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Abstract. Point cloud is the most fundamental representation of 3D geometric objects as it
provides the most exact information of them. Analyzing and processing point cloud surfaces is impor-
tant in computer graphics and computer vision. However, most of the existing algorithms for surface
analysis require connectivity information. Therefore, it is desirable to develop a mesh structure on
point clouds. This task can be simplified with the aid of a parameterization. In particular, conformal
parameterizations are advantageous in preserving the geometric information of the point cloud data.
In this paper, we extend a state-of-the-art spherical conformal parameterization algorithm for genus-0
closed meshes to the case of point clouds, using an improved approximation of the Laplace-Beltrami
operator on data points. Then, we propose an iterative scheme called the North-South reiteration
for achieving a spherical conformal parameterization. A balancing scheme is introduced to enhance
the distribution of the spherical parameterization. High quality triangulations and quadrangulations
can then be built on the point clouds with the aid of the parameterizations. Also, the meshes gener-
ated are guaranteed to be genus-0 closed meshes. Moreover, using our proposed spherical conformal
parameterization, multilevel representations of point clouds can be easily constructed. Experimental
results demonstrate the effectiveness of our proposed framework.

Key words. Mesh generation, Triangulation, Quadrangulation, Spherical conformal parame-
terization, Surface reconstruction, Point cloud, Multilevel representation

1. Introduction. Contemporary scanning technologies enable efficient acquisi-
tions of 3D objects. Using modern 3D scanners, data points are sampled from the
surfaces of 3D objects for further analyses and usages. Point clouds are widely ap-
plied in computer graphics, vision and many other engineering fields. However, the
data points acquired by laser scanners are often complex and unorganized. Moreover,
the absence of the connectivity information in point cloud data poses difficulties in
understanding the underlying geometry of the 3D objects. This largely hinders the
applications of the data. For instance, mesh structures are necessary for 3D printing
[38, 27] and texture mapping [39, 24]. With the rapid development of the computer
industry, finding a high quality meshing framework for point cloud data is increasingly
important.

One possible approach for mesh generation on point clouds is to parameterize a
point cloud to a simpler domain, such as the unit sphere. Then, a triangulation or
a quadrangulation can be created on the parameter domain instead of the original
complicated point cloud. Finally, a mesh structure on the point cloud can be de-
fined with respect to the structure on the parameter domain. The major difficulty
of computing parameterizations of point-set surfaces is the extremely limited infor-
mation they can provide. Most of the existing surface parameterization methods are
developed on meshes only. In other words, besides the locations of the point data, a
given connectivity is also required as an input. The connectivity information plays
an important role in representing the surface structure as well as in approximating
continuous operators to minimize certain distortions. As a result, most conventional
mesh parameterization approaches fail to work on point clouds. Without the con-
nectivity information, the underlying geometry of the point cloud data become more
obscure. Hence, it is more challenging in developing parameterization schemes with
good quality for point cloud data.

A good parameterization scheme of point cloud must satisfy certain criteria. In
particular, it should retain the geometric information of a point cloud as complete as
possible. In our case, one of the ultimate goals is to create a triangulation for a point
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cloud by finding a Delaunay triangulation on a simpler parameter domain. It is note-
worthy that in general, a mesh structure with good quality on the parameter domain
does not necessarily imply that the associated mesh structure of the original data
points is satisfactory. In other words, meshing the parameter domain may provide
meaningless results if the parameterization scheme is arbitrarily chosen. Note that
the regularity of the mesh structures is related to the angle structure of the triangles
and quadrilaterals. To ensure the regularity of the associated mesh structure on the
point cloud, the parameterization should preserve the angle structure of the triangles
and quadrilaterals on the parameter domain. This motivates us the use of conformal
mappings.

For smooth surfaces, it is well known that the conformal parameterizations pre-
serve angles and hence the local geometry of the surfaces. It is natural to consider
the discrete analog of conformal parameterization for point cloud data. Since data
points are sampled from real 3D surfaces, we can assume that every point cloud has
an underlying geometry. Based on this important assumption, we consider finding
conformal parameterizations of genus-0 point clouds. In [6], Choi et al. proposed a
fast spherical conformal parameterization algorithm for genus-0 closed surfaces in two
steps. In the first step, a Laplace equation is solved on a planar triangular domain
and the inverse stereographic projection is applied to obtain an initial spherical pa-
rameterization. In the second step, quasi-conformal theories are applied to enhance
the conformality of the spherical parameterization. The computation is linear and the
conformality distortion of the parameterization is minimal. However, the algorithm
is developed on triangular meshes only. In this work, we extend and improve the
algorithm for point clouds with spherical topology.

The aforementioned algorithm in [6] developed on meshes involves solving a
Laplace equation. To extend the algorithm for point clouds, we propose a new weight
function for enhancing the accuracy of the approximation of the Laplace-Beltrami
operators on point clouds. Using our improved approximation, the Laplace-Beltrami
operator in the mentioned algorithm can be accurately computed on point clouds.
Also, we replace a key step in the mentioned algorithm by an iterative scheme called
the North-South reiteration. Furthermore, we introduce a balancing scheme for en-
hancing the distribution of the parameterization results. Experimental results demon-
strate the effectiveness of our proposed parameterization algorithm for genus-0 point
clouds. Our algorithm achieves global spherical parameterizations with minimal con-
formality distortions. Furthermore, with the aid of our parameterization schemes, we
can easily generate high quality triangulations and quadrangulations on point clouds.
The meshes generated are guaranteed to be genus-0 closed meshes. Moreover, multi-
level representations of the point clouds can also be easily computed with the aid of
our spherical parameterization scheme.

