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Abstract

We prove a 2-categorical analogue of a classical result of Drin-
feld: there is a one-to-one correspondence between connected, sim-
ply connected Poisson Lie 2-groups and Lie 2-bialgebras. In fact,
we also prove that there is a one-to-one correspondence between
connected, simply connected quasi-Poisson 2-groups and quasi-Lie
2-bialgebras. Our approach relies on a “universal lifting theorem”
for Lie 2-groups: an isomorphism between the graded Lie algebras
of multiplicative polyvector fields on the Lie 2-group on one hand
and of polydifferentials on the corresponding Lie 2-algebra on the
other hand.

Introduction

A Poisson group is a Lie group equipped with a compatible Pois-
son structure. Poisson groups are the classical limit of quantum groups
and have been extensively studied in the past two decades. For instance,
Drinfeld proved that there is a bijection between connected, simply con-
nected Poisson groups and Lie bialgebras [7, 8].

Lie 2-groups (also called strict Lie 2-groups in the literature) are
Lie group objects in the category of Lie groupoids, or equivalently Lie
groupoid objects in the category of Lie groups. More explicitly, a Lie 2-
group is a Lie groupoid Γ1 ⇒ Γ0, where both Γ1 and Γ0 are Lie groups
and all the groupoid structure maps are group homomorphisms. Lie
2-groups are special instances of Mackenzie’s double groupoids [14].

The recent categorification trend motivates the search for an appro-
priate notion of quantum 2-groups. Poisson 2-groups are a natural first
step in that direction. By a Poisson 2-group, we mean a Lie 2-group
equipped with a Poisson structure Π on Γ1, which is multiplicative
with respect to both the group and the groupoid structures on Γ1. In
other words, (Γ1,Π) is simultaneously both a Poisson group [7, 8] and
a Poisson groupoid [20].

Lie 2-algebras are Lie algebra objects in the category of Lie algebroids
[1]. They can be identified with Lie algebra crossed modules: pairs of
Lie algebras θ and g together with a linear map φ : θ → g and an action
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of g on θ by derivations satisfying a certain compatibility condition.
Likewise, a Lie 2-bialgebra can be considered as a Lie bialgebra crossed

module, i.e. a pair of Lie algebra crossed modules in duality: (θ
φ
→ g) and

(g∗
−φ∗

→ θ∗) are both Lie algebra crossed modules, and (g⋉ θ, θ∗ ⋉ g∗) is
a Lie bialgebra.

We prove that, at the infinitesimal level, Poisson 2-groups induce Lie
2-bialgebras. More precisely, we prove the following analogue of Drin-
feld’s theorem:

Theorem A. There is a one-to-one correspondence between con-
nected, simply connected Poisson 2-groups and Lie 2-bialgebras.

We will also prove a more general result:

Theorem B. There is a one-to-one correspondence between con-
nected, simply connected quasi-Poisson 2-groups and quasi-Lie 2-bialgebras.

Quasi-Poisson 2-groups are, in a certain sense, the 2-categorical ana-
logues of Kosmann-Schwarzbach’s quasi-Poisson groups [10]. A quasi-
Poisson 2-group is a Lie 2-group Γ1 ⇒ Γ0 endowed with a multiplicative
quasi-Poisson structure on Γ1, i.e. a multiplicative bivector field Π on
Γ1 such that the Schouten bracket [Π,Π] is some sort of coboundary.

A natural generalization of Lie 2-algebras (or Lie algebra crossed
modules), weak Lie 2-algebras are two-term L∞ algebras. They can be
described concisely in terms of the shifted degree “big bracket,” which
is a Gerstenhaber bracket on S•(V [2] ⊕ V ∗[1]). Here V = θ ⊕ g is a
graded vector space, where θ is of degree 1 and g is of degree 0. Identi-
fying S•(V [2]⊕V ∗[1]) with the space Γ(∧•T [4]M) of polyvector fields on
M = V ∗[−2] with polynomial coefficients, the big bracket can be simply
described as the Schouten bracket of polyvector fields on M .

In [6], we developed a notion of weak Lie 2-bialgebras: objects that
are simultaneously weak Lie 2-algebras as well as weak Lie 2-coalgebras,
both structures being compatible with one another in a certain sense.
In terms of the big bracket, a weak Lie 2-bialgebra on a graded vector
space V is a degree-(−4) element t of S•(V [2]⊕V ∗[1]) satisfying {t, t} = 0.
Quasi-Lie 2-bialgebras are a special instance of weak Lie 2-bialgebras.

Our proofs of Theorems A and B rely on the following “universal
lifting theorem,” which should be of independent interest:

Theorem C. Given a Lie 2-group Γ1 ⇒ Γ0, if both Γ1 and Γ0

are connected and simply connected, then the graded Lie algebras⊕
k≥0X

k
mult(Γ1) and

⊕
k≥0Ak are isomorphic.

Here
⊕

k≥0X
k
mult(Γ1) denotes the space of multiplicative polyvector

fields on Γ1 which, being closed with respect to the Schouten bracket,
is naturally a graded Lie algebra. On the other hand,

⊕
k≥0Ak denotes
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the graded Lie algebra formed by the polydifferentials on the associ-
ated Lie 2-algebra—the infinitesimal counterparts of the multiplicative
polyvector fields on the Lie 2-group.

Theorems A and B are proved simply by expressing the algebraic
data defining the weak Lie 2-bialgebra structure in terms of the graded
Lie algebra

⊕
k≥0Ak.

We refer to the recent papers [13, 16, 18] on integration of Courant
algebroids to symplectic 2-groupoids, which may have a close connection
to our work.
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1. Quasi-Lie 2-bialgebras

In this section, we recall some basic notions regarding quasi-Lie 2-
bialgebras developed in [6].

1.1. The big bracket. We will introduce a graded version of the big
bracket [11, 12] involving graded vector spaces.

Let V =
⊕

k∈Z V
(k) be a graded vector space. Consider the Z-graded

manifold M = V ∗[−2] and the shifted tangent space

T [4]M ∼= (M × V ∗
[−2])[4] ∼= M × V ∗

[2].

Consider the space of polyvector fields on M with polynomial coeffi-
cients:

Γ(∧•T [4]M) ∼= S•(M∗)⊗ S•((V ∗
[2])[−1])

∼= S•(V [2])⊗ S•(V ∗
[1]) ∼= S•(V [2]⊕ V ∗

[1]).

We write S• for S•(V [2]⊕V ∗[1]) and ⊙ for the symmetric tensor product
in S•.

There is a standard way to endow S• = Γ(∧•T [4]M) with a graded
Lie bracket, i.e. the Schouten bracket, which is denoted by { � , � }. It is
a bilinear map { � , � } : S•⊗S• → S• satisfying the following properties:

1) {v, v′} = {ǫ, ǫ′} = 0, for all v, v′ ∈ V [2] and ǫ, ǫ′ ∈ V ∗[1];

2) {v, ǫ} = (−1)|v| 〈v|ǫ〉, for all v ∈ V [2] and ǫ ∈ V ∗[1];
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3) {e1, e2} = −(−1)
(|e1|+3)(|e2|+3) {e2, e1}, for all e1, e2 ∈ S

•;

4) {e1, e2⊙ e3} = {e1, e2}⊙ e3 + (−1)(|e1|+3)|e2|e2⊙ {e1, e3}, for all
e1, e2, e3 ∈ S

•.

It is clear that { � , � } is of degree 3, i.e.

|{e1, e2}| = |e1|+ |e2|+ 3,

for all homogeneous ei ∈ S
•, and the following graded Jacobi identity

holds:

{e1, {e2, e3}} = {{e1, e2} , e3}+ (−1)(|e1|+3)(|e2|+3) {e2, {e1, e3}} .

Hence (S•,⊙ , { � , � }) is a Schouten algebra, also known as an odd
Poisson algebra, or a Gerstenhaber algebra [19].

Due to our degree convention, when V is an ordinary vector space
considered as a graded vector space concentrated at degree 0, the bracket
above is different from the usual big bracket in the literature [11].

1.2. Quasi-Lie 2-bialgebras. Following Baez-Crans [1], a weak Lie 2-
algebra is an L∞-algebra on the 2-term graded vector space V = θ ⊕ g,
where θ is of degree 1 and g is of degree 0. Unfolding the L∞-structure,
one can define a weak Lie 2-algebra as a pair of vector spaces θ and g

endowed with the following structures:

1) a linear map φ: θ → g;
2) a bilinear skewsymmetric map [ � , � ]: g⊗ g→ g;
3) a bilinear map � ⊲ � : g⊗ θ → θ;
4) a trilinear skewsymmetric map h: g⊗ g⊗ g→ θ, called the homo-

topy map.

These maps are required to satisfy the following compatibility condi-
tions: for all w, x, y, z ∈ g and u, v ∈ θ,

[[x, y], z] + [[y, z], x] + [[z, x], y] + (φ ◦ h)(x, y, z) = 0,

y ⊲ (x ⊲ u)− x ⊲ (y ⊲ u) + [x, y] ⊲ u+ h(φ(u), x, y) = 0,

φ(u) ⊲ v + φ(v) ⊲ u = 0,

φ(x ⊲ u) = [x, φ(u)],

and

− w ⊲ h(x, y, z) − y ⊲ h(x, z, w) + z ⊲ h(x, y, w) + x ⊲ h(y, z, w)

= h([x, y], z, w) − h([x, z], y, w) + h([x,w], y, z)

+ h([y, z], x, w) − h([y,w], x, z) + h([z, w], x, y).

If h vanishes, we call it a strict Lie 2-algebra, or simply a Lie 2-algebra.
Now consider the degree shifted vector spaces V [2] and V ∗[1]. Under

such a degree convention, the degrees of g, θ, g∗, and θ∗ are specified as
follows:

space g θ g∗ θ∗

degree −2 −1 −1 −2
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We will maintain this convention throughout this section. We remind
the reader that the abbreviation S• stands for S•(V ∗[1]⊕ V [2]).

Proposition 1.1 ([6]). Under the above degree convention, a weak
Lie 2-algebra structure is equivalent to a solution to the equation

(1) {s, s} = 0,

where s = φ̌+ b̌+ ǎ+ ȟ is an element in S(−4) such that

(2)





φ̌ ∈ θ∗⊙ g,

b̌ ∈ (⊙ 2g∗)⊙ g,

ǎ ∈ g∗⊙ θ∗⊙ θ,

ȟ ∈ (⊙ 3g∗)⊙ θ.

Here the bracket in Eq. (1) stands for the big bracket as in Section 1.1.

In the sequel, we denote a weak Lie 2-algebra by (θ→g, s) in order to
emphasize the map from θ to g. Sometimes, we will omit s and denote
a weak Lie 2-algebra simply by (θ→g). If (g∗ → θ∗) is a weak Lie 2-
algebra, then (θ → g) is called a weak Lie 2-coalgebra. Equivalently, a
weak Lie 2-coalgebra is a 2-term L∞-structure on g∗⊕ θ∗, where g∗ has
degree 1 and θ∗ has degree 0.

Similarly, we have the following

Proposition 1.2 ([6]). A weak Lie 2-coalgebra is equivalent to a
solution to the equation

{c, c} = 0,

where c = φ̌+ ǫ̌+ α̌+ η̌ ∈ S(−4) such that

(3)





φ̌ ∈ θ∗⊙ g,

ǫ̌ ∈ θ∗⊙ (⊙ 2θ),

α̌ ∈ g∗⊙ g⊙ θ,

η̌ ∈ g∗⊙ (⊙ 3θ).

We denote such a weak Lie 2-coalgebra by (θ→g, c).

Definition 1.3. A weak Lie 2-bialgebra consists of a pair of vector
spaces θ and g together with a solution t = b̌+ǎ+ȟ+φ̌+ǫ̌+α̌+η̌ ∈ S(−4)

to the equation {t, t} = 0. Here b̌, ǎ, ȟ, φ̌, ǫ̌, α̌, η̌ are as in Eqs. (2) and (3).
If, moreover, ȟ = 0, it is called a quasi-Lie 2-bialgebra. If both ȟ and
η̌ vanish, we say that the Lie 2-bialgebra is strict, or simply a Lie 2-
bialgebra.

Proposition 1.4. Let (θ, g, t) be a weak Lie 2-bialgebra as in Defini-
tion 1.3. Then (θ→g, l), where l = φ̌+ b̌+ ǎ+ ȟ, is a weak Lie 2-algebra,
while (θ→g, c), where c = φ̌+ ǫ̌+ α̌+ η̌, is a weak Lie 2-coalgebra.
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Example 1.5. Assume that g is a semisimple Lie algebra. Let ( � , � )
be its Killing form. Then h(x, y, z) = ~(x, [y, z]), for all x, y, z ∈ g, is a
Lie algebra 3-cocycle, where ~ is a constant. Let θ = R. Then the trivial
map R → g together with h becomes a weak Lie 2-algebra, called the
string Lie 2-algebra [1]. More precisely, the string Lie 2-algebra is as
follows:

1) θ is the abelian Lie algebra R;
2) g is a semisimple Lie algebra;
3) φ : θ → g is the trivial map;
4) the action map ⊲ : g⊗ θ → θ is the trivial map;
5) h : ∧3g → θ is given by the map ~(·, [·, ·]), where ~ is a fixed

constant.

Now fix an element x ∈ g. We endow R→ g with a weak Lie 2-coalgebra
structure as follows:

1) g∗ is an abelian Lie algebra;
2) θ∗ ∼= R is an abelian Lie algebra;
3) φ∗ : g∗ → θ∗ is the trivial map;
4) the θ∗-action on g∗ is given by 1 ⊲ ξ = ad∗xξ, for all ξ ∈ g∗;
5) η̃ : ∧3θ∗ → g∗ is the trivial map.

One can verify directly that these relations indeed define a weak Lie
2-bialgebra.

1.3. Lie bialgebra crossed modules.

Definition 1.6. A Lie algebra crossed module consists of a pair of
Lie algebras θ and g, a linear map φ : θ → g, and an action of g on θ by
derivations satisfying, for all x, y ∈ g, u, v ∈ θ,

1) φ(u) ⊲ v = [u, v];
2) φ(x ⊲ u) = [x, φ(u)],

where ⊲ denotes the g-action on θ.
Note that 1) and 2) imply that φ must be a Lie algebra homomor-

phism. We write (θ
φ
→ g) to denote a Lie algebra crossed module. The

associated semidirect product Lie algebra is denoted by g⋉ θ.
The following proposition indicates that crossed modules of Lie alge-

bras are in one-to-one correspondence with Lie 2-algebras. We refer the
reader to [1] for details.

Proposition 1.7. Lie algebra crossed modules are equivalent to (strict)
Lie 2-algebras.

Definition 1.8. A Lie bialgebra crossed module is a pair of Lie alge-

bra crossed modules in duality: (θ
φ
→ g) and (g∗

φT

→ θ∗), where φT = −φ∗,
are both Lie algebra crossed modules such that (g⋉ θ, θ∗ ⋉ g∗) is a Lie
bialgebra.
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Lie bialgebra crossed modules are symmetric, as we see in the next

Proposition 1.9. If ((θ
φ
→ g), (g∗

φT

→ θ∗)) is a Lie bialgebra crossed

module, so is ((g∗
φT

→ θ∗), (θ
φ
→ g)).

The following result justifies our terminology.

Proposition 1.10. If ((θ
φ
→ g), (g∗

φT

→ θ∗)) is a Lie bialgebra crossed
module, then both pairs (θ, θ∗) and (g, g∗) are Lie bialgebras.

Example 1.11. One can construct a Lie bialgebra crossed module
from an ordinary Lie bialgebra as follows. Given a Lie bialgebra (θ, θ∗),

consider the trivial Lie algebra crossed module (θ
1
→ θ), where the

second θ acts on the first θ by the adjoint action. In the mean time,

consider the dual Lie algebra crossed module (θ∗
−1
→ θ∗), where the

second θ∗ is equipped with the opposite Lie bracket: −[ � , � ]∗, and the
action of the second θ∗ on the first θ∗ is given by κ2 ⊲ κ1 = −[κ2, κ1]∗,

for all κ1, κ2 ∈ θ∗. It is simple to see that ((θ
1
→ θ), (θ∗

−1
→ θ∗)) is indeed

a Lie bialgebra crossed module.

The following theorem was proved in [6].

Theorem 1.12. There is a bijection between Lie bialgebra crossed
modules and (strict) Lie 2-bialgebras.

Example 1.13. Consider the Lie subalgebra u(n) ⊂ gln(C) of n× n

skew-Hermitian matrices. Let θ ⊂ gln(C) be the Lie subalgebra consist-
ing of upper triangular matrices whose diagonal elements are real num-
bers. It is standard that (θ,u(n)) is a Lie bialgebra. Indeed θ ⊕ u(n) ∼=
gln(C), and both θ and u(n) are Lagrangian subalgebras of gln(C) un-
der the nondegenerate pairing 〈X|Y 〉 = Im(Tr(XY )), forX,Y ∈ gln(C).
Hence (θ,u(n), gln(C)) is a Manin triple, and thus (θ,u(n)) forms a Lie
bialgebra.

Let g denote the Lie algebra of traceless upper triangular matrices

with real diagonal elements. It turns out that (θ
φ
→ g), where φ is the

map A 7→ A− trA, is a Lie bialgebra crossed module.

2. Universal lifting theorem

2.1. Lie 2-groups. A Lie 2-group (also called strict Lie 2-groups in
the literature) is a Lie groupoid Γ1 ⇒ Γ0, where both Γ1 and Γ0 are
Lie groups and all the groupoid structure maps are group homomor-
phisms. A Lie 2-group is a special case of double groupoid in the sense
of Mackenzie [14].

Definition 2.1 ([21, 22]). A Lie group crossed module consists of
a Lie group homomorphism Φ : Θ → G and an action of G on Θ by
automorphisms satisfying the following compatibility conditions:
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1) Φ(α)⊲β = αβα−1,
2) Φ(g⊲β) = gΦ(β)g−1,

for all g ∈ G and α, β ∈ Θ. Here g⊲β denotes the action of g ∈ G on
β ∈ Θ.

We write (Θ
Φ
→ G) to denote a Lie group crossed module.

Proposition 2.2. There is a bijection between Lie 2-groups and
crossed modules of Lie groups.

Proof. This is standard. For instance, see [2, 4, 5, 15, 17]. Here we
will sketch the construction of the Lie 2-group out of a crossed module,
which will be needed later on.

The Lie 2-group corresponding to a Lie group crossed module (Θ
Φ
→

G) will be denoted by G⋉Θ ⇒ G, or simply G⋉Θ, by abuse of nota-
tions. Here the group structure on G⋉Θ is as follows:

• group multiplication: (g, α) ⋄ (h, β) = (gh, (h−1⊲α)β);
• group unit: 1⋄ = (1G,1Θ), with 1G and 1Θ denoting, respectively,
the group unit elements of G and Θ;
• group inversion: (g, α)−1

⋄ = (g−1, (g⊲α)−1).

The groupoid structure on G⋉Θ ⇒ G is as follows:

• source and target maps: s(g, α) = g, t(g, α) = gΦ(α);
• groupoid multiplication: (g, α) ⋆ (h, β) = (g, αβ), if h = gΦ(α);
• groupoid units: (g,1Θ);

• groupoid inversion: (g, α)−1
⋆ = (gΦ(α), α−1).

q.e.d.

In the sequel, we will use Lie 2-groups and crossed modules of Lie
groups interchangeably.
2.2. Multiplicative polyvector fields on Lie groupoids. We recall
some standard results regarding multiplicative polyvector fields on a Lie
groupoid. Let Γ ⇒ M be a Lie groupoid with source and target maps
s and t, respectively. Consider the graph of the groupoid multiplication
Λ = {(p, q, pq)|t(p) = s(q)}, which is a submanifold in Γ× Γ× Γ.

Recall that a k-vector field Σ ∈ Xk(Γ) is said to be multiplicative if
Λ is coisotropic with respect to Σ×Σ× (−1)k+1Σ [9]. In other words,

(Σ× Σ× (−1)k+1Σ)(ξ1, · · · , ξk) = 0, ∀ξ1, · · · , ξk ∈ Λ⊥

for all ξ1, · · · , ξk ∈ Λ⊥, where

Λ⊥ = {ξ ∈ T ∗
λ (Γ× Γ× Γ) s.t. λ ∈ Λ, 〈ξ|v〉 = 0,∀v ∈ TλΛ} .

A k-vector field Σ on Γ is said to be affine if [Σ,
←−
X ] is left invariant

for all X ∈ ΓΓΓ(A). Here A denotes the Lie algebroid of Γ, and
←−
X denotes

the left invariant vector field on Γ corresponding to X.
The following lemma gives a useful characterization of multiplicative

polyvector fields.
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Lemma 2.3 (Theorem 2.19 in [9]). A k-vector field Σ is multiplica-
tive if and only if the following three conditions hold:

1) Σ is affine;
2) M is a coisotropic submanifold of Γ;
3) for any ξ ∈ Ω1(M), ιt∗(ξ)Σ is left invariant.

Remark 2.4. The statement of Theorem 2.19 in [9] contains more
conditions but some of them are redundant.

Along the base manifold M , the tangent bundle TΓ admits a natural
decomposition

TΓ|M = TM ⊕A,

where A is identified with T sΓ|M , the tangent bundle to the s-fibers
along M . Denote by ρ : A → TM the anchor map. Then ρ is equal to
t∗ : T

sΓ|M → TM .
Let Zk be the set of all elements w of TM ∧ (∧k−1A) satisfying

ιζ1ιρ∗ζ2w = −ιζ2ιρ∗ζ1w, ∀ζ1, ζ2 ∈ T ∗M.

Let Dρ be a degree-0 derivation of Γ(∧•(TM ⊕ A)) such that
Dρ(a+ b) = ρ(a), for all a ∈ A and b ∈ TM .

Lemma 2.5. For any w ∈ Zk and j ≥ 1, we have

(4) ιρ∗ζ(D
j−1
ρ w) = Dj

ρ(ιζw) =
1

j + 1
ιζ(D

j
ρw), ∀ζ ∈ T ∗M.

Proof. First, note that we have the following identities:

ιζ ◦Dρ −Dρ ◦ ιζ = ιρ∗ζ ,(5)

ιρ∗ζ ◦Dρ = Dρ ◦ ιρ∗ζ ,(6)

where ζ ∈ T ∗M , and both sides of Eqs. (5) and (6) are considered as
linear maps ∧•(TM ⊕A)→ ∧•−1(TM ⊕A).

Now we prove Eq. (4) by induction. If j = 1, the equation

ιρ∗ζw = Dρ(ιζw)

follows from the definition of Zk. By Eq. (5), we have

(ιζ ◦Dρ −Dρ ◦ ιζ)w = ιρ∗ζw = Dρ(ιζw).

It thus follows that

Dρ(ιζw) =
1

2
ιζ(Dρw).

Assume that Eq. (4) is valid for j ≥ 1. Then, using Eq. (6), we have

ιρ∗ζ(D
j
ρw) = (Dρ ◦ ιρ∗ζ)(D

j−1
ρ w) = (Dρ ◦D

j
ρ)(ιζw) = Dj+1

ρ (ιζw).



218 Z. CHEN, M. STIÉNON & P. XU

Moreover, using Eq. (5), we have

Dj+1
ρ (ιζw) = Dρ(D

j
ρ(ιζw)) =

1

j + 1
(Dρ ◦ ιζ ◦D

j
ρ)w

=
1

j + 1
(ιζ ◦Dρ − ιρ∗ζ) ◦D

j
ρw =

1

j + 1

(
ιζ(D

j+1
ρ w) −Dj+1

ρ (ιζw)
)
,

which implies that

Dj+1
ρ (ιζw) =

1

j + 2
ιζ(D

j+1
ρ w).

q.e.d.

Proposition 2.6. Given a multiplicative k-vector field Σ on Γ, there
exists a section σ ∈ ΓΓΓ(TM ∧ (∧k−1A)) such that

(7) Σ|M =
1− e−Dρ

Dρ
(σ) = σ − 1

2!Dρσ + 1
3!D

2
ρσ + · · · − (−1)k

k! Dk−1
ρ σ.

Moreover, σ satisfies the following properties:

∂Σ(f) = (−1)k−1ιdfσ, ∀f ∈ C∞(M),(8)

ιζιρ∗ξσ = −ιξιρ∗ζσ, ∀ξ, ζ ∈ Ω1(M).

Proof. Since M is coisotropic in Γ with respect to Σ, we may write

(9) Σ|M = σ1,k−1 + σ2,k−2 + · · ·+ σk,0,

where σi,k−i ∈ ΓΓΓ((∧iTM) ∧ (∧k−iA)).
Also observe that, for any 1-form ξ ∈ Ω1(M), we have

(10) t∗(ξ)|M = ξ + ρ∗ξ ∈ ΓΓΓ(T ∗M ⊕A∗),

where T ∗Γ|M is naturally identified with T ∗M⊕A∗. On the other hand,
Condition 3 of Lemma 2.3 implies that (ιt∗(ξ)Σ)|M is tangent to the s-

fibers, and therefore contains only Γ(∧kA)-components. Using Eqs. (9)
and (10), we obtain

(11)





ιρ∗ξσ
1,k−1 = −ιξσ

2,k−2

ιρ∗ξσ
2,k−2 = −ιξσ

3,k−3

...

ιρ∗ξσ
k−1,1 = −ιξσ

k,0.

Note that, for all f ∈ C∞(M),

(12) ∂Σ(f) = [Σ, t∗f ]|M = (−1)k+1ιt∗(df)Σ|M = (−1)k+1ιdfσ
1,k−1.

Since

0 = ∂Σ[f1, f2] = [∂Σ(f1), f2] + (−1)k−1[f1, ∂Σ(f2)],

it follows that

(13) ιρ∗df2ιdf1σ
1,k−1 + ιρ∗df1ιdf2σ

1,k−1 = 0.
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Let σ = σ1,k−1. We will prove the following identity by induction on
i:

(14) σi,k−i =
(−1)i−1

i!
Di−1

ρ σ.

The case i = 1 is obvious. Assume that Eq. (14) is valid for i. Then,
by Eq. (11),

ιξσ
i+1,k−i−1 = −ιρ∗ξσ

i,k−i (by the induction assumption)

=
(−1)i

i!
ιρ∗ξD

i−1
ρ σ (by Eq. (4))

=
(−1)i

i!

1

i+ 1
ιξD

i
ρσ

= ιξ
( (−1)i

(i+ 1)!
Di

ρσ
)
.

Thus Eq. (14) is proved. Therefore, Eq. (9) implies Eq. (7), Eq. (12)
implies Eq. (8), and Eq. (13) implies Eq. (2.6). q.e.d.

2.3. k-differentials of a Lie algebroid. It is known that the Schouten
bracket of two multiplicative polyvector fields on a Lie groupoid is still
multiplicative. Therefore, the space of multiplicative polyvector fields is
a graded Lie algebra [9]. On the level of Lie algebroids, multiplicative
k-vector fields correspond to k-differentials of the Lie algebroid, whose
definition we recall below.

Given a Lie algebroid A, a k-differential is an R-linear map

∂ : ΓΓΓ(∧•A)→ ΓΓΓ(∧•+k−1A)

satisfying

∂(P ∧Q) = (∂P ) ∧Q+ (−1)|P |(k−1)P ∧ (∂Q),

∂[P,Q] = [∂P,Q] + (−1)(|P |−1)(k−1)[P, ∂Q],

for all P,Q ∈ ΓΓΓ(∧•A).
The commutator of a k1 differential ∂1 and a k2-differential ∂2 is the

(k1 + k2 − 1)-differential

⌊∂1, ∂2⌋ = ∂1 ◦ ∂2 − (−1)(k1−1)(k2−1)∂2 ◦ ∂1.

Theorem 2.7 ([9]). Let Γ be a Lie groupoid, and A its Lie algebroid.
Then every multiplicative k-vector field Σ induces a k-differential ∂Σ by
←−−−−
∂Σ(P ) = [Σ,

←−
P ], for all P ∈ ΓΓΓ(∧•A). Here

←−
V denotes the left invariant

polyvector field on Γ determined by V .
Moreover, the map Σ 7→ ∂Σ is a homomorphism of graded Lie alge-

bras, which is an isomorphism provided Γ is s-connected and s-simply
connected.

In case of Lie groups, k-differentials of multiplicative k-vector fields
can be described more explicitly.
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Lemma 2.8. Let Σ be a multiplicative k-vector field on a Lie group
G.

1) The map σ̂ : G→ ∧kg defined by σ̂(g) = Lg−1∗(Σ|g) is a Lie group
1-cocycle.

2) The Lie algebra 1-cocycle induced by σ̂ is the k-differential ∂Σ:

d

dt

∣∣∣∣
t=0

(σ̂|exp tx) =
d

dt

∣∣∣∣
t=0

Lexp−1tx∗(Σ|exp tx) = −∂Σ(x), ∀x ∈ g.

2.4. Infinitesimal data of multiplicative vector fields on Lie 2-
groups. This section is devoted to the description of infinitesimal data
of multiplicative vector fields on Lie 2-groups.

2.4.1. Multiplicative polyvector fields on Lie 2-groups. Let

(Θ
Φ
→ G) be a Lie group crossed module and G⋉Θ the correspond-

ing Lie 2-group. Consider a k-vector field V ∈ Xk(G⋉Θ).

Definition 2.9. A multiplicative 0-vector field on G⋉Θ is a smooth
function f ∈ C∞(G⋉Θ) subject to the following conditions:

f(p ⋄ q) = f(p) + f(q), ∀p, q ∈ G⋉Θ;

f(p ⋆ q) = f(p) + f(q), ∀p, q ∈ G⋉Θ s.t. t(p) = s(q).

For k ≥ 1, a k-vector field V is called multiplicative if it is multiplicative
with respect to both the group and the groupoid structure on G⋉Θ.
In other words, the graph of the group multiplication

Λgp = {(r1, r2, r1 ⋄ r2)|r1, r2 ∈ G⋉Θ}

and the graph of the groupoid multiplication

Λgpd = {(r1, r2, r1 ⋆ r2)|r1, r2 ∈ G⋉Θ, t(r1) = s(r2)}

are both coisotropic with respect to the k-vector field (V,V, (−1)k+1V)
on (G⋉Θ)× (G⋉Θ)× (G ⋉Θ).

Denote the space of multiplicative k-vector fields by Xk
mult(G⋉Θ).

The following lemma follows immediately.

Lemma 2.10. When endowed with the Schouten bracket, the space
of multiplicative polyvector fields

X•
mult(G⋉Θ) := ⊕k≥0X

k
mult(G⋉Θ)

is a graded Lie algebra.

Remark 2.11. It is easy to see that f ∈ X0
mult(G⋉Θ) if and only

if f(g, α) = ν(α), ∀α ∈ Θ and g ∈ G, where ν ∈ C∞(Θ) satisfies
ν|αβ = ν|α + ν|β and ν|g⊲α = ν|α, ∀α, β ∈ Θ.
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2.4.2. The infinitesimal data. It is natural to ask what is the infin-
itesimal data of a multiplicative k-vector field (with k ≥ 1) on a Lie
2-group. To answer this question, we need, as a first step, to describe
the Lie algebroid A of the groupoid G⋉Θ ⇒ G.

It is simple to see that A is the transformation Lie algebroid G⋊θ →

G, where the θ-action on G is u 7→
←−−
φ(u),∀ u ∈ θ. Here the superscript

←−
�

stands for the left invariant vector field on G associated to a Lie algebra
element in g. It follows from Theorem 2.7 that a multiplicative k-vector
field V ∈ Xk

mult(G⋉Θ) induces a k-differential

(15) ∂gpd : ΓΓΓ(∧•A)→ ΓΓΓ(∧•+k−1A)

of the Lie algebroid A. In particular, we have a map

∂gpd : C∞(G)→ ΓΓΓ(∧k−1A) ∼= C∞(G,∧k−1θ).

Since ∂gpd is a derivation, i.e. ∂gpd(f1f2) = f2∂
gpd(f1) + f1∂

gpd(f2),
for all f1, f2 ∈ C∞(G), ∂gpd induces a ∧k−1θ-valued vector field on G,
which in turn can be identified with a g⊗(∧k−1θ)-valued function on G.
Here we identify the tangent bundle TG with G×g by left translations.
By skew symmetrization, we thus obtain a g ∧ (∧k−1θ)-valued function

on G, denoted by δ̂. More explicitly, we have

(16) ∂gpd(f)|g = (−1)k−1ι(L∗
gdf)

δ̂|g, ∀ f ∈ C∞(G), g ∈ G.

For k ≥ 1, let

Wk =
{
w ∈ g ∧ (∧k−1θ) s.t. ιζ1ιφ∗ζ2w = −ιζ2ιφ∗ζ1w, ∀ ζ1, ζ2 ∈ g∗

}
.

We have

Lemma 2.12. The function δ̂ : G→ g∧ (∧k−1θ) is a group 1-cocycle
valued in Wk. Here G acts on g by the adjoint action, and on θ by the
induced action from the crossed module structure.

Proof. Proposition 2.6 describes how a multiplicative vector field on a
Lie groupoid looks along the base manifold. Now we apply this theorem
to the groupoid G⋉Θ ⇒ G. Identify TG with G×g via left translations.
We write V|g for the value of V at (g, 1Θ). For all g ∈ G, we have

(17) V|g = Lg∗

(
1− e−Dφ

Dφ

(
δ̂|g

))

= Lg∗

(
δ̂|g −

1
2Dφδ̂|g +

1

3!
D2

φδ̂|g + · · ·+
(−1)k−1

k! Dk−1
φ δ̂|g

)
.

HereDφ : ∧•(g⋉θ)→ ∧•(g⋉θ) is a degree-0 derivation of the exterior
algebra ∧•(g⋉ θ) such that Dφ(x+ u) = φ(u), ∀ x ∈ g, u ∈ θ, and, by
abuse of notation, Lg∗ denotes the tangent map of the left translation
by (g, 1Θ) on the group G⋉Θ.



222 Z. CHEN, M. STIÉNON & P. XU

Since V is multiplicative with respect to the group structure on
G⋉Θ, it follows that

V|gh = Lg∗V|h +Rh∗V|g,

where Rh∗ denotes the tangent map of the right translation by (h, 1Θ)
in the group G⋉Θ. Substituting Eq. (17) into the equation above, we

see that δ̂ is indeed a Lie group 1-cocycle.
Moreover, Proposition 2.6 implies that

(18) ιζ1ιφ∗ζ2(δ̂|g) = −ιζ2ιφ∗ζ1(δ̂|g), ∀ζ1, ζ2 ∈ g∗.

As a consequence, δ̂ takes values in Wk. This concludes the proof. q.e.d.

Taking the derivative of δ̂ at the unit:

(19) δ(x) = −
d

dt

∣∣∣∣
t=0

δ̂|exp tx, ∀x ∈ g,

we obtain the following

Corollary 2.13. Any multiplicative k-vector field on a Lie 2-group
G⋉Θ induces a Lie algebra 1-cocycle δ : g→ g ∧ (∧k−1θ).

Lemma 2.14. Identify Θ with the Lie subgroup {1G}×Θ of G⋉Θ,
where 1G is the unit element of G. Then any multiplicative k-vector
field V (k ≥ 1) is tangent to Θ, and therefore defines a multiplicative
k-vector field V|Θ on Θ.

Proof. Let i denote the inverse map of the groupoid G⋉Θ ⇒ G, as
described in the proof of Proposition 2.2, i.e. i(g, α) = (gΦ(α), α−1).
It is clear that i∗V = (−1)k+1V, since V is multiplicative. To prove
the lemma, it suffices to prove that, for any function f ∈ C∞(G),
[V, s∗f ]|Θ = 0. For all α ∈ Θ ⊂ G⋉Θ, we have

i∗
(
[V, s∗f ]|α

)
= (−1)k+1[V, t∗f ]|i(α) = (−1)k+1

(←−−−−
∂gpd(f)

)
|i(α)

= (−1)k+1Li(α)∗

(
∂gpd(f)|t◦i(α)

)
= (−1)k+1Li(α)∗

(
∂gpd(f)|1G

)
= 0.

Here 1G is the unit element of G, and L stands for the left translations
with respect to the groupoid structure. The fact that ∂gpd(f)|1G

= 0 is
due to Eq. (16) and Lemma 2.12. q.e.d.

As an immediate consequence, the infinitesimal of V|Θ gives rise to
a Lie algebra 1-cocycle

(20) ω : θ → ∧kθ.

The pair (δ, ω) as defined in Eqs. (19) and (20) constitutes the infini-
tesimal data of V.
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2.4.3. Compatibility conditions. This section is devoted to explor-
ing the compatibility condition between the infinitesimal data ω and δ.
The main theorem is the following:

Theorem 2.15. Let (Θ
Φ
→ G) be a crossed module of Lie groups. A

multiplicative k-vector field V on the Lie 2-group G⋉Θ associated to
this crossed module determines a pair of linear maps

ω : θ → ∧kθ,

δ : g→ g ∧ (∧k−1θ)

which satisfy the following three properties:

ID1: Dφ◦ω = δ◦φ, i.e. the diagram

θ
φ

//

ω
��

g

δ
��

∧k(g⋉ θ)
Dφ

// ∧k(g⋉ θ)

commutes;
ID2: δ is a Lie algebra 1-cocycle valued in Wk;
ID3: for all x ∈ g and u ∈ θ,

x ⊲
(
ω(u)

)
− ω(x ⊲ u) = pr∧kθ

(
[u, δ(x)]

)
,

where the bracket is taken in g⋉ θ.

First of all, we prove that the k-differentials of V with respect to
both the groupoid and the group structures can be expressed in terms
of the infinitesimal data (ω, δ). Since A ∼= G × θ, ∂gpd is completely
determined by two R-linear operators: ∂gpd : C∞(G) → C∞(G,∧k−1θ)
and ∂gpd : C∞(G, θ) → C∞(G,∧kθ). The latter is determined by its
value on constant functions due to the Leibniz rule.

Let ∂gp : g⋉ θ → ∧k(g ⋉ θ) be the k-differential with respect to the
group structure on G⋉Θ.

Proposition 2.16. The map ω : θ → ∧kθ satisfies

(21) ω(u) = ∂gp(u) = ∂gpd(u), ∀u ∈ θ.

Proof. Every u ∈ θ ⊂ g ⋉ θ (considered as a constant section of the
Lie algebroid A ∼= G × θ) determines two vector fields on G⋉Θ: a
vector field ←−u gp invariant under left translations relative to the group
structure and a vector field ←−u invariant under left translations relative
to the groupoid structure G⋉Θ ⇒ G. It is simple to see that

(22) ←−u gp =←−u .

Therefore,
←−−−−
∂gp(u) =

←−−−−−(
∂gp(u)

)
gp = [V,←−u gp] = [V,←−u ] =

←−−−−
∂gpd(u).
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By definition, we have ω(u) = ∂gp(u). The conclusion follows. q.e.d.

Proposition 2.17. The k-differential ∂gp : g⋉θ→ ∧k(g⋉θ) satisfies

∂gp(u) = ω(u), ∀u ∈ θ,

∂gp(x) =
1− e−Dφ

Dφ

(
δ(x)

)
, ∀x ∈ g.

Proof. It remains to prove the second equation, which follows from a
direct verification by applying Lemma 2.8 (2) and Eq. (17). q.e.d.

Proof of Theorem 2.15. According to Lemma 2.12, ID2 holds. It suffices
to prove ID1 and ID3.

Consider the k-differential ∂gpd : Γ(∧•A) → Γ(∧•+k−1A) induced by
V. For any u ∈ θ, f ∈ C∞(G), we have

(23) ∂gpd[u, f ] = [∂gpd(u), f ] + [u, ∂gpd(f)].

Next we evaluate both sides of Eq. (23) at e = 1G. Since δ̂ is a Lie

group 1-cocycle according to Lemma 2.12, we have δ̂|e = 0. It thus
follows from Eq. (16) that ∂gpd[u, f ]|e = 0. On the other hand, we have

[∂gpd(u), f ]|e = [ω(u), f ]|e = (−1)k−1ιφ∗(df)ω(u)

= (−1)k−1ιdf
(
(Dφ◦ω)(u)

)
.

Here we have used Proposition 2.16 and the equality ιφ∗ξ = ιξ ◦Dφ

in Hom(∧kθ,∧k−1θ) valid for all ξ ∈ g∗. Moreover, Eq. (16) implies
that ∂gpd(f)|e = 0. Since the Lie algebroid A is the transformation Lie
algebroid G⋊ θ, we have

[u, ∂gpd(f)]|e =
d

dt

∣∣∣∣
t=0

(
∂gpd(f)|exp tφ(u)

)

= (−1)k−1 d

dt

∣∣∣∣
t=0

((
L∗
exptφ(u)(df)

)
y δ̂|exp tφ(u)

)

= −(−1)k−1ιdf δ(φ(u)).

Here ∂gpd(f) is considered as a (∧k−1θ)-valued function on G, and the
first equality follows from the Leibniz rule of the Lie algebroid axiom
and the identity ∂gpd(f)|e = 0. Hence ID1 follows immediately from
Eq. (23).

On the other hand, the k-differential ∂gp satisfies

∂gp[x, u] = [∂gp(x), u] + [x, ∂gp(u)], ∀x ∈ g, u ∈ θ,

where the brackets stand for the Lie algebra bracket on g⋉ θ. Applying
Proposition 2.17, and comparing the ∧kθ-terms of both sides of the
equation above, ID3 follows immediately. q.e.d.
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Proposition 2.18. The map ω : θ → ∧kθ is a Lie algebra 1-cocycle,
i.e.

ω[u, v] = [ω(u), v] + [u, ω(v)], ∀u, v ∈ θ.

Proof. Using ID1 and ID3 from Theorem 2.15, we have

ω[u, v] = ω(φ(u) ⊲ v)

= φ(u) ⊲ ω(v)− pr∧kθ([v, δ(φ(u))])

= [u, ω(v)] − pr∧kθ([v,Dφ(ω(u))])

= [u, ω(v)] − [v, ω(u)].

Here, in the last equality, we have used the identity

pr∧kθ([v,Dφ(ζ)]) = [v, ζ], ∀ζ ∈ ∧kθ,

which can be verified by a straightforward computation. q.e.d.

Now we extend the two maps ω and δ to degree-(k − 1) derivations
(which we denote by the same symbols by abuse of notation) on the
exterior algebra ∧•(g⋉ θ) by setting ω(g) = 0 and δ(θ) = 0.

Proposition 2.19. Assume that V1 and V2 are multiplicative k1-
and k2-vector fields on the Lie 2-group G⋉Θ. Let (ω1, δ1) and (ω2, δ2)
be their corresponding infinitesimals. Then the infinitesimal (ω3, δ3) of
V3 = [V1,V2] is given by the following formulae:

ω3 = ω1 ◦ ω2 − (−1)(k1−1)(k2−1)ω2 ◦ ω1,(24)

δ3 = (δ1 + ω1) ◦ δ2 − (−1)(k1−1)(k2−1)(δ2 + ω2) ◦ δ1.(25)

Proof. Note that

∂gp

V3
= ∂gp

[V1,V2]
= ⌊∂gp

V1
, ∂gp

V2
⌋

= ∂gp

V1
◦ ∂gp

V2
− (−1)(k1−1)(k2−1)∂gp

V2
◦ ∂gp

V1
.

Hence Eqs. (24) and (25) follow immediately from Proposition 2.17.
q.e.d.

By Ak (k ≥ 1) we denote the space of pairs (ω, δ) of linear maps
ω : θ → ∧kθ and δ : g → g ∧ (∧k−1θ) satisfying the three properties
ID1, ID2, and ID3 listed in Theorem 2.15. By A0, we denote the
space of all pairs (ω, δ), where δ is the trivial map g→ 0 and ω : θ → R

satisfies ω(x ⊲ u) = 0, for all x ∈ g and u ∈ θ.

Corollary 2.20. When endowed with the bracket defined by Eqs. (24)
and (25), the direct sum

⊕
k≥0Ak is a graded Lie algebra.

2.5. The universal lifting theorem.
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2.5.1. Statement of the main theorems. The converse of Theorem
2.15 holds as well.

Theorem 2.21. Let G⋉Θ be a Lie 2-group, where both G and Θ
are connected and simply connected. Given any (ω, δ) ∈ Ak, there exists
a unique multiplicative k-vector field V on G⋉Θ, whose infinitesimal
corresponds to (ω, δ).

An immediate consequence is the following main result of the paper:

Theorem 2.22 (universal lifting theorem). Let G⋉Θ be a Lie 2-
group, where both G and Θ are connected and simply connected Lie
groups with Lie algebras g and θ, respectively. There is a canonical iso-
morphism of graded Lie algebras

⊕

k≥0

Xk
mult(G⋉Θ) ∼=

⊕

k≥0

Ak.

2.5.2. From infinitesimal data to k-differentials of the Lie al-
gebra g⋉ θ. The k = 0 case is obvious, so we will assume k ≥ 1 below.
We will divide the proof of Theorem 2.21 into several steps.

First, since δ is a Lie algebra 1-cocycle, it integrates to a Lie group
1-cocycle

δ̂ : G→ g ∧ (∧k−1θ)

such that

(26) δ(x) = −
d

dt

∣∣∣∣
t=0

δ̂|exp tx, ∀x ∈ g.

Clearly the map δ̂ takes values in Wk.
Let ω̂ : Θ → ∧kθ be the group 1-cocycle integrating ω. As a direct

consequence of property ID1 from Theorem 2.15, we have

(27) δ̂|Φ(α) = Dφ(ω̂|α), ∀g ∈ G,α ∈ Θ.

Define a linear map ∂ : g⋉ θ → ∧k(g⋉ θ) by

(28)





∂(u) = ω(u), ∀u ∈ θ;

∂(x) =
1− e−Dφ

Dφ
δ(x), ∀x ∈ g.

Proposition 2.23. The operator ∂ defines a Lie algebra k-differential
for the Lie algebra g⋉ θ.

Proof. It suffices to prove that ∂ is a Lie algebra 1-cocycle for the Lie
algebra g⋉ θ. In fact, Proposition 2.18 implies that

∂[u, v] = [∂u, v] + [u, ∂v], ∀u, v ∈ θ.

On the other hand, it follows from a direct verification that

Dφ[x,w] = [x,Dφ(w)], ∀x ∈ g, w ∈ ∧•(g⋉ θ).
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As a consequence, applying the operator 1−e
−Dφ

Dφ
to both sides of the

equation:

δ[x, y] = [δx, y] + [x, δy],

we obtain

∂[x, y] = [∂x, y] + [x, ∂y], ∀x, y ∈ g.

It remains to prove the identity

∂[x, u] = [∂x, u] + [x, ∂u], ∀x ∈ g, u ∈ θ.

Since ∂[x, u] − [x, ∂u] = pr∧kθ([δ(x), u]) according to property ID3
from Theorem 2.15, it suffices to prove that

[∂x, u] = pr∧kθ([δ(x), u]).

Now

[∂x, u] =

[
k−1∑

i=0

(−1)i

(i+ 1)!
Di

φ(δ(x)), u

]

=

k−1∑

j=0

pr∧jg∧(∧k−jθ)

[
k−1∑

i=0

(−1)i

(i+ 1)!
Di

φ(δ(x)), u

]
.

Using the definitions of δ and Dφ, we obtain the following identity:

pr∧kθ

[
k−1∑

i=0

(−1)i

(i+ 1)!
Di

φ(δ(x)), u

]
= pr∧kθ[δ(x), u].

For 1 ≤ j ≤ k − 1, the sum pr∧jg∧(∧k−jθ)

[∑k−1
i=0

(−1)i

(i+1)!D
i
φ(δ(x)), u

]
con-

tains only the two terms

pr∧jg∧(∧k−jθ)

([
(−1)j−1

j!
D

j−1
φ (δ(x)), u

]
+

[
(−1)j

(j + 1)!
D

j
φ(δ(x)), u

])

and thus reduces to

(29)
(−1)j−1

j!
pr∧jg∧(∧k−jθ)

( [
D

j−1
φ (δ(x)), u

]
−

1

j + 1

[
D

j
φ(δ(x)), u

] )
.

To prove that it vanishes, we need a couple of lemmas.

Lemma 2.24. For any v ∈ ∧k−1θ and 1 ≤ l ≤ k − 1, we have

pr∧l−1g∧(∧k−lθ)

( [
lDl−1

φ (v)−Dl
φ(v), u

] )
= 0, ∀u ∈ θ.

Proof. This follows from a straightforward computation, which is left
to the reader. q.e.d.

From Lemma 2.5, it follows that, for any w ∈Wk and j ≥ 1, we have

(30) ιφ∗ζ(D
j−1
φ w) = D

j
φ(ιζw) =

1

j + 1
ιζ(D

j
φw), ∀ζ ∈ g∗.
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Now we return to the proof of Proposition 2.23. It remains to prove
that (29) vanishes. Indeed, for any ζ ∈ g∗, we have

ιζ pr∧jg∧(∧k−jθ)

( [
D

j−1
φ (δ(x)), u

]
−

1

j + 1

[
D

j
φ(δ(x)), u

] )

= pr∧j−1g∧(∧k−jθ)

( [
ιζD

j−1
φ (δ(x)), u

]
−

1

j + 1

[
ιζD

j
φ(δ(x)), u

] )

= pr∧j−1g∧(∧k−jθ)

( [
jD

j−1
φ (ιζδ(x)) −D

j
φ(ιζδ(x)), u

] )
= 0.

Here in the last two steps, we have used Eq. (30) and Lemma 2.24. This
concludes the proof of the proposition. q.e.d.

2.5.3. Multiplicative with respect to the groupoid structure.
As a consequence of Proposition 2.23, we obtain a k-vector field Σ on
G⋉Θ, which is multiplicative with respect to the group structure and
whose induced k-differential with respect to the group structure on
G⋉Θ is ∂. Now we need to prove that Σ is also multiplicative with
respect to the groupoid structure on G⋉Θ ⇒ G. For this purpose, we
need an explicit expression of Σ. Since Σ is multiplicative with respect
to the group structure on G⋉Θ, it suffices to find an explicit expression
of Σ along the subgroups {1G}×Θ and G×{1Θ}, respectively. The next
two lemmas are devoted to this investigation.

The following lemma is immediate.

Lemma 2.25. Identify Θ with the subgroup {1G}×Θ of G⋉Θ. Then
Σ is tangent to Θ and therefore induces a multiplicative k-vector field
Σ|Θ on Θ. Moreover, Σ|α = Lα∗(ω̂|α), for all α ∈ Θ.

Next, we have

Lemma 2.26. Along the Lie subgroup G ∼= G × {1Θ} ⊂ G × Θ, Σ
can be explicitly expressed by the following formula:

(31) Σ|g = Lg∗

(
1− e−Dφ

Dφ

(
δ̂|g

))
, ∀g ∈ G.

Moreover, for any ζ ∈ g∗, we have

(32) ι(L∗

g−1 ζ+φ∗ζ)(Σ|g) = ιζ(δ̂|g) .

Here L∗
g−1ζ ∈ T ∗

gG and φ∗ζ ∈ θ∗ = T ∗
1Θ

Θ.

Proof. Eq. (31) follows from integrating ∂(x) in Eq. (28). To prove
Eq. (32), according to Eq. (30), we have

ιφ∗ζ

(
(−1)j−1

j! D
j−1
φ

(
δ̂|g

))
= (−1)j−1

j!
1

j+1ιζD
j
φ

(
δ̂|g

)
= −ιζ

(
(−1)j

(j+1)!D
j
φ

(
δ̂|g

))
.

The conclusion thus follows immediately by using Eq. (31). q.e.d.

Proposition 2.27. The k-vector field Σ is also multiplicative with
respect to the groupoid structure on G⋉Θ ⇒ G.
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Proof. We divide the proof into three steps.
(1) The base manifold G is coisotropic with respect to Σ.
For every g ∈ G, we have T(g,1Θ)(G ⋉ Θ) ∼= TgG ⊕ θ. The conormal
space of TgG can thus be canonically identified with θ∗. It follows that

G is coisotropic with respect to Σ since Σ|g does not contain any (∧kθ)-
components according to Lemma 2.26.
(2) For every ξ ∈ Ω1(G), ιt∗(ξ)Σ is left-invariant with respect to the
groupoid structure.
For every (g, α) ∈ G⋉Θ, we identify T(g,α)(G⋉Θ) with TgG ⊕ TαΘ.

Since ω̂|α takes values in ∧kθ, we have

Σ|(g,α) = Σ|g⋄α = Lg∗(Σ|α) +Rα∗(Σ|g) = Lg∗Lα∗(ω̂|α) +Rα∗(Σ|g).

Let m denote the point t(g, α) = gΦ(α) of G. Choose a ζ ∈ g∗ and set
ξ|m = L∗

m−1ζ ∈ T ∗
mG. We have, for all u ∈ θ,

(33) ιt∗(ξ)Lg∗Lα∗u = ιφ∗(ζ)u,

which follows from the identity

(t ◦ Lg ◦ Lα)(1G, β) = gΦ(α)Φ(β) = (LgΦ(α) ◦Φ)(β), ∀β ∈ Θ.

Also note that, for all V ∈ T(g,1Θ)(G⋉Θ),

(34) ιt∗(ξ)Rα∗V = ι(
L∗

g−1Ad∗Φ(α)ζ
)V + ι(

φ∗Ad∗Φ(α)ζ
)V.

To prove this identity, we observe that
(
t ◦Rα ◦ Lg

)
(h, β) = ghΦ(β)Φ(α), ∀h ∈ G,β ∈ Θ,

which implies that
(
t∗ ◦Rα∗ ◦Lg∗

)
(x, u) =

(
LgΦ(α)∗ ◦AdΦ(α−1)

)
(x+ φ(u)), ∀x ∈ g, u ∈ θ.

Thus Eq. (34) follows from a straightforward verification.
Applying Eq. (33), we obtain

ιt∗(ξ)Lg∗(Σ|α) = ιt∗(ξ)
(
Lg∗Lα∗(ω̂|α)

)

= Lg∗Lα∗(ιφ∗ζ ω̂|α)

= Lg∗Lα∗

(
ιζDφω̂|α

)
(by Eq. (27))

= Lg∗Lα∗

(
ιζ δ̂|Φ(α)

)
.

Using Eq. (34) and Lemma 2.26 we have

ιt∗(ξ)Rα∗(Σ|g) = Rα∗

(
ιL∗

g−1 (Ad∗Φ(α)ζ)
(Σ|g) + ιφ∗Ad∗Φ(α)ζ

(Σ|g)
)

= Lg∗Rα∗

(
ιAd∗Φ(α)ζ

δ̂|g
)
.
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Therefore we have

(ιt∗(ξ)Σ)|(g,α) = ιt∗(ξ)Lg∗(Σ|α) + ιt∗(ξ)Rα∗(Σ|g)

= Lg∗Lα∗

(
ιζ δ̂|Φ(α)

)
+ Lg∗Rα∗

(
ιAd∗Φ(α)ζ

δ̂|g
)

= Lg∗Lα∗

(
ιζ δ̂|Φ(α) +Adα−1(ιAd∗

Φ(α)ζ
δ̂|g)

)

= Lg∗Lα∗ιζ

(
δ̂|Φ(α) + (Φ(α−1))∗δ̂|g)

)

= Lg∗Lα∗ιζ δ̂|gΦ(α),

where, in the last step, we used the fact that δ̂ is a Lie group 1-cocycle.
In particular, we have

(ιt∗(ξ)Σ)|gΦ(α) = (ιt∗(ξ)Σ)|(gΦ(α),1Θ) = LgΦ(α)∗ιζ δ̂|gΦ(α)

and therefore

(ιt∗(ξ)Σ)|(g,α) = L
gpd
(g,α)∗(ιt∗(ξ)Σ)|gΦ(α).

This proves that ιt∗(ξ)Σ is indeed left-invariant with respect to the
groupoid structure.

(3) For every X ∈ ΓΓΓ(A), [Σ,
←−
X ] is left-invariant with respect to the

groupoid structure.
It suffices to consider X = fu, where f ∈ C∞(G) and u ∈ θ is

considered as a constant section of A ∼= G× θ. Then

[Σ,
←−
X ] = [Σ, (t∗f)←−u ]

= (t∗f)[Σ,←−u ] + [Σ, t∗f ] ∧←−u (by Eq. (22))

= (t∗f)[Σ,←−u gp] + (−1)k−1ιt∗dfΣ ∧
←−u

= (t∗f)
←−−−−−(
∂gp

Σ (u)
)
gp + (−1)k−1ιt∗dfΣ ∧

←−u (by Eq. (22))

= (t∗f)
←−−−−
∂gp

Σ (u) + (−1)k−1ιt∗dfΣ ∧
←−u ,

which is clearly left-invariant according to Claim (2).
Finally, Claims (1), (2), and (3) imply that Σ is indeed multiplicative

by Lemma 2.3. q.e.d.

Proof of Theorem 2.21. From the infinitesimal data (ω, δ), we have con-
structed a multiplicative k-vector field Σ on the 2-group G⋉Θ. As-
sume that the infinitesimal data corresponding to Σ is (ω′, δ′). Propo-
sition 2.17 implies that ω′ and δ′ can be recovered from ∂gp, the k-
differential of Σ with respect to the group structure on G⋉Θ, by the
following relations:





∂gp(u) = ω′(u),

∂gp(x) =
1− e−Dφ

Dφ

(
δ′(x)

)
.
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Since ∂ is defined by Eq. (28) and Σ integrates ∂, ∂gp must coincide
with ∂. Hence it follows that ω′ = ω and δ′ = δ.

Since both G and Θ are connected and simply connected, so must be
G⋉Θ. Hence the multiplicative vector field Σ that integrates ∂ must
be unique. q.e.d.

3. Quasi-Poisson Lie 2-groups

Throughout this section, (Θ
Φ
→ G) denotes a Lie group crossed mod-

ule, and G⋉Θ its associated Lie 2-group. By (θ
φ
→ g), we denote its

corresponding Lie algebra crossed module, and by g⋉ θ the semidirect
product Lie algebra.

3.1. Quasi-Poisson Lie 2-groups.

Definition 3.1. A quasi-Poisson structure on a Lie 2-group G⋉Θ
is a pair (Π, η̂), where Π ∈ X2

mult(G⋉Θ) is a multiplicative bivector
field, η̂ : G→ ∧3θ is a Lie group 1-cocycle such that

1
2 [Π,Π] =

←−
η̂ −
−→
η̂ ,(35)

and

[Π,
←−
η̂ ] = 0.(36)

Here η̂ is considered as a section in ΓΓΓ(∧3A). When η̂ is zero, Π defines
a Poisson structure on G⋉Θ. In this case, we say that (G ⋉Θ,Π) is a
Poisson 2-group.

It is clear that G⋉Θ ⇒ G together with (Π, η̂) is a quasi-Poisson
groupoid [9].

The main result of this section is the following:

Theorem 3.2. Any quasi-Poisson Lie 2-group (Π, η̂) on G⋉Θ nat-
urally induces a quasi-Lie 2-bialgebra.

Conversely, given a quasi-Lie 2-bialgebra (θ, g, t) as in Definition 1.3,
if both G and Θ are connected and simply connected Lie groups with Lie
algebras θ and g, respectively, then G⋉Θ admits a quasi-Poisson Lie 2-
group structure whose infinitesimal is isomorphic to the given quasi-Lie
2-bialgebra.

The proof is deferred to Section 3.3. In fact, from its proof, it is clear
that exactly the same conclusion holds between Poisson Lie 2-groups
and Lie 2-bialgebras. Thus, as an immediate consequence, we obtain
the following analogue of a classical theorem of Drinfeld in the context
of 2-groups.

Corollary 3.3. 1) There is a one-to-one correspondence between
connected and simply connected quasi-Poisson Lie 2-groups and
quasi-Lie 2-bialgebras.
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2) There is a one-to-one correspondence between connected and sim-
ply connected Poisson Lie 2-groups and Lie 2-bialgebras.

3.2. Multiplicative k-vector fields generated by group 1-cocycles.

Lemma 3.4. For any u ∈ θ, we have
(
Ad(h,β)−1

⋄

◦ (idθ −φ)
)
(u) =

(
(idθ−φ) ◦ h

−1
∗

)
(u),(37)

Ad(h,β)−1
⋄

(u) =
(
Adβ−1 ◦ h−1

∗

)
(u) =

(
hΦ(β)

)−1

∗
(u).(38)

Here idθ denotes the identity map on θ.

Proof. A straightforward computation yields that, for all (g, α) ∈
G⋉Θ,

Ad(h,β)−1
⋄

(g, α) = (h, β)−1
⋄ ⋄ (g, α) ⋄ (h, β)

=
(
h−1gh,

(
(h−1g−1h)⊲β−1

)
(h−1⊲α)β

)

=
(
Adh−1g,

(
(Adh−1g−1)⊲β−1

)
(h−1⊲α)β

)
.

In particular, we have

Ad(h,β)−1
⋄

(Φ(α−1), α) =
(
Φ(h−1⊲α−1), h−1⊲α

)
.

Eq. (37) thus follows immediately by taking the tangent map at α = 1Θ.
Similarly, we have

Ad(h,β)−1
⋄

(1G, α) =
(
1G, (hΦ(β))

−1⊲α
)
.

Eq. (38) follows by taking the tangent map at α = 1Θ. q.e.d.

Proposition 3.5. Let λ̂ : G → ∧lθ be a Lie group 1-cocycle, and
λ : g→ ∧lθ the corresponding Lie algebra 1-cocycle.

1) The l-vector field

C
λ̂
=
←−
λ̂ −

−→
λ̂

on the 2-group G⋉Θ is multiplicative. Here λ̂ is considered as a

section in ΓΓΓ(∧lA), and
←−
λ̂ and

−→
λ̂ , respectively, denote the left- and

right-invariant l-vector fields on the groupoid G⋉Θ ⇒ G.
2) The infinitesimal data of C

λ̂
is

ωλ = λ ◦ φ : θ → ∧lθ,

δλ = Dφ ◦ λ : g→ g ∧ (∧l−1θ).

3) Let ∂gpd : ΓΓΓ(∧•A) → ΓΓΓ(∧•+k−1A) be the k-differential on the Lie
algebroid A induced by a multiplicative k-vector field V on G⋉Θ.

Then the section σ̂ = ∂gpd(λ̂) ∈ ΓΓΓ(∧k+l−1A), considered as a map
G → ∧k+l−1θ, is a Lie group 1-cocycle. The corresponding Lie
algebra 1-cocycle σ : g→ ∧k+l−1θ is

σ = ω ◦ λ− (−1)(k−1)(l−1)λ ◦ δ,



POISSON 2-GROUPS 233

where (ω, δ) is the infinitesimal of V.

Proof. 1) It is clear that C
λ̂
is multiplicative with respect to the

groupoid structure. It suffices to show that C
λ̂
is also multiplicative with

respect to the group structure on G⋉Θ. Define c : G⋉ Θ→ ∧l(g⋉ θ)
by

c|(g,α) = L(g,α)−1
⋄

∗

(
C

λ̂
|(g,α)

)
,

where L stands for the group left translations. It is well known that C
λ̂

is multiplicative with respect to the group structure if and only if c is a
group 1-cocycle, i.e.

(39) c|(g,α)⋄(h,β) = c|(h,β) +Ad(h,β)−1
⋄

(c|(g,α)).

Now a direct calculation yields

(40) c|(g,α) = λ̂|gΦ(α) − (idθ−φ)λ̂|g.

Here (idθ−φ) extends naturally to a map ∧lθ → ∧lθ, i.e.

(idθ−φ)(u1∧u2∧· · ·∧ul) = (idθ−φ)u1∧(idθ−φ)u2∧· · ·∧(idθ−φ)ul,

for all u1, · · · , ul ∈ θ. Using Eq. (40) and the assumption that λ̂ is a
1-cocycle, we have

r.h.s of Eq. (39)

=λ̂|hΦ(β) − (idθ −φ)λ̂|h + (hΦ(β))−1
∗ (λ̂|gΦ(α))− ((idθ−φ) ◦ h

−1
∗ )(λ̂|g)

=λ̂|gΦ(α)hΦ(β) − (idθ−φ)λ̂|gh

=c|(gh,(h−1⊲α)β)

=l.h.s. of Eq. (39).

Thus, C
λ̂
is indeed multiplicative with respect to the group structure.

2) Let ∂ : g⋉ θ → ∧l(g⋉ θ) be the l-differential induced by the multi-
plicative l-vector field C

λ̂
. According to Lemma 2.8, we have

∂(x+ u) = −
d

dt

∣∣∣∣
t=0

c|exp t(x+u), ∀x+ u ∈ g⋉ θ.

Assume that (ωλ, δλ) is the infinitesimal data corresponding to C
λ̂
. Ac-

cording to Proposition 2.17, we have

ωλ(u) = ∂(u) = −
d

dt

∣∣∣∣
t=0

(
λ̂|Φ(exp tu) − (idθ−φ)λ̂|1G

)
=

(
λ ◦ φ

)
(u).
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Moreover,

δλ(x) = prg∧(∧l−1θ) ∂(x)

= −
d

dt

∣∣∣∣
t=0

prg∧(∧l−1θ)

(
λ̂|exp tx − (idθ−φ)λ̂|exp tx

)

= −
d

dt

∣∣∣∣
t=0

Dφ(λ̂|exp tx)

=
(
Dφ ◦ λ

)
(x).

Hence it follows that δλ = Dφ ◦ λ.
3) We first prove the following formula:

(41) σ̂|g = ω(λ̂|g) + (−1)(k−1)(l−1)+1λ(δ̂g)− pr∧k+l−1θ[δ̂|g, λ̂|g],

where δ̂ : G → g ∧ (∧k−1θ) is the Lie group 1-cocycle corresponding to
δ as in Eq. (26). To prove it, assume that

λ̂|g =
∑

i

fi(g)ui and δ̂|g =
∑

j

hj(g)xj ∧ wj, ∀g ∈ G,

where fi, hj ∈ C∞(G), ui ∈ ∧
lθ, xj ∈ g, and wj ∈ ∧

k−1θ. According to
Eq. (16) and Proposition 2.16, we have

σ̂|g = ∂gpd(λ̂)|g

=
∑

i

(
fi(g)∂

gpd(ui) + (∂gpdfi)|g ∧ ui

)

=
∑

i

(
fi(g)ω(ui) + (−1)k−1ι(L∗

gdfi)
δ̂|g ∧ ui

)

= ω(λ̂|g) + (−1)k−1
∑

i,j

(
〈L∗

gdfi, xj〉hj(g)wj ∧ ui
)

= ω(λ̂|g) + (−1)k−1
∑

j

(
hj(g)wj ∧

d

dt

∣∣∣∣
t=0

λ̂|g exp txj

)

= ω(λ̂|g) + (−1)k−1
∑

j

(
hj(g)wj ∧

(
− λ(xj)− pr∧k+l−1θ[xj , λ̂|g]

))

= r.h.s. of Eq. (41).

Here in the second from the last equality, we used the identity

λ̂|g exp txj
= λ̂|exp txj

+ (exp txj)
−1
∗ λ̂|g.
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From Eq. (41), it follows that σ̂ is indeed a Lie group 1-cocycle. More-
over, the induced Lie algebra 1-cocycle is

σ(x) = −
d

dt

∣∣∣∣
t=0

σ̂|exp tx

=
d

dt

∣∣∣∣
t=0

(
(−1)(k−1)(l−1)λ(δ̂|exp tx)− ω(λ̂|exp tx)

+ pr∧k+l−1θ[δ̂|exp tx, λ̂|exp tx]
)

= ω(λ(x))− (−1)(k−1)(l−1)λ(δ(x)).

Here − d
dt

∣∣
t=0

pr∧k+l−1θ

[
δ̂|exp tx, λ̂|exp tx

]
= 0, since both δ̂ and λ̂ are

group 1-cocycles. This completes the proof. q.e.d.
3.3. Proof of the main theorem. The following result describes the
infinitesimal data of a quasi-Poisson structure on the 2-group G⋉Θ.

Proposition 3.6. Let (G⋉Θ,Π, η̂) be a quasi-Poisson 2-group as
in Definition 3.1. Let (ω, δ) be the corresponding infinitesimal of Π and
η : g → ∧3θ the Lie algebra 1-cocycle induced by η̂. Then the following
identities hold:

ω2 = η ◦ φ,(42)

(ω + δ) ◦ δ = Dφ ◦ η,(43)

ω ◦ η = η ◦ δ,(44)

where η is identified with its extension to a degree-2 derivation of the
exterior algebra ∧•(g⋉ θ).

Proof. Let Cη̂ =
←−
η̂ −

−→
η̂ . According to Proposition 3.5, Cη̂ is multi-

plicative. Moreover, its corresponding infinitesimal is (η ◦φ,Dφ ◦ η). By

Proposition 2.19, the infinitesimal of 1
2 [Π,Π] is given by (ω2, (ω+δ)◦δ).

Thus Eq. (35) implies Eqs. (42) and (43). On the other hand, Eq. (36)
is equivalent to ∂gpd

Π
(η̂) = 0. By Lemma 3.5 (3), we have ω◦η−η◦δ = 0.

This completes the proof. q.e.d.

Conversely, we have

Proposition 3.7. Let G⋉Θ be a Lie 2-group. If both Lie groups G

and Θ are connected and simply connected, every triple (ω, δ, η), where
(ω, δ) satisfies the conditions of Theorem 2.15, and η : g → ∧3θ is a
Lie algebra 1-cocycle satisfying the conditions of Proposition 3.6, can be
uniquely integrated to a quasi-Poisson structure on G⋉Θ.

Proof. By Theorem 2.21, we obtain a multiplicative bivector field Π
on G⋉Θ whose infinitesimal is (ω, δ). Let η̂ : G → ∧3θ be the Lie
group 1-cocycle integrating η. By Proposition 3.5 (3), ∂gpd

Π
(η̂) vanishes,

since ω ◦ η − η ◦ δ = 0. Thus [Π,
←−
η̂ ] =

←−−−−
∂gpd

Π
(η̂) = 0. Moreover, Eqs. (42)

and (43) imply Eq. (35) according to Proposition 3.5 (1 and 2). q.e.d.
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Finally, we need the following

Lemma 3.8. A quasi-Lie 2-bialgebra structure on a crossed module

of Lie algebras (θ
φ
→ g) is equivalent to triples (δ, ω, η) of linear maps

δ : g → W2 ⊂ g ∧ θ, ω : θ → ∧2θ and η : g → ∧3θ that satisfy the
following properties:

1) Dφ ◦ ω = δ ◦ φ;
2) ω2 = η ◦ φ;
3) (ω + δ) ◦ δ = Dφ ◦ η;
4) ω ◦ η = η ◦ δ;
5) η is a Lie algebra 1-cocycle;
6) δ is a Lie algebra 1-cocycle;
7) x ⊲ ω(u)− ω(x ⊲ u) = pr∧kθ([u, δ(x)]), for all x ∈ g and u ∈ θ.

Proof. By Proposition 1.2, a weak Lie 2-coalgebra structure underly-

ing (θ
φ
→ g) is equivalent to an element c = φ̌+ ǫ̌+ α̌+ η̌ ∈ S(−4) such

that {c, c} = 0. Here φ and φ̌ are related by the equation: φ(u) = {φ̌, u},

for all u ∈ θ. And (θ
φ
→ g) is a quasi-Lie 2-bialgebra if and only if

{o+ c, o+ c} = 0, where o = b̌ + ǎ is the data defining the crossed

module structure of (θ
φ
→ g), as a special Lie 2-algebra with ȟ = 0.

Introduce the operators δ, ω, and η by the following relations:

〈δ(x)|ξ ∧ κ〉 = −{{{α̌, x} , ξ} , κ} ,

〈ω(u)|κ1 ∧ κ2〉 = {{{ǫ̌, u} , κ1} , κ2} ,

〈η(x)|κ1 ∧ κ2 ∧ κ3〉 = {{{{η̌, x} , κ1} , κ2} , κ3}

for all x ∈ g, u ∈ θ, ξ ∈ g∗, and κ, κi ∈ θ∗. Expand {o+ c, o+ c} and
consider the result term by term. Immediately, we have the following:

1) the (⊙ 2g)⊙ g∗-part is zero if and only if δ is valued in W2;
2) the θ⊙ g⊙ θ∗-part is zero if and only if Condition 1) is satisfied;
3) the (⊙ 3θ)⊙ θ∗-part is zero if and only if Condition 2) is satisfied;
4) the (⊙ 2θ)⊙ g⊙ g∗-part is zero if and only if Condition 3) is satisfied;
5) the (⊙ 4θ)⊙ g∗-part is zero if and only if Condition 4) is satisfied;
6) the (⊙ 2g∗)⊙ (⊙ 3θ)-part is zero if and only if Condition 5) is satis-

fied;
7) the (⊙ 2g∗)⊙ g⊙ θ-part is zero if and only if Condition 6) is satisfied;
8) the (⊙ 2θ)⊙ g∗⊙ θ∗-part is zero if and only if Condition 7) is satis-

fied.

This concludes the proof. q.e.d.

Proof of Theorem 3.2. Lemma 3.8 implies that a quasi-Lie 2-bialgebra

underlying the crossed module (θ
φ
→ g) is determined by the triple

(ω, δ, η) that satisfies the conditions in Theorem 2.15 and Proposition 3.6.
Thus Theorem 3.2 follows from Proposition 3.6 and Proposition 3.7.
q.e.d.
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3.4. Coboundary quasi-Poisson structures. The following propo-
sition describes a class of interesting examples of quasi-Poisson struc-
tures on a Lie 2-group.

Proposition 3.9. 1) Associated to any Lie group 1-cocycle λ̂ :
G→ ∧2θ, there exists a quasi-Poisson structure

(
Π, η̂

)
on G⋉Θ

given as follows:

Π =
←−
λ̂ −

−→
λ̂ ,(45)

η̂ = 1
2 [λ̂, λ̂].(46)

In Eq. (45), λ̂ is considered as a section in ΓΓΓ(∧2A) and the bracket
in Eq. (46) stands for the pointwise Schouten bracket on ∧•θ.

2) The infinitesimal (ωλ, δλ, ηλ) of
(
Π, η̂

)
as described by Proposi-

tion 3.6 is as follows:

ωλ = λ ◦ φ,

δλ = Dφ ◦ λ,

ηλ = λ ◦Dφ ◦ λ,

where λ : g→ ∧2θ is the Lie algebra 1-cocycle induced by λ̂.

Proof. The proof is standard, and is left to the reader. q.e.d.

In particular, any r ∈ ∧2θ induces a Lie algebra 1-cocycle λr : g →
∧2θ:

(47) λr(x) = −x ⊲ r, ∀x ∈ g.

Therefore by Proposition 3.9, there exists a quasi-Poisson structure
(Πr, η̂r) on the 2-group G⋉Θ. By a straightforward computation, we
can describe this quasi-Poisson structure more explicitly:

(48) (Πr)|(g,α) = Rg∗Φ∗r− Lg∗Φ∗r+ Lα∗g
−1
∗ r−Rα∗g

−1
∗ r

+ [(Lg∗ ◦ Φ∗)⊗ (Lα)]r− [(Rg∗ ◦ Φ∗)⊗ (Lα ◦ g
−1
∗ )]r,

and

(49) (η̂r)|g = 1
2

(
[r, r]− g−1

∗ [r, r]
)
.

The infinitesimal of (Πr, η̂r) is given as follows:

ωr(u) = [r, u], ∀u ∈ θ;(50)

δr(x) = −Dφ(x ⊲ r) = −x ⊲ (Dφr), ∀x ∈ g;(51)

ηr(x) = −
1
2x ⊲ [r, r], ∀x ∈ g.(52)

According to Lemma 3.8, the triple (ωr, δr, ηr) also defines a quasi-Lie
2-bialgebra structure underlying (θ → g). In particular, if ηr = 0, i.e.

(53) x ⊲ [r, r] = 0, ∀x ∈ g,

we obtain a Lie 2-bialgebra.
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Definition 3.10. An element r of ∧2θ is called an r-matrix of a

Lie algebra crossed module (θ
φ
→ g) if [r, r] ∈ ∧3θ is g-invariant, i.e. if

Eq. (53) holds.

Similar to the Poisson group case, we have the following

Theorem 3.11. Corresponding to any r-matrix r as above, there is

1) a Poisson Lie 2-group structure Πr on G⋉Θ such that

Πr =
←−
λ̂r −

−→
λ̂r,

where λ̂r : G→ ∧
2θ is given by Eq. (47) and

2) a Lie bialgebra crossed module underlying (θ
φ
→ g).

In this case, the Lie bracket on θ∗ is induced by the r-matrix r:

〈[κ1, κ2]r|u〉 = 〈κ1 ∧ κ2|[r, u]〉 , ∀κ1, κ2 ∈ θ∗, u ∈ θ,

while the action of θ∗ on g∗ is given by

〈κ ⊲ ξ|x〉 = 〈κ ∧ φ∗ξ|x ⊲ r〉 ,

for all κ ∈ θ∗, ξ ∈ g∗, and x ∈ g.

Example 3.12. Let θ = gl(2) ∼= R id ⊕ sl(2) and g = sl(2). Then the
projection φ : gl(2) → sl(2) is a Lie algebra crossed module. It is easy
to check that any r ∈ ∧2θ is indeed an r-matrix.

Example 3.13. Let g be a Lie algebra and θ ⊆ g an ideal. Consider
the Lie algebra crossed module ι : θ → g, where ι is the inclusion.
Assume that r ∈ ∧2θ such that [r, r] ∈ ∧3θ is g-invariant. Then r is
clearly an r-matrix. For example, we take g = gl(2) and θ = sl(2). Then
any bivector in ∧2θ is indeed an r-matrix.
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[6] Z. Chen, M. Stiénon & P. Xu, Weak Lie 2-bialgebra, J. Geom. Phys. 68 (2013),
59–68, MR 3035114.

[7] V.G. Drinfel′d, Hamiltonian structures on Lie groups, Lie bialgebras and the

geometric meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR
268 (1983), no. 2, 285–287, MR 688240 (84i:58044), Zbl 0526.58017.

[8] ———, Quantum groups, Proceedings of the International Congress of Mathe-
maticians, Vol. 1, 2 (Berkeley, Calif., 1986) (Providence, RI), Amer. Math. Soc.,
1987, pp. 798–820, MR 934283 (89f:17017), Zbl 0667.16003.

[9] D. Iglesias-Ponte, C. Laurent-Gengoux & Ping Xu, Universal lifting theorem and

quasi-Poisson groupoids, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 3, 681–731,
MR 2911881, Zbl pre06026374.

[10] Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie

groups, Mathematical aspects of classical field theory (Seattle, WA, 1991), Con-
temp. Math., vol. 132, Amer. Math. Soc., Providence, RI, 1992, pp. 459–489,
MR 1188453 (94b:17025), Zbl 0847.17020.

[11] ———, Quasi, twisted, and all that . . . in Poisson geometry and Lie algebroid

theory, The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232,
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