as k goes

to +∞. All other cases in Equations (18), (19) follow by essentially the same
argument.

Furthermore, we have

lim
k→+∞

bk

dk
= lim
k→+∞

∣∣∣∣∣ ∆
(
x1 ∧ x2 ∧ ρ(γ

k)y0,1
)

∆ (x1 ∧ ρ(γk+1)y0,1 ∧ ρ(γ)x1)

∣∣∣∣∣ =
∣∣∣∣ ∆ (x1 ∧ x2 ∧ v1)

∆ (x1 ∧ ρ(γ)v1 ∧ ρ(γ)x1)

∣∣∣∣ ,
which is well-defined and strictly positive because ξρ is hyperconvex. All other
cases in Equation (20) follow by the same argument. �

Remark 5.16. Although Lemma 5.15 is stated for A-coordinates with respect to a trian-
gulation on S1,1, the proof itself does not use the full topology of S1,1 and merely requires
that we have an annulus around some γ with one puncture on each of the boundaries of
the annulus. The resulting A-coordinates for an ideal triangulation of such an annulus
is depicted in Figure 14.
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5.4.3. Limiting summand for S1.1, n = 3 case.

Proof of Theorem 5.13. We continue to use the notation developed in the previous
two subsubsections. Given an oriented simple closed geodesic γ, the goal of this
subsection is compute the McShane identity summand indexed by γ. Recall that
the relevant term is the sum of the i = 1 Goncharov–Shen potential measures of
the horocyclic segments I1 and I2 as depicted in Figure 9 (albeit with β identified
with γ), and hence takes the form:

lim
k→+∞ P1(x;yk,t)

Pp1
+ lim
k→−∞ P1(yk;zk,x)

Pp1
.

Expressed in terms of A-coordinates as per Figure 13, this is equal to

lim
k→+∞ dk−1

a1bkP
p
1
+ lim
k→−∞ ek

a1ckP
p
1

The closed oriented geodesic γ and the bi-infinite ideal γp constitute the oriented
boundaries of two distinct pairs of boundary-parallel half pants µ,µ ′ ∈ Hp. Let
µ denote the pair of half-pants with (µ, 1)-Goncharov–Shen potential

Pµ1 = P1(x;yk, t) + P1(t; x, zk),

and let µ ′ denote the pair of half-pants with (µ ′, 1)-Goncharov–Shen potential

Pµ
′

1 = P1(yk; t, x) + P1(zk; t,yk).

Then, expressed in terms of A-coordinates, we have:

Pµ1 = dk−1
a1bk

+ dk
a2bk

,

where the red term is expressed in terms of the A-coordinates for Tk and the blue
term is expressed with respect to Tk+1. Invoking Lemma 5.15 to take limits, we
obtain the following:

lim
k→+∞

dk−1

bka1P
p
1
= lim
k→+∞

dk−1
a1bk

dk−1
a1bk

+ dk
a2bk

·
Pµ1
Pp1

= lim
k→+∞

B1(µ)

1 + a1dk
a2dk−1

=
B1(µ)

1 + a1
a2
λ1(ρ(γ))

.

(21)

We similarly obtain:

lim
k→−∞

ek

cka1P
p
1
=

B1(µ
′)

1 + a1
a2
λ1(ρ(γ))

Since B1(µ) + B1(µ
′) = 1, the two summands add to

1
1 + a1

a2
λ1(ρ(γ))

.

Moreover, by Lemma 5.15, observe that

T(p̃,γp̃,γ+) = lim
k→+∞

a1bk−1ck

a2ck−1bk
=
a1

a2
· lim
k→+∞

bk−1

bk
· lim
k→+∞

ck

ck−1

=
a1

a2
· 1
λ1(ρ(γ))

· λ1(ρ(γ))λ2(ρ(γ)) =
a1λ2(ρ(γ))

a2
.

(22)
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Thus the McShane identity summand for γ ∈ C1,1 is(
1 + T(p̃,γp̃,γ+) · λ1(ρ(γ))

λ2(ρ(γ))

)−1

=
(

1 + e`1(γ)+τ(γ)
)−1

,

and hence
∑
γ∈C1,1

1
1 + e`1(γ)+τ(γ)

= 1 as desired.

�

Remark 5.17. In the 3-Fuchsian locus, we know that τ(γ) = 0 and `1(γ) = `1(γ
−1),

the gap term 1
1+e`1(γ)+τ(γ) is same as 1

1+e`1(γ
−1)+τ(γ−1) for any γ ∈ C1,1. After catering

for the canonical 2 : 1 orientation-forgetting map between C1,1 and C1,1, one immediately
obtains the classical McShane identity.

Remark 5.18. Recall from the statement of Theorem 1.4, that there are two possible
candidate ideal triangles spiraling to γ which may be used to define τ(γ). Equation 22
ensures that their triangle invariants are equal, and hence that τ(γ) is well-defined.

5.4.4. Extra symmetries in the S1,1, n = 3 case.

Lemma 5.19. Let ρ : π1(S1,1) → PGL3(R) be a positive representation with unipotent
boundary, then the McShane identity summand indexed by every γ ∈ C1,1 satisfies

1
1 + e`1(γ−1)+τ(γ−1)

=
1

1 + e`2(γ)−τ(γ)
.

Proof. First observe that

`2(γ) = log
(
λ2(ρ(γ))
λ3(ρ(γ))

)
= log

(
λ2(ρ(γ

−1))−1

λ1(ρ(γ−1))−1

)
= `1(γ

−1).

Then, utilizing properties of triple ratios and Lemma 5.15, we obtain that

T(p̃,γ−1p̃,γ−) = T(γp̃, p̃,γ−) = T(p̃,γp̃,γ−)−1 =

(
lim
k→−∞

a1bk−1ck

a2ck−1bk

)−1

=

(
a1

a2
· lim
k→−∞

bk−1

bk
· lim
k→−∞

ck

ck−1

)−1

=
a2

a1λ2(ρ(γ))
.

Combined with Equation (22), we obtain

T(p̃,γp̃,γ+) · T(p̃,γ−1p̃,γ−) = 1, and hence τ(γ−1) = −τ(γ).(23)

�

As an immediate corollary to Lemma 5.19, we obtain the following (alternative
form of the) S1,1 McShane identity:

Proposition 5.20. Let ρ : π1(S1,1)→ PGL3(R) be a positive representation with unipo-
tent boundary monodromy. Let C1,1 denote the collection of oriented simple closed curves
up to homotopy on S1,1. Then ∑

γ∈C1,1

1
1 + e`2(γ)−τ(γ)

= 1,

where τ(γ) = log T(p̃,γp̃,γ+) is defined as per Figure 2.
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In fact, Proposition 5.20 is precisely the identity that one obtains if one uses
the i = 2 Goncharov–Shen potential measure instead of the the i = 1 measure.
The following lemma, specific to (ρ̄, ξ̄) ∈ A3(S1,1), is the root cause of this extra
symmetry.

Lemma 5.21. Adopting notation as per Figure 13, then we have:
P1(zk;t,yk)

Pp1
= P2(x;yk,t)

Pp2
, P2(zk;t,yk)

Pp2
= P1(x;yk,t)

Pp1
,

P1(yk;zk,x)
Pp1

= P2(t;x,zk)
Pp2

, P1(yk;zk,x)
Pp1

= P2(t;x,zk)
Pp2

.
(24)

Remark 5.22. The equations in (24) all take the following form:

B1(I) = B2(I
′),

where I and I ′ are horocyclic segments topologically related by the (topological) hyperel-
liptic involution of S1,1. This is highly suggestive that this fact could be true for any two
horocyclic segment I, I ′ related by hyperelliptic involution. In any case, this symmetry is
specific to S1,1, and one can easily construct counter-examples for general surfaces.

Proof of Lemma 5.21. We first prove that
P2(zk;t,yk)
P1(x;yk,t) = P2(t;x,zk)

P1(yk;zk,x) ,

noting that this is tantamount to showing:
a2ekck−1
a2

1ckek−1
+ ekbk−1
a1bkek−1

= a2dk−1bk+1
a2

1bkdk
+ dk−1ck+1

a1ckdk
.(25)

Using mutation formulae, we make the following substitutions

bk+1 = bkdk+a1ek
dk−1

, ck+1 = ekck+dka2
ek−1

, ekck−1 = ckek−1 + a1dk−1

to reduce Equation (25) to the mutation formula at dk:

bk−1dk = a2ek−1 + bkdk−1,

which we know to be true. Then, by symmetry, we have:
P2(x;yk,t)
P1(zk;t,yk)

= P2(yk;zk,x)
P1(t;x,zk)

.

By computing directly
P2(zk;t,yk)
P1(x;yk,t) = P2(x;yk,t)

P1(zk;t,yk)
.

Thus we obtain:
P2(zk;t,yk)
P1(x;yk,t) = P2(t;x,zk)

P1(yk;zk,x) = P2(x;yk,t)
P1(zk;t,yk)

= P2(yk;zk,x)
P1(t;x,zk)

.

We now use the fact that: for a,b, c,d ∈ R>0, if a
b

= c
d

, then a
b

= c
d

= a+c
b+d , to

conclude that
P2(x;yk,t)
P1(zk;t,yk)

= P2(zk;t,yk)
P1(x;yk,t) = P2(t;x,zk)

P1(yk;zk,x) = P2(yk;zk,x)
P1(t;x,zk)

=
Pp2
Pp1

,

rearranging yields the desired result. �

Remark 5.23. We previously asserted that Proposition 5.20 follows from Lemma 5.21.
To see this, recall Remark 5.22 and observe that:

• the horocyclic intervals I1 and I2 (in Figure 9, with β identified with γ) are
respectively related to the intervals I3 and I4 via hyperelliptic involution;

• each of these intervals arises as a limit of the intervals (implicitly) described in
Equation (24).
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We also make mention of the following simple corollary of Lemma 5.21:

Lemma 5.24. Consider an oriented simple closed geodesic γ ∈ C1,1 on a finite-area 1-
cusped convex real projective torus Σ1,1, and let γp be the unique oriented simple ideal
geodesic which is boundary-parallel to γ. The oriented geodesics γ and γp constitute the
boundaries of two boundary-parallel pair of half-pants µ and µ ′. Then,

B1(µ) = B2(µ
′) and B1(µ

′) = B2(µ).

5.5. Generalizing step 3: McShane identity for series over pairs of half-pants.

Theorem 5.25. Let ρ : π1(Sg,m)→ PGL3(R) be a positive representation with unipotent
boundary monodromy and let p be a distinguished cusp on Sg,m. Let Hp be the set of the
homotopy classes of boundary-parallel pairs of half-pants containing p (Definition 5.6).
Then, ∑

(γ,γp)∈Hp

B1(γ,γp)
1 + e`1(γ)+τ(γ,γp)

=
∑

(γ,γp)∈Hp

B2(γ,γp)
1 + e`2(γ)−τ(γ,γp)

= 1,

where Bi(γ,γp) is the i-th half-pants ratio (Definition 5.9) and τ(γ,γp) := log T(p̃,γ ·
p̃,γ+) as per Figure 12.

Proof. We need to compute the McShane identity summand indexed by an arbi-
trary boundary-parallel pair of half-pants µ = (γ,γp) ∈ Hp. The relevant sum-
mand is the Goncharov–Shen potential measure of I1, as depicted in Figure 9,
and we use essentially the same derivation as for the S1,1 case.

First observe that the summand is only dependant upon the geometry of (γ,γp)
and we may therefore assume without loss of generality that there exists another
embedded pair of half-pants µ̂ on the given surface which glues with µ along γ
to yield an “annulus” as per the right hand side of Figure 14. We designate a
k ∈ Z family of A-coordinates (left hand side of Figure 14) related by k-th Dehn
twist along γ in analogy to the coordinates described in Figure 13.

Figure 14. The embedded boundary-parallel pair of half-pants
µ is glued to another embedded boundary-parallel pair of half-
pants µ̂.
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We again have t = γ · x, and zk = yk+1 = γk+1 · y0, and the summand that we
require is once again

lim
k→+∞

dk−1

bka1P
p
1
= lim
k→+∞

dk−1
bka1

dk−1
bka1

+
dk
bka2

·
Pµ1
Pp1

= lim
k→+∞ B1(µ)

1+ a1dk
a2dk−1

= B1(µ)

1+a1
a2
λ1(ρ(γ))

,(26)

where Lemma 5.15 and Remark 5.16 allow us to take the limit. Again invoking
Equation (22), we obtain the desired summand of

B1(γ,γp)
1 + e`1(γ)+τ(γ,γp)

.

The analogous computed i = 2 Goncharov–Shen potential measure for I1 is

B2(γ,γp)
1 + e`2(γ)−τ(γ,γp)

.

�

5.6. Generalizing step 3: McShane identity for series over pairs of pants. Fi-
nally, we prove the pairs of pants summation form of the McShane identity. Recall
that the present series is indexed by Pp — the set of boundary-parallel pairs of
pants (Definition 1.5).

Theorem 5.26. Let ρ : π1(Sg,m)→ PGL3(R) be a positive representation with unipotent
boundary monodromy and let p be a distinguished cusp on Sg,m. Then∑

(β,γ)∈Pp

(
1 +

cosh e1(β,γ)

2

cosh d1(β,γ)

2

· e
1
2 (`1(β)+τ(β,βp)+`1(γ)+τ(γ,γp))

)−1

= 1.

where d1(β,γ) and e1(β,γ) are edge invariants (Definition 1.6), and τ(γ,γp) and
τ(β,βp) triangle invariants (Definition 5.8).

Proof. The McShane identity summand indexed by the boundary-parallel pairs of
pants (β,γ) ∈ Pp is the Goncharov–Shen potential measure of I1∪I2 as illustrated
in Figure 9. We adapt our previous strategy for computing half-pants gap terms
(i.e.: the half-pants McShane identity summands) by describing a k ∈ Z family
of ideal triangulations of the surface depicted in the right hand side of Figure 15,
such that this family of ideal triangulations are related by simultaneous Dehn-
twists in β−1 and γ.

The intervals I1 and I2 respectively lie on the boundary-parallel pairs of half-
pants µ = (γ,γp) and µ ′ = (β,βp). As in the proof of Theorem 5.25, we may
respectively attach boundary-parallel pairs of half-pants µ̂ and µ̂ ′ to µ and µ ′

along γ and β. Having done so,
• fix any ideal triangulation T0 of µ̂ ∪ µ ∪ µ ′ ∪ µ̂ ′ which contains the unori-

ented ideal geodesic underlying βp = γp;
• let Tk denote the ideal triangulation Tk of µ̂ ∪ µ ∪ µ ′ ∪ µ̂ ′ obtained from

Dehn twisting T0 by (tw−1
β · twγ)k.

With a slight abuse of notation, we now regard the oriented simple geodesics
β,γ as homotopy representatives β,γ ∈ π1(Sg,m) such that γβ−1 corresponds to
a simple loop going around cusp p once. Then we construct a sequence of lifts of
{Tk}k∈Z (see the left hand side of Figure 15) as follows: let

• x = p̃ denote the unique lift of p which is fixed by γ−1β, then γ · x = β · x;
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• y0 and v0 be lifts of p such that the ideal triangles (x,y0,γx) and (x,γx, v0)
are lifts anti-clockwise oriented ideal triangles in T0;

• {zk := yk+1 := γk+1 · y0} be the orbit of y0 with respect to the subgroup
〈γ〉 6 π1(S1,1) generated by γ;

• {wk := vk+1 := βk+1 · v0} be the orbit of v0 with respect to the subgroup
〈β〉 6 π1(S1,1) generated by β.

Figure 15. The embedded boundary-parallel pair of half-pants µ
is glued to µ̂ and µ ′ is glued to µ̂ ′.

Going forwards, we label A-coordinates with respect to {Tk}k∈Z as per Figure 15.
We first express Pp1 in terms of A-coordinates:

Pp1 = P1(x;yk,γx) + P1(γx; x, zk) + P1(x;γx, vk) + P1(γx,wk, x)

=
hk−1

a1bk
+

hk

a2bk
+
qk−1

a1dk
+

qk

a2dk
=
bkqk−1 + dkhk−1

a1bkdk
+
bkqk + dkhk
a2bkdk

.

Note that the red terms above are obtained from A-coordinates with respect to
Tk, whereas the blue terms are obtained with respect to Tk+1. The gap term for
(β,γ) is the Goncharov–Shen potential measure of I1 ∪ I2 and is given by the
following limit:

lim
k→+∞

(
hk−1

bka1P
p
1
+

qk−1

dka1P
p
1

)
= lim
k→+∞

bkqk−1+dkhk−1
a1bkdk

bkqk−1+dkhk−1
a1bkdk

+ bkqk+dkhk
a2bkdk

= lim
k→+∞

bkqk−1+dkhk−1
a1bkdk

bkqk−1+dkhk−1
a1bkdk

+ bk−1qk−1+dk−1hk−1
a2bk−1dk−1

= lim
k→+∞

(
1 + a1dk

a2dk−1
·

1+
hk−1dk−1
bk−1qk−1

1+
dkhk−1
bkqk−1

)−1

.

We invoke Lemma 5.15 and Remark 5.16 assert that the following limits exist, and
may be (essentially definitionally) expressed as edge functions

lim
k→+∞ hk−1dk−1

bk−1qk−1
= D2(x,γx,β+,γ+)−1, lim

k→+∞ dkhk−1
bkqk−1

= D1(x,γx,β+,γ+),
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thereby obtaining:(
1 + a1λ1(ρ(β))

a2
·

1+ 1
D2(x,γx,β+ ,γ+)

1+D1(x,γx,β+,γ+)

)−1

=

(
1 + a1λ1(ρ(β))

a2
· e−

d1(β,γ)

2 −
e1(β,γ)

2 · cosh e1(β,γ)

2

cosh d1(β,γ)

2

)−1

(27)

Using Equation (22) and

D1(x,γx,β+,γ+) ·D2(x,γx,β+,γ+) = λ1(ρ(β))
λ1(ρ(γ))

,

we see that (27) equals to(
1 +

√
a1λ1(ρ(β))

a2

√
a1λ1(ρ(γ))

a2
· cosh e1(β,γ)

2

cosh d1(β,γ)

2

)−1

=

(
1 +

cosh e1(β,γ)

2

cosh d1(β,γ)

2

· e
1
2 (`1(β)+τ(β,βp)+`1(γ)+τ(γ,γp))

)−1

.