The rest of the paper is organized as follows. In Section 2, we review the related
previous works on point cloud parameterizations and approximations of differential
operators on point clouds. The contribution of our work is highlighted in Section
3. In Section 4, we introduce the mathematical background of our work. In Section
5, we review a spherical conformal parameterization scheme for triangular meshes,
which is closely related to our proposed framework for point clouds. In Section 6, we
explain our proposed framework for spherical conformal parameterization and mesh
generation of point clouds. In Section 7, we demonstrate the effectiveness of our
proposed framework by numerous experiments. The paper is concluded in Section 8.
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Methods Topology
Parameter

domain
Local/global

parameterization?
Distortion to
be minimized

Meshless
parameterization

[10, 11]

Disk
topology

Plane Global /

Meshless
parameterization

for Spherical
Topology [18]

Genus-0 Planes Local /

Spherical
embedding [50]

Genus-0 Sphere Global Stretch

Discrete one-forms
[44]

Genus-1 Planes Local /

As-rigid-as-possible
meshless

parameterization
[48]

Disk
topology

Plane Global ARAP

Table 1.1
Several previous works on meshing point clouds using parameterization.

2. Previous Works. In this section, we describe some previous works closely
related to our work.

Surface parameterization has been extensively studied by different research groups.
For surveys on surface parameterization methods, please refer to [12, 13, 19, 42]. In
the last few decades, numerous studies have been devoted to the parameterization of
point cloud data. In [10, 11], Floater and Reimers proposed the meshless parame-
terization method for unorganized point sets. The point sets are parameterized onto
a planar domain by solving a sparse linear system. In [50], Zwicker and Gotsmann
presented a parameterization approach for a genus-0 point cloud using a k-nearest
neighborhood graph of the point cloud, followed by a spherical embedding method for
planar graphs. In [1, 2, 3], Azariadis and Sapidis introduced the notion of dynamic
base surfaces and suggested a parameterization scheme by orthogonally projecting a
point cloud onto the dynamic base surface. Guo et al. [16] computed a global con-
formal parameterization of point-set surfaces, based on Riemann surface theory and
Hodge theory. In [44], Tewari et al. proposed a doubly-periodic global parameteriza-
tion of point cloud sampled from a closed surface of genus 1 to the plane, with the
aid of discrete harmonic one-forms. Wang et al. [45] suggested a parameterization
method for genus-0 cloud data. A point cloud is first mapped onto its circumscribed
sphere, then the sphere is mapped onto an octahedron and finally unfolded to a 2D
image. In [48], Zhang et al. presented an as-rigid-as-possible parameterization ap-
proach for point cloud data. A point cloud with disk topology is mapped onto the
plane by a local flattening step and a rigid alignment. In [25], Liang et al. constructed
spherical conformal mappings of genus-0 point clouds by adapting the harmonic en-
ergy minimization algorithm in [21]. Meng et al. [34] proposed a neural network based
method for point cloud parameterization. An adaptive sequential learning algorithm
is applied to dynamically adjust the parameterization.

The use of parameterization of point cloud is widespread in computer science
and engineering. One of the major applications of point cloud parameterization is
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mesh generation. Instead of a convoluted point cloud, mesh reconstruction is usually
completed on a simpler parameter domain. In [10, 11], Floater and Reimers applied
their proposed parameterization scheme for meshing point clouds with disk topology.
In [18], Hormann and Reimers extended the parameterization method in [11] for
surface reconstruction of point clouds with spherical topology. In [50], Zwicker and
Gotsmann used their proposed parameterization method for mesh reconstruction of
genus-0 point clouds. Tewari et al. [44] performed surface reconstruction using their
proposed doubly-periodic global parameterization. Zhang et al. [48] suggested a mesh
reconstruction method of point cloud data by meshless denoising and their proposed
parameterization scheme. Table 1.1 compares several previous works on meshing point
clouds using parameterizations. The above previous works reflect the importance of
parameterization in surface reconstruction of point cloud data.

Finding a conformal parameterization involves solving differential equations. In
particular, for conformal parameterizations of point clouds, it is necessary to build
a discrete analog of the differential operators on point clouds. Numerous works on
approximating differential operators on point cloud have been reported. In [35], Nay-
roles et al. described a diffuse approximation method for estimating the derivatives at
a given set of points. Belkin et al. [4] proposed the PCD Laplace operator for approx-
imating the Laplace-Beltrami operator using an integral approximation. The moving
least square (MLS) method [43, 22] is widely used for the approximation. A number
of algorithms for the approximation of derivatives are developed based on the MLS
method [28, 23, 36, 5]. In [25, 26], Liang et al. approximated the Laplace-Beltrami
operator on point clouds by the MLS method with a special weighting function. In
[20], Lai et al. presented a local mesh approach for solving PDEs on point clouds.
A local mesh structure is constructed at each point using local principal component
analysis (PCA). Macdonald et al. [33] computed reaction-diffusion processes on point
clouds. In [31], Lozes et al. proposed a method to solve PDEs on point clouds for
image processing using partial difference operators on weighted graphs.

3. Contribution. In this work, we propose a framework for meshing using
spherical conformal parameterizations of genus-0 point clouds. Our proposed method
is advantageous in the following aspects:

(i) We extend and improve the spherical conformal parameterization algorithm on
meshes in [6] for point clouds. An accurate approximation of the Laplace-
Beltrami operator is achieved using the moving least square method [25, 26]
together with our proposed weight function. A key step of the parameterization
algorithm in [6] is replaced by solving a Laplace equation on the complex plane,
followed by an iterative scheme called the North-South (N-S) reiteration. Also,
the point distribution of the parameterization is enhanced by a balancing scheme
for point clouds.

(ii) Our spherical parameterization method is efficient and robust to complex geo-
metric structures. The algorithm completes within a few minutes and can handle
highly convoluted point clouds.

(iii) Unlike most of the existing approaches, our algorithm specifically minimizes the
conformality distortion of the parameterizations. Since the local geometry is pre-
served under the global spherical conformal parameterizations, we can create an
almost-Delaunay triangulation on a point cloud by computing a Delaunay trian-
gulation of its spherical conformal parameterization. The resulting triangulation
on the point cloud preserves the regularity of that on the parameterization.

(iv) High quality quad meshes can also be generated using our spherical conformal
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parameterization scheme.
(v) Unlike the conventional approaches for meshing, our method is topology pre-

serving. The meshes produced using our proposed framework are guaranteed to
be genus-0 closed meshes. No post-processing is required.

(vi) Our method is stable under geometrical and topological noises on the input point
clouds.

(vii) With the aid of our spherical conformal parameterization scheme, multilevel
representations of genus-0 point clouds can be easily constructed.

4. Mathematical background. In this section, we introduce some basic math-
ematical concepts closely related to our work. For more details, readers are referred
to [40, 41].

4.1. Conformal maps. A surface with a conformal structure is called a Rie-
mann surface. Suppose M, N are two Riemann surfaces, with local coordinate sys-
tems r1(x1, x2) and r2(x1, x2), where r1, r2 : R2 → R3 are two vector-valued functions.
The first fundamental form of M is defined by

ds2M =
∑
i,j

gijdx
idxj , (4.1)

where

gij =

〈
∂r1
∂xi

,
∂r1
∂xj

〉
. (4.2)

Similarly, the first fundamental form of N is defined by

ds2N =
∑
i,j

g̃ijdx
idxj , (4.3)

where

g̃ij =

〈
∂r2
∂xi

,
∂r2
∂xj

〉
. (4.4)

Let f :M→N be a map between the two Riemann surfaces. In local coordinate
systems, f can be regarded as f : R2 → R2, with

f(x1, x2) = (f1(x1, x2), f2(x1, x2)). (4.5)

The pull-back metric f∗ds2N defined on M, induced by f and ds2N , is the metric

f∗ds2N =
∑
m,n

∑
i,j

g̃ij(f(x1, x2))
∂fm

∂xi
∂fn

∂xj

 dxmdxn. (4.6)

The map f :M→N is said to be conformal if there exists a positive scalar function
λ(x1, x2), called the conformal factor, such that

f∗ds2N = λds2M. (4.7)

In other words, the surface metric is preserved up to a multiplicative factor.
An immediate consequence of the above is that every conformal map preserves

angles. With this angle-preserving property, a conformal map effectively preserves
the local geometry of the surface.
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4.2. Harmonic maps. By the uniformization theorem, every genus-0 closed
surface is conformally equivalent to S2. Hence, it is natural to consider mappings
between a genus-0 closed surface and the unit sphere. The harmonic energy functional
for a map f :M→ S2 is defined as

E(f) =

∫
M
|∇f |2dvM. (4.8)

In the space of mappings, the critical points of E(f) are called harmonic mappings.
For genus-0 closed surfaces, conformal maps are equivalent to harmonic maps. Hence,
the problem of finding a conformal map f : M → S2 is equivalent to an energy
minimization problem.

4.3. Point cloud and local system. A point cloud P = {z1, z2, . . . , zn} ⊂ R3

is a set of sample points representing a Riemann surfaceM. For triangulated surfaces,
we can find the neighborhood of each vertex by the associated triangulation and hence
calculate the local geometric information. However, in the case of point cloud, we do
not have such information. Given a point cloud of an orientable surface in R3, we
construct a local coordinate system on each point zs and approximate the derivatives
on the point cloud.

To construct a local coordinate system, we need to define an atlas (Us, φs) for
each point zs, where Us is an open cover and φs is the associated local coordinate
function. For point clouds, one common approach for forming the open cover Us of
the point zs is to use the collection of all neighboring points of zs, denoted by N (zs).
We apply the k-Nearest-Neighbors (k-NN) algorithm to define the neighborhood of
each point zs.

Let P = {z1, z2, . . . , zn} ⊂ RN be a given point cloud with n points. The k-
nearest neighborhood N k(zs) of zs is a set with the k distinct elements in P (including
zs) closest from zs. Here the distance is defined by the Euclidean 2-norm. For
convenience, we denote N k(zs) = {z1s , z2s , . . . , zks } with z1s = zs.

After introducing an open cover of P , we now construct a local coordinate system
for P and a coordinate function φs for each neighborhood N k(zs). One common
approach for constructing a local coordinate system is to define the normal vector
as the z-axis, which is more convenient for further computation. There are various
methods to obtain the tangent planes and the normal vectors for point clouds, such as
the k-plane clustering method and the principal component analysis (PCA) method
[17]. Using the PCA method, for every point zs ∈ P , we can obtain three vectors
{e1s, e2s, e3s} which form an orthonormal basis of R3.

Then, we project each neighborhood N k(zs) to the plane spanned by {e1s, e2s} by

ẑis = zis − 〈zis − zs, e3s〉e3s, (4.9)

for i = 1, 2, . . . , k.
Now we have the projection

N̂ k(zs) = {ẑ1s , ẑ2s , . . . , ẑks } (4.10)

and also the local coordinates

{(x1s, y1s), (x2s, y
2
s), . . . , (xks , y

k
s )}, (4.11)

where xis = 〈zis − zs, e1s〉 and yis = 〈zis − zs, e2s〉 for i = 1, 2, . . . , k. Therefore, we can
define the local coordinate function φs : Ns → R2 by

φs(z
i
s) = (xis, y

i
s). (4.12)



Spherical Conformal Parameterization for Meshing 7

Also, the neighborhood N (zs) can be regarded as a graph of its projection N̂ (zs),
that is, zis = zs + xise

1
s + yise

2
s + fs(x

i
s, y

i
s)e

3
s.

5. An overview of the fast spherical conformal parameterization algo-
rithm for triangular meshes. In this section, we briefly describe the approach in
[6] for computing a spherical conformal parameterization of a genus-0 closed triangu-
lar mesh. This approach motivates our proposed parameterization scheme for genus-0
point clouds.

Recall that for genus-0 closed surfaces, conformal maps are equivalent to harmonic
maps. To compute a conformal mapping f : M → S2 from a genus-0 closed triangular
mesh M to the unit sphere S2, it suffices to solve Equation (4.8). This can be achieved
by solving the following Laplace equation

∆T f = 0 (5.1)

subject to ‖f‖ = 1, where ∆T f is the tangential component of ∆f on the tangent
plane of S2. Note that this problem is nonlinear because of the constraint ‖f‖ = 1. In
[6], the authors linearize this problem by solving the equation on the complex plane:

∆f = 0 (5.2)

given the constraints of three boundary points

f(ai) = bi, (5.3)

where ai and bi are complex numbers for i = 1, 2, 3 such that the triangle [a1, a2, a3]
and the triangle [b1, b2, b3] are with the same angle structures. Note that ∆T f =
∆f = 0 since the target domain is now C. Since the nonlinear constraint ‖f‖ = 1 in
the problem (5.1) is removed, the above problem (5.2) becomes linear.

After solving Equation (5.2), the inverse stereographic projection is applied for
obtaining a spherical parameterization. However, unlike in the continuous case, the
spherical parameterization in the discrete case is with large conformality distortion at
the north pole of the sphere due to the discretization and the approximation errors.
Hence, Choi et al. [6] proposed to apply the south-pole stereographic projection to
map the sphere to a planar domain R on the complex plane. Note that the region with
large conformality distortion is the innermost region of the planar domain R while
the outermost region of R is with negligible distortion. Denote the abovementioned
steps by a map g : M → R. To correct the conformality distortion of g, Choi et al.
made use of the quasi-conformal theory. Quasi-conformal maps are a generalization
of conformal maps. Mathematically, f : C→ C is a quasi-conformal map if it satisfies
the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
(5.4)

for some complex-valued function µ satisfying ||µ||∞ < 1 and ∂f
∂z is non-vanishing

almost everywhere. µ is called the Beltrami coefficient of the quasi-conformal map f .
Note that the quasi-conformal map f is conformal around a small neighborhood of p
if and only if µ(p) = 0. Readers are referred to [14] for more details of quasi-conformal
maps.

Let µg−1 be the Beltrami coefficient of the map g−1. Fixing the outermost region
on R, the authors in [6] composed the map g with a quasi-conformal map h : R→ S2
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with the associated Beltrami coefficient µh = µg−1 . The map h is constructed by
solving the following equation

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (5.5)

where A =

(
α1 α2

α2 α3

)
depends on the prescribed Beltrami coefficient µh = µg−1 .

In the discrete case, the above elliptic PDEs (5.5) can be discretized into sparse
symmetric positive definite linear systems.

Then, by the composition formula of quasi-conformal maps, the composition map
h ◦ g : M → S2 is with the Beltrami coefficient

µh◦g =
µg + (gz/gz)(µh ◦ g)

1 + (gz/gz)µg(µh ◦ g)

=
µg + (gz/gz)(−(gz/gz)µg)

1 + (gz/gz)µg(−(gz/gz)µg)

= 0,

(5.6)

which indicates that the map h ◦ g is conformal. Readers are referred to [6] for more
details.

The above spherical conformal parameterization algorithm works perfectly for
genus-0 closed triangular meshes. It is noteworthy that there are two key steps in
the above algorithm. The first key step is to solve the Laplace equation (5.2) on the
complex plane. In this step, the Laplace-Beltrami operator is computed using the
well known cotangent formula in [37] for triangular meshes. The second key step is
to compose a map with a quasi-conformal map. In this step, the conformality of the
composition mapping is guaranteed by the composition formula (5.6). However, in
our case, the coordinates of the point clouds are the only given information. In other
words, unlike the case of triangular meshes, no connectivity information about the
data points is given. Note that the Beltrami coefficients in the above algorithm are
approximated on the triangular faces of a mesh. Hence, the above algorithm cannot be
directly applied for point clouds. Moreover, even if we can define the discrete Beltrami
coefficients on all data points of a point cloud, the composition formula (5.6) may not
hold for the discrete Beltrami coefficients on point clouds. Therefore, we need to
modify the second key step for computing the spherical conformal parameterization
of genus-0 point clouds. Nevertheless, for the first key step, alternative approaches
which do not require triangulations are available for computing the Laplace-Beltrami
operator in Equation (5.2). In Section 6, we introduce a method to replace the second
key step by solving another Laplace equation.

6. Meshing genus-0 point clouds using spherical conformal parameteri-
zation. In this section, we discuss our proposed framework for meshing genus-0 point
clouds. The main steps involved include solving a series of Laplace equations on the
complex plane for the spherical conformal parameterization of a genus-0 point cloud,
and creating a mesh structure with the aid of the global parameterization.

6.1. Approximation of the Laplace-Beltrami operator. In this subsection,
we explain our approximation scheme for the Laplace-Beltrami operator in the Laplace
Equation (5.2) on a point cloud P by the moving least-square method. The moving
least-square method is widely used for approximation [28, 23, 36, 5, 25, 26]. In par-
ticular, Liang et al. [25, 26] approximated the Laplace-Beltrami operator on point
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Weight Formula of w(d)
Constant weight w(d) = 1

Exponential weight w(d) = exp

(
−d

2

h2

)
Inverse of squared distance weight w(d) =

1

d2 + ε2

Wendland weight [46, 47] w(d) =

(
1− d

D

)4(
4d

D
+ 1

)
Special weight [25] w(d) =

{
1 if d = 0
1
K if d 6= 0

Table 6.1
Some common weighting functions.

clouds using the MLS method with a special weight function. Our approximation
scheme is built upon the method in [25, 26]. In this work, we propose a new weight
function to achieve a more accurate approximation of the Laplace-Beltrami operator.

First, we discuss our approximation method for the derivatives on the point cloud
P = {z1, z2, . . . , zn}. To simplify the discussion, we only consider the approximation
on the patch N (zs) of a point zs ∈ P . Recall that N (zs) can be regarded as a
graph of its projection N̂ (zs), that is, zis = zs +xise

1
s +yise

2
s +fs(x

i
s, y

i
s)e

3
s. Denote the

derivatives of fs along the e1s-direction and the e2s-direction by fsx and fsy respectively.
We select a set of basic functions {f1s , f2s , . . . , fms } as a basis and write fs(x, y) ≈∑m

i=1 cif
i
s(x, y), where {ci}mi=1 are some coefficients to be determined. In our work,

we use {1, x, y, x2, xy, y2} as the basis, which means m = 6.
In the approximation, we aim to minimize

n∑
i=1

wi

 m∑
j=1

cjf
j
s (xi, yi)− fs(xi, yi)

2

(6.1)

where wi = w(‖zi−zs‖) for some weighting function w : R→ R. The weight function
w significantly affects the accuracy and robustness of the approximation. Hence,
one must carefully choose a suitable weight function. Table 6.1 lists some common
weighting functions.

Note that the information provided by the data points near the center point zs
should be more reliable than that of the data points distant from zs. The closer the
data points are to zi, the more reliable they are. Hence, it is natural to consider a
smooth weight function which concentrates at zs. This motivates us to use of a weight
function of the Gaussian type. We propose the following weight function:

ws = w(0) = 1

wi = w(‖zi − zs‖) =
exp(−

√
n‖zi−zs‖2

h2 )

n
for all i 6= s.

(6.2)

Numerical experiments are demonstrated in Section 7 to support our proposed weight
function. It can be observed that our proposed weight results in more accurate ap-
proximations of the Laplace-Beltrami operator on point clouds.

With the proposed weight function, we now solve the minimization problem (6.1).
Denote f js,i = f js (xi, yi) and fs,i = fs(xi, yi).
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Let ~A =


f1s,1 f2s,1 · · · fms,1
f1s,2 f2s,2 · · · fms,2

...
...

. . .
...

f1s,n f2s,n · · · fms,n

, ~D =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

, ~c =


c1
c2
...
cm

, and

~b =


fs,1
fs,2

...
fs,n

. The minimization problem in (6.1) can be written as follows:

min
c∈Rn

〈
~D( ~Ac−~b), ~Ac−~b

〉
. (6.3)

We can solve it by quadratic programming or using the least-square method, namely
solving

~AT ~D ~A~c = ~AT ~D~b. (6.4)

Next, for any function u defined on the neighborhood N (z), we can approximate
it by a combination of {f1s , f2s , . . . , fms }:

u = fs(x, y) ≈
m∑
i=1

ĉif
i
s(x, y). (6.5)

Similarly, the coefficients ĉi can be approximated. Let ~A =


f1s,1 f2s,1 · · · fms,1
f1s,2 f2s,2 · · · fms,2

...
...

. . .
...

f1s,n f2s,n · · · fms,n

,

~D =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

, ~̂c =


ĉ1
ĉ2
...
ĉm

, and ~u =


u1
u2
...
un

. We can find the coefficients

ĉi by solving the following least-square problem

~AT ~D ~A~̂c = ~AT ~D~u. (6.6)

Since we know the explicit formula of the derivatives of each f is, we can compute
the approximated derivatives of u, such as

∂u

∂x
=

m∑
i=1

~ci
∂f is
∂x

(6.7)

and

∂u

∂y
=

m∑
i=1

~ci
∂f is
∂y

. (6.8)

Now, we are ready to introduce the construction of the Laplace-Beltrami operator
of a smooth function u on N (zs). For any smooth real-valued function u on the N (z),
the Laplace-Beltrami operator of u is given by

∆u(z) =
1

W

2∑
i,j=1

∂i(g
ijW∂j(u(z))), (6.9)
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where z is a point in N (z), (gij) is the metric of the surface at z, W =
√
det(gij),

and (gij) = (gij)
−1.

Since zis = (xis, y
i
s, fs(x

i
s, y

i
s)) and N (zs) is a graph of N̂ (zs), we have

(gij) =

(
1 + (fs)

2
x (fs)x(fs)y

(fs)x(fs)y 1 + (fs)
2
y

)
(6.10)

and

(gij) =
1

W 2

(
1 + (fs)

2
y −(fs)x(fs)y

−(fs)x(fs)y 1 + (fs)
2
x

)
, (6.11)

where W =
√

1 + (fs)2x + (fs)2y.

We use Equation (6.7) and Equation (6.8) to calculate the first order partial
derivatives of fs. Then, we proceed to compute ∆u(zs). Since we have a closed form
of ∆u and the Laplace-Beltrami operator is a second order differential operator, by
differentiating Equation (6.9), we get

∆u(zs) = α1
∂u

∂x
(zs) + α2

∂u

∂y
(zs) + α3

∂2u

∂x2
(zs) + α4

∂2u

∂x∂y
(zs) + α5

∂2u

∂y2
(zs) (6.12)

where α1, α2, α3, α4, α5 are coefficients which depend on partial derivatives of fs.
This completes our approximation scheme for the Laplace-Beltrami operator on point
clouds. With this approximation, we are now ready to describe our proposed spherical
conformal parameterization algorithm for genus-0 point clouds.

6.2. Spherical conformal parameterization of genus-0 point clouds. In
this subsection, we introduce our proposed method for the spherical conformal pa-
rameterizations of genus-0 point clouds.

Given a point cloud P sampled from a genus-0 closed surface M, our goal is to
find a conformal map f̃ : P → S2 which effectively resembles the conformal map
f : M → S2. By the previous section, we can approximate the Laplace-Beltrami
operator ∆ on P . Denote the approximated Laplace-Beltrami operator on the point
cloud by ∆PC . The approximation allows us to solve the Laplace equation (5.2) on
point clouds for a map φ : P → C. More specifically, we solve the following equation

∆PCφ = 0 (6.13)

subject to the constraints φ(ai) = bi for i = 1, 2, 3, where ai, bi ∈ C. The choice of the
three boundary points a1, a2, a3 affects the conformality of the map φ. In the case of
triangular meshes, a1, a2, a3 are chosen to be the three vertices of the most regular
triangle among all triangles on the input mesh [6]. Here, the regularity of a triangle
[a1, a2, a3] is defined by

Regularity[a1, a2, a3] =
∣∣∣α− π

3

∣∣∣+
∣∣∣β − π

3

∣∣∣+
∣∣∣γ − π

3

∣∣∣ , (6.14)

where α, β and γ are the three angles in the triangle [a1, a2, a3]. However, in the case
of point clouds, we do not have the required connectivity information. Hence, we
choose the three points a1, a2, a3 in a different way.

Recall that in approximating the Laplace-Beltrami operator, it is necessary to
find the k nearest neighboring data points z1s , z

2
s , . . . , z

k
s for each point zs on the point
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cloud P . We consider forming a triple using zs and two other neighboring points
zis and zjs , where i 6= j. Different combinations of i and j result in different triples
[zs, z

i
s, z

j
s ]. Then, we propose to choose the three boundary points a1, a2, a3 in the

constraint of Equation (6.13) by considering

min
s,i,j

Regularity[zs, z
i
s, z

j
s ] (6.15)

among all combinations of s, i and j.
After solving Equation (6.13) with our proposed boundary constraints, we apply

the inverse stereographic projection P−1N on φ(P ) to obtain a spherical point cloud.
Recall that the conformality distortion around the north pole is large due to the
approximation error in the stereographic projection. Note that the second key step in
the method in [6] for correcting the distortion via a composition of quasi-conformal
maps does not work for the case of point clouds. Now, we propose a new method to
correct the conformality distortion by solely using the Laplace-Beltrami operator.

We begin with the south-pole stereographic projection PS to project the spherical
point cloud back onto the complex plane. Under the projection, the North pole of
the sphere, which corresponds to the outermost region of φ(P ) ⊂ C, is mapped to the
innermost region on the complex plane. It follows that the outermost region is now
with very low distortion while the innermost region is with large distortion. We use
the outermost low-distortion data points as the boundary constraints and solve the
Laplace equation ψ : (PS ◦ P−1N ◦ φ)(P )→ C again:

∆PCψ = 0 (6.16)

subject to the boundary constraints ψ(x) = x for all data points x in the outermost
low-distortion region. The low-distortion boundary constraints provide us with a more
accurate result in the inner part of the planar region. Finally, we apply the inverse
south-pole stereographic projection P−1S and obtain a composition map

f̃ = P−1S ◦ ψ ◦ PS ◦ P−1N ◦ φ. (6.17)

This step effectively replaces the second key step in the mesh parameterization algo-
rithm in [6] which involves computing the Beltrami coefficients.

Altogether, by solving Equation (6.13) and Equation (6.16) and using a number

of projections, we can obtain a conformal map f̃ : P → S2. Note that the method
in [6] is based on certain manipulations of Beltrami coefficients and quasi-conformal
maps. In contrast, our new method only involves solving Laplace equations. The
equivalence between the two approaches can be explained as follows.

In the first step, the conformality distortion of the spherical parameterization is
due to the error in the stereographic projection. Then in the approach in [6], the
entire initial parameterization result is used for computing a quasi-conformal map
in order to cancel the distortion. The method is theoretically guaranteed by the
composition formula (5.6) of quasi-conformal maps. In contrast, in our new approach,
we only make use of the most accurate part in the initial parameterization result.
More explicitly, we use the southern-most regions as the boundary constraints and
compute the remaining part of the spherical parameterization again, with the aid of
the Laplace-Beltrami operator. The conformality of the final result is based on the
accuracy of the boundary constraints, as well as the fact that harmonic maps are
conformal maps under suitable boundary constraints. Therefore, in the continuous
case, both methods are theoretically guaranteed for producing a conformal map.
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However, in the discrete case, the two methods are advantageous under differ-
ent conditions. For the case of triangular meshes, the Beltrami coefficients can be
accurately computed and the composition formula (5.6) of quasi-conformal maps is
accurate under the discretization. In this situation, the method in [6] is likely to
produce a more accurate result since it is less dependent on the boundary constraints.
While for the case of point clouds, we only have an approximation of the Laplace-
Beltrami operator and there is no guarantee about the composition formula (5.6) of
quasi-conformal maps. Hence, it is more suitable to use our proposed method as it only
involves solving the Laplace Equation (6.16). However, since our proposed method
is more dependent on the boundary constraints, the boundary constraints obtained
from the initial parameterization result may contain small error and hence slightly
affect the result in solving Equation (6.16). Therefore, it is desirable to perform some
more iterations for obtaining a more accurate result.

It is noteworthy that in the parameterization algorithm in [6] for triangular
meshes, no further steps are required after the second step. However, because of
the abovementioned issue about the boundary constraints in the Laplace Equation
(6.16), a few further iterations are necessary for enhancing the parameterization re-
sult. We call them the North-South (N-S) reiterations. In each N-S reiteration, two
Laplace equations are solved again after the north-pole stereographic projection and
the south-pole stereographic projection respectively. For solving each Laplace equa-
tion, we fix the outermost r% points on the complex plane to guarantee the existence
of the solution.

More specifically, in each N-S reiteration, we first project the previous spherical
parameterization result onto the complex plane using the north-pole stereographic
projection. Next, we compute a harmonic map φ̃ : (PN ◦ f̃)(P ) → C by solving the
Laplace equation

∆PC φ̃ = 0 (6.18)

with the boundary constraints φ̃(x) = x for the outermost r% of the data points

on C. After obtaining φ̃, the inverse north-pole stereographic projection is again ap-
plied, followed by the south-pole stereographic projection. Then, we compute another
harmonic map ψ̃ : (PS ◦ P−1N ◦ φ̃ ◦ PN ◦ f̃)(P )→ C by solving the Laplace equation

∆PC ψ̃ = 0 (6.19)

with the boundary constraints ψ̃(x) = x for the outermost r% of the data points on
C. We then define the updated spherical parameterization by the composition map

P−1S ◦ ψ̃ ◦ PS ◦ P−1N ◦ φ̃ ◦ PN ◦ f̃ . (6.20)

We check whether the above updated parameterization result is close to the previous
parameterization result f̃ . If yes, then the parameterization is stable and we complete
the algorithm. If no, we apply another N-S reiteration on the updated parameteriza-
tion point by repeating the procedures and so on. In practice, we choose r = 10. Our
proposed spherical conformal parameterization scheme is outlined in Algorithm 1.

Finally, we make an important remark about our proposed spherical conformal
parameterization algorithm for genus-0 point clouds. In addition to genus-0 point
clouds, our proposed algorithm also efficiently works on genus-0 triangular meshes.
Note that for triangular meshes, the Laplace-Beltrami operator can be easily con-
structed by computing the cotangent weights on the given mesh structures. Also,
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solving Laplace equations on the complex plane requires only linear time. Hence,
our proposed algorithm can serve as an alternative approach for computing spherical
conformal parameterizations of genus-0 closed triangular meshes in linear time.

Algorithm 1: Our proposed spherical conformal parameterization algorithm.

Input: A genus-0 point cloud P .
Output: A spherical conformal parameterization f : P → S2.

1 Approximate the Laplace-Beltrami operator on P and denote the
approximation by ∆PC ;

2 Find the most regular triple of points a1, a2, a3 by solving the minimization
problem (6.15);

3 Obtain a map φ : P → C by solving the Laplace equation (6.13);

4 Apply the inverse stereographic projection P−1N : C→ S2 on φ(P );

5 Apply the south-pole stereographic projection PS : S2 → C on (P−1N ◦ φ)(P );

6 Solve the Laplace equation (6.16) for ψ : (PS ◦ P−1N ◦ φ)(P )→ C;

7 Apply the inverse south-pole stereographic projection P−1S and denote the

overall composition of the maps by f = P−1S ◦ ψ ◦ PS ◦ P−1N ◦ φ;
8 repeat

9 Update f̃ by f ;

10 Solve the Laplace equation (6.18) for φ̃ : (PN ◦ f̃)(P )→ C;

11 Solve the Laplace equation (6.19) for ψ̃ : (PS ◦ P−1N ◦ φ̃ ◦ PN ◦ f̃)(P )→ C;

12 Update f by P−1S ◦ ψ̃ ◦ PS ◦ P−1N ◦ φ̃ ◦ PN ◦ f̃ ;

13 until mean(‖f(pi)− f̃(pi)‖2) < ε;

6.3. Improving the distribution of the spherical parameterization. It
is obvious that spherical conformal parameterizations are unique only up to Möbius
transformations. Although the conformality does not change under the Möbius trans-
formations, the distribution of the points on the sphere does. The distribution is
crucial for meshing. Hence, it is desirable to obtain an even distribution of the points
on the sphere.

In the spherical conformal parameterization algorithm for triangular meshes [6],
Choi et al. proved the following theorem:

Theorem 6.1 (See [6], P.75). Let T1 and T2 be two triangles of C. The product
of the perimeters of T1 and PS(P−1N (T2)) is invariant under arbitrary scaling of T1
and T2.
With this theorem, Choi et al. achieved an even distribution of a spherical param-
eterization mesh by applying the stereographic projection on the sphere, and then
considering the outermost triangle T and the innermost triangle t on the complex
plane. They scaled the planar domain by a factor so that T and t are with the same
perimeters on the sphere, under the inverse stereographic projection.

In our case, the above idea does not work as we do not have any information
about the connectivity of the point clouds. However, we can extend Theorem 6.1 for
point clouds by considering two sets of points. The extension is as follows:
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Theorem 6.2. Let {ui}mi=0 and {vj}nj=0 be two sets of points on C. Then

(
m∑
i=1

‖λui − λu0‖

) n∑
j=1

∥∥PS(P−1N (λvj))− PS(P−1N (λv0))
∥∥

=

(
m∑
i=1

‖ui − u0‖

) n∑
j=1

∥∥PS(P−1N (vj))− PS(P−1N (v0))
∥∥

for any scaling factor λ 6= 0. In other words, the product is an invariance under
arbitrary scaling.

Proof. We prove the theorem using the approach in [6]. Note that for any z =
x+ iy, we have

PS(P−1N (z)) = PS(P−1N (x+ iy))

=
− 2x

1+x2+y2

1 + −1+x2+y2

1+x2+y2

+ i

2y
1+x2+y2

1 + −1+x2+y2

1+x2+y2

=
−x

x2 + y2
+ i

y

x2 + y2

=
−Re(z)
|z|2

+ i
Im(z)

|z|2
.

(6.21)

Hence, for any scaling factor λ 6= 0, we have(
m∑
i=1

‖λui − λu0‖

) n∑
j=1

∥∥PS(P−1N (λvj))− PS(P−1N (λv0))
∥∥

=

(
m∑
i=1

‖λui − λu0‖

) n∑
j=1

∥∥∥∥−Re(λvj)|λvj |2
+ i

Im(λvj)

|λvj |2
− −Re(λv0)

|λv0|2
+ i

Im(λv0)

|λv0|2

∥∥∥∥


=

(
λ

m∑
i=1

‖ui − u0‖

) λ

λ2

n∑
j=1

∥∥∥∥−Re(vj)|vj |2
+ i

Im(vj)

|vj |2
− −Re(v0)

|v0|2
+ i

Im(v0)

|v0|2

∥∥∥∥


=

(
m∑
i=1

‖ui − u0‖

) n∑
j=1

∥∥PS(P−1N (vj))− PS(P−1N (v0))
∥∥ .

(6.22)

Therefore, the product is an invariance.
To apply this theorem for obtaining an even distribution of our spherical parameter-
ization result, we propose to use the average distance between the poles on the unit
sphere and their k-NN neighborhoods. More specifically, suppose vN and vS are the
northernmost point and the southernmost point on the spherical parameterization
result f(P ) obtained by Algorithm 1 respectively. By the north-pole stereographic
projection PN , vN is mapped to the point xN on the complex plane. On the other
hand, by the south-pole stereographic projection PN , vS is mapped to the point xS
on the complex plane. Denote the average distances of xN and xS to their k-NN
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neighborhood on their corresponding planar domain by dN and dS respectively. dN
and dS are explicitly given by

dp = mean({|PN (f(z))− xN | : z ∈ N k(f−1(vN ))}) (6.23)

and

ds = mean({|PS(f(z))− xS | : z ∈ N k(f−1(vS))}). (6.24)

Then, we scale the whole planar domain (PN ◦ f)(P ) by a scaling factor

λ =

√
dp × ds
dp

. (6.25)

Now, denote the two updated average distances by d̃p and d̃s. It follows that

d̃p = λdp =

√
dp × ds
dp

× dp =
√
dp × ds. (6.26)

Also, by Theorem 6.2, we have

d̃p × d̃s = dp × ds. (6.27)

Therefore,

d̃s = dp × ds ×
1

d̃p
=
√
dp × ds. (6.28)

In other words, the two updated average distances dp and ds defined on the new
spherical parameterization result P−1N (λ(PN (f(P )))) are equal. This indicates that
the distribution of the points at the two poles is balanced. Hence, Algorithm 1
together with the described balancing scheme provide us with a a spherical conformal
parameterization with an even distribution. Our balancing scheme is summarized in
Algorithm 2.

Algorithm 2: Our proposed balancing scheme for better distribution.

Input: A spherical conformal parameterization f : P → S2.
Output: A spherical conformal parameterization with improved distribution.

1 Apply the north-pole stereographic projection PN on f(P );
2 Denote the northernmost and the southernmost points of f(P ) by vN and vS .

Multiply all points in PN (f(P )) by a scaling factor

λ =

√
dp × ds
dp

(6.29)

where dp = mean({|PN (f(z))− xN | : z ∈ N k(f−1(vN ))}) and
ds = mean({|PS(f(z))− xS | : z ∈ N k(f−1(vS))});

3 Apply the inverse north-pole stereographic projection P−1N on λ(PN (f(P )));
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6.4. Meshing using spherical conformal parameterization. In this sub-
section, we present our meshing framework for genus-0 point clouds. Directly trian-
gulating a point cloud is difficult because of its complicated geometry. However, with
the aid of the spherical conformal parameterization of point clouds, the difficulty is
significantly alleviated. Instead of triangulating a point cloud, we triangulate the unit
sphere obtained by our spherical conformal parameterization algorithm. Algorithms
for triangulating a spherical point cloud are well-established. In particular, the spher-
ical Delaunay triangulation method, which computes a Delaunay triangulation on the
unit sphere, is the most suitable method for our purpose.

Delaunay triangulations are widely used in computer graphics because of their
good triangle quality. More specifically, Delaunay triangulations are advantageous as
they maximize the minimum angle in every triangle in the triangulations and hence
avoid skinny triangles. With this important property, the triangulations generated by
this method are more regular than the common triangulation methods.

By applying the spherical Delaunay triangulation method on the spherical con-
formal parameterization of a genus-0 point cloud, we obtain a nice triangulation on
the spherical point cloud. Since the points on the original point cloud and those
obtained by the spherical conformal parameterization have a 1-1 correspondence, the
triangulation on the spherical point cloud naturally induces a triangulation on the
original point cloud. It is noteworthy that since the parameterization is conformal,
the angles of the new triangulation on the original point cloud are well preserved. In
other words, the regularity of the triangulation defined on the original point cloud
closely resembles that of the spherical Delaunay triangulation. Moreover, the meshing
result is guaranteed to be a genus-0 closed triangular mesh because of the spherical
Delaunay method. This completes our goal of meshing a genus-0 point cloud. Our
meshing framework is described in Algorithm 3.

Algorithm 3: Our proposed meshing framework for genus-0 point clouds.

Input: A genus-0 point cloud P .
Output: A triangular mesh M = (P, T ) where T is a triangulation of P .

1 Apply Algorithm 1 and Algorithm 2 to obtain a spherical conformal
parameterization f : P → S2;

2 Compute a triangulation T on f(P ) using the spherical Delaunay algorithm;
3 Use T to form a triangular mesh M = (P, T );

Before ending this section, we make an important remark about an extension of
our proposed framework. In fact, our proposed parameterization and meshing scheme
can be easily extended for point clouds with disk topology. In this case, we first
extend the double covering technique [15, 7] to turn a point cloud with disk topology
into a genus-0 point cloud. More specifically, given a point cloud P of a simply-
connected open surface M, we turn P into a point cloud P̃ with spherical topology
and approximate the derivatives on it by the following steps.

Step 1: Approximate the derivatives on P using the k-NN algorithm and the moving
least square method.

Step 2: Duplicate P and denote the copy of it by P ′.
Step 3: Define the derivatives on P ′ using the results in Step 1, with reversed orien-

tations.
Step 4: Identify the boundary points of P and P ′ and obtain a genus-0 point cloud
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Method maximum position error average position error
Local mesh method [20] 1.3427 0.0179
MLS with the Wendland weight [46, 47] 3.3074 0.1696
MLS with the special weight [25] 0.0427 0.0006
MLS with our proposed weight 0.0245 0.0004

Method maximum position error average position error
Local mesh method [20] 1.5148 0.0271
MLS with the Wendland weight [46, 47] 2.0082 0.0803
MLS with the special weight [25] 0.0110 0.0001
MLS with our proposed weight 0.0103 0.0002

Table 7.1
The approximation error in the two experiments. Top: the first experiment. Bottom: the

second experiment.

P̃ .
Step 5: Create the Laplace-Beltrami operator for P̃ using the derivatives on P and

P ′.

Then, we can apply the abovementioned spherical conformal parameterization
algorithm on P̃ to obtain a spherical point cloud. After that, by applying the stere-
ographic projection on the southern hemisphere, we obtain a planar conformal pa-
rameterization of P . Finally, we can easily compute a Delaunay triangulation on the
planar parameter domain. Since both the parameterization algorithm and the stereo-
graphic projection produce conformal results, this triangulation on the planar domain
accurately induces a regular mesh structure on P . This completes the task of meshing
a point cloud with disk topology.

7. Experimental results. In this section, we demonstrate the effectiveness of
our proposed framework for meshing genus-0 point clouds using spherical conