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The subject for investigation in this note is concerned with holomorphic Poisson 
structures on nilmanifolds with abelian complex structures. As a basic fact, we 
establish that on such manifolds, the Dolbeault cohomology with coefficients in 
holomorphic polyvector fields is isomorphic to the cohomology of invariant forms 
with coefficients in invariant polyvector fields.
We then quickly identify the existence of invariant holomorphic Poisson structures. 
More important, the spectral sequence of the Poisson bi-complex associated to such 
holomorphic Poisson structure degenerates at E2. We will also provide examples 
of holomorphic Poisson structures on such manifolds so that the related spectral 
sequence does not degenerate at E2.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The investigation of Poisson bracket from a complex perspective started a while ago [24]. Attention on 
this subject in the past ten years is largely due to its role in generalized complex geometry [13–15]. It is 
now also known that product of holomorphic Poisson structures together with symplectic structures forms 
the local model of all generalized complex geometry [2].

Therefore, one could take many different routes when investigating holomorphic Poisson structure. One 
could study it as a complex geometric object and study its deformations as in [16]. One could also investigate 
it in the context of extended deformation, or generalized complex structures [11,25]. In the former case, 
the deformation theory is dictated by the differential Gerstenhaber structure on a cohomology ring with 
coefficients in the holomorphic polyvector fields. In the latter case, it is on the part of the cohomology 
with total degree-2 as explained in [25]. As a key feature of generalized complex geometry is to encompass 
classical complex structures with symplectic structures in a single geometric framework, one could also 
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relate the cohomology theory of a holomorphic Poisson structure as a generalized complex manifold to the 
cohomology theory on symplectic geometry [1,28].

In this paper, we consider holomorphic Poisson structure as a geometric object in generalized complex 
structure, and study its cohomology theory accordingly. It will set a stage for studying deformation theory. 
In this perspective, it is known that the cohomology of a holomorphic Poisson structure could be computed 
by a bi-complex [17,18]. The first level of the associated spectral sequence of this bi-complex is the Dolbeault 
cohomology with coefficients in holomorphic polyvector fields. It is known that this spectral sequence often, 
but not always degenerates at its second level [5]. It is therefore interesting to find how often this spectral 
sequence indeed degenerates at its second level. On Kählerian manifolds, an affirmative answer for complex 
surfaces is found, and other general observations are made in [5].

In this note, we focus on non-Kählerian manifolds. In particular, we focus on nilmanifolds due to their rich 
history and role in generalized complex geometry [4]. Investigation on the cohomology theory on nilmanifolds 
also has a very rich history, beginning with Nomizu’s work on de Rham cohomology [23]. There has been 
a rich body of work on the Dolbeault cohomology of nilmanifolds with invariant complex structures [7,9], 
and work on Dolbeault cohomology on the same kind of manifolds with coefficients in holomorphic tangent 
bundle [6,8,12,21,26]. In favorable situations, various authors proved that the cohomology is isomorphic to 
the cohomology of invariant objects.

In this paper, after a review of holomorphic Poisson structures and their associated bi-complex structures 
and a brief review of abelian complex structures on nilmanifolds, we show that the Dolbeault cohomol-
ogy of an abelian complex structure on a nilmanifold with coefficients in holomorphic polyvector fields is 
isomorphic to the cohomology of the corresponding invariant objects; see Theorem 1. It means that the 
cohomology could be computed by a differential algebra over the field of complex numbers. It enables an 
analysis of the spectral sequence of the bi-complex associated to an invariant holomorphic Poisson struc-
ture.

After we establish the existence of invariant holomorphic Poisson structures on nilmanifolds with abelian 
complex structures in Section 5, we focus on proving Theorem 2. This theorem, which is also the key 
observation in this paper, states that on any nilmanifold with abelian complex structures, there exists 
an invariant holomorphic Poisson structure such that the spectral sequence of its associated bi-complex 
degenerates at its second level. This result generalizes one of the observations in [5] where the authors could 
only work on 2-step nilmanifolds.

However, at the end of this note, we caution the readers with an example that although such degeneracy 
occurs often, but it is not always true even in the context of nilmanifolds with abelian complex structures.

2. Holomorphic Poisson cohomology

In this section, we review the basic background materials as seen in [5] to set up the notations.
Let M be a manifold with an integrable complex structure J . Its complexified tangent bundle TMC

splits into the direct sum of bundle of (1, 0)-vectors TM 1,0 and bundle of (0, 1)-vectors TM 0,1. Their p-th 
exterior products are respectively denoted by TMp,0 and TM 0,p. Denote their dual bundles by TM ∗(p,0)

and TM ∗(0,p) respectively.
When X, Y are vector fields, we denote their Lie bracket by [X, Y ]. When ω is a 1-form, we denote the 

Lie derivative of ω along X by [X, ω]. When ρ is another 1-form, we set [ω, ρ] = 0. With this “bracket” 
structure and the natural projection from L := TM 0,1 ⊕TM ∗(1,0) to the summand TM 0,1, the bundle L is 
equipped with a complex Lie algebroid structure. Together with its conjugate bundle L = TM 1,0⊕TM ∗(0,1), 
they form a Lie bi-algebroid [19]. Then we get the Lie algebroid differential ∂ for the Lie algebroid L [20].

∂ : C∞(M,TM 1,0 ⊕ TM ∗(0,1)) → C∞(M,∧2(TM 1,0 ⊕ TM ∗(0,1))). (1)
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It is extended to a differential of exterior algebras:

∂ : C∞(M,∧p(TM 1,0 ⊕ TM ∗(0,1))) → C∞(M,∧p+1(TM 1,0 ⊕ TM ∗(0,1))). (2)

It is an exercise in Lie algebroid theory that the Lie algebroid differential

∂ : C∞(M,TM ∗(0,1)) → C∞(M,TM ∗(0,2))

is the (0, 2)-component of the exterior differential, and

∂ : C∞(M,TM 1,0) → C∞(M,TM ∗(0,1) ⊗ TM 1,0)

is the Cauchy–Riemann operator [10].
On the space C∞(M, ∧•(TM 1,0⊕TM ∗(0,1))), the Schouten bracket, exterior product and the Lie algebroid 

differential ∂ form a differential Gerstenhaber algebra [20,25].
Suppose that Λ is a holomorphic Poisson structure, i.e. a smooth section of TM 2,0 such that [Λ, Λ] = 0

and ∂Λ = 0. Denote the Schouten bracket of Λ with elements in C∞(M, ∧•(TM 1,0 ⊕ TM ∗(0,1))) by adΛ, 
and the action of ∂ + adΛ on the same space by ∂Λ. Since Λ is holomorphic Poisson,

∂Λ : C∞(M,∧k(TM 1,0 ⊕ TM ∗(0,1))) → C∞(M,∧k+1(TM 1,0 ⊕ TM ∗(0,1))) (3)

form an elliptic complex. From now on, for n ≥ 0 denote

Kn = C∞(M,∧n(TM 1,0 ⊕ TM ∗(0,1))). (4)

For n < 0, set Kn = {0}.

Definition 1. For all k ≥ 0, the k-th Poisson cohomology of the holomorphic Poisson structure Λ is the 
space

Hk
Λ(M) := kernel of ∂Λ : Kk → Kk+1

image of ∂Λ : Kk−1 → Kk
. (5)

Due to the nature of Λ, we have

∂ ◦ ∂ = 0, ∂ ◦ adΛ + adΛ ◦ ∂ = 0, adΛ ◦ adΛ = 0. (6)

In fact, the second identity is equivalent to Λ being holomorphic, and the third is equivalent to Λ being 
Poisson. Define Ap,q = C∞(M, TM p,0 ⊗ TM ∗(0,q)), then

adΛ : Ap,q → Ap+1,q, ∂ : Ap,q → Ap,q+1; and Kn = ⊕p+q=nA
p,q. (7)

Definition 2. Given a holomorphic Poisson structure Λ, the Poisson bi-complex is the triple {Ap,q, adΛ, ∂}.

Then the cohomology H•
Λ(M) theoretically could be computed by each one of the two associated spec-

tral sequences. We choose a filtration given by F pKn = ⊕p′+q=n,p′≥pA
p′,q. The lowest differential is ∂ :

Ap,q → Ap,q+1. Therefore, the first level of the spectral sequence is the Dolbeault cohomology

Ep,q
1 = Hq(M,Θp), (8)
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where Θp is the sheaf of germs of the p-th exterior power of the holomorphic tangent bundle on the complex 
manifold M . It follows that the next differential is

dp,q1 = adΛ : Hq(M,Θp) → Hq(M,Θp+1). (9)

The second level of the Poisson spectral sequence is given by

Ep,q
2 = kernel of adΛ : Hq(M,Θp) → Hq(M,Θp+1)

image of adΛ : Hq(M,Θp−1) → Hq(M,Θp) . (10)

We are interested in computing

dp,q2 : Ep,q
2 → Ep+2,q−1

2 . (11)

3. Nilmanifolds with abelian complex structures

A compact manifold M is called a nilmanifold if there exists a simply-connected nilpotent Lie group G
and a lattice subgroup Γ such that M is diffeomorphic to G/Γ. We denote the Lie algebra of G by g. The 
step of the nilmanifold is the nilpotence of the Lie algebra g. For a (s + 1)-step nilpotent Lie algebra g, 
there is a filtration by the descending central series,

{0} = gs+1 = [gs, g] ⊂ · · · ⊂ gk+1 = [gk, g] ⊂ gk ⊂ · · · ⊂ g1 = [g, g] ⊂ g0 = g.

A left-invariant complex structure J on G is said to be abelian if on the Lie algebra g, it satisfies the 
condition [JA, JB] = [A, B], for all A and B in the Lie algebra g. If one complexifies the algebra g and 
denotes the +i and −i eigen-spaces of J respectively by g1,0 and g0,1, then the invariant complex structure 
J being abelian is equivalent to the complex algebra g1,0 being abelian.

Denote the k-th exterior products ∧kg1,0 and ∧kg∗(0,1) respectively by gk,0 and g∗(0,k). There is a natural 
inclusion map.

ι : g�,0 ⊗ g∗(0,m) → C∞(M,∧�TM 1,0 ⊗ ∧mTM ∗(0,1)).

Now we wish to prove the following:

Theorem 1. On a nilmanifold M with an invariant abelian complex structure, the inclusion g�,0 ⊗ g∗(0,m)

in C∞(M, ∧�TM 1,0 ⊗ ∧mTM ∗(0,1)) induces an isomorphism of cohomology. In other words, Hm(g�,0) ∼=
Hm(M, Θ�).

This theorem generalizes an observation in [5] for 2-step nilmanifolds.

4. The proof of Theorem 1

We adopt an inductive approach regarding the number of steps because the Theorem 1 is known to be 
true for 2-step nilmanifolds [5].

Let g be (s + 1)-step nilpotent. Assume that the theorem holds true for s-step nilmanifolds where s ≥ 1.
Let c be the center of the Lie algebra g. Since [JA, B] = −[A, JB], the center c is J-invariant. Let t = g/c. 

It is obvious that t is s-step nilpotent and it has an induced abelian complex structure as well.
Let C be the center of G and ψ : G → G/C the quotient map. Since G is (s + 1)-step nilpotent, G/C is 

s-step nilpotent. Consider M = G/Γ and N = ψ(G)/ψ(Γ). We have a holomorphic fibration Ψ : M → N
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whose fiber is isomorphic to F = C/(C ∩ Γ). Note also that N is a s-step nilmanifold with an abelian 
complex structure.

We have the vector space decompositions

gC = g1,0 ⊕ g0,1; g1,0 = c1,0 ⊕ t1,0; g0,1 = c0,1 ⊕ t0,1.

Here both g1,0 and g0,1 are abelian sub-algebras of gC. The only non-trivial Lie brackets are of the form:

[t1,0, t0,1] ⊂ gC = c1,0 ⊕ c0,1 ⊕ t1,0 ⊕ t0,1.

For the d = ∂ + ∂ operator, we have the following lemma, which can be verified directly.

Lemma 1. We have ∂g∗(0,1) = 0, ∂g∗(1,0) ⊂ t∗(1,1), ∂c1,0 = 0 and

∂t1,0 ⊂ (t∗(0,1) ⊗ c1,0) ⊕ (t∗(0,1) ⊗ t1,0). (12)

To compute the cohomology Hm(g�,0), one uses the ∂-operator:

∂ : g∗(0,m) ⊗ g�,0 → g∗(0,m+1) ⊗ g�,0.

As g1,0 = c1,0 ⊕ t1,0, we have

g�,0 = ⊕a+b=�c
a,0 ⊗ tb,0; g∗(0,m) = ⊕i+j=mc∗(0,i) ⊗ t∗(0,j).

According to the decomposition in Equation (12), one may split the ∂ operator into two parts,

∂ = ∂c + ∂t,

depending on whether we choose the c1,0 component or t1,0 in the range of the operator ∂. Here

∂c : c∗(0,i) ⊗ t∗(0,j) ⊗ ca,0 ⊗ tb,0 → c∗(0,i) ⊗ t∗(0,j+1) ⊗ ca+1,0 ⊗ tb−1,0 (13)

and

∂t : c∗(0,i) ⊗ t∗(0,j) ⊗ ca,0 ⊗ tb,0 → c∗(0,i) ⊗ t∗(0,j+1) ⊗ ca,0 ⊗ tb,0. (14)

We now fix the number � ≥ 0. If for 0 ≤ p ≤ �, we put

Dp,q = ⊕i+j=p+q c∗(0,i) ⊗ t∗(0,j) ⊗ cp,0 ⊗ t�−p,0 = ⊕0≤i≤p+q c∗(0,i) ⊗ t∗(0,p+q−i) ⊗ cp,0 ⊗ t�−p,0,

then

∂c : Dp,q → Dp+1,q, and ∂t : Dp,q → Dp,q+1.

And hence

∂c ◦ ∂c : Dp,q → Dp+2,q, ∂c ◦ ∂t + ∂t ◦ ∂c : Dp,q → Dp+1,q+1, ∂t ◦ ∂t : Dp,q → Dp,q+2.

Since ∂ = ∂c + ∂t, and ∂ ◦ ∂ = 0, we have

∂c ◦ ∂c = 0, ∂c ◦ ∂t + ∂t ◦ ∂c = 0, ∂t ◦ ∂t = 0.
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It means that both ∂c and ∂t are co-boundary operators, and the data (Dp,q, ∂c, ∂t) form a bi-complex. Its 
total complex is

∂ = ∂c + ∂t : ⊕p+q=mDp,q → ⊕p+q=m+1D
p,q,

or, exactly that of

g∗(0,m) ⊗ g�,0 → g∗(0,m+1) ⊗ g�,0.

In summary, we have

Lemma 2. For each � ≥ 0, the cohomology Hm(g�,0) can be computed as the total cohomology of the bi-
complex (Dp,q, ∂c, ∂t).

Lemma 3. For each � ≥ 0, we have

Hm(M,∧�Ψ∗ΘN ) = ⊕p+q=mc∗(0,q) ⊗Hp(t�,0).

Proof. The proof is essentially the same as that of Lemma 5 in [21]. Here we give a sketch.
To compute Hm(M, ∧�Ψ∗ΘN ), we use the standard Leray spectral sequence for a fibration. We first note 

the following fact (see Lemma 3 in [21]):

RqΨ∗(∧�Ψ∗ΘN ) = c∗(0,q) ⊗ ∧�ΘN .

Therefore, the second level of the Leray spectral sequence is given by

Ep,q
2 = Hp(N,RqΨ∗(∧�Ψ∗ΘN )) = Hp(N, c∗(0,q) ⊗ ∧�ΘN ) = c∗(0,q) ⊗Hp(N,∧�ΘN ).

By induction assumptions: N is a s-step nilmanifold and Hp(N, ∧�ΘN ) = Hp(t�,0). Therefore,

c∗(0,q) ⊗Hp(N,∧�ΘN ) = c∗(0,q) ⊗Hp(t�,0). (15)

Thus d2 : Ep,q
2 → Ep+2,q−1

2 is a map

c∗(0,q) ⊗Hp(t�,0) → c∗(0,q−1) ⊗Hp+2(t�,0).

However, any element in c∗(0,q) ⊗Hp(t�,0) could be represented in the following form:

∑
a,b,c

ρa ∧ Ωb ∧Wc ,

where ρa ∈ c∗(0,q), Ωb ∈ t∗(0,p), Wc ∈ t�,0, and ∂N (
∑

b,c Ωb∧Wc) = 0. Note that for forms, ∂NΩb = ∂MΩb = 0
because the complex structures on both the manifold M and its quotient N are abelian. In addition, since 
the fibers of the projection Ψ are global holomorphic vector fields generated by c1,0, and they are in the 
center of gC,

∂NWc = ∂MWc.
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Therefore, when ∂N (
∑

b,c Ωb ∧Wc) = 0, then

∂

(∑
a,b,c

ρa ∧ Ωb ∧Wc

)
= 0.

It follows that d2 ≡ 0, and

Hm(M,∧�Ψ∗ΘN ) = ⊕p+q=mEp,q
2 = ⊕p+q=m c∗(0,q) ⊗Hp(t�,0). �

Now we are back to the proof of Theorem 1. We take E = ΘM , Z = OM ⊗ c1,0, Q = Ψ∗ΘN . Then we 
have the following exact sequence of holomorphic vector bundles over M :

0 → OM ⊗ c1,0 → ΘM
ρ−→ Ψ∗ΘN → 0,

i.e.,

0 → Z → E
ρ−→ Q → 0.

By Lemma 5 in [5], we have a filtration of ∧�E = ∧�ΘM :

OM ⊗ c�,0 = ∧�Z = E(�) ⊂ E(�−1) ⊂ · · · ⊂ E(1) ⊂ E(0) = ∧�E = ∧�ΘM .

Moreover, the associated graded spaces are:

G0 = E(0)/E(1) ∼= ∧�Q = Ψ∗(∧�ΘN );

G1 = E(1)/E(2) ∼= ∧�−1Q⊗ Z = Ψ∗(∧�−1ΘN ) ⊗ c1,0;

· · · · · · · · ·

Gr = E(r)/E(r+1) = ∧�−rQ⊗ ∧rZ = Ψ∗(∧�−rΘN ) ⊗ cr,0;

· · · · · · · · ·

G�−1 = E(�−1)/E(�) ∼= Q⊗ ∧�−1Z = Ψ∗(ΘN ) ⊗ c�−1,0.

Accordingly, we have a filtration of the co-chain complex C• = TM ∗(0,•) ⊗ ∧�ΘM :

TM ∗(0,•) ⊗ c�,0 = F (�)C• ⊂ F (�−1)C• ⊂ · · · ⊂ F (1)C• ⊂ F (0)C• = C•,

where F (r)C• = TM ∗(0,•) ⊗ E(r).
Thus there associates a spectral sequence: Ep,q

r , which starts with

Ep,q
0 = F (p)Cp+q/F (p+1)Cp+q = TM ∗(0,p+q) ⊗Gp ∼= TM ∗(0,p+q) ⊗ Ψ∗(∧�−pΘN ) ⊗ cp,0

and d0 = ∂. It follows from Lemma 3 that we have

Ep,q
1 = Hp+q(Gp) = Hp+q(Ψ∗(∧�−pΘN ) ⊗ cp,0) = ⊕i+j=p+qc

∗(0,i) ⊗Hj(t�−p,0) ⊗ cp,0.

It can be easily seen that the right hand side is in fact the cohomology of

∂t : ⊕i+j=p+q c
∗(0,i) ⊗ t∗(0,j) ⊗ t�−p,0 ⊗ cp,0 → ⊕i+j=p+qc

∗(0,i) ⊗ t∗(0,j+1) ⊗ t�−p,0 ⊗ cp,0.
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Thus,

Ep,q
1 = kernel of ∂t : Dp,q → Dp,q+1

image of ∂t : Dp,q−1 → Dp,q
.

We then find the associated d1 : Ep,q
1 → Ep+1,q

1 . In fact, it is essentially ∂. If X ∈ Dp,q represents an 
element in Ep,q

1 , then d1[X] is represented by ∂X. Note ∂ = ∂t + ∂c and ∂tX = 0. So d1[X] is actually 
represented by ∂cX.

Using this description, we now explain

Ep,q
2 = kernel of d1 : Ep,q

1 → Ep+1,q
1

image of d1 : Ep−1,q
1 → Ep,q

1
.

An element in Ep,q
2 can be represented by some X ∈ Dp,q satisfying the following condition: ∂tX = 0, 

and ∃ Y ∈ Dp+1,q−1 such that ∂cX + ∂tY = 0.
Moreover, such an X represents the zero element in Ep,q

2 if there exist Z ∈ Dp−1,q and Z ′ ∈ Dp,q−1 such 
that ∂tZ = 0 and ∂cZ + ∂tZ

′ = X.
The co-boundary at level 2, d2 : Ep,q

2 → Ep+2,q−1
2 , which is again essentially ∂, now becomes the map 

sending [X] to [∂cY ]. In fact, this can be easily seen from the following calculation:

∂X = ∂tX + ∂cX = ∂cX = −∂tY ≡ ∂cY mod Im(∂).

Repeat this process. We find that Ep,q
r = Zp,q

r /Bp,q
r , where Zp,q

r consists of elements Xp,q ∈ Dp,q which 
is subject to the following conditions:

1. ∂tX
p,q = 0;

2. ∃Xp+1,q−1 ∈ Dp+1,q−1, Xp+2,q−2 ∈ Dp+2,q−2, · · · , Xp+r−1,q−r+1 ∈ Dp+r−1,q−r+1 such that

∂cX
p,q + ∂tX

p+1,q−1 = 0,

· · · · · · ,

∂cX
p+r−2,q−r+2 + ∂tX

p+r−1,q−r+1 = 0.

The denominator Bp,q
r consists of elements W p,q ∈ Dp,q satisfying the following condition: ∃ W p,q−1 ∈

Dp,q−1, · · · , W p−r+1,q+r−2 ∈ Dp−r+1,q+r−2, such that

∂tW
p,q−1 + ∂cW

p−1,q = W p,q,

∂tW
p−1,q + ∂cW

p−2,q+1 = 0,

· · · · · · ,

∂tW
p−r+2,q+r−3 + ∂cW

p−r+1,q+r−2 = 0,

∂tW
p−r+1,q+r−2 = 0.

With this construction of Ep,q
r = Zp,q

r /Bp,q
r , the co-boundary map dr : Ep,q → Ep+r,q−r+1 should be 

given by dr[Xp,q] = [∂cX
p+r−1,q−r+1]. The reason is similar to the preceding r = 2 case.

From these observations, we find that the spectral sequence Ep,q
r derived from the filtration of ∧�E =

∧�ΘM exactly matches with the spectral sequence of the bi-complex (Dp,q, ∂c, ∂t). Hence they converge to 
the same cohomology, i.e.,

Hm(M,∧�ΘM ) ∼= Hm
total(Dp,q) ∼= Hm(g�,0). �
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According to Theorem 1 and Equation (10),

Ep,q
2 = kernel of adΛ : Hq(gp,0) → Hq(gp+1)

image of adΛ : Hq(gp−1) → Hq(gp) . (16)

In this context, it is clear that if the A and B are complex linearly independent elements in c1,0 and 
Λ = A ∧B, then Λ is a holomorphic Poisson structure such that adΛ = 0. In such case, ∂Λ = ∂ and

Hk
Λ = ⊕p+q=kE

p,q
2 = ⊕p+q=kH

q(gp,0). (17)

Therefore, the only non-trivial part of Theorem 2 below is when the dimension of c1,0 is equal to one.

Theorem 2. On any nilmanifold with an abelian complex structure, there exists a non-trivial holomorphic 
Poisson structure Λ such that its associated spectral sequence degenerates on its second level. In particular,

Hk
Λ = ⊕p+q=kE

p,q
2

= ⊕p+q=k
kernel of adΛ : Hq(gp,0) → Hq(gp+1,0)
image of adΛ : Hq(gp−1,0) → Hq(gp,0) . (18)

5. Existence of holomorphic Poisson structures

We will continue to work with abelian complex structures. Recall that by definition, g0 = g, and induc-
tively, gk+1 = [gk, g].

Define gkJ = gk + Jgk. When the complex structure is abelian, it is clear from various definitions that 
each gkJ is a J-invariant ideal of g, and we have a filtration of subalgebras:

{0} = g
s+1
J ⊂ gsJ ⊂ g

s−1
J ⊆ · · · ⊆ g

k+1
J ⊆ gkJ ⊆ · · · ⊆ g1

J⊂g0
J = g.

Note that by [27] the last inclusion g1
J ⊂ g is always strict. Moreover, since the center c is J-invariant and 

it contains gs, we have

gsJ ⊆ c. (19)

It follows that the inclusion gsJ ⊂ g
s−1
J is also strict.

We complexify this filtration:

{0} = g
s+1
J,C ↪→ gsJ,C ↪→ · · · ↪→ g

k+1
J,C ↪→ gkJ,C ↪→ · · · ↪→ g1

J,C ↪→ g0
J,C = gC. (20)

There exists a type decomposition for each k.

gkJ,C = g
k,(1,0)
J ⊕ g

k,(0,1)
J .

So, the filtration (20) splits into two. One is for type (1, 0)-vectors.

{0} ↪→ g
s,(1,0)
J ↪→ · · · ↪→ g

k+1,(1,0)
J ↪→ g

k,(1,0)
J ↪→ · · · ↪→ g

1,(1,0)
J ↪→ g

0,(1,0)
J = g(1,0);

Another is for type (0, 1)-vectors.

{0} ↪→ g
s,(0,1)
J ↪→ · · · ↪→ g

k+1,(0,1)
J ↪→ g

k,(0,1)
J ↪→ · · · ↪→ g

1,(0,1)
J ↪→ g

0,(0,1)
J = g(0,1).

Lemma 4. Suppose that the complex structure J is abelian, then

•
[
g(1,0), g(1,0)] = 0, and 

[
g(0,1), g(0,1)] = 0.
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•
[
g
k,(1,0)
J , g

�,(0,1)
J

]
⊆ g

1+max {k,�}
J,C .

• In particular, when � = 0, 
[
g
k,(1,0)
J , g(0,1)

]
⊆ g

k+1
J,C .

Proof. The first point is due to the complex structure being abelian. To prove the second point, assume 
that k ≥ �, let X be in gk and Y be in g�.

[X − iJX, Y + iJY ] = [X,Y ] + [JX, JY ] − i([JX, Y ] − [X, JY ])

= 2[X,Y ] + 2i[X, JY ].

As k ≥ �, by definition [X, Y ] ∈ gk+1 and [X, JY ] ∈ gk+1. Therefore, [X − iJX, Y + iJY ] is contained 
in g

k+1
C

.
In general, if X1 and X2 are in gk, then

X1 + JX2 − iJ(X1 + JX2) = (X1 − iJX1) + i(X2 − iJX2).

By complex linearity, the proof of the second observation is completed. �
Make the following notation for the quotient space

tk+1,(1,0) = g
k,(1,0)
J /g

k+1,(1,0)
J .

Choose a vector space isomorphism so that the short exact sequence of Lie algebras

0 → g
k+1,(1,0)
J → g

k,(1,0)
J → g

k,(1,0)
J /g

k+1,(1,0)
J → 0

is turned into a direct sum of vector spaces.

g
k,(1,0)
J

∼= tk+1,(1,0) ⊕ g
k+1,(1,0)
J .

Then inductively,

g(1,0) = t1,(1,0) ⊕ t2,(1,0) ⊕ · · · ⊕ ts+1,(1,0).

Similarly,

g(0,1) = t1,(0,1) ⊕ t2,(0,1) ⊕ · · · ⊕ ts+1,(0,1).

We remark that ts+1,(1,0) is indeed gs,(1,0)J .

Proposition 1. ∂ts+1,(1,0) = 0. For 1 ≤ � ≤ s,

∂t�,(1,0) ⊆ (⊕k≤�t
k,∗(0,1)) ∧ t�+1,(1,0) ⊕

(
⊕k>�

(
tk,∗(0,1) ∧ tk+1,(1,0)

))
.

Proof. Suppose that {ωj : j = 1, . . . , } is a basis for g∗(0,1) and {Zj : j = 1, . . . , } is the dual basis. For any 
element V in g1,0,

∂V =
∑

[V,Zj ]1,0 ∧ ωj .

j
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When V is in ts+1,(1,0), it is contained in the center of the algebra gC. Therefore, ∂V = 0. If V is in t�,(1,0)

with 1 ≤ � ≤ s, by Lemma 4, for all Zj ∈ tk,(0,1) where k > �, then

[V,Zj ]1,0 ∈ tk+1,(1,0).

If � ≥ k, then [V, Zj ]1,0 ∈ t�+1,(1,0). �
Proposition 2. When dimC c1,0 = 1, every element in ts+1,(1,0) ∧ ts,(1,0) is a holomorphic Poisson structure.

Proof. Let C be an element in ts+1,(1,0) and V an element in ts,(1,0). Then by the previous proposition,

∂(C ∧ V ) = (∂C) ∧ V − C ∧ ∂V = −C ∧
∑
j

[V,Zj ]1,0 ∧ ωj .

By Part 2 of Lemma 4, for all j, [V, Zj ]1,0 is an element in ts+1,(1,0). When dimC c1,0 = 1, every [V, Zj ]1,0
is a constant multiple of C. Therefore,

C ∧
∑
j

[V,Zj ]1,0 = 0.

It follows that ∂(C ∧ V ) = 0. As the complex structure is abelian, Part 1 of Lemma 4 shows that C ∧ V is 
Poisson. �

Consider the dual space tk,∗(0,1). Since tk,(0,1) = g
k−1,(0,1)
J /g

k,(0,1)
J , if ω ∈ tk,∗(0,1), then ω(Y ) = 0 for all 

Y ∈ gk,(0,1).

Lemma 5. (See [7,27].) Consider g∗(0,1) = t1,∗(0,1) ⊕ t2,∗(0,1) ⊕ · · · ⊕ ts+1,∗(0,1).

• dtm,∗(0,1) ⊆
(
⊕k<mtk,∗(1,0)

)
∧
(
⊕�<mt�,∗(0,1)

)
.

• ∂tk,∗(0,1) = 0, for all k.
• For k ≥ m, 

[
tk,(1,0), tm,∗(0,1)] = {0}.

• For k < m, 
[
tk,(1,0), tm,∗(0,1)] ⊆ ⊕�<mt�,∗(0,1).

Proof. Suppose that X ∈ tk,(1,0) and Y ∈ t�,(0,1) and ω ∈ tm,∗(0,1), then

dω(X,Y ) = −ω
([
X,Y

])
.

Since 
[
g
k,(1,0)
J , g

�,(0,1)
J

]
⊆ g

1+max {k,�}
J,C , ω

([
X,Y

])
= 0 except possibly when m = 1 + max {k, �}.

The second item is a consequence of the first.
Since [X, ω] = ιXdω, the third and fourth items are consequences of the first. �

Corollary 1. For all m, [ts+1,(1,0), tm,∗(0,1)] = 0. For all m ≤ s, [ts,(1,0), tm,∗(0,1)] = 0. And

[ts,(1,0), ts+1,∗(0,1)] ⊆ ⊕�≤st
�,∗(0,1).

6. Computation of the map d2

We continue our work with the assumption that dimC ts+1,(1,0) = 1, and C is a non-zero element in 
ts+1,(1,0). Let V ∈ ts,(1,0) be non-zero, and Λ = C ∧ V . By Proposition 2 above, Λ is a holomorphic Poisson 
structure. For this Λ, we now compute d2 : Ep,q

2 → Ep+2,q−1
2 for all q ≥ 1. As a consequence of Theorem 1,
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Ep,q
2 = kernel of adΛ : Hq(gp,0) → Hq(gp+1,0)

image of adΛ : Hq(gp−1,0) → Hq(gp,0) . (21)

Case 1. Suppose that q = 1, p ≥ 0, and A ∈ g∗(0,1) ⊗ gp,0 such that ∂A = 0. If adΛ(A) represents a zero 
class in H1(gp+1,0), there exists B ∈ gp+1,0 such that

adΛ(A) = ∂B.

Since the complex structure is abelian, adΛ(B) = 0. Since d2([A]) is represented by adΛ(B), d2 : Ep,1 →
Ep+2,0 is identically zero for all p.

Case 2. Consider the case when q = 2 and p = 0. Elements in g∗(0,2) are linear combinations of ω1 ∧ ω2, 
where ω1 and ω2 are elements in tm,∗(0,1) and tn,∗(0,1), respectively. By the first part of Corollary 1,

adΛ(ω1 ∧ ω2) = C ∧ [V, ω1] ∧ ω2 − C ∧ [V, ω2] ∧ ω1.

Since V ∈ ts,(1,0), by Corollary 1, [V, ω1] is non-zero only if m = s + 1. However, as dimC ts+1,∗(0,1) = 1, by 
the same corollary, not both m and n are equal to s + 1 if adΛ(ω1 ∧ ω2) is not equal to zero. Therefore we 
assume that m = s + 1 and n ≤ s. It follows that

adΛ(ω1 ∧ ω2) = C ∧ [V, ω1] ∧ ω2. (22)

Now suppose that a linear combination of such terms represents a zero class in H2(g1,0), then there exists 
B in g∗(0,1) ⊗ g1,0 such that

∑
adΛ(ω1 ∧ ω2) =

∑
C ∧ [V, ω1] ∧ ω2 = ∂B.

Again, by Corollary 1, [V, ω1] is contained in ⊕k≤st
k,∗(0,1), then

∂B =
∑

C ∧ [V, ω1] ∧ ω2 ∈ ⊕n ⊕k≤s t
k,∗(0,1) ∧ tn,∗(0,1) ∧ ts+1,(1,0). (23)

Let ρ ∈ ts+1,∗(0,1) be the dual of C, then B decomposes into the following form:

B = Π + ρ ∧W + ω ∧ C (24)

where Π ∈
(
⊕k≤st

k,∗(0,1))⊗ (
⊕l≤st

l,(1,0)), W ∈ g1,0 and ω ∈ g∗(0,1). Then

∂B = ∂Π − ρ ∧ ∂W.

However, from identity (23), we see that ∂B does not contain any term with ρ. On the other hand, by 
Proposition 1, ∂Π does not contribute any term in ρ. Therefore, ρ ∧ ∂W = 0, and

∂B = ∂Π.

It follows that d2([A]) is represented by adΛ(Π). As Π is a linear combination of elements of the form ρk∧Wk, 
where ρk ∈ tk,∗(0,1) for 1 ≤ k ≤ s, and Wk ∈ ⊕1≤l≤st

l,(1,0), adΛ(Π) is a linear combination C ∧ [V, ρk] ∧Wk. 
However, as V is in ts,(1,0), by Corollary 1, [V, ρk] �= 0, only when ρk ∈ ts+1,∗(0,1). Therefore, adΛ(Π) = 0. 
So we conclude that d2 : E0,2 → E2,1 is identically zero.
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Case 3. Suppose that q = 2 and p ≥ 1. For any A in g∗(0,2) ⊗ g(p,0), it is a linear combination of

ωm ∧ ωn ∧ Θm,n

where ωm ∈ tm,∗(0,1), ωn ∈ tn,∗(0,1) and Θm,n ∈ g(p,0), and adΛ(A) is a linear combination of

C ∧ [V, ωm ∧ ωn] ∧ Θm,n = C ∧ [V, ωm] ∧ ωn ∧ Θm,n − C ∧ [V, ωn] ∧ ωm ∧ Θm,n.

By Corollary 1, the terms [V, ωm] and [V, ωn] are non-zero only when m and n are equal to s +1 because V
is in ts,(1,0). However, as ts+1,(1,0) is only one-dimensional, not both ωm and ωn are in ts+1,∗(0,1). So adΛ(A)
is not equal to zero only when one of them is in ts+1,∗(0,1). We assume that ωm spans ts+1,∗(0,1). It follows 
that adΛ(A) is a linear combination of

C ∧ [V, ωs+1] ∧ ωn ∧ Θs+1,n,

where 1 ≤ n ≤ s.
Now suppose that it represents a zero class in H2(gp+1,0), then there exists B ∈ g∗(0,1)⊗gp+1,0 such that 

adΛ(A) = ∂B. Furthermore, B has the following decomposition:

B = Π + ρ ∧W + ω ∧ C ∧ Γ (25)

where Π ∈
(
⊕k≤st

k,∗(0,1))⊗ ∧p+1 (⊕l≤st
l,(1,0)), W ∈ gp+1,0, ω ∈ ⊕k≤st

k,∗(0,1), and Γ ∈ ⊕l≤st
l,(p,0). Then

∂B = ∂Π − ρ ∧ ∂W + ω ∧ C ∧ ∂Γ.

However, from Equation (23), we see that ∂B does not contain any components with ρ. On the other hand, 
from Proposition 1, we see that ∂Π and ∂Γ do not contribute any terms in ρ. So adΛ(A) = ∂(B) only if 
ρ ∧ ∂W = 0, and

∂B = ∂Π + ω ∧ C ∧ ∂Γ = ∂(Π + ω ∧ C ∧ Γ).

Then d2[A] is represented by

adΛ(Π + ω ∧ C ∧ Γ) = C ∧ [V,Π + ω ∧ C ∧ Γ]. (26)

However, V ∈ ts,(1,0), [V, ρk] �= 0 only when ρk ∈ ts+1,∗(0,1). Therefore, adΛ(B) = 0. So we conclude that 
for all p ≥ 0, d2 : Ep,2 → Ep+2,1 is identically zero.

Case 4. Finally, we consider the case when p ≥ 0 and q > 2. Let A

A = ωs+1 ∧ Ω1 ∧ Θ1 + Ω2 ∧ Θ2, (27)

where Ω1 ∈ ∧q−1(⊕m≤st
m,∗(0,1)), Ω2 ∈ ∧q(⊕m≤st

m,∗(0,1)), and Θ1, Θ2 ∈ gp,0. By Corollary 1,

adΛ(A) = C ∧ [V, ωs+1] ∧ Ω1 ∧ Θ1. (28)

It is contained in

∧q(⊕m≤st
m,∗(0,1)) ⊗ ts+1,(1,0) ∧ gp,0. (29)
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Now suppose that it represents a zero class in Hq(gp+1,0), then there exists B ∈ g∗(0,q−1) ⊗ gp+1,0 such that 
adΛ(A) = ∂B. Furthermore, B has the following decomposition:

B = Π + ρ ∧ Ω ∧W, (30)

where Π ∈
(
∧q−1 ⊕m≤s t

m,∗(0,1))⊗ gp+1,0, Ω ∈ ∧q−2 ⊕n≤s t
n,∗(0,1), and W ∈ gp+1,0. Then

∂B = ∂Π + ρ ∧ Ω ∧ ∂W. (31)

As ∂Π does not contribute any terms in ρ and such terms should be equal to zero when adΛ(A) = ∂(B), 
ρ ∧ Ω ∧ ∂W = 0. It follows that ∂B = ∂Π, and d2([A]) is represented by adΛ(Π). However, as

adΛ(Π) = C ∧ [V,Π].

As a result of the semi-direct structure as seen in Lemma 5, it is equal to zero.

Therefore, we conclude that for all p ≥ 0, q ≥ 1, d2 : Ep,q → Ep+2,q−1 is identically zero. It concludes the 
proof of Theorem 2.

7. Examples

In [5], it is shown the existence of examples of 2-step nilmanifolds in all dimensions with abelian complex 
structures admitting holomorphic Poisson structures.

In this section, we show a sequence of high-step nilmanifolds with abelian complex structures, and provide 
an explicit holomorphic Poisson structure for which the conclusion of Theorem 2 holds. We will also provide 
an example of holomorphic Poisson structures on a complex four-dimensional nilmanifold on which the 
holomorphic Poisson bi-complex fails to degenerate on its second level.

This example is inspired by the one in [22]. The complex manifold could be considered as a tower of 
elliptic fibrations over the Kodaira surface [3,25]. Let g be a real Lie algebra with basis {x1, y1, . . . , xn, yn}
and structure equations:

[x1, y1] = y2, [x1, xk] = [y1, yk] = xk+1, [x1, yk] = −[y1, xk] = yk+1,

for all 2 ≤ k ≤ n − 1. Define an abelian complex structure by Jxj = yj and Jyj = −xj for all 1 ≤ j ≤ n. 
Let vj = 1

2 (xj − iJxj) = 1
2 (xj − iyj), then {v1, . . . , vn} forms a basis for g1,0. Let {ω1, . . . , ωn} be the dual 

basis of {v1, . . . , vn}.
The structure equations on gC with respect to the complex basis are

[v1, v1] = −1
2(v2 − v2), [v2, v1] = −v3, . . . , [vn−1, v1] = −vn. (32)

In particular,

∂v1 = −1
2v2 ∧ ω1, ∂v2 = −v3 ∧ ω1, . . . , ∂vn−1 = −vn ∧ ω1, ∂vn = 0. (33)

It becomes apparent that vn−1 ∧ vn is a holomorphic bivector field. Note that for n ≥ 5, Πn = vn−3 ∧ vn −
vn−2 ∧ vn−1 is a non-trivial bivector field. Moreover,

∂(vn−3 ∧ vn − vn−2 ∧ vn−1)

= (∂vn−3) ∧ vn − (∂vn−2) ∧ vn−1 + vn−2 ∧ (∂vn−1)

= −vn−2 ∧ ω1 ∧ vn + vn−1 ∧ ω1 ∧ vn−1 − vn−2 ∧ vn ∧ ω1 = 0.
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Thus, Πn determines a holomorphic Poisson structure on the nilmanifold associated to g when dim g = 2n
(n ≥ 5).

The (1, 0)-forms ωj satisfy the identities:

dω1 = 0, dω2 = 1
2ω1 ∧ ω1, dω3 = ω2 ∧ ω1, · · · , dωn = ωn−1 ∧ ω1. (34)

Taking the complex conjugation, we get

dω1 = 0, dω2 = −1
2ω1 ∧ ω1, dω3 = −ω1 ∧ ω2, · · · , dωn = −ω1 ∧ ωn−1. (35)

It of course follows that ∂ωj = 0 for all 1 ≤ j ≤ n. Then we have

[v1, ω1] = 0, [v1, ω2] = −1
2ω1, [v1, ω3] = −ω2, · · · , [v1, ωn] = −ωn−1. (36)

It follows that when n ≥ 5, adΠn
is identically zero. Hence the cohomology of ∂Πn

= ∂ + adΠn
is equal 

to the cohomology of ∂.
Finally we discuss an example of real dimension eight, i.e. n = 4. We consider Π = 2v1 ∧ v4 − v2 ∧ v3. 

Note that

∂(2v1 ∧ v4 − v2 ∧ v3)

= (2∂v1) ∧ v4 − (∂v2) ∧ v3 + v2 ∧ (∂v3)

= −v2 ∧ ω1 ∧ v4 + v3 ∧ ω1 ∧ v3 − v2 ∧ v4 ∧ ω1 = 0.

Thus Π = 2v1∧v4−v2∧v3 is indeed a holomorphic Poisson structure, and it turns out to be more interesting. 
Let us examine adΠ a little further in the next paragraphs. We take the sets of equations in (33) and (36)
for n = 4. The non-zero equations become

∂v1 = −1
2v2 ∧ ω1, ∂v2 = −v3 ∧ ω1, ∂v3 = −v4 ∧ ω1. (37)

[v1, ω2] = −1
2ω1, [v1, ω3] = −ω2, [v1, ω4] = −ω3. (38)

Based on the above information, we will demonstrate the following observation.

Proposition 3. The holomorphic Poisson bi-complex associated to Π does not degenerate on the second level.

We will demonstrate that the map d2 : E0,2
2 → E2,1

2 is non-zero. Recall that

E0,2
2 = kernel of adΠ : H2(C) → H2(g1,0).

Since all (0, k)-forms are ∂-closed, H2(C) is spanned by ωi ∧ ωj for all 1 ≤ i < j ≤ 4. Since adv2∧v3 is 
identically zero,

ker adΠ = ker adv1∧v4 , and Image adΠ = Image adv1∧v4 . (39)

By (37) and (38),

adv1∧v4ω2 = 1
v4 ∧ ω1 = −1

∂v3, adv1∧v4ω3 = v4 ∧ ω2. (40)
2 2
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It follows that

adΠω2 ∧ ω3 = 2adv1∧v4ω2 ∧ ω3

= 2(adv1∧v4ω2) ∧ ω3 − 2(adv1∧v4ω3) ∧ ω2

=
(
−1

2∂v3

)
∧ ω3 = ∂

(
−1

2v3 ∧ ω3

)
.

Therefore ω2∧ω3 represents a non-trivial element in E0,2
2 , and −2d2(ω2∧ω3) is represented by adΠ(v3∧ω3). 

By (38) it is equal to

2adv1∧v4(v3 ∧ ω3)

= −2(adv1∧v4ω3) ∧ v3 = −2v4 ∧ [v1, ω3] ∧ v3

= 2v4 ∧ ω2 ∧ v3 = 2v3 ∧ v4 ∧ ω2.

Since the image of ∂ of any vector field has to have a ω1 factor, v3 ∧ v4 ∧ ω2 is not ∂-exact. Therefore, it 
represents a non-zero element in the kernel of the map

adΠ : H1(g2,0) → H1(g3,0).

Furthermore, for any vector v in g1,0,

adv1∧v4(v ∧ ω1) = 0, adv1∧v4(v ∧ ω2) = −1
2v ∧ v4 ∧ ω1,

adv1∧v4(v ∧ ω3) = −v ∧ v4 ∧ ω2, adv1∧v4(v ∧ ω4) = −v ∧ v4 ∧ ω3.

It follows that adv1∧v4(v3∧ω3) = −v3∧v4∧ω2. Yet v3∧ω3 is not ∂-closed. Therefore, v3∧v4∧ω2 represents 
a non-zero element in

E2,1
2 = kernel of adΠ : H1(g2,0) → H1(g3,0)

image of adΠ : H1(g1,0) → H1(g2,0) .

In other words, d2(ω2 ∧ ω3) is represented by a non-zero element, and hence d2 is not identically zero for 
the holomorphic Poisson structure Π = 2v1 ∧ v4 − v2 ∧ v3.
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