�

Remark 5.27 (Recovering the fuchsian identity). In the 3-Fuchsian locus, we can
show that τ(β,βp) = τ(γ,γp) = 0 and d1(β,γ) = e1(β,γ), and thus the above identity
recovers the classical McShane identity for cusped hyperbolic surfaces [McS98].

Remark 5.28 (Recovering the S1,1, n = 3 identity). When (g,m) = (1, 1), the ho-
motopy classes β and γ are different representatives of the same π1(S1,1) conjugacy class,
i.e.: β = δ−1γδ for some δ ∈ π1(S1,1). In this setting, the ideal vertices (x,βx =
γx,yk, zk, vk,wk) may be chosen to be

(x, βx = γx, yk = γkδx, zk = γk+1δx, vk = βkδ−1x, wk = βk+1δ−1x).

In any case, by Lemma 5.15, we have

(28) T(x,βx,β+) = lim
k→+∞

a1dk−1ek

a2dkek−1
=
a1λ2(ρ(β))

a2
=
a1λ2(ρ(γ))

a2
= T(x,γx,γ+).

Moreover, we see that

(29) D1(x,γx,β+,γ+) ·D2(x,γx,β+,γ+) = lim
k→+∞

bk−1dk

bkdk−1
= 1.

Therefore, τ(γ,γp) = τ(β,βp) and cosh e1(β,γ)
2 = cosh d1(β,γ)

2 , thereby recovering
Theorem 5.13 from Theorem 5.26.
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6. Simple geodesic sparsity for convex real projective surfaces

The theory of convex real projective surfaces is a natural geometric avatar of pos-
itive PGL3(R) representation theory: Goldman and Choi [G90, CG93] established
that for holonomy representations for closed convex real projective surfaces Sg
correspond to (conjugacy classes of) n = 3 positive representations of π1(Sg);
Marquis [Mar10, Mar12] generalized this picture for surfaces Sg,m with cusps
(i.e.: m > 0), showing that holonomy representations of cusped convex real pro-
jective surfaces correspond to n = 3 positive representations of π1(Sg,m) with
unipotent boundary monodromy. We make use of this dictionary to bring convex
real projective geometric techniques to the study of n = 3 higher Teichmüller
theory, and vice versa.

We first give some background for convex real projective surfaces, before mov-
ing onto our main goal of this chapter: to generalize the Birman-Series geodesic
sparsity theorem to the context of finite-area convex real projective surface con-
text. Our proof is fundamentally geometric topological in nature, and we adjust
our language accordingly. This complements the primarily algebraic treatment
we give in the previous chapters.

6.1. Convex real projective surfaces.

Definition 6.1 (Convex sets). A domainΩ ⊂ RP2 contained in an affine patch is called
convex if the intersection ofΩ with every line in R2 is connected. Furthermore, a convex
domain Ω is called

• properly convex, if the closure Ω is convex and contained within the comple-
ment R2 = RP2 − RP1 of some RP1 linearly embedded in RP2;

• strictly convex, if the boundary ∂Ω of the properly convex domain Ω contains
no line segments.

Definition 6.2 (Convex real projective surface). A real projective surface Σ is a
topological surface S equipped with an atlas {(U,ϕ : U→ RP2)}, with

• coordinate patches U embedded as open sets in RP2 and
• transition maps that are (restrictions of) projective linear transformations PGL3(R)

acting on RP2.
Equivalently, convex real projective surface Σ = (S, {(U,ϕ)}) is the quotient of a
properly convex open domain Ω by a discrete subgroup of PGL3(R) which is isomorphic
to π1(S).

Since convex domains are contractible, every convex real projective surface Σ
inherits a universal cover Ω ⊂ RP2 from its developing map. Every such Ω lies
within some copy of R2 linearly embedded in RP2.

The fact that Σ is equal to the quotient of Ω by a discrete subgroup Γ of PGL3(R)
means that there is a discrete faithful representation

ρ : π1(S)→ PGL3(R).
We refer to ρ as the holonomy representation for Σ.

Definition 6.3 (Projective equivalence). We say that two convex real projective sur-
faces Σ1 and Σ2 are projectively equivalent if, given their respective associated uni-
versal covers Ω1,Ω2 ⊂ RP2, let Γ1, Γ2 be the images of the corresponding holonomy
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representations, there is a projective linear transformation g ∈ PGL3(R) such that
(Ω2, Γ2) = (gΩ1,gΓ1g

−1). The map g sending Σ1 to Σ2 is called a projective equiva-
lence between Σ1 and Σ2.

Goldman [G90] studied the space of marked convex real projective structures on
a smooth surface S

Conv(S) := {(Σ, f) | f : S→ Σ is a diffeomorphism} / ∼conv,

where (Σ1, f1) ∼conv (Σ2, f2) if and only if f2 ◦ f−1
1 is homotopy equivalent to a

projective equivalence between Σ1 and Σ2.

Theorem 6.4. We have the following correspondences between spaces of marked con-
vex real projective structures on smooth surfaces S and positive/Hitchin representation
varieties:

• For closed surfaces S = Sg,0, Choi and Goldman [CG93, G90] showed that the
space Conv(S) of marked convex real projective structures is homeomorphic to
the PGL3(R)-positive/Hitchin representation variety Pos3(S).

• For the cusped surfaces S = Sg,m, Marquis [Mar10] showed that the space
Convu(S) of marked cusped convex real projective structures is homeomorphic
to the unipotent bordered PGL3(R)-positive representation variety Posu3 (S).

6.2. The geometry of convex real projective surfaces.

Definition 6.5 (Hilbert distance). Given any two distinct points x,y in a convex do-
main Ω ⊂ R2, extend the straight line segment running between x and y to a segment
running between boundary points px,py ∈ ∂Ω, where px is closer to x and py is closer
to y. We define the Hilbert distance to be

(30) d(x,y) :=
1
2

log
|x− py| · |y− px|

|y− py| · |x− px|
,

where |u − v| denotes the Euclidean length of the distance between u, v ∈ Ω ⊂ R2. The
Hilbert distance is invariant under projective linear transformations and hence descends
to a distance metric on Σ = Ω/Γ . We refer to both the metric d on Ω and the metric dΣ
on Σ as the Hilbert metric.

In the special case when Σ is a hyperbolic surface, its universal cover Ω is an
ellipse, and the Hilbert metric on Ω is the usual hyperbolic metric on Ω with
respect to the Klein model.

Definition 6.6 (Area). The area (also known as the area for Busemann measure) on
(Ω,dΩ) is defined as the the measure obtained by weighting the Lebesgue measure on Ω
with density

Leb(B1)

Leb(BdΩ(x, 1))
, where:

• B1 is the Euclidean unit ball in R2;
• BdΩ(x, 1) denotes the Hilbert distance unit ball in the tangent space TxΩ ∼= R2,
• Leb(·) denotes the canonical Lebesgue measure of R2 which equals to 1 on the

unit square.
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The measure thus produced is invariant with respect to the action of the fundamental
group because Hilbert distance dΩ is invariant under projective transformations. It there-
fore descends to an area measure on the quotient surface Σ = Ω/Γ . A finite area convex
real surface is a convex real projective surface with finite area.

By [Mar12], the two cases in Theorem 6.4 are finite area convex real projective
surfaces.

6.3. Hölder regularity and convexity of ∂Ω. We primarily deal with convex real
projective surfaces Σwith the two cases in Theorem 6.4, where the universal cover
Ω for such a surface Σ is necessarily strictly convex with C1 boundary regularity.

Definition 6.7. [Ben01, Definitions 4.1 and 4.3] LetΩ ⊂ R2 be a convex open domain
of R2 ⊂ RP2 and fix an arbitrary Euclidean metric dE on R2. We say that ∂Ω is α-
Hölder, for α ∈ (1, 2], if for every compact subset K ⊂ ∂Ω, there exists a constant
CK > 0 such that, for all p,q ∈ K, we have:

dE(q, Tp∂Ω) 6 CK · dE(q,p)α;

and we say that ∂Ω is β-convex, for β ∈ [2,∞), if there exists a constant C > 0 such
that for all p,q ∈ ∂Ω, we have:

dE(q, Tp∂Ω) > C−1 · dE(q,p)β.

When Ω covers a closed convex real projective surface Σ, the boundary regularity
of ∂Ω may be extended to αΣ-Hölder, for some αΣ ∈ (1, 2] [Ben01, Proposi-
tion 4.6]. Using an argument taught to us by Benoist, we show that this is also
true when Σ is a finite area cusped convex real projective surface:

Proposition 6.8 (Benoist-Hulin). The boundary ∂Ω forΩ universally covering a finite
area cusped convex real projective surface Σ satisfies:

• αΣ-Hölder for αΣ ∈ (1, 2],
• and βΣ-convex for βΣ ∈ [2,∞).

Proof. The proof of this fact relies on another famous metric for convex real pro-
jective sets in R2: Yau-Cheng’s [CY77] Blaschke metric (also known as the affine
metric) for strictly convex domains. This is a negatively curved Riemannian met-
ric on Ω. Proposition 3.1 of [BH13] tells us that the curvature on Σ approaches a
negative constant as one heads deeper into a cusp, and hence is bounded away
from 0 on the entire surface. Combining this with [BH14, Corollary 4.7] then
shows that Σ (and hence Ω) is Gromov-hyperbolic with respect to the Hilbert
metric. Hence, by [Ben03, Corollary 1.5], the ideal boundary ∂Ω satisfies the
desired αΣ-Hölder and βΣ-convex. �

Benoist communicated to us the proof for Lemma 6.9 below, and it is a key esti-
mate in our proof of the Birman-Series geodesic sparsity theorem for finite area
convex real projective surfaces.

Lemma 6.9 (Exponentially shrinking balls, courtesy of Benoist). Fix a point O ∈
Ω = Σ̃ and a number R ∈ R>0. For any u ∈ Ω, let B(u,R) ⊂ Ω denote the ball of
(Hilbert) radius R about u, and for any bounded set U ⊂ R2 let diamE(U) denote the
Euclidean diameter of U. Then there exists a positive constant c = cΩ,O,R such that

diamE(B(u,R)) < ce
−d(u,O)

c .
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Proof. We show that for the geodesic ray {tO + (1 − t)p | 0 < t 6 1} shooting out
from O to an arbitrary boundary point p ∈ ∂Ω, there exists a constant c(p) > 0
such that for any point u along the ray,

diamE(B(u,R)) < c(p)e−
d(u,O)
c(p) .

In particular, we shall construct c(p) in such a way that c(·) is a function that
continuously varies with respect to p ∈ ∂Ω. Then, we may use the compactness
of ∂Ω to take

cΩ,O,R := max
p∈∂Ω

c(p).

Let us consider the radius R ball B(u,R) based at u, where u is a point along
the geodesic ray from O to p ∈ ∂Ω. By applying an affine (Euclidean) isometry
on R2, we assume without loss of generality that p is placed at the origin in R2

and that the tangent line Tp∂Ω is the x-axis in R2. Let u = (x0,y0) with respect
to this parametrization, and let p1 and p2 respectively denote the left and right
intersection points of the line y = y0 with ∂Ω. Further let D denote the (closed)
sector of Ω below y = y0. (see Figure 16). For u taken sufficiently close to p,
the region D is contained in the rectangle fenced by the horizontal lines y = 0,
y = y0, and the two vertical lines passing through p1 and p2. Let u(p) denote
the u closest to O such that its induced D satisfies the above rectangle-fencing
property. Thanks to the C1 smoothness of ∂Ω, u(p) varies continuously with
respect to p. This partitions Ω into the union of a compact set

Ω1 := {u ∈ Ω | u lies on the line segment between u(p) and O}

and its open complement Ω2 := Ω−Ω1.

Figure 16. D is the shaded region below the y = y0 horizontal line.
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For any u ∈ Ω1, the compactness of Ω1 ensures that there is a constant C such
that diamE(B(u,R)) < ce

−d(u,O)
c . Let us consider the remaining case of u ∈ Ω2.

Any complete geodesic going through u consists of two geodesic rays, at least
one of which lies in D. The Euclidean length of any such geodesic ray must then
be less than diamE(D), which is in turn less than:

diamE(D ∩ {x 6 0}) + diamE(D ∩ {x > 0}) = dE(p,p1) + dE(p,p2).

Now invoking the β-convexity of ∂Ω, we see that:

dE(p,p1) + dE(p,p2) 6 2(Cy0)
1
β 6 2(C · dE(u,p))

1
β .

We are now equipped to estimate the Euclidean diameter of B(u,R). The triangle
inequality tells us that diamE(B(u,R)) is at most 2 times the Euclidean length r
of the longest geodesic segment σ joining u and the boundary of B(u,R). Such a
geodesic segment lies on the unique complete geodesic in Ω joining u and some
boundary point q ∈ D ∩ ∂Ω. If σ lies on the geodesic ray uq, then Equation (30)
tells us that

R >
1
2

log
(

dE(u,q)
dE(u,q) − r

)
, and hence r < (1 − e−2R)dE(u,q).

Similarly, if σ lies on the geodesic ray complementary to uq, then

R >
1
2

log
(
dE(u,q) + r
dE(u,q)

)
, and hence r < (e2R − 1)dE(u,q).

Therefore, the diameter of B(u,R) is bounded above by

2r < 2(e2R − 1)dE(u,q) < 2e2R(dE(p,p1) + dE(p,p2)) 6 4e2R(C · dE(u,p))
1
β .

We substitute in the Hilbert length

d(u,O) = log
(
dE(O,p) · dE(u, p̂)
dE(u,p) · dE(O, p̂))

)
,

where p̂ is the “antipodal" ideal point to p on the opposite side of O (i.e.: p, p̂ and

O are collinear). This then gives us diamE(B(u,R)) < c(p)e−
d(u,O)
c(p) , with

c(p) := max

{
β, 4e2R

(
C · dE(O,p) · dE(u, p̂)

dE(O, p̂))

) 1
β

}
.

Since p̂ varies continuously with respect to p, we conclude that c(·) is a continu-
ous function, as required. �

6.4. Geodesic Sparsity for finite-area convex real projective surfaces. Let Σ be
a finite-area convex real projective surface, and let:

• Ik denote the collection of complete geodesics on Σ with at most k (geo-
metric) self-intersections (counted with multiplicity);

• |Ik| denote the subset of Σ consisting of every single point which lies on
(at least one) complete geodesic in the collection Ik of geodesics with at
most k self-intersections.

The goal of this subsection is to prove the following claim:

Theorem 6.10 (Geodesic sparsity). The area of |Ik| is 0 and the Hausdorff dimension
of |Ik| is 1.
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When the surface Σ is hyperbolic, the above result is referred to as the Birman–
Series theorem [BS85]. They construct a descending filtration of subsets of Σ such
that:

• each subset covers |Ik|,
• each subset is a union of finitely many convex geodesic quadrilaterals,
• the number of convex quadrilaterals at the k-th level of the filtration

asymptotically grows as a polynomial in k,
• the Euclidean area of the quadrilaterals shrinks exponentially in k.

The polynomial growth in the number of quadrilaterals versus the exponential
shrinkage their area gives us the requisite (Busemann) area 0 conclusion. The
fact that these quadrilaterals become exponentially thin then gives the desired
Hausdorff dimension 1 conclusion.

Much of the proof is topological, and we use Birman-Series’ original arguments.
However, we introduce the following tweaks:

• insteading of encoding geodesics as segments on a single geodesically
bordered fundamental domain (such as a Ford domain), we use geodesic
triangulations (Lemma 6.11). This is to avoid justifying why finitely sided
geodesic fundamental domains exist, to highlight the flexibility of the
Birman-Series construction and partially to use convexity to replace tra-
ditional hyperbolic geometric arguments (such as in Lemma 6.14).

• we require Lemma 6.9 to show that Hilbert radius R balls shrink uni-
formly exponentially as one approaches the boundary.

Lemma 6.11. Any finite-area strictly convex real projective surface Σ decomposes into a
finite collection of (convex) geodesic triangles {41, . . . ,4l} glued along a finite collection
of geodesic edges Γ .

Proof. For cusped convex real projective surfaces, we may take an ideal triangu-
lation. For compact Σ, [G90, Theorem 3.2] tells us that every essential simple
curve is uniquely realizable as a simple geodesic, we may therefore employ stan-
dard hyperbolic-surface-case arguments for finding a filling set of simple closed
geodesics on Σ. Namely, if one of the complementary regions of a given collec-
tion of geodesics isn’t contractible, then it must contain an essential simple closed
curve, and one then adds this to the collection of geodesics. In any case, since
simple geodesics lift to straight lines in the universal cover Ω, the complemen-
tary regions of a filling collection of geodesics is made up of polytopes. These
polytopes must be convex because the region is expressible as the intersection of
convex regions in R2. Each polytope then cuts into finitely many triangles, as
desired. �

For the remainder of this subsection, we fix one such collection {41, . . . ,4l} of
geodesic triangles for Σ glued along Γ as described by Lemma 6.11.

6.5. Polynomial growth of the number of k-diagrams.

Definition 6.12 (k-diagrams). Let Jk denote the set of geodesic arcs on Σ which:

• start and end on Γ and/or cusps,
• have at most k self-intersections.
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Further let Jk(N) denote the subset of geodesic arcs in Jk that are cut up into N geodesic
segments by Γ . Also let [Jk] denote the equivalence classes of geodesic arcs in Jk with
respect to isotopies of Σ which preserve Γ as a set. Similarly define [Jk(N)]. We refer to
the elements of [Jk] as k-diagrams and the elements of [J0] as simple diagrams.

Lemma 6.13. The cardinality of [Jk(N)] is bounded above by a polynomial Pk(N) in N.

Proof. Every k-diagram [γ] ∈ [Jk(N)] may be encoded as the ordered sequence
σ1, . . . ,σN of elements of [J0(1)] obtained from cutting [γ] along Γ . The key ob-
servation is that we do not need to retain the entire ordering of the sequence
to recover a k-diagram: any simple diagram [γ] ∈ [J0(N)] may be completely
recovered from the following data:

• the (unordered) multiset of N segments in [J0(1)] constitute [γ];
• the starting and ending segments for [γ] (including the direction of the

starting and ending segment).
This efficient encoding is used in the original proof of the Birman–Series theorem
([BS85, Lemma 2.1]).

The consequence of this encoding is that

Card[J0(N)] 6 N2 ·
(

Card[J0(1)] +N− 1
N− 1

)
=: P0(N).

For general k-diagrams [γ], we need to introduce additional data to specify the
intersection loci. Since two segments may intersect at most once, the degree of
freedom introduced by this intersection data is bounded above by the number
of ways of designating at most k unordered pairs of segments to denote the
intersections out of all possible unordered pairs of segments. Therefore:

Card[Jk(N)] 6 P0(N) ·

[((N
2

)
0

)
+ . . . +

((N
2

)
k

)]
=: Pk(N).

�

6.6. Topological versus geometric length. We have so far introduced k-diagrams,
which afford us topological control over geodesics with k self-intersections. We
now show that the number of segments constituting a k-diagram is proportional
to the Hilbert length of the segment it encodes. This promotes our topological
control to geometric control.

Lemma 6.14. For any finite-area convex real projective surface Σ, there exists a positive
constant αΣ,Γ > 0 so that for any complete geodesic γ̂ with at most k self-intersections,
the length of any geodesic subarc γ ⊂ γ̂, such that γ is an element of Jk(N), grows at
least linearly in N for N large enough. That is: there exists an integer NΣ,Γ > 0 such
that the Hilbert length

`γ > αΣ,Γ ·N for all γ ∈ Jk(N), where N > NΣ,Γ .

Proof of Lemma 6.14 for closed Σ. We first prove this for closed Σ. Fix a disjoint
collection of embedded open balls Bri(xi) around every vertex xi of Γ . Let NΣ,Γ
be 3l+1 (recall here that l is the number of geodesic triangles constituting Σ) and
let αΣ,Γ > 0 be `min

2NΣ,Γ
, where `min is the length of the shortest geodesic arc in J0(1)

with end points on Γ\ ∪ Bri(xi). The fact that `min is well-defined is because the
subset of J0(1) with end points on Γ\ ∪ Bri(xi) is a compact set. To be precise:
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this subset of J0(1) is the disjoint union of 3l closed (solid) rectangles formed by
taking products of distinct pairs of segments in Γ\∪Bri(xi) which lie on the same
triangle. Moreover, we know that `min > 0 because segments have starting and
ending points on distinct edges and hence cannot be of length 0.

Next observe that Γ cuts each Bri(xi) into at most 3l convex sectors. Since the
intersection of convex sets is convex and hence contractible, the intersection of
any contiguous subarc of γ with Bri(xi) may meet each sector at most once.
This means that we may have at most 3l consecutive segments of γ lying within
Bri(xi) and hence any 3l+ 1 consecutive segments on γ must have length strictly
greater than `min. This in turn gives us our choice of NΣ,Γ and αΣ,Γ when Σ is
compact. �

We now look to the situation when Σ is a (finite-area) cusped strictly convex
real projective surface. We show that geodesics with k self-intersections cannot
penetrate arbitrarily far into a cusp (unless it goes straight into the cusp), thus
effectively reducing the analysis to being on a compact subset of the surface:

Proposition 6.15 (Cuspidal collar neighborhood). Fix a finite-area (cusped) convex
real projective surface Σ and some integer k > 0. There is a compact subset K ⊂ Σ which
contains all (complete) compactly-supported geodesics on Σ which self-intersect at most k
times when counted with multiplicity.

Remark 6.16. The complement of this compact subset K in Σ consists of annular neigh-
borhoods around cusps and we refer to them as cuspidal collar neighborhoods — our
nomenclature alludes to collar neighborhoods.

Proof. Consider a length R embedded horocycle ηR bounding an annular neigh-
borhood CR of a given cusp. Now choose an even shorter horocycle ηr bounding
a smaller cuspidal annular neighborhood Cr ⊂ CR, so that the minimal distance
between ηr and ηR is at least R(k+1)

2 (this is always possible since CR is infinitely
long). We claim that no geodesic arc γ ∈ Jk enters and then exits Cr, that is: Cr
is a cuspidal collar neighborhood.

Assume otherwise that γ enters and exits Cr. The complete geodesic extension
γ̂ is the union of two overlapping geodesic rays γ̂+ and γ̂− with overlap given
by a subarc of γ lying within Cr and with end points on ηr. In order for the ray
γ̂± to lie completely within CR, the ideal end point of any lift of γ̂± would need
to be the unique ideal boundary point of the horodisk in the universal cover of
Σ covering Cr. This in turn characterizes γ̂± as a geodesic going straight up the
cusp, and therefore hitting every horocycle at most once. This is a contradiction
as γ̂± meets Cr in two places. Therefore, both γ̂+ and γ̂− leave Cr at some point
and hence there is a geodesic subarc γ̄ of γ̂ which:

• lies completely within CR;
• has both its endpoints on ηR;
• enters and exits Cr.

Since γ̄ joins ηr and ηR along two subarcs, it has length at least R(k + 1). On the
other hand, the geodesic arc γ̄ is (endpoint-fixing) homotopy equivalent to a horo-
cyclic path along ηR which wraps around ηR at most k times (this can be shown
by unwrapping CR to a k-fold cover of CR that undoes the self-intersections of γ̄).
This in turn means that the length of γ̄ must be strictly less than R(k+1), leading
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to a contradiction. Therefore, no geodesic arc γ ∈ Jk which extends to a complete
geodesic γ̂ with at most k self-intersections may enter Cr. �

We now return to the proof of Lemma 6.14, but addressing the cusped case.

Proof of Lemma 6.14 for cusped Σ. Finally, we complete our proof for the cusped
case as follows: fix a horocyclic neighborhood Cr for each cusp on Σ and take
NΣ,Γ = 1 and αΣ,Γ > 0 to be the length (in the closed interval [0,∞] rather than
R>0) of the shortest geodesic arc in J0(1) with endpoints outside of the horocyclic
regions. Again, such a length exists due to compactness and is finite. These
choices for constants clearly work because every segment on γ lies outside of Cr
and hence must be at least of length αΣ,Γ . �

6.7. Geodesic sparsity: area 0. We are now prepared to prove the geodesic spar-
sity theorem for finite-area convex real projective surfaces. Fix a fundamental
domain F ⊂ Σ̃ =: Ω made up of lifts of the triangles 41, . . . ,4l decomposing Σ.
Represent Ω as a subset of R2 ⊂ RP2, and let F denote the closure of F in R2.
Define the following collection of geodesic arcs

Îk := {σ = γ̃ ∩4i | for some i = 1, . . . , l and where γ̃ is a lift of γ ∈ Jk} ,

and further define |Îk| ⊂ F to be the collection of points lying on geodesic arcs σ
in Îk. Our goal is to show that |Îk|∩F has zero area. However, since the area on Ω
is definitionally in the same measure class as the Lebesgue measure, we see that
we just need to show that |Îk| occupies zero Euclidean area.

Proof of Theorem 6.10 for compact Σ – area 0. We first consider the case when Σ is
compact. For each N > NΣ,Γ , we partition Îk using the fact that any geodesic arc3

σ is uniquely expressible as the middle (i.e.: (N + 1)st) segment of a lift of some
representative of [γ] ∈ Jk(2N + 1). This gives us a partition of Îk into at most
Pk(2N+ 1) sets.

We next show that the Euclidean area occupied by all the lifts of representatives
of [γ] ∈ [Jk(2N + 1)] with the middle segment in F is exponentially decreasing
in N. Consider an arbitrary lift γ of a representative of [γ] positioned so that its
middle segment is in F and let the endspoints of γ lie on F ′ and F ′′ — two deck
transformation translates of the fundamental domain F. By the unique path lifting
property, every such γ necessarily ends on the same F ′ and F ′′ pair. In particular,
this means that the union of every such representative of [γ] is contained within
the convex hull of F ′ ∪ F ′′. We know from Lemma 6.14 that both F ′ and F ′′ are at
least distance αΣ,ΓN away from F. We now use this fact to control the Euclidean
area for the convex hull of F ′ ∪ F ′′.

Let O be an arbitrary point on the interior of F. Since F̄ is compact, for some R > 0
the domain F ⊂ B(0,R). The domains F ′ and F ′′ are deck transform translates of F
and the corresponding translated points x ′ ∈ F ′ and x ′′ ∈ F ′′ of O ∈ F satisfy that
d(x ′,O),d(x ′′,O) > αΣ,ΓN. Therefore, the Euclidean diameters of F ′ and F ′′ must

both be less than ce
−αΣ,ΓN

c . This in turn means that the convex hull of F ′∪F ′′ may

3We may ignore the case when σ is a vertex of F as it does not affect the measure or the Hausdorff
dimension of |Îk|.
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be covered by an Euclidean rectangle of width ce
−αΣ,ΓN

c and length diamE(Ω).
We absorb diamE(Ω) into c and ignore it henceforth.

We next note that the convex hull of F ′∪F ′′ necessarily covers every representative
geodesic segment in [γ] ∈ [Jk(2N + 1)]. Since there are fewer than Pk(2N + 1)
homotopy classes [γ] constituting [Jk(2N + 1)] and each class is covered by a

rectangle of area ce
−αΣ,ΓN

c , this means that the set |Îk| has Euclidean area less

than Pk(2N+ 1) · ce
−αΣ,ΓN

c . Since N may be set to be arbitrarily large, this means
that |Îk| has zero Euclidean area and hence zero area. Finally observe that |Îk|

is the lift of |Ik| to F (except for perhaps finitely many closed geodesics lying
completely on Γ ) and hence |Ik| ∩ F has zero area. �

Proof of Theorem 6.10 for cusped Σ – area 0. We now turn to the case when Σ is non-
compact, that is: we are dealing with a cusped convex real projective surface.
Given a geodesic segment σ ∈ Îk, when we try to geodesically extend σ using
deck transform translates of segments in Îk, one of the following three things
occurs:

(1) σ can be extended by N segments in both directions, this produces a
geodesic arc in Jk(2N+ 1);

(2) σ can be extended by N segments in one direction and hits a cusp in the
other direction, this produces an arc in Jk(M), for M 6 2N;

(3) σ cannot be extended by N segments in either direction and hits a cusp in
the both directions, this produces an arc in Jk(M), for M 6 2N− 1;

This behavioral classification allows us to partition Îk into the following three
classes of objects:

(1) σ is the middle (i.e.: (N + 1)st) segment of a lift of some representative of
[γ] ∈ Jk(2N+ 1);

(2) σ is a segment of a lift of some representative γ of [γ] ∈ Jk(M), for M 6
2N, where γ is a geodesic ray (i.e.: one of the ends of γ is a cuspidal ideal
point) and σ is the ith segment, for 1 6 i 6M−(N+ 1), indexed from the
cuspidal end;

(3) σ is a segment of a lift of the unique representative γ of [γ] ∈ Jk(M), for
M 6 2N−1, where γ is a bi-infinite geodesic (i.e.: both end points of γ are
cuspidal ideal points) and σ has index (strictly) less than N + 1 indexed
from both ends of γ.

Case 1 is identical to the previous compact closed Σ analysis, and each homotopy

class [γ] may be covered by a Euclidean rectangle of Euclidean area ce
−αΣ,ΓN

c .
For Case 2, note that one end of γ is a single cuspidal ideal point on ∂Ω, and
therefore [γ] may be covered by a Euclidean trapezium with Euclidean area less

than ce
−αΣ,ΓN

c . Case 3 concerns bi-infinite geodesics joining two cuspidal ideal
points and may be covered by a single line. This means that |Îk| may be covered
by a finite collection of quadrilaterals (and lines) of total Euclidean area less than

ce
−αΣ,ΓN

c (Pk(2N+ 1) + Pk(2N) + . . . + Pk(1)) < ce
−αΣ,ΓN

c · (2N+ 1) · Pk(2N+ 1).

Once again, by taking N to be arbitrarily large, we see that the Euclidean area of
|Îk| is zero and hence area of |Ik| is zero. �
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6.8. Geodesic sparsity: Hausdorff dimension 1. Finally, we show that |Ik|, or
equivalently Îk, has Hausdorff dimension 1.

Proof of Theorem 6.10 – Hausdorff dimension 1. ConsiderΩ equipped with the Hilbert
metric d (which is Finsler) in comparison with Ω endowed with the Euclidean
metric dE (but regarded as a Finsler manifold). The Finsler metric for (Ω,d) is
a C1 rescaling of (Ω,dE) due to the dependence on the boundary smoothness
(which is at least C1). This means that, for any (possibly non-compact) subset K
of a compact subset of Ω, the identity map between (Ω,d) and (Ω,dE) restricts to
a bi-Lipschitz map between (K,d) and (K,dE). Combined with the fact that Haus-
dorff dimension is preserved under bi-Lipschitz maps, this means that when Σ
(and hence F) is compact the Hausdorff dimension of (|Ik|,d) and (|Îk|,dE) are the
same. Combined with the further fact that the Hausdorff dimension is preserved
with respect to taking countable unions of sets with the same Hausdorff dimen-
sion, the equivalence in Hausdorff dimension between (|Ik|,d) and (|Îk|,dE) is
true when Σ is cusped.

We have reduced our Hausdorff dimension derivation problem to that of (|Ik|,dE).
We first show that the (1 + ε)-dimensional Hausdorff content of (|Ik|,dE) is 0
for every ε > 0. Recall from earlier in this proof that for every N > NΣ,Γ ,
there we may cover |Ik| with fewer than N · Pk(2N + 1) Euclidean rectangles

of length diamE(Ω) and width ce
−αΣ,ΓN

c . Each such rectangle may be covered

by
⌈

diamE(Ω)

ce
−αΣ,ΓN

c

⌉
Euclidean balls of radius 3

2ce
−αΣ,ΓN

c . The (1 + ε)-dimensional

Hausdorff content of (|Îk|,dE) is 0, because:

lim
N→∞N · Pk(2N+ 1) ·

⌈
diamE(Ω)

ce
−αΣ,ΓN

c

⌉
·
(

3
2
ce

−αΣ,ΓN
c

)1+ε

= 0.

This means that the Hausdorff dimension of (|Ik|,d) is at most 1. On the other
hand, since |Ik| contains geodesic arcs, it necessarily has Hausdorff dimension at
least 1. �
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7. McShane identities for higher Teichmüller space

In this section, we derive McShane identities (Theorem 7.19) for PGLn(R)-positive
representations with loxodromic boundary monodromy from i-th (Goncharov–
Shen) potential ratio (Definition 7.11). Such ratio is a symmetry breaking ana-
logue of the general cross ratio [Lab07], which is called the ratio (Definition 7.5).

7.1. Labourie–McShane identities. Let us firstly recall the general cross ratio
introduced by Labourie.

Definition 7.1 ([Lab07] Cross ratio). Let

∂∞π1(Sg,m)4∗ = {(x,y, z, t) ∈ ∂∞π1(Sg,m)4 | x 6= t,y 6= z}.

A cross ratio on Sg,m is a π1(Sg,m)-invariant Hölder function B from ∂∞π1(Sg,m)4∗ to
R which satisfies the following rules:

(1) (Normalization): B(x,y, z, t) = 0 if and only if x = z or y = t,
(2) (Normalization): B(x,y, z, t) = 1 if and only if x = y or z = t,
(3) (cocycle): B(x,y, z, t) = B(x,y, z,w) · B(x,y,w, t),
(4) (cocycle): B(x,y, z, t) = B(x,w, z, t) · B(w,y, z, t).

An ordered cross ratio is a cross ratio B on Sg,m which satisfies, for four different points
x,y, z, t ∈ ∂∞π1(Sg,m):

(1) B(x,y, z, t) > 0 if z, t are on the same side of (x,y),
(2) B(x,y, z, t) > 1 if x,y, z, t are cyclically ordered.

Definition 7.2. For any non-trivial α ∈ π1(Sg,m), let y 6= α+,α−, the period of α
with respect to the ordered cross ratio B, which does not depend on y, is

`B(α) := log
(
B(α+,α−,y,α(y))

)
.

By Definition 7.1, we have `B(α) = `B(α−1).
Given ρ ∈ Posn(Sg,m) (Definition 2.9) with loxodromic boundary mondromy
which is also a Hitchin representation [LM09, Section 9] by Remark 2.11, let ξρ :
∂∞π1(Sg,m) → B be the ρ-equivariant positive map with respect to the canonical
lift (Definition 2.40). Then we define the associated ordered cross ratio Bρ using
ξρ. For example, we define Bρi for i = 1, · · · ,n− 1 using ξρ as follows. Let ξ̃iρ be
the lift of ξiρ with values in ∧i(Rn) for i = 1, · · · ,n − 1. Recall ∆ is the volume
form of Rn. For any four different points x,y, z, t ∈ ∂∞(π1(Sg,m)):

(31) Bρi (x,y, z, t) =
∆
(
ξ̃n−iρ (x)∧ ξ̃iρ(z)

)
∆
(
ξ̃n−iρ (x)∧ ξ̃iρ(t)

) · ∆ (ξ̃n−iρ (y)∧ ξ̃iρ(t)
)

∆
(
ξ̃n−iρ (y)∧ ξ̃iρ(z)

)
which does not depend the lift of ξρ. The cross ratio Bρi is indeed the ordered
cross ratio by positivity [FG06]. For i = 1 or n − 1, it is called rank n weak cross
ratio. The period of α with respect to Bρi is log λ1(ρ(α))···λi(ρ(α))

λn−i+1(ρ(α))···λn(ρ(α)) .
By splitting the ordered cross ratio the same way as the classical McShane identity
for the horocycle, Labourie and McShane [LM09] obtained the following identity.
Recall the loxodromic-bordered PGLn(R)-representation variety Poshn(Sg,m) in
Definition 2.9.

Theorem 7.3. [LM09, Theorem 4.1.2.1] Given ρ ∈ Poshn(Sg,m) with loxodromic
boundary monodromy, let α be an oriented boundary component of Sg,m such that Sg,m
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is on the left side of α and Bρ is an ordered cross ratio for ρ. Then∑
(β,γ)∈Pα

logBρ(α−,α+,γ+,β+) +
∑

(β,γ)∈P∂α

logBρ(α−,α+,γ−,γ+) = `B
ρ

(α),

where Pα is the set of the homotopy classes of boundary-parallel pairs of pants in Defini-
tion 1.5, and P∂α is a subset of Pα with α and another boundary component of the pair of
pants as the boundary components of Sg,m. For each boundary-parallel pair of pants, we
fix a marking on the boundary components α,β,γ such that αβ−1γ = 1 as in Figure 18.

Remark 7.4. The proof of [LM09, Theorem 4.1.2.1] is different from the step 2 in
the proof of Theorem 5.25 where we compare the horocyclic Hilbert length measure and
the Goncharov–Shen potential measure through ∂∞π1(Sg,m)\p̃. Labourie and McShane
compare directly the horocyclic measure with respect to the auxiliary hyperbolic metric for
∂∞π1(Sg,m) and the ordered cross ratio measure induced from the ρ-equivariant positive
Hölder map ξρ : ∂∞π1(Sg,m)→ B. The Anosov property of the representation ρ induces
the Hölder property of ξρ which ensures that these two measures are comparable. But the
Anosov property fails for the positive representation with unipotent boundary monodromy
(cusps).

7.2. Ordered ratios and identities. We introduce a generalization of ordered
cross ratios, which called ordered ratios.

Definition 7.5 (Ratio). Consider the following collection of 4-tuples

∂∞π1(Sg,m)4∗∗ =
{
(x,y, z, t) ∈ ∂∞π1(Sg,m)4 | x 6= y, x 6= z, x 6= t,y 6= z

}
.

A ratio B : ∂∞π1(Sg,m)4∗∗ → R is a π1(Sg,m)-invariant continuous function which
satisfies the following three ratio conditions:

(1) (normalization): B(x,y, z, t) = 0 if and only if y = t,
(2) (normalization): B(x,y, z, t) = 1 if and only if z = t,
(3) (cocycle): B(x,y, z, t) = B(x,y, z,w) · B(x,y,w, t),

An ordered ratio is a ratio B which satisfies two order conditions: for four different
points x,y, z, t ∈ ∂∞π1(Sg,m):

(1) B(x,y, z, t) > 0 if z, t are on the same side of (x,y),
(2) B(x,y, z, t) > 1 if x,y, z, t are cyclically ordered.

Remark 7.6. Let us start with a few examples for examining the conditions to be a ratio.
(1) For (ρ̄, ξ̄) ∈ ASLn,Sg,m , we define

B(x,y, z, t) :=
Pi(x;y, t)
Pi(x;y, z)

.

It is a ratio but not an ordered ratio in general. It is an ordered ratio when
(ρ̄, ξ̄) ∈ An(Sg,m). This is the main ordered ratio that we study in this section.

(2) For ρ ∈ Xn(Sg,m), we define the ordered ratio B(x,y, z, t) to be the edge function
−Di(x,y, z, t) in Definition 2.17.

Definition 7.7 (Periods for ratios). For non-trivial α ∈ π1(Sg,m) and y 6= α−,α+,
the period of α for the ordered ratio B is

`B(α) := logB
(
α−,α+,α(y),y

)
,

As with periods for cross ratios, periods for ratios are also independent of the
choice of y. For any z ∈ ∂∞π1(Sg,m)\{α−,α+}, by
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• π1(Sg,m)-invariance: B (α−,α+,α(y),α(z)) = B (α−,α+,y, z),
• and the cocycle identity for the ordered ratios,

we obtain that:

B
(
α−,α+,α(y),y

)
=B
(
α−,α+,α(y),α(z)

)
· B
(
α−,α+,α(z), z

)
· B
(
α−,α+, z,y

)
=B
(
α−,α+,y, z

)
· B
(
α−,α+,α(z), z

)
· B
(
α−,α+, z,y

)
=B
(
α−,α+,α(z), z

)
.

Ordered ratios satisfy one fewer cocycle axiom than ordered cross ratios. As a
consequence periods `B of an ordered ratio B do not necessarily satisfy `B(α) =
`B(α−1). One immediate advantage of ordered ratios is that i-th lengths (Defini-
tion 1.3) can now be periods.
Before we state the generalized McShane identity for ordered ratios, we define
the boundary-parallel pairs of half-pants when an oriented boundary component
α of Sg,m is playing the role of the cusp p in Definition 5.6.

Definition 7.8. Let α be an oriented boundary component of Sg,m such that Sg,m is on
the left side of α as in Figure 17. An (embedded) boundary-parallel pairs of half-pants
on Sg,m is one of the two pieces obtained by cutting along the unique simple bi-infinite
geodesic of an embedded pair of pants with both ends emanating from α−. Usually,
denoted by (γ,γα−) or µ.
Let Hα denotes the collection of (embedded) boundary-parallel pairs of half-pants on Sg,m

with both ends of its seam emanating from α−. Moreover, let H∂α ⊂ Hα denote the subset
of half-pants with a peripheral cuff.

Figure 17. An example of a boundary-parallel pair of pants
(γ,γα−) with both ends of the seam γ̄α− emanating from α−.

Remark 7.9. Given a boundary-parallel pair of half-pants (γ,γα−
) ∈ H∂α, there is a

unique boundary-parallel pair of pants in Pα that contains (γ,γα−
) and agrees with its

boundary orientations. We thereby identify H∂α with the subset P∂α ⊂ Pα of boundary-
parallel pairs of pants with a peripheral cuff.

Theorem 7.10 (McShane identity for loxodromic-bordered positive representa-
tions). For a PGLn(R)-positive representation ρ ∈ Poshn(Sg,m) with loxodromic bound-
ary monodromy, let α be a distinguished oriented boundary component Sg,m such that
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Sg,m is on the left side of α and Bρ is an ordered ratio for ρ, we have the equality:

`B
ρ

(α) =
∑

(β,γ)∈Pα

logBρ(α−,α+,γ+,β+) +
∑

(β,γ)∈P∂α

logBρ(α−,α+,γ−,γ+)

=
∑

(δ,δα−)∈Hα

∣∣logBρ
(
α−;α+, δ(α−), δ+

)∣∣+ ∑
(γ,γα−)∈H∂α

logBρ
(
α−;α+,γ−,γ+

)
.

where Pα is the set of the homotopy classes of boundary-parallel pairs of pants, and P∂α
is a subset of Pα containing another boundary component of Sg,m as in Definition 1.5.
And Hα and H∂α are the sets of boundary-parallel pairs of half-pants in Definition 7.8.
For each boundary-parallel pair of pants or pair of half-pants, we fix a marking on the
boundary components α,β,γ such that αβ−1γ = 1 as in Figure 18.

Figure 18. The boundary-parallel pair of pants (β,γ) has the
boundary components α, β, γ with αβ−1γ = 1 and (β,γ) is
cut into (β,βα−), (γ,γα−) along the simple bi-infinite geodesic
γα− = βα− .

Proof. Notice that only one cocycle property is used in the proof of [LM09, The-
orem 4.1.2.1]. Using the cocycle property, positivity and Hölder property of Bρ

(due to Hölder property of ξρ), we follow the proof presented in [LM09, Theorem
4.1.2.1] almost line by line and replace the ordered cross ratio Bρ by the ordered
ratio Bρ. We obtain

`i(α) =
∑

(β,γ)∈Pα

logBρ
(
α−;α+,γ+,β+

)
+

∑
(β,γ)∈P∂α

logBρ
(
α−;α+,γ−,γ+

)
.
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Figure 19. The A coordinates labelled on the vertices corre-
spondingly, Z0 = ad

bc
is some α, Z1/Z2 = acf

dge
is the triple ratio.

Recall the refinement in the proof of Theorem 5.25 step (4). The right hand side
of the above equation equals

=
∑

(β,γ)∈Pα

(
logBρ

(
α−;α+,γ+,γ(α−)

)
+ logBρ

(
α−;α+,β(α−),β+

))
+

∑
(β,γ)∈P∂α

logBρ
(
α−;α+,γ−,γ+

)
=

∑
(δ,δα−)∈Hα

∣∣logBρ
(
α−;α+, δ(α−), δ+

)∣∣+ ∑
(γ,γα−)∈H∂α

logBρ
(
α−;α+,γ−,γ+

)
.

�

As is, the identity is not expressed in terms of explicit geometric/projective in-
variants attached to the representation ρ. We do this crucial step later in this
section.

7.3. i-th potential ratio. The i-th character Pi(f;g,h) (Definition 4.2) depends on
the choice of a lift of the flag ξρ(f) in A. For elements of An(Sg,m), this is canon-
ically assigned, but not so for Xn(Sg,m). To resolve this issue, we consider taking
ratios of two i-th characters, thereby providing a well-defined regular function on
Xn(Sg,m).

Definition 7.11 (i-th potential ratio). For a PGLn(R)-positive representation ρ ∈
Poshn(Sg,m) with loxodromic boundary monodromy, let (ρ, ξ) ∈ Xn(Sg,m) be the canon-
ical lift (Definition 2.40) of ρ (or ρ ∈ Posun(Sg,m) with unipotent boundary mon-
odromy with a unique lift (ρ, ξ) ∈ Xn(Sg,m)). Recall the unique ρ-equivariant map
ξρ : ∂∞π1(S) → B for (ρ, ξ) in Definition 2.25. For any (x,y, z, t) ∈ ∂∞π1(Sg,m)4∗∗

(Definition 7.5), choose a lift X of ξρ(x) in A. We define the i-th potential ratio for ρ
as:

Bi(x;y, z, t) :=
Pi(x;y, t)
Pi(x;y, z)

:=
Pi(X; ξρ(y), ξρ(t))
Pi(X; ξρ(y), ξρ(z))

.

Remark 7.12. The i-th potential ratio can be defined directly for (ρ, ξ) ∈ Xn(Sg,m)

using ξρ. Thus a different choice of the lift for any ρ ∈ Poshn(Sg,m) induces a different
gap function expression similar as in [LM09, Appendix A].

We “visualize” our computations in the following way. Given a n-triangulation
(Definition 2.31), the oriented edge ratio ([Sun20a, Definition 5.9]) for an oriented
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Figure 20. Figure for Bi(x;y, z, t).

edge of the n-triangulation is the A coordinate (Definition 2.34) at the head di-
vided by the A coordinate at the tail of the oriented edge. By Lemma 4.8, as
shown in Figure 19 (1), each α, represented by a lozenge, is the ratio of two ori-
ented edge ratio. By Lemma 4.10, as shown in Figure 19 (2), each triple ratio is the
ratio of two lozenges. The i-th level of x ([Sun20a, Definition 5.11]) is union of the
edges of the n-triangulation where for any vertex of any edge, the least number
of edges towards x is i. Equation (16) shows us that Pi(x;y, z) is the summation
of lozenges crossed by the i-th level of x in the triangle (x,y, z) (Figure 20).

Proposition 7.13. For any positive triple (F,G,H) ∈ A3, we have

Pi(F;G,H) = αF;G,H
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(F,G,H)

 .

Proof. Iteratively applying Lemma 4.10 c times, we obtain

αF;G,H
n−i,i−c,c = α

F;G,H
n−i,i,0 ·

c∏
j=1

1
Tn−i,i−j,j(F,G,H)

.

Re-expressing Equation (16), we get:

Pi(F;G,H) =
i−1∑
c=0

αF;G,H
n−i,i−c,c = α

F;G,H
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(F,G,H)

 .

�

Proposition 7.14. The i-th potential ratio Bi(x;y, z, t) is expressed as follows:

Bi (x;y, z, t) =
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

· (−Di(x,y, z, t)).

Thus the i-th potential ratio does not depend on the lift X of ξρ(x) and is an ordered ratio.
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Proof. By Proposition 7.13, we have

Pi(x;y, t) = αx;y,t
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(x,y, t)

 ,

and

Pi(x;y, z) = αx;y,z
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(x,y, z)

 .

Moreover, by Lemma 4.8 (or by observing the red arrows in Figure 20), we get

αx;y,t
n−i,i,0

αx;y,z
n−i,i,0

=

∆(xn−i−1∧t1∧yi)·∆(xn−i+1∧yi−1)
∆(xn−i∧yi)·∆(xn−i∧t1∧yi−1)

∆(xn−i−1∧z1∧yi)·∆(xn−i+1∧yi−1)
∆(xn−i∧yi)·∆(xn−i∧z1∧yi−1)

=
∆
(
xn−i−1 ∧ t1 ∧ yi

)
∆ (xn−i ∧ t1 ∧ yi−1)

·
∆
(
xn−i ∧ z1 ∧ yi−1

)
∆ (xn−i−1 ∧ z1 ∧ yi)

= −Di(x,y, z, t).

Thus we obtain

Bi (x;y, z, t) =
Pi(x;y, t)
Pi(x;y, z)

=
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

·
αx;y,t
n−i,i,0

αx;y,z
n−i,i,0

=
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

· (−Di(x,y, z, t)).

Thus i-th potential ratio does not depend on the lift X of ξρ(x). And it is an
ordered ratio. �

Thus we have the well-definedness of the i-th potential ratio.
Recall Equation (31), we have

Bρ1 (x,y, z, t) =
n−1∏
i=1

∆
(
xn−i−1 ∧ t1 ∧ yi

)
∆ (xn−i ∧ t1 ∧ yi−1)

·
∆
(
xn−i ∧ z1 ∧ yi−1

)
∆ (xn−i−1 ∧ z1 ∧ yi)

=

n−1∏
i=1

(−Di(x,y, z, t))

=

n−1∏
i=1

(
Bi(x,y, z, t) ·

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

)
.

We therefore obtain:

Corollary 7.15. The rank n weak cross ratio and the i-th potential ratio is related by:

Bρ1 (x,y, z, t) =
n−1∏
i=1

Bi(x,y, z, t) ·
n−1∏
i=1

(
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

)
,

which relate Labourie–McShane’s rank n weak cross ratio used in their explicit identities
[LM09, Section 10] to the i-th potential ratio.
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Proposition 7.16. Given ρ ∈ Poshn(Sg,m) and its canonical lift (ρ, ξ) ∈ Xn(Sg,m),
we define Pi as in Definition 7.11. Let α be an oriented boundary component of Sg,m.
For any distinct x,y, z ∈ ∂∞π1(Sg,m) where x = α−, for any integers a,b, c such that
a,b > 1 and c = n− a− b > 0, we have

αx;y,z
a,b,c

αx;αy,αz
a,b,c

= e`n−a(α).

Thus, for i = 1, · · · ,n− 1, the following i-th potential ratio

Pi(α
−;y, z)

Pi(α−;αy,αz)
= e`i(α).

Proof. Recall the notation 2.2. By Definition 2.40, ρ(α) has a lift into SLn(R)
where its eigenvalues are λ1 > · · · > λn > 0. For any non-negative integer u, v
with a+ u+ v = n, we obtain

∆(xa ∧ zu ∧ yv) = ∆(ρ(α)xa ∧ ρ(α)zu ∧ ρ(α)yv)

=
1

λn · · · λn−a+1
· ∆(xa ∧ (αz)u ∧ (αy)v).

Thus

αx;y,z
a,b,c =

∆
(
xa−1 ∧ zc+1 ∧ yb

)
· ∆
(
xa+1 ∧ zc ∧ yb−1

)
∆ (xa ∧ zc ∧ yb) · ∆ (xa ∧ zc+1 ∧ yb−1)

=
λn−a · ∆

(
xa−1 ∧ (αz)c+1 ∧ (αy)b

)
· ∆
(
xa+1 ∧ (αz)c ∧ (αy)b−1

)
λn−a+1 · ∆ (xa ∧ (αz)c ∧ (αy)b) · ∆ (xa ∧ (αz)c+1 ∧ (αy)b−1)

=
λn−a

λn−a+1
· αx;αy,αz
a,b,c = e`n−a(α) · αx;αy,αz

a,b,c .

Then by Equation (16), for i = 1, · · · ,n− 1, we get

Pi(x;y, z)
Pi(x;αy,αz)

=
λi

λi+1
= e`i(α).

�

As a consequence of Proposition 7.16, we obtain

Corollary 7.17. For ρ ∈ Poshn(Sg,m) and its canonical lift (ρ, ξ) ∈ Xn(Sg,m), we define
the i-th potential ratio Bi for ρ. Let α be an oriented boundary component of Sg,m. The
i-th period of α for Bi:

logBi
(
α−;α+,α(y),y

)
= `i(α), where y 6= α±.

The following lemma is crucial to obtain a closed-form formula for the gap func-
tions with respect to i-th potential ratios in Theorem 7.19.

Proposition 7.18. For ρ ∈ Poshn(Sg,m) ∪ Posun(Sg,m) and its canonical lift (ρ, ξ) ∈
Xn(Sg,m), we define Pi as in Definition 7.11. Let x 6= δ−, δ+ (Usually x = α−,p and
δ ∈ {β,β−1,γ,γ−1} for an embedded pair of pants containing α or p). We have

Pi(x; δ+, δ−1x)

Pi(x; δx, δ+)
= Ki(δ, δx) ·

λi(ρ(δ))

λi+1(ρ(δ))
,
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Figure 21. Lozenges for Proposition 7.18.

where

Ki(δ, δx) =
1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(δx, δ+, x)

1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(x, δx, δ+)

·
∏n−i−1
j=1 Tn−i−j,j,i(x, δx, δ+)∏i−1
j=1 Tj,n−i,i−j(x, δx, δ+)

.

(32)

Let us define

κi(δ, δx) := logKi(δ, δx).

Proof. Firstly, we have

Pi(x; δ+, δ−1(x))

Pi(x; δx, δ+)
=
Pi(δx; δ+, x)
Pi(x; δx, δ+)

.

We compute the right hand side of the above equation. By Proposition 7.13, we
have

Pi(x; δ+, δx) = αx;δ+,δx
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

Tn−i,j,i−j(x, δx, δ+)

 ,

Pi(δx; x, δ+) = αδx;x,δ+
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

Tn−i,j,i−j(δx, δ+, x)

 .

Then

Pi(δx; δ+, x)
Pi(x; δx, δ+)

=
Pi(δx; x, δ+)
Pi(x; δ+, δx)

=
1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(δx, δ+, x)

1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(x, δx, δ+)

·
αδx;x,δ+
n−i,i,0

αx;δ+,δx
n−i,i,0

.

Observing Figure 21, to compute αδx;x,δ+
n−i,i,0 /α

x;δ+,δx
n−i,i,0 , we need to divide the the red

lozenge with one edge on (x, δx) by the green lozenge with one edge on (x, δ+).
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Figure 22. A coordinates are labelled on the vertices.

Then we decompose this red/green as:

αδx;x,δ+
n−i,i,0

αx;δ+,δx
n−i,i,0

=
αδx;x,δ+
n−i,i,0

αδx;x,δ+
n−i,1,i−1

·
αδ

+;δx,x
i,1,n−i−1

αδ
+;δx,x
i,n−i,0

·
αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

,(33)

where the first (second resp.) term of the product on the right hand side corre-
sponds to the two corner red (blue resp.) lozenges crossed by the i-th level of δx
((n − i)-th level of δ+ resp.). Using all the intermediate lozenges crossed by the
i-th level of δx ((n − i)-th level of δ+ resp.), the right hand side of Equation (33)
equals

i−1∏
j=1

Tn−i,j,i−j(δx, x, δ+) · 1∏n−i−1
j=1 Ti,j,n−i−j(δ+, δx, x)

·
αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

=

∏n−i−1
j=1 Tn−i−j,j,i(x, δx, δ+)∏i−1
j=1 Tj,n−i,i−j(x, δx, δ+)

·
αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

.

Since the product of the two lozenges Z3 = bc
ad

and Z4 = ae
bd

in Figure 22 is
ce
d2 , two similar products αδx;x,δ+

n−i,1,i−1α
δ+;δx,x
i,n−i,0 and αδ

+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0 along the edge

(δx, δ+) and (x, δ+) respectively can be explicitly expressed. We obtain

αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

=
∆
(
(δx)n−i+1 ∧ δi−1

)
∆ (xn−i+1 ∧ δi−1)

·
∆
(
(δx)n−i−1 ∧ δi+1

)
∆ (xn−i−1 ∧ δi+1)

·

(
∆
(
(δx)n−i ∧ δi

)
∆ ((xn−i ∧ δi)

)−2

=
1

λ1 · · · λi−1(ρ(δ))
· 1
λ1 · · · λi+1(ρ(δ))

· (λ1 · · · λi(ρ(δ)))2 =
λi(ρ(δ))

λi+1(ρ(δ))
.

We conclude that

Pi(x; δ+, δ−1(x))

Pi(x; δx, δ+)
= Ki(δ, δx) ·

λi(ρ(δ))

λi+1(ρ(δ))
.

�

7.4. McShane identities for i-th potential ratio.

Theorem 7.19 (McShane identity for i-th potential ratio). For a PGLn(R)-positive
representation ρ ∈ Poshn(Sg,m) with loxodromic boundary monodromy, let (ρ, ξ) ∈
Xn(Sg,m) be the canonical lift (Definition 2.40) of ρ which induces the i-th potential
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ratio Bi. Let α be a distinguished oriented boundary component of Sg,m such that Sg,m
is on the left side of α. Recall Equation (6)

D(x,y, z) = log

(
e
x
2 + e

y+z
2

e
−x

2 + e
y+z

2

)
.

For i = 1, · · · ,n− 1, we have the equality:

∑
(β,γ)∈Pα

D(`i(α),φi(β,γ) + κi(β,βα−) + `i(β),φi(β,γ) + κi(γ,γα−) + `i(γ))

+
∑

(β,γ)∈P∂α

(D(`i(α),φ ′i(β,γ) + κi(β,βα−) + `i(β),φ ′i(β,γ) − κi(γ−1,γ−1
α−) − `i(γ

−1))

−D(`i(α),φi(β,γ) + κi(β,βα−) + `i(β),φi(β,γ) + κi(γ,γα−) + `i(γ))) = `i(α),

(34)

where Pα is the set of the homotopy classes of boundary-parallel pairs of pants, and P∂α
is a subset of Pα containing another boundary component of Sg,m as in Definition 1.5.
For each boundary-parallel pair of pants, we fix a marking on the boundary components
α,β,γ such that αβ−1γ = 1 as in Figure 18. Recall Proposition 7.18 for the definition
of κi(δ, δx). Here

di(β,γ) := log(−Bi(α−;γ(α−),β+,γ+)),

ei(β,γ) := log(−Bi(α−;γ−1(α−),γ+,γ−1(β+))),

d ′i(β,γ) := log(−Bi(α−;γ(α−),β+,γ−)),

e ′i(β,γ) := log(−Bi(α−;γ−1(α−),γ−,γ−1(β+))),

φi(β,γ) := log
cosh ei(β,γ)

2

cosh di(β,γ)
2

, φ ′i(β,γ) := log
cosh e′i(β,γ)

2

cosh d′i(β,γ)
2

.

Let us start with the following lemma before we prove the above theorem.

Lemma 7.20. Set up the notations as in Theorem 7.19 where Bi is defined with respect
to ρ ∈ Poshn(Sg,m) and (ρ, ξ) ∈ Xn(Sg,m), we have

eφi(β,γ) · e
1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α))

= −e`i(α) · Bi(α−;γ+,β+,γ−1(β+)).

Proof. Since γ(α−) = β(α−), by Proposition 7.18 we have

edi(β,γ)+ei(β,γ)+κi(γ,γα−)+`i(γ)

=
Pi(α

−;γ+,γ(α−))

Pi(α−;β(α−),β+)
· Pi(α

−;γ−1(β+),γ−1(α−))

Pi(α−;γ−1(α−),γ+)
· Pi(α

−;γ+,γ−1(α−))

Pi(α−;γ(α−),γ+)

=
Pi(α

−;γ−1(β+),γ−1(α−))

Pi(α−;β(α−),β+)
.

(35)

By α−1γ−1 = β−1 and Proposition 7.16, we get

(36) Pi(α
−;γ−1(β+),γ−1(α−)) = e−`i(α) · Pi(α−;β+,β−1(α−)).
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Thus the right hand side of Equation (35) is equal to

e−`i(α) · Pi(α−;β+,β−1(α−))

Pi(α−;β(α−),β+)
= eκi(β,βα−)+`i(β)−`i(α).

Thus

eφi(β,γ) · e
1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α)) =

1 + e−ei(β,γ)

1 + edi(β,γ) · e
κi(β,βα−)+`i(β).

(37)

By Equation (36) and additivity of i-th characters, the right hand side of Equation
(37) is equal to

Pi(α
−;γ−1(β+),γ+)

Pi(α−;γ−1(β+),γ−1(α−))

Pi(α−;γ+,β+)
Pi(α−;β(α−),β+)

· Pi(α
−;β+,β−1(α−))

Pi(α−;β(α−),β+)
=
e`i(α) · Pi(α−;γ−1(β+),γ+)

Pi(α−;γ+,β+)

= −e`i(α) · Bi(α−;γ+,β+,γ−1(β+)).

�

Proof of Theorem 7.19. Firstly, let us show that

(38)

logB1(α
−;α+,γ+,β+)

= log

(
e`i(α) + eφi(β,γ) · e 1

2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α))

1 + eφi(β,γ) · e 1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α))

)
.

We show two sides of the above equation are equal by evaluating two sides at the
strictly increasing function f(A) = eA−1

e`i(α)−1
. Then the left hand side of Equation

(38) becomes Pi(α
−;γ+,β+)

Pi(α−;α+,γ+)·(e`i(α)−1)
, and by Lemma 7.20 the right hand side of

Equation (38) becomes 1

1+ e
`i(α)·Pi(α− ;γ−1(β+),γ+)

Pi(α
− ;γ+ ,β+)

. Equation (38) is equivalent to

Pi(α
−;α+,γ+) · (e`i(α) − 1) = e`i(α) · Pi(α−;γ−1(β+),γ+) + Pi(α−;γ+,β+).

(39)

By Proposition 7.16, we have

Pi(α
−;α+,γ+) · (e`i(α) − 1)

=Pi(α
−;α+,α−1(γ+)) − Pi(α

−;α+,γ+)

=Pi(α
−;γ+,α−1(γ+)).

Thus Equation (39) is equivalent to

Pi(α
−;β+,α−1(γ+)) = e`i(α) · Pi(α−;γ−1(β+),γ+),

which is a consequence of Proposition 7.16. Hence we obtain Equation (38).
For each gap function for P∂α, similarly, we have

logBi
(
α−;α+,γ−,β+

)
= log

(
e`i(α) + eφ

′
i(β,γ) · e

1
2 (−κi(γ−1,γ−1

α−)−`i(γ
−1)+κi(β,βα−)+`i(β)+`i(α))

1 + eφ
′
i(β,γ) · e

1
2 (−κi(γ−1,γ−1

α−)−`i(γ−1)+κi(β,βα−)+`i(β)+`i(α))

)
.
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Then, we use

logBi
(
α−;α+,γ−,γ+

)
= logBi

(
α−;α+,γ−,β+

)
− logBi

(
α−;α+,γ+,β+

)
.

Finally, we conclude the theorem by Theorem 7.10 with Bρ = Bi. �

The similar formulas as Equations (28)(29) hold after replacing x by α− for ρ ∈
Posh3 (S1,1), thus we can simplify Equation (34) as follows.

Corollary 7.21. For a PGL3(R)-positive representation ρ ∈ Posh3 (S1,1) with loxodromic
boundary monodromy, let (ρ, ξ) ∈ X3(S1,1) be the canonical lift (Definition 2.40) of ρ
which induces the 1st potential ratio B1. Let α be the oriented boundary component of
S1,1 such that S1,1 is on the left side of α. Let C1,1 be the collection of oriented simple
closed curves up to homotopy on S1,1. We have

∑
γ∈C1,1

log

(
e
`1(α)

2 + eτ(γ)+`1(γ)

e−
`1(α)

2 + eτ(γ)+`1(γ)

)
= `1(α),

where τ(γ) := log T(α−,γ(α−),γ+).

For ρ ∈ Poshn(S1,1) with n > 4, we do not have similar formula as that in Corollary
7.21, since we do not have similar formulas as Equations (28)(29).

7.4.1. Newly inserted parameters. we briefly study the parameters arising in Theo-
rem 7.19. Since κi(β,βα−) is the log of a positive rational function of triple ratios
(Equation (32)), by Theorem 3.4 we have

Corollary 7.22. For ρ ∈ Posn(Sg,m), the collection {κi(β,βα−), κi(γ,γα−)}
(β,γ)∈Pα

is bounded within some compact interval.

The function φ ′i(β,γ) is similar to φi(β,γ). Let us consider φi(β,γ) = log cosh ei(β,γ)

2

cosh di(β,γ)

2

.

By Proposition 7.14, we have

ei(β,γ) = log

(
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(γ(α−),α−,β+)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(γ(α−),α−,γ+)

·Dn−i(α−;γ(α−),β+,γ+)

)
,

and

di(β,γ) = log

(
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(α−;γ(α−),γ+)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(α−,γ(α−),β+)

·Di(α−;γ(α−),β+,γ+)

)
.

By Theorem 3.4, the collection1 +
∑i−1
c=1

∏c
j=1

1
Tn−i,i−j,j(γ(α

−),α− ,β+)

1 +
∑i−1
c=1

∏c
j=1

1
Tn−i,i−j,j(γ(α

−),α− ,γ+)

,
1 +
∑i−1
c=1

∏c
j=1

1
Tn−i,i−j,j(α

− ;γ(α−),γ+)

1 +
∑i−1
c=1

∏c
j=1

1
Tn−i,i−j,j(α

− ,γ(α−),β+)


(β,γ)∈Pα

is bounded.

Conjecture 7.23. For any PGLn(R)-positive representation ρ, the collection {φi(β,γ)}
(β,γ)∈Pα

is bounded within some compact interval.
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Remark 7.24. For each boundary-parallel pair of pants (β,γ) ∈ Pα, comparing the
corresponding gap function

D(`i(α),φi(β,γ) + κi(β,βα−) + `i(β),φi(β,γ) + κi(γ,γα−) + `i(γ))

in Theorem 7.19 with the gap function D(`(α), `(β), `(γ)) in hyperbolic case,

κi(β,βα−), κi(γ,γα−), φi(β,γ)

are the newly inserted parameters. In n-Fuchsian case,
(1) all the triple ratios are 1, by Equation (32), for i = 1, · · · ,n− 1,

κi(β,βα−) = κi(γ,γα−) = 0;

(2) and for any i, j = 1, · · · ,n− 1,

Di(α
−;γ(α−),β+,γ+) = Dj(α−;γ(α−),β+,γ+),

thus
φi(β,γ) = φ ′i(β,γ) = 0;

(3) and for any δ ∈ π1(S) and any i, j = 1, · · · ,n− 1,

`i(δ) = `j(δ).

Hence the (n − 1) McShane identities in that case are all the same as the Mizakhani’s
generalized McShane identity [Mir07a, Theorem 4.2] after rearrangement as remarks in
[LM09, Theorem 4.1.2.1].

Using Corollary 7.15 and Theorem 7.19, we have the following corollary.

Corollary 7.25. The Labourie–McShane’s identities in [LM09, Section 10] can be writ-
ten as summation of regular expressions of the Fock-Goncharov coordinates, where the
regular expressions are the gap functions in Theorem 7.19 and the logs of certain rational
functions of triple ratios.

Boundary-parallel pairs of half-pants summation

Definition 7.26. Set up as in Theorem 7.19. For δ ∈ {β,β−1,γ,γ−1}, we define

ri(δ, δα−) :=
logBi(α−;α+, δ(α−), δ−1(α−))

`i(α)
.

Then for δ ∈ {β,γ−1}, we have

ri(δ, δα−) = −ri(δ
−1, δ−1

α−) > 0,

and

ri(β,βα−) + ri(γ
−1,γ−1

α−) = 1.

In the case Sg,m = S1,1, for µ ∈ Hα, we denote ri(µ) instead.

Later, we will relate ri(δ, δα−) to the i-th half-pants ratio in Definition 5.9.

Lemma 7.27. Let Bi be the i-th potential ratio for ρ ∈ Poshn(Sg,m). Let a,b, c,d, e be
five distinct points in ∂∞π1(Sg,m). Then

Bi (a;b, c,d) =
Bi(a;b, c, e) − Bi(a;d, c, e)

1 − Bi(a;d, c, e)
.
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Proof. Using additivity of the i-th character, we have

Bi(a;b, c, e) − Bi(a;d, c, e) =
Pi(a;b, e)
Pi(a;b, c)

−
Pi(a;d, e)
Pi(a;d, c)

=
P(a;b, e) · P(a;d, c) − P(a;d, e) · P(a;b, c)

P(a;b, c) · P(a;d, c)

=
(P(a;b, c) + P(a; c, e)) · (P(a;d, e) + P(a; e, c)) − P(a;d, e) · P(a;b, c)

P(a;b, c) · P(a;d, c)

=
P(a;b, e) · P(a; e, c) + P(a; c, e) · P(a;d, e)

P(a;b, c) · P(a;d, c)

=
P(a;b,d) · P(a; e, c)
P(a;b, c) · P(a;d, c)

.

Thus

Bi(a;b, c, e) − Bi(a;d, c, e)
1 − Bi(a;d, c, e)

=
P(a;b,d) · P(a; e, c)
P(a;b, c) · P(a;d, c)

/P(a; e, c)
P(a;d, c)

=
P(a;b,d)
P(a;b, c)

= Bi(a; ,b, c,d).

�

Theorem 7.28 (Boundary-parallel pairs of Half-pants summation). For a PGLn(R)-
positive representation ρ ∈ Poshn(Sg,m) with loxodromic boundary monodromy, let (ρ, ξ) ∈
Xn(Sg,m) be the canonical lift (Definition 2.40) of ρ which induces the i-th potential ratio
Bi. Let α be a distinguished oriented boundary component of Sg,m such that Sg,m is on
the left side of α. For i = 1, · · · ,n− 1, we have the equality:

`i(α) =
∑

(δ,δα−)∈Hα

∣∣∣∣log
eri(δ,δα−)·`i(α) + eκi(δ,δα−)+`i(δ)

1 + eκi(δ,δα−)+`i(δ)

∣∣∣∣
+

∑
(β,γ)∈H∂α

log
(
Bi(α

−;α+,γ−,γ+)
)

,
(40)

where Hα is the set of the homotopy classes of boundary-parallel pairs of half-pants, and
H∂α is a subset of Hα containing another boundary component of Sg,m as in Definition
7.8. Recall ri(δ, δα−) in Definition 7.26. For each pair of half-pants, we fix a marking as
in Figure 18.

Proof. For any (δ, δα−) ∈ Hα, by Lemma 7.27, we have

Bi
(
α−;α+, δ(α−), δ+

)
=
Bi(α

−;α+, δ(α−), δ−1(α−)) − Bi
(
α−; δ+, δ(α−), δ−1(α−)

)
1 − Bi (α−; δ+, δ(α−), δ−1(α−))

.

Then by definition of ri(δ, δα−) and Proposition 7.18, we obtain

∣∣logBi
(
α−;α+, δ(α−), δ+

)∣∣ = ∣∣∣∣log
eri(δ,δα−)·`i(α) + eκi(δ,δα−)+`i(δ)

1 + eκi(δ,δα−)+`i(δ)

∣∣∣∣ .
We conclude our theorem after Theorem 7.10. �
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7.5. McShane-type inequalities for unipotent-bordered positive representations.
We in fact have two strategies for deriving McShane-type inequalities for unipotent-
bordered positive representations. The first is to follow the Goncharov–Shen
potential splitting idea we employed in Section 5. The second is to take the
loxodromic-bordered identities we just obtained and to consider them under
deformation to the unipotent-bordered locus in the representation variety. We
choose to illustrate the second strategy which may work for a general positive
representation with certain boundary simple root length zero; the necessary in-
gredients for computing via the first strategy is nevertheless contained in what
follows.

Theorem 7.29 (McShane-type inequality for unipotent-bordered positive repre-
sentations). Consider a PGLn(R)-positive representation ρ with unipotent boundary
monodromy and let p ∈ mp be a distinguished puncture/cusp on Sg,m. Then, for
i = 1, · · · ,n− 1, we have∑

(β,γ)∈Pp

1

1 + eφi(β,γ) · e 1
2 (κi(γ,γp)+`i(γ)+κi(β,βp)+`i(β))

6 1,(41)

∑
(δ,δp)∈Hp

Bi(δ, δp)
1 + eκi(δ,δp)+`i(δ)

6 1,(42)

where Pp is the set of boundary-parallel pairs of pants containing p in Definition 1.5 and
Hp is the set of the homotopy classes of boundary-parallel pairs of half-pants containing p
in Definition 5.6. For any pair of pants or pair of half-pants, we fix a marking as in Figure
18 taking α− as a lift of the cusp p. Recall φi(β,γ) defined in Theorem 7.19, κi(δ, δp)
defined in Proposition 7.18 and Bi(δ, δp) is the i-th half-pants ratio in Definition 5.9.

Remark 7.30. As in the proof of Theorem 7.10, the reason that we can establish inequality
is that we can split using positivity, but this does not ensure the Cantor set introduced in
Section 5.1 with respect to the (i-th) Goncharov–Shen measure has measure zero.

Definition 7.31 (Path l). For (ρ, ξ) ∈ Xn(Sg,m) with (purely) loxodromic-bordered
monodromy representation ρ, we choose an analytic path l in Xn(Sg,m) satisfying the
following conditions:

(1) l(0) = (ρ0, ξ0);
(2) every element of l([0, 1)) ⊂ Xn(Sg,m) has loxodromic monodromy around all of

its boundary components;
(3) l(1) = (ρ, ξ) ∈ Xn(Sg,m) where ρ ∈ Posun(Sg,m) is the positive representation

with unipotent boundary monodromy as in Theorem 7.29.
We denote the limit of a function f on Xn(Sg,m) under a sequence of elements in l([0, 1))
that converges to l(1) by limhyp→para f. Under the sequence, the i-th length `i of each
oriented boundary component converges to 0 for i = 1, · · · ,n−1. Geometrically speaking,
this is tantamount to the boundary α of Sg,m deforms to a cusp p.

Lemma 7.32. Consider a path l as in Definition 7.31 and the second summation in
Theorem 7.10 (or Theorem 7.19). For any pair of half-pants µ ∈ H∂α with its cuff a
boundary component γ, as γ deforms to a unipotent boundary, we have:

lim
hyp→para

logBi (α−;α+,γ−,γ+)
`i(α)

= 0.
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Proof. We have

lim
hyp→para

logBi (α−;α+,γ−,γ+)
`i(α)

= lim
hyp→para

Pi(α
−;α+,γ+)

Pi(α−;α+,γ−) − 1
Pi(α−;α+,α−1(γ−))
Pi(α−;α+,γ−) − 1

= lim
hyp→para

Pi(α
−;γ−,γ+)

Pi(α−;γ−,α−1(γ−))
.

Since γ is another boundary component which converges to a cusp under limhyp→para,
γ+ converges to γ−. Hence we obtain

lim
hyp→para

Pi(α
−;γ−,γ+)

Pi(α−;γ−,α−1(γ−))
= 0.

�

Remark 7.33. The previous result explains why there are no P∂α
∼= H∂α summands in

the unipotent-bordered McShane identity.

Lemma 7.34. Consider a path l as in Definition 7.31 and the first summation in Theorem
7.19. For any pair of pants (β,γ) ∈ Pα, we have

lim
hyp→para

logBi (α−;α+,γ+,β+)

`i(α)
=

1

1 + eφi(β,γ) · e 1
2 (κi(γ,γp)+`i(γ)+κi(β,βp)+`i(β))

.

Proof. Take the formula in Theorem 7.19, let

Z(x) := eφi(β,γ) · e
1
2 (κi(γ,γx)+`i(γ)+κi(β,βx)+`i(β)+`i(α)).

Then

lim
hyp→para

logBi (α−;α+,γ+,β+)

`i(α)
= lim

hyp→para

log e
`i(α)+Z(α−)

1+Z(α−)

`i(α)

= lim
hyp→para

e`i(α)+Z(α−)

1+Z(α−) − 1

`i(α)
=

1
1 + Z(p)

.

�

By a choice of fundamental domain, we define the normalized (µ, i)-Goncharov–
Shen potential for the boundary case.

Definition 7.35. For a PGLn(R)-positive representation ρ ∈ Poshn(Sg,m) with loxo-
dromic boundary monodromy, let (ρ, ξ) ∈ Xn(Sg,m) be the canonical lift (Definition
2.40) of ρ which induces the i-th potential ratio Bi. For any (β,γ) ∈ Pα and a choice of
its fundamental domain as in Figure 18. Then we define

Bi(γ,γα−) :=
Pi(α

−;γ−1(α−),γ(α−))

Pi(α−;γ−1(α−),β−1(α−))
,

Bi(β,βα−) :=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;γ−1(α−),β−1(α−))
.

Thus we have

Bi(γ,γα−) + Bi(β,βα−) = 1

When we take the limit limhyp→para along the path l in Definition 7.31, α− con-
verges to p, the ratio Bi(δ, δα−) converges to the i-th half-pants ratio Bi(δ, δp) for
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δ ∈ (β,γ). Actually Bi(δ, δp) does not depend on the fundamental domain that
we choose.
The following lemma provides the relation between ri(δ, δα−) and Bi(δ, δα−).

Lemma 7.36. Set up as in Theorem 7.28. We have

e−ri(γ,γα−)·`i(α) − 1
e`i(α) − 1

= Bi(γ,γα−).

eri(β,βα−)·`i(α) − 1
e`i(α) − 1

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
.

Proof. By direct computation

Bi
(
α−;α+,β(α−),β−1(α−)

)
− 1

e`i(α) − 1
=

Pi(α
−;α+,β−1(α−))−Pi(α

−;α+,β(α−))
Pi(α−;α+,β(α−))

e`i(α) − 1

=
Pi(α

−;β(α−),β−1(α−))

(e`i(α) − 1) · Pi(α−;α+,β(α−))

=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;α+,α−1β(α−)) − Pi(α−;α+,β(α−))

=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;β(α−),β−1(α−)) + Pi(α−;β−1(α−),α−1β(α−))

=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;β(α−),β−1(α−)) + e`i(α) · Pi(α−;γ−1(α−),γ(α−))

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
.

Similarly for the other formula. �

Then Lemma 7.27 and Lemma 7.36 allow us to compute the following.

Lemma 7.37. Set up as in Theorem 7.28. Evaluating the function f(A) = eA−1
e`i(α)−1

at

the four gap functions for Hα in Figure 18, we get:
(1)

Bi
(
α−;α+,γ−1(α−),γ−

)
− 1

e`i(α) − 1
= Bi(γ,γα−) · 1

1 + Pi(α−;γ−,γ(α−))
Pi(α−;γ−1(α−),γ−)

;

(2)

Bi (α
−;α+,γ+,γ(α−)) − 1
e`i(α) − 1

= Bi(γ,γα−) · 1

1 + e−ri(γ,γα−)·`i(α) · Pi(α
−;γ+,γ−1(α−))

Pi(α−;γ(α−),γ+)

;

(3)

Bi (α
−;α+,β(α−),β+) − 1
e`i(α) − 1

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
· 1

1 + Pi(α−;β+,β−1(α−))
Pi(α−;β(α−),γ−)

;
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(4)

Bi
(
α−;α+,β−,β−1(α−)

)
− 1

e`i(α) − 1

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
· 1

1 + eri(β,βα−)·`i(α) · Pi(α
−;β−,β(α−))

Pi(α−;β−1(α−),β−)

.

Proof. By direct compuation, we have

Bi
(
α−;α+,γ−1(α−),γ−

)
− 1

e`i(α) − 1

=

Bi(α−;α+,γ−1(α−),γ(α−))−Bi(α−;γ−,γ−1(α−),γ(α−))
1−Bi(α−;γ−,γ−1(α−),γ(α−))

− 1

e`i(α) − 1
by Lemma 7.27

=
Bi
(
α−;α+,γ−1(α−),γ(α−)

)
− 1

e`i(α) − 1
· 1

1 − Bi (α−;γ−,γ−1(α−),γ(α−))

=
Bi(γ,γα−)

1 + Pi(α−;γ−,γ(α−))
Pi(α−;γ−1(α−),γ−)

by Lemma 7.36 .

(43)

Similarly for the other cases. �

A direct consequence of Lemma 7.37 is the following.

Corollary 7.38. Consider a path l as in Definition 7.31. Suppose δ ∈ {β,β−1,γ,γ−1}.
Let x be a lift of the cusp p such that (x, δx, δ+) is a lift of the ideal triangle. For the four
cases in Lemma 7.37, we have

lim
hyp→para

|logBi (α−;α+, δ(α−), δ+)|
`i(α)

=
Bi(δ, δp)

1 + Pi(x;δ+,δ−1x)
Pi(x;δx,δ+)

.

Proof of Theorem 7.29. Let us study the formulas in Theorem 7.19 and Theorem
7.28 under the sequence of elements in l([0, 1)) that converges to l(1) as in Defini-
tion 7.31. Lemma 7.32 shows us that there are no P∂α

∼= H∂α summands. Formula
(41) is a consequence of Lemma 7.34 and Formula (42) is deduced by Corollary
7.38. �

Remark 7.39. Theorem 7.29 can be extended to the general (ρ, ξ) ∈ Xn(Sg,m) where the
distinguished oriented boundary component α has i-th length zero. Following the above
proof, the only thing that we need to modify is Lemma 7.32. For any (γ,γp) ∈ H∂p

∼= P∂p,
using

Bi
(
α−;α+,γ−,γ+

)
= Bi

(
α−;α+,γ−,γ(α−)

)
− Bi

(
α−;α+,γ+,γ(α−)

)
,

we have the corresponding gap function:

lim
hyp→para

logBi (α−;α+,γ−,γ+)
`i(α)

= Bp(γ,γp) ·
eκi(γ,γp)+`i(γ) − 1
eκi(γ,γp)+`i(γ) + 1

.

Similarly, Theorems 7.19 and 7.28 can be extended to the general (ρ, ξ) ∈ Xn(Sg,m), but
the equalities will be changed into inequalities.
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7.6. A strategy for establishing the unipotent-bordered McShane identity.

Lemma 7.40. Let ρ be a PGLn(R)-positive representation with only unipotent boundary
monodromy (only loxodromic boundary monodromy resp.). Let x be a cusp p (a boundary
component α resp.). Let Hx(γ) be the subset of Hx containing γ as the cuff. Then∑

µ∈Hx(γ)

Bi(µ) 6 1.(44)

Proof. Let us prove for the case ρ ∈ Posun(Sg,m) and x is a cusp p. The argument
for ρ ∈ Poshn(Sg,m) is the same since the following is a topological argument. For
each µ ∈ Hp(γ), Bi(µ) is the probability (with respect to the Goncharov–Shen
potential measure) that the portion of a geodesic launched from cusp p up to its
first point of self-intersection will either:

• intersect γ, or
• be completely contained on a pair of half-pants with γ as its cuff.

Suppose two µ,µ ′ ∈ Hp(γ) has non-empty interior intersection. We argue the
same way as [McS98, Proposition 1]. If µ and µ ′ contain a common geodesic
launched from cusp p up to γ, there is a unique pair of half-pants in Hp(γ)
containing γ and that geodesic. If µ and µ ′ contain a common geodesic launched
from cusp p up to its first point of self-intersection completely contained on a
pair of half-pants with γ as its cuff, there is a unique pair of half-pants in Hp(γ)
containing γ and that geodesic. We have µ = µ ′ for both of the above two cases.
We conclude Formula (44).

�

Theorem 7.41 (Equality under assumption). Let Cg,m is the set of free homotopy
classes of oriented simple closed curves on Sg,m. For any PGLn(R)-positive representa-
tion ρ, let

Di(N, ρ) := #
{
[δ] ∈ Cg,m log λi(ρ(δ))

λi+1(ρ(δ))
6 N

}
.

Assume that we have the following property:
Consider a path l in Definition 7.31 where l(1) = ρ ∈ Posun(Sg,m) has only
unipotent boundary monodromy, there exists a positive continuous function for
s ∈ [0, 1] such that

Di(N, l(s)) 6 c(l(s)) ·N6g−6+2m.(45)

Then the inequalities in theorem 7.29 are equalities.

Proof. It is enough to prove only Formula (42) is an equality.
Take a path l in Definition 7.31. For s ∈ [0, 1], let

(46)

F(s) :=
∑

δ∈Cg,m

∑
(δ,δα−)∈Hα(δ)

∣∣∣logBl(s)i (α−;α+, δ(α−), δ+)
∣∣∣

`
l(s)
i (α)

+

∑
γ

∑
(γ,γα−)∈Hα(γ)

logBl(s)i (α−;α+,γ−,γ+)

`
l(s)
i (α)

,
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where in the first summation δ is enumerated with respect to `i(δ), and in the
second summation γ goes over the finitely many boundary components of Sg,m
(oriented such that Sg,m is on the left side of γ) except α.
By Corollary 7.38 and Lemma 7.32, each summand of F(s) is a continuous func-
tion on s ∈ [0, 1]. By Theorem 7.10, F(s) = 1 for s ∈ [0, 1) and F(1) 6 1 by
Theorem 7.29. To prove F(1) = 1, we will show that F(s) is uniformly convergent
on s ∈ [0, 1].
Since the path l is compact, we have the following bounds in the path l:

(1) the limit of e
`i(α)−1
`i(α)

under limhyp→para is 1, so e`i(α)−1
`i(α)

is bounded above
by a constant C0 > 0;

(2) following the compactness argument in Theorem 3.4, the collection of all
the triple ratios for all the ideal triangles is uniformly bounded within a
compact positive interval, thus the collection {K(δ, δα−)}

(δ,δα−)∈Hα
(Equa-

tion (32)) is bounded below by a constant K > 0.
For the first summation of Equation (46):

∑
(δ,δα−)∈Hα

∣∣∣logBl(s)i (α−;α+, δ(α−), δ+)
∣∣∣

`
l(s)
i (α)

6
e`i(α) − 1
`i(α)

·
∑

(δ,δα−)∈Hα

(
Bi(δ, δα−)

1 + Ki(δ, δα−) · e`i(δ)

)
Lemma 7.37

6C0 ·
∑

δ∈Cg,m

∑
(δ,δα−)∈Hα(δ)

(
Bi(δ, δα−)

1 + Ki(δ, δα−) · e`i(δ)

)

6C0 ·
∑

δ∈Cg,m

∑
(δ,δα−)∈Hα(δ)

(
Bi(δ, δα−)

1 + K · e`i(δ)

)

6C0 ·
∑

δ∈Cg,m

1
K · e`i(δ)

Lemma 7.40

6C0 ·
+∞∑
t=1

Di(t, l(s))
K · et

.

By our assumption Equation (45), we have Di(t, l(s)) 6 c(l(s)) · t6g−6+2m for
s ∈ [0, 1]. Since [0, 1] is compact, there is Q > 0 such that c(l(s)) 6 Q. Thus the
rest sum of the above summation is bounded above by

C0Q

K
·

+∞∑
t=r+1

t6g−6+2m

et

which converges to zero when r goes to infinity.
The second summation of Equation (46) is finite over γ and∑

(γ,γα−)∈Hα(γ)

logBl(s)i (α−;α+,γ−,γ+)

`
l(s)
i (α)

6 1.

Hence we have F(s) uniformly convergent on s ∈ [0, 1]. Thus F(1) = 1.
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�



90 YI HUANG AND ZHE SUN

8. Applications

8.1. Simple spectral discreteness.

Definition 8.1 (Simple spectra). Recall S = Sg,m where 2g − 2 +m > 0. Let ρ ∈
Posun(S) be a PGLn(R)-positive representation with unipotent boundary monodromy,
and let Cg,m denote the collection of oriented simple closed geodesics on S up to homotopy.
We define the following spectra:

(1) the simple `i-spectrum:{
`ρi (γ) | γ ∈ Cg,m

}
,

(2) the simple largest-eigenvalue spectrum:{
λ1(ρ(γ)) | γ ∈ Cg,m

}
,

(3) and the simple ` :=
∑n−1
i=1 `i-spectrum:{
`ρ(γ) | γ ∈ Cg,m

}
.

Our goal in this subsection is to prove that the above simple spectra are discrete
for any positive representation ρ ∈ Posun(Sg,m). Our proof relies on the Theo-
rem 7.29. Let Hp(γ) denote the subset of Hp consisting of all boundary-parallel
half-pants with γ as its oriented cuff.

Lemma 8.2. Given a PGLn(R)-positive representation ρ ∈ Posun(S) with unipotent
boundary monodromy equipped with an auxiliary cusped complete hyperbolic surface
Σ = (S,hρ) as in Definition 2.7, let p be a distinguished puncture of S. There is a
universal constant bρ > 0 such that for every oriented simple closed curve γ ∈ Cg,m,
there exists an embedded pair of half-pants (γ,γp) ∈ Hα(γ) such that:

Bi(γ,γp) > bρ.

Proof. Much like the proof of the boundedness of triple ratios (Theorem 1.16), we
rely on a compactness argument. With respect to the hyperbolic metric Σ, the
length 1 horocycle ηp around cusp p separates Σ into two connected components:
an (open) annular cuspidal neighborhood Cp ⊂ Σ as well as a (closed) homotopy
retract Σ(p) := Σ−Cp. Also let Σ>1 ⊂ Σ(p) ⊂ Σ denote the compact subsurface of
Σ obtained from truncating every cusp of Σ at its length 1 horocycle.

Consider the following subset of the unit tangent bundle T 1Σ:

Ξ :=

(x, v) ∈ T 1Σ

x is a point lying in Σ>1 and the geodesic ray σ(x,v)
shooting out from x with initial vector v is simple,
approaches the cusp p, and the arc σ(x,v) ∩ Σ>1

realizes the distance between x and ηp

 .

Let dΣ>1 be the closed surface obtained by doubling Σ>1. Then T 1Σ>1 is a closed
subset of the compact space T 1dΣ>1. We now show that Ξ is a closed subset of
the restricted unit tangent bundle T 1Σ>1 of T 1Σ to Σ>1, and is hence compact.
Consider a sequence {(xn, vn) ∈ Ξ} which converges to a point (x∞, v∞). Since
Σ>1 is a closed subset of Σ, the limiting base point x∞ must lie on Σ>1. Next, to
show that the geodesic ray σ(x∞,v∞) approaches the cusp p, choose a fundamental
domain F for Σ containing a lift x̃∞ of x∞ in the interior. The lifts to F of the
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sequence {(xk, vk)} for k large enough necessarily all induce rays which shoot
into the same lift p̃ of the cusp p, and hence σ(x∞,v∞) also shoots into p. Hence Ξ
is a compact set.

Since σ(x,v) shoots into cusp p, the corresponding subset to Ξ in Tri(Σ) is a com-
pact subset with every point of the form [p̃,b, c]ρ, where p̃ is a lift of p. In particu-
lar, this means that the (strictly) positive function Pi(p̃;b, c)/Ppi in Definition 7.11
is well-defined and continuous on a compact set and achieves its minimum. We
denote this minimum by bρ > 0.

Given an arbitrary oriented (essential) simple closed curve γ ∈ Cg,m, let γ denote
its geodesic realization on Σ. Further let x0 ∈ γ be the point on γ closest to the
horocycle ηp, let σ be one of the geodesic arcs realizing the distance between x0
and ηp, and let v0 denote the initial vector of σ. By construction, the geodesic
ray σ(x0,v0) contains σ. Since σ is a distance minimizing arc, it must meet ηp
perpendicularly and hence σ(x0.v0) shoot up straight into cusp p after passing
ηp. Moreover, the arc σ must also be simple (so as to be distance minimizing),
and hence σ(x0,v0) is the concatenation of σ and a simple geodesic ray which
lies in Cp (and hence cannot intersect σ) and is thus simple. Therefore, we see
that (x0, v0) ∈ Ξ. We denote its corresponding point in Tri(Σ) by [p̃,b0, c0]ρ. Let
(γ̄, γ̄p) ∈ Hp denote the unique embedded pair of half-pants on S containing
γ̄ ∪ σ(x0,v0) (Figure 23).

Figure 23. The pair of half-pants (γ̄, γ̄p) is the unique embedded
pair of half-pants that contains γ̄ and σ(x0, v0) ⊃ σ.

We also know that σ is perpendicular to γ, and by possibly replacing p̃ with a
different lift of p, the point b0 must be of one of the two fixed points of ρ(γ). This
in turn means that Bi(γ,γp) > Pi(p̃;b, c)/Ppi > b

ρ > 0, thereby demonstrating
the desired lower bound. �

Theorem 8.3. Let ρ ∈ Posun(S) be a PGLn(R)-positive representation with unipotent
boundary monodromy. Then the simple `i-spectrum for 1 6 i 6 n− 1, the simple largest
eigenvalue spectrum and the simple `-spectrum for ρ are all discrete.
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Proof. We begin by rearranging the inequality Theorem 7.29 to obtain the follow-
ing expression for i = 1, · · · ,n− 1:

∑
γ∈Cg,m

∑
(γ,γp)∈Hp(γ)

Bi(γ,γp)
1 + e`i(γ)+τ(γ,γp)

6 1.

Invoking Theorem 3.4 to assert that there exists some τmin such that τ(γ,γp) 6
τmax, we obtain:

∑
γ∈Cg,m

 1
1 + e`i(γ)+τmax

∑
(γ,γp)∈Hp(γ)

Bi(γ,γp)

 6 1.

Further invoking Lemma 8.2 to uniformly bound∑
(γ,γp)∈Hp(γ)

Bi(γ,γp) > sup
(γ,γp)∈Hp(γ)

Bi(γ,γp) > bρ.

Hence: ∑
γ∈Cg,m

bρ

1 + e`i(γ)+τmax
61.

This suffices to ensure the discreteness of the simple `i-spectrum.
Then

` =

n−1∑
i=1

`i

ensures that the `-spectrum is also discrete. Furthermore, the fact that

e`(γ) > λ1(ρ(γ))

then ensures that the simple largest-eigenvalue spectrum is also discrete. �

8.2. The collar lemma. As a second application of our McShane identity, we
establish the collar lemma for ρ ∈ Pos3(Sg,m) which corresponds to a certain
convex RP2 structure. We require our McShane identities for Pos3(S1,1). Note
also that we do not need the full force of the McShane identity, and only require
the inequality.

Lemma 8.4. Let ρ ∈ Posu3 (S1,1) be a PGL3(R)-positive representation with unipotent
boundary monodromy (or equivalently cusped strictly convex RP2 structure on S1,1). We
define

T(β) := T(p̃,βp̃,β+).

For distinct (oriented) simple closed geodesics β,γ ∈ C1,1, let

u1 = T(β)λ1(ρ(β))
λ2(ρ(β))

, u2 = T(β−1)λ1(ρ(β
−1))

λ2(ρ(β−1))
,

u3 = T(γ)λ1(ρ(γ))
λ2(ρ(γ))

, u4 = T(γ−1)λ1(ρ(γ
−1))

λ2(ρ(γ−1))
.

Then, for any configuration of {i, j,k, l} = {1, 2, 3, 4}, we have:(
(uiuj)

1
2 − 1

)
·
(
(ukul)

1
2 − 1

)
> 4.
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Proof. By Theorem 5.13, we have:
4∑
s=1

1
1 + us

<
∑
δ∈C1,1

1

1 + T(δ)λ1(ρ(δ))
λ2(ρ(δ))

6 1.

Multiplying both sides by
∏4
s=1(1 + us) and rearranging the resulting terms, we

obtain:

3 + 2
4∑
i=s

us +
∑
s<t

usut <

4∏
s=1

us.

Further adding (1 − uiuj − ukul) to both sides, we get:

(2 + ui + uj)(2 + uk + ul) < (1 − uiuj)(1 − ukul).

By the algebraic mean-geometric mean inequality, we obtain:

(2 + 2(uiuj)
1
2 )(2 + 2(ukul)

1
2 ) < (1 − uiuj)(1 − ukul),

and hence: (
(uiuj)

1
2 − 1

)
·
(
(ukul)

1
2 − 1

)
> 4.

�

Proposition 8.5. Let ρ ∈ Pos3(S1,1) be a PGL3(R)-positive representation. The twice of
Hilbert lengths ` of any two distinct simple closed geodesics β and γ satisfy the following
inequality:

(e
1
2 `(β) − 1)(e

1
2 `(γ) − 1) > 4.(47)

Proof. We first consider the unipotent case. Recall from Equation (23) that

T(p̃, δp̃, δ+) · T(p̃, δ−1p̃, δ−) = 1,

where p̃ is a lift of the puncture p such that (p̃, δp̃, δ+) is a lift of an ideal triangle.
This means that the product terms u1u2 and u3u4 satisfy

u1u2 = λ1(ρ(β))
λ3(ρ(β))

= e`(β) and u3u4 = λ1(ρ(γ))
λ3(ρ(γ))

= e`(γ),

and hence we obtain Equation (47) as desired.

Similarly for the distinguished oriented boundary component α (such that S1,1 is
on the left) has 1st length zero.
We now turn to the case where the distinguished oriented boundary component
α has 1st length non-zero. For any simple closed geodesic δ on Σ, let µδ1 ,µδ2 ∈ Hα
denote two boundary-parallel pairs of half-pants which have δ as its oriented cuff
such that their underlying half-pants are distinct. Recall Definition 7.26, we have

(48) r1(µ
δ
1 ) + r1(µ

δ−1

2 ) = 1, r1(µ
δ
1 ) = −r1(µ

δ−1

1 ).

We consider two gap functions in Theorem 7.28 associated to one pair of half-

pants: log
(
er1(µ

δ
i
)`1(α)+e`1(δ)+τ(δ)

1+e`1(δ)+τ(δ)

)
for r1(µ

δ
i ) and log

(
1+e`1(δ

−1)+τ(δ−1)

e−r1(µ
δ
i
)`1(α)+e`1(δ

−1)+τ(δ−1)

)
for r1(µ

δ−1

i ).
We require the following fact:

XY > 1⇒ (1 + X2)−1 + (1 + Y2)−1 > 2(1 + XY)−1.
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By taking X = e
−r1(µ

δ
i
)`1(α)+`1(δ)+τ(δ)

2 and Y = e
r1(µ

δ
i
)`1(α)+`1(δ

−1)+τ(δ−1)
2 , we obtain:

2r1(µ
δ
i )

1 + e
1
2 `(δ)

6
r1(µ

δ
i )e

r1(µ
δ
i )`1(α)

er1(µδi )`1(α) + e`1(δ)+τ(δ)
+

r1(µ
δ
i )e

−r1(µ
δ
i )`1(α)

e−r1(µδi )`1(α) + e`1(δ−1)+τ(δ−1)
.(49)

The above inequality in turn leads to the following comparison: for `1(α) > 0,

2r1(µ
δ
i )`1(α)

1 + e
1
2 `(δ)

6 log

(
er1(µ

δ
i )`1(α) + e`1(δ)+τ(δ)

1 + e`1(δ)+τ(δ)

)
+ log

(
1 + e`1(δ

−1)+τ(δ−1)

e−r1(µδi )`1(α) + e`1(δ−1)+τ(δ−1)

)
.

(50)

To see this, note that Equation (50) is an obvious equality when `1(α) = 0 and its
derivative with respect to `1(α) satisfies Equation (49) for `1(α) > 0. We see that:

(51)

2r1(µ
δ
i )

1 + e
1
2 `(δ)

6
1

`1(α)
log

(
er1(µ

δ
i )`1(α) + e`1(δ)+τ(δ)

1 + e`1(δ)+τ(δ)

)

+
1

`1(α)
log

(
1 + e`1(δ

−1)+τ(δ−1)

e−r1(µδi )`1(α) + e`1(δ−1)+τ(δ−1)

)
.

There is one inequality of the same form as Equation (51) for each choice of
δ = β,γ and i = 1 or 2. This makes a total of four such inequalities, and hence
eight right-hand side terms. Crucially, these eight terms are distinct summands
of the McShane identity for ρ ∈ Pos3(S1,1) by Theorem 7.28, and hence by Remark
7.39:

2r1(µ
β
1 )

1 + e
1
2 `(β)

+
2r1(µ

β
2 )

1 + e
1
2 `(β)

+
2r1(µ

γ
1 )

1 + e
1
2 `(γ)

+
2r1(µ

γ
2 )

1 + e
1
2 `(γ)

< 1.

By Equation (48), we then obtain
2

1 + e
1
2 `(β)

+
2

1 + e
1
2 `(γ)

< 1,

which rearranges to give Equation (47) as desired. �

Theorem 8.6 (Collar lemma). Let ρ ∈ Pos3(Sg,m) be a PGL3(R)-positive representa-
tion. Any two intersecting simple closed geodesics β,γ satisfy the following inequality:

(e
1
2 `(β) − 1)(e

1
2 `(γ) − 1) > 4.(52)

Proof. We first note that Proposition 8.5, coupled with the fact that the twice of
Hilbert length `(δ) (which we call length for short in this proof) of a curve δ is
equal to

`(δ) = `1(δ) + `2(δ),
tells us that Equation (52) is true if the convex hull of β ∪ γ is a 1-holed torus.
Furthermore, whenever the convex hull of β∪γ is a 4-holed sphere Σ0,4, then Σ0,4
is the quotient of a 4-holed torus Σ1,4 with respect to the action of an isometric
involution (see Figure 24):
The curve β lifts to two simple connected geodesics β1,β2 in Σ1,4, each of length
equal to length of β. Likewise, the curve γ also lifts to γ1 and γ2. The convex hull
of β1 ∪ γ1 is a 1-holed torus, and hence we once again obtain Equation (52).

The above cases cover all possibilities where there are two or fewer (geometric)
intersection points between β and γ. We now turn to the case when there are at
least three intersections. Let us assume without loss of generality that β is shorter
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Figure 24. The left 4-holed torus double covers the right 4-holed
sphere, with identification given by π-rotation about the central
vertical axis. The curves β1,γ1 respectively cover β,γ precisely
once and the convex hull of β1 ∪ γ1 is a 1-holed torus.

than or equal to γ. We also assume that the intersection points β ∩ γ are generic,
our arguments still apply when there are non-generic intersection points with the
small caveat that some of the geodesic segments we concatenate may be of length
zero.

Consider the geodesic subarcs {σ} on γ with ends in β∩γ, but not interior points.
Note that this collection of subarcs may be bipartitioned into those whose end-
point tangent directions point to the same side of β (left hand side of Figure 25)
and those whose endpoint directions point to opposite sides (right hand side of
Figure 25). We refer to the former as a type-A arc and the latter as a type-B arc.

Figure 25. A type-A arc (left) versus a type-B arc (right).

Case 1: ∃ type-A arc σ on γ of length `(σ) 6 1
2 `(γ). Join the two ends of σ

with the shorter of the two subarcs of β traversing between the endpoints of σ.
The resulting concatenated broken geodesic shortens to a unique simple closed
geodesic γ ′ which intersects β precisely once. The length of γ ′ satisfies:

`(γ ′) 6 1
2 (`(β) + `(γ)) 6 `(γ),
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and the convex hull of β ∪ γ ′ is a 1-holed torus. Therefore:

(e
1
2 `(β) − 1)(e

1
2 `(γ) − 1) > (e

1
2 `(β) − 1)(e

1
2 `(γ

′) − 1) > 4,(53)

as desired.

Case 2: no type-A arcs on γ. Let N denote the number of intersection points
in β ∩ γ (non-generic intersection points are counted with multiplicity). The no
type-A arcs condition forces N to be even. Hence, there are N > 4 type-B arcs
σ1, . . . ,σN which concatenate to form γ. Consider the N geodesic arcs of the form
σi ∗ σi+1 (and σN ∗ σ1) obtained from concatenating consecutive type-B arcs. The
total sum of the lengths of these concatenated arcs is 2`(γ), and the pigeonhole
principle tells us that at least one has length shorter than 2`(γ)

N
6 `(γ)

2 .

Let σ denote one such `(γ)
2 -short concatenated arc and consider the closed broken

geodesic formed by joining the endpoints of σ with the shorter of the two arcs on
β adjoining the endpoints of σ, and denote its geodesic representative by γ ′. The
curve γ ′ is either simple or may have one self-intersection. In the former case, we
have two simple closed geodesics β and γ ′ with geometric intersection number
equal to 2 but algebraic intersection number equal to 0. Hence β ∪ γ ′ lies on a
4-holed sphere, and we once again obtain Equation (53). In the latter case, the
convex hull of γ ′ is a pair of pants. and precisely one of the two ways of resolving
the intersection point on γ ′ produces an essential simple closed geodesic γ ′′ (see
Figure 26). In particular, since Hilbert metric is a distance metric, the triangle
inequality ensures that resolving crossings results in shorter rectifiable curves
with even shorter geodesic representatives. Thus, we replace γ ′ with γ ′′, and
wind up with the former case.

In either of the two cases as in Figure 26,

Figure 26. An example of the how the arc σ (left) is used to
produce curves γ ′ (center) and γ ′′ (right).

Case 3: ∃ type-A arc b on γ of length `(b) > 1
2 `(γ). Our argument here is similar

to Case 2. Let N again denote the number of intersection points β∩γ. By assum-
ing disjointness from Case 1, we may assume without loss of generality that there
are N − 1 consecutive type-B arcs σ1, . . . ,σN−1 which, along with b, concatenate
to form γ. The sum of the length of the following list of N concatenated arcs

σ1 ∗ σ2, . . . ,σi ∗ σi+1, . . . ,σN−2 ∗ σN−1,σN−1 ∗ b,b ∗ σ1
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is equal to 2`(γ). By the pigeonhole principle, there must be at least one concate-
nated arc of the form σ = σk ∗ σk+1 of length shorter than

2`(γ) − `(σN−1 ∗ b) − `(b) ∗ σ1)

N− 2
<

2`(γ) − 2`(b)
N− 2

<
`(γ)

N− 2
.

If N > 3, the above inequality ensures that `(σ) < `(γ)
2 . If N = 3, then σ must

be σ1 ∗ σ2, and is the complementary arc to b. Hence σ is again of length less
than `(γ)

2 . We may now run the latter half of the argument for Case 3 to obtain
equation (52). �

Remark 8.7. Multiply both sides of Equation (52) by (4e
`(β)

4 e
`(γ)

4 )−1 and we obtain

sinh
( 1

4 `(β)
)
· sinh

( 1
4 `(γ)

)
> e−

`(β)+`(γ)
4 .

Our inequality is weaker than the “sharp" inequality described in [LZ17, Conjecture
3.8].

8.3. Thurston-type ratio metrics. Thurston showed in [Thu98, Theorem 3.1] that
it is impossible for the simple marked length spectrum of one hyperbolic struc-
ture on a closed surface S to dominate that of another. This non-domination
ensures that Thurston’s simple length ratio metric on Teich(S) is positive.

Non-domination breaks down for bordered hyperbolic surfaces, and it is possible
to map from a bordered surface to one where every geodesic is shorter [PT10].
The way that Papadopoulous and Théret resolve this issue is to introduce ortho-
geodesic arcs into the collection of objects that one takes length ratios over. We
show using McShane identities that the naïve length ratio metric suffices provided
that one fixes all boundary lengths.

Theorem 8.8. Given marked hyperbolic surfaces Σ1,Σ2 ∈ Teichg,m(L1, . . . ,Lm) with
fixed boundary lengths L1, . . . ,Lm > 0 for α1, · · · ,αm. Then the marked simple geodesic
spectrum for Σ1 dominates the marked simple geodesic spectrum Σ2 if and only if Σ1 = Σ2.

Proof. Assume without loss of generality that the simple length spectrum of Σ1
dominates that of Σ2. We first consider the case where at least one of the bound-
aries α = αi is strictly greater than 0. Let Pα be the set of the homotopy classes
of pairs of pants and P∂α is a subset of Pα which have two borders, say α and γ,
as boundary components of Sg,m. The summands in the McShane identities for
bordered surface [Mir07a, TWZ06]:
(54)

Li =
∑

(β,γ)∈Pα

2 log
e
`(α)

2 + e
`(β)+`(γ)

2

e
−`(α)

2 + e
`(β)+`(γ)

2

+
∑

(β,γ)∈P∂α

log
cosh( `(β)2 ) + cosh( `(α)+`(γ)2 )

cosh( `(β)2 ) + cosh( `(α)−`(γ)2 )

have summands which are strictly decreasing with respect to increasing the lengths
of (interior) simple closed geodesics. Since the simple length spectrum of Σ1
dominates that of Σ2, this forces each pair of corresponding summands in the
McShane identities for Σ1 and Σ2 to be equal. This forces the length of multi-
curves `Σ1(β) + `Σ1(γ) to be equal to `Σ2(β) + `Σ2(γ) for each (β,γ) ∈ Pα, and
`Σ1(β) = `Σ2(β) for each (β,γ) ∈ P∂α. For each (β,γ) ∈ Pα, domination then tells
us that

`Σ1(β) = `Σ2(β) and `Σ1(γ) = `Σ2(γ).
Therefore, the marked simple length spectra for Σ1 and Σ2 are equal and Σ1 = Σ2.
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The remaining case is where every boundary is length 0 is classically due to
Thurston [Thu98], but can also be demonstrated by applying the same arguments
to McShane’s identities for cusped surfaces [McS98]. �

The above non-domination result immediately implies the following:

Definition 8.9 (Thurston metric for bordered surfaces). Let Cg,m be the set of
simple closed curves up to homotopy on Sg,m. The non-negative real function dTh :
Teichg,m(L1, . . . ,Lm)× Teichg,m(L1, . . . ,Lm)→ R>0 defined by

dTh(Σ1,Σ2) := log sup
γ̄∈Cg,m

`Σ2(γ̄)

`Σ1(γ̄)
,

is a mapping class group invariant asymmetric Thurston-type length ratio metric on the
Teichmüller space Teichg,m(L1, . . . ,Lm) of surfaces with fixed boundary lengths L1, . . . ,Lm.

We are now interested in the spaces of geometric structures underlying the PGL3(R)-
positive representations. By [Mar10], the space Convu(Sg,m) of cusped strictly
convex RP2 structures on Sg,m>1 is homeomorphic to Posu3 (Sg,m).
Tholozan [Tho17] showed that, for any strictly convex RP2 structure ρ on a closed
surface, it is always possible to find a hyperbolic structure j such that the length
spectrum of j is uniformly smaller than that of ρ (which should also works for
the cusped strictly convex RP2 structure on Sg,m). Thus, the naïve length ratio
expression for the Thurston metric, when extended to the space Convu3 (Sg,m),
results in a function which may be negative. To deal with this, we reverse en-
gineer our McShane identities-based proof for the non-negativity of the length
ratio metric (Theorem 8.8) and propose the following candidate for a metric on
Convu3 (S1,1):

dGap(Σ1,Σ2) := log sup
γ∈C1,1

(
log(1 + e`

Σ2
1 (γ)+τΣ2(γ))

log(1 + e`
Σ1
1 (γ)+τΣ1(γ))

)
(55)

To show that this is a well-defined function, we use the following comparison:

Theorem 8.10 ([Ben01, Corollary 5.3], ` vs. `i-length comparison). For any cusped
strictly convex RP2 structure ρ, there exists Kρ > 1 such that for every non-trivial
non-peripheral closed curve γ on S, we have:

`1(γ) 6 `(γ) 6 Kρ · `1(γ).

Remark 8.11. Although [Ben01, Corollary 5.3] is stated for closed surfaces, Proposi-
tion 6.8 allows us to extend this result to the cusped strictly convex RP2 surfaces.

Proposition 8.12. The function dGap is well-defined.

Proof. We need to show that the supremum in (55) is bounded. If the supremum
is realized by some simple geodesic γ, then obviously the gap metric is well-
defined. If not, then there is a sequence of distinct geodesics {γk} for which the
expression in (55) tends to the supremum. Then, by the discreteness of the sim-
ple length spectrum (Theorem 8.3) and the uniform boundedness of triple ratios
(Theorem 3.4), showing that the supremum exists is equivalent the existence of
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the following supremum:

sup
γ∈C1,1

`Σ2
1 (γ)

`Σ1
1 (γ)

6 KΣ1 · sup
γ∈C1,1

`Σ2(γ)

`Σ1(γ)
,(56)

where the KΣ1 in the right hand side is the coefficient in Theorem 8.10. How-
ever, we know from [Thu16, Theorem 2] that the twice of Hilbert lengths `Σ1(·)
and `Σ2(·) extend continuously to the space of (compactly supported) measured
laminations on S1,1. In particular, the homogeneity of these length functions on
multicurves means that they must be homogeneous over all of measured lamina-
tion space, and hence `Σ2/`Σ1 defines a continuous function on the space of (com-
pactly supported) projective measured laminations. This is a compact codomain,
and hence must be bounded above. Therefore, the left-hand side supremum in
(56) exists and dGap is well-defined. �

Theorem 8.13 (Gap metric for Convu(S1,1)). The non-negative function dGap defines
a mapping class group invariant aymmetric metric on Convu(S1,1).

Proof. It is clear that dGap is mapping class group invariant and satisfies the tri-
angle inequality. The McShane-type identity (Theorem 5.13) tells us that the gap
summands of for Σ1 cannot dominate those for Σ2, and this gives us the requisite
non-negativity.

All that remains is to show that dGap(Σ1,Σ2) = 0 if and only if Σ1 = Σ2. One
way is obvious. For the converse, assume that dGap(Σ1,Σ2) = 0, then the McShane
identity tells us that the corresponding gap summands must each be equal, and
hence

∀γ ∈ C1,1, `Σ1
1 (γ) + τΣ1(γ) = `Σ2

1 (γ) + τΣ2(γ).

Consider the sequence of curves {βγk}k∈Z obtained from applying Dehn-twists
along γ to a β which once-intersects γ. The eigenvalues for the monodromy for
two matrices are minimal/maximal when they are simultaneously diagonaliz-
able, and hence we obtain the bounds:

k`1(γ) + log λ3(β) − log λ1(β) = k`1(γ) − `(β) < `1(βγ
k) and

k`1(γ) + log λ1(β) − log λ3(β) = k`1(γ) + `(β) > `1(βγ
k).

Hence we see that

`1(γ) = lim
k→∞ 1

k
`1(βγ

k),(57)

which in turn implies that:

`Σ2
1 (γ)

`Σ1
1 (γ)

= lim
k→∞

1
k
`Σ2

1 (βγk)
1
k
`Σ1

1 (βγk)
= lim
k→∞

1
k
(`Σ2

1 (βγk) + τΣ2(βγk))
1
k
(`Σ1

1 (βγk) + τΣ1(βγk))
= 1.

Therefore, the marked simple `1 (and `2) spectra for Σi ∈ Convu(S1,1) must be
congruent. Which means that the simple marked λ1 spectra for Σ1 and Σ2 must
be equal. By [BCL20], this means that Σ1 = Σ2. �

Proposition 8.14. The restriction of the metric dGap to the Fuchsian locus of Convu(S1,1)
is precisely the Thurston metric dTh.
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Proof. We first note that on the Fuchsian locus, triple ratios are all equal to 1,
and the simple root length `1(γ) of every geodesic γ is equal to 1

2 `(γ). Since
f(x) = log(1 + x)/ log(x) is a monotonically decreasing for x > 0, whenever
`Σ2

1 (γ) > `Σ1
1 (γ), we have

log(1 + e`
Σ2
1 (γ))

log(1 + e`
Σ1
1 (γ))

<
log(e`

Σ2
1 (γ))

log(e`
Σ1
1 (γ))

=
`Σ2

1 (γ)

`Σ1
1 (γ)

=
`Σ2(γ)

`Σ1(γ)
.

Therefore dGap 6 dTh. On the other hand, by equation (57), we have

lim
k→+∞

log(1 + el
Σ2
1 (βγk))

log(1 + el
Σ1
1 (βγk))

= lim
k→+∞

1
k
`Σ2

1 (βγk)
1
k
`Σ1

1 (βγk)
=
`Σ2

1 (γ)

`Σ1
1 (γ)

gives us the converse comparison dGap > dTh, hence allowing us to conclude that
the two metrics are equal on the Fuchsian locus. �

8.3.1. Two generalizations to Sg,m. We now turn to the space Convu(Sg,m). We
consider two possible generalizations. The first is equal to the Thurston metric
on the Fuchsian slice and is conjecturally generalizable for Posun(Sg,m) with n > 4.

Definition 8.15 (Pants-gap metric for Convu(Sg,m)). For a cusped convex real projec-
tive surface Σ ∈ Convu(Sg,m) with cusps p1, . . . ,pm, we define the pants gap function
PGapΣ(β,γ) for a boundary-parallel pair of pants (β,γ) as the McShane identity sum-
mand corresponding to (β,γ):

PGapΣ(β,γ) :=
(

1 + eφ1(β,γ) · e
1
2 (τ(γ,γp)+`1(γ)+τ(β,βp)+`1(β))

)−1
.

We define the pants gap metric as:

dPGap(Σ1,Σ2) := log sup
(β,γ)∈P

log(PGapΣ1(β,γ))
log(PGapΣ2(β,γ))

,

where (β,γ) varies over the set P = Pp1 ∪ . . . ∪ Ppm of all boundary-parallel pairs of
pants on Sg,m.

Definition 8.16 (Total gap metric for Convu(Sg,m)). For a cusped convex RP2 surface
Σ ∈ Convu(Sg,m) with cusps p1, . . . ,pm, we define the total gap function as:

TGapΣ(γ) :=
1
m

m∑
j=1

 ∑
(γ,γp)∈Hpj(γ)

B1(γ,γp)
1 + e`1(γ)+τ(γ,γp)

 .

We define the total gap metric as:

dTGap(Σ1,Σ2) := log sup
γ∈Cg,m

log(TGapΣ2(γ))

log(TGapΣ1(γ))
.

Remark 8.17. When (g,m) = (1, 1), both of these two metrics agree with the gap metric
we defined for 1-cusped convex real projective tori.

Remark 8.18. The proof that the total gap metric is a mapping class group invariant
asymmetric metrics on Convu(Sg,m) is essentially the same as for the Convu(S1,1) case
with the help of Lemma 7.40 and Lemma 8.2. The well-definedness of Definition 8.15
requires Conjecture 7.23.
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Proposition 8.19. The restriction of the pants gap metric dPGap to the Fuchsian locus is
equal to the classical Thurston metric.

Proof. The proof is essentially identical to the proof of Proposition 8.14, provided
that one uses the following fact:

dTh(Σ1,Σ2) = log sup
(β̄,γ̄)∈Pp

`Σ2(β̄, γ̄)
`Σ1(β̄, γ̄)

,

where `Σ1(β̄, γ̄) := `Σ1(β̄) + `Σ1(γ̄), which comes from the fact that the projection
of Pp, regarded as a set of multicurves, in projective measured lamination space
is dense. �

Remark 8.20. It is unclear whether the restriction of the total gap metric dTGap to the
Fuchsian locus is the Thurston metric, although it is fairly straight-forward to show that
dTGap > dTh.

It is also possible to extend the pants gap metric over Posh3 (Sg,m).

Definition 8.21 (Pants gap metric for Posh3 (Sg,m)). Let α1, . . . ,αm be the boundary
components of Sg,m. Let Posh3 (Sg,m)(L) be the space of PGL3(R)-positive representa-
tions with fixed loxodromic boundary monodromy L. Recall the notations: Pα denotes
the set of the homotopy classes of boundary-parallel pairs of pants containing α, and P∂α
denotes the set of the homotopy classes of boundary-parallel pairs of pants in Pα which
have two borders being boundary components of Sg,m.

• For any (β,γ) ∈ Pα \ P∂α we set PGapΣ(β,γ) to be 1
`1(α)

times the i = 1
McShane identity summand in Theorem 7.19;

• for any (β,γ) ∈ P∂α, we set PGapΣ(β,γ) to be 1
`1(α)

times the i = 1 summand
in Theorem 7.19.

The pants gap metric dPGap(Σ1,Σ2) on Posh3 (Sg,m)(L) is defined as:

log max
j=1,...,m

 sup
[β,γ]∈Pαj\Pαj

log(PGapΣ1(β,γ))
log(PGapΣ2(β,γ))

, sup
(β,γ)∈P∂αj

log(PGapΣ1(β,γ))
log(PGapΣ2(β,γ))

 .

The proof that this is a well-defined metric is essentially the same as for the
cusped case and we again require Conjecture 7.23.

Remark 8.22. We expect Conjecture 7.23 to be true. Provided that this can be demon-
strated, it is possible to generalize the pants gap metric to define asymmetric metrics on
the loxodromic-bordered positive representation variety of arbitrary rank. Moreover, the
(n − 1) different McShane identities we obtain induce a (n − 1)-dimensional positive
“quadrant” of such metrics.
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Appendix A. Fuchsian rigidity

Proposition A.1 (Triple ratio rigidity for n = 3, 4). For n = 3, 4, a positive repre-
sentation ρ ∈ Posn(Sg,m) is n-Fuchsian if and only if ρ satisfies the triple ratio rigidity
condition.

Proof. We invoke Remark 3.13, and also lift our discussion to the universal cover
to avoid dealing with different cases involving topologically distinct triangula-
tions of the surface. Given any ideal triangulation T, consider an ideal edge xz
common to two ideal triangles (x,y, z) and (x, z, t) in T̃ as depicted in Figure 27.

Figure 27. flip at xz
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We compute X ′
v1,1,n−2
t,y,z

after flipping at edge xz via the cluster transformation:

X ′
vt,y,z

1,1,n−2

Xvx,y,z
1,1,n−2

=
1 + Xvx,z

2,n−2
+ Xvx,z,t

1,n−2,1
Xvx,z

2,n−2
+ Xvx,z

1,n−1
Xvx,z,t

1,n−2,1
Xvx,z

2,n−2

1 + Xvx,z
1,n−1

+ Xvx,y,z
1,1,n−2

Xvx,z
1,n−1

+ Xvx,z
2,n−2

Xvx,y,z
1,1,n−2

Xvx,z
1,n−1

.

By assumption, triple ratios are all equal to 1, and the equation above tells us that

Xvx,z
2,n−2

= Xvx,z
1,n−1

.

By symmetry, we also have

Xvx,z
n−2,2

= Xvx,z
n−1,1

.

For n = 3, 4 there are at most 3 coordinates along xz, and hence must all be equal.
Since this applies to any arbitrary edge, we see that ρ is n-Fuchsian. �

Proposition A.2 (Edge function rigidity for n = 3). For n = 3, a positive represen-
tation ρ ∈ Posn(Sg,m) is n-Fuchsian if and only if ρ satisfies the edge function rigidity
condition.

Proof. We again invoke Remark 3.13, and we again work in the universal cover
(see Figure 27). By assumption, we have Xvx,z

1,2
= Xvx,z

2,1
. After flipping the edge xz,

we obtain

X ′vx,y
1,2

=
Xvx,y

1,2
Xvx,y,z

1,1,1
Xvx,z

1,2
(1 + Xvx,z

1,2
)

1 + Xvx,z
1,2

+ Xvx,z
1,2
Xvx,y,z

1,1,1
+ Xvx,z

1,2
Xvx,y,z

1,1,1
Xvx,z

1,2

=
Xvx,y

1,2
Xvx,y,z

1,1,1
Xvx,z

1,2

1 + Xvx,y,z
1,1,1

Xvx,z
1,2

,

and

X ′vx,y
2,1

=
Xvx,y

2,1
Xvx,z

2,1

1 + Xvx,z
2,1

=
Xvx,y

1,2
Xvx,z

1,2

1 + Xvx,z
1,2

,

which satisfies X ′
vx,y

1,2
= X ′

vx,y
2,1

by assumption. Solving for Xvx,y,z
1,1,1

yields Xvx,y,z
1,1,1

= 1
as desired. �

Appendix B. More on the length spectrum of cusped strictly convex real

projective surfaces

The proof of the Birman-Series theorem implies that the simple length spectrum
of a cusped (or a closed) convex real projective surface necessarily has at least
polynomial asymptotic growth rate. We now show something stronger, that it is
asymptotically of order N6g−6+2m.

Proposition B.1. Given a cusped strictly convex real projective surface Σ ∈ Convu3 (Sg,m),
let D(N,Σ) denote the number of (non-peripheral) simple closed geodesics on Σ of length
less than N. Then there exist constants kΣ,KΣ > 0 such that

kΣN
6g−6+2m 6 D(N,Σ) 6 KΣN6g−6+2m, for all sufficiently large N.

Proof. We first endow Sg,m with an auxiliary cusped hyperbolic metric h0 which
is smoothly compatible with Σ, and note that by McShane–Rivin [MR95] and
Rivin [Riv01], there exist constants k0,K0 > 0 such that

k0N
6g−6+2m 6 D(N, (Sg,m,h0)) 6 K0N

6g−6+2m.
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Now, consider the Birman–Series set BS(Σ) of Σ and note that its closure BS(Σ) is
compact thanks to Proposition 6.15. 4 The restriction of the unit tangent bundle
of Σ over the BS(Σ) is therefore compact, and since this restricted unit tangent
bundle is also a subset of the (whole) tangent bundle of (Sg,m,h0), there is a
uniform constant c > 0 such that the Riemannian norm of every tangent vector
in this restricted bundle is at least c.

Consider an arbitrary simple closed geodesic γ on Σ. Note that γ defines a smooth
curve on (Sg,m,h0), which then shortens to a unique simple closed geodesic γ0
on (Sg,m,h0). We have the following inequality:

`Σ(γ) > c`h0(γ) > c`h0(γ0),

where `h0 denotes the hyperbolic length of a curve on (Sg,m,h0). Switching the
roles of Σ and (Sg,m,h0) and using the Finsler norm instead of the Riemannian,
we see that there exists a positive constant C−1 > 0 such that

`h0(γ0) > C
−1`Σ(γ0) > C

−1`Σ(γ).

Therefore, we see that for every simple closed geodesic γ on Σ and γ0 on (Sg,m,h0)
which are homotopic as topological curves on Sg,m, their lengths satisfy the fol-
lowing comparison:

C`h0(γ0) > `
Σ(γ) > c`h0(γ0).

This suffices to give the desired asymptotic growth rate of the simple length
spectrum for Σ. �

Remark B.2. An immediate corollary of Proposition B.1 and Theorem 8.10 is that the
simple i-length spectra for cusped convex real projective surfaces also satisfy the same
polynomial growth rate, albeit with possibly different constant coefficients.

Proposition B.3. All cusped convex real projective surfaces have discrete length spectra.

Proof. Consider a cusped convex real projective surface Σ, and assume that there
exists a sequence {γi}i∈N of distinct closed geodesics on Σ with bounded length.
Fix an ideal triangulation T of Σ, we first observe that for k >

(
N
2

)
, the number of

homotopy classes of k-diagrams in [Jk(N)] (Definition 6.12) no longer increases,
because N geodesic segments can only has at most

(
N
2

)
intersections. Therefore,

the number of geodesic segments that T cuts γi into cannot remain bounded as
i→∞. This in turn means that some of these segments must eventually penetrate
arbitrarily far into the cusps of the ideal triangles in T, and hence arbitrarily far
into the cusps of Σ. Since cuspidal annular neighborhoods of Σ cannot support
non-peripheral geodesics, for i sufficiently large, γi must traverse from the ε-
thick part of Σ (for some fixed ε) arbitrarily far into the cusps. This contradicts
the boundedness of the lengths of the γi. �

Remark B.4. Again, applying Theorem 8.10 immediately tells us that cusped convex
real projective surfaces have discrete i-length spectra.

4In fact, the Birman-Series set itself is compact because it is the intersection of a filtration of closed
sets, however, that is not essential to our current proof.
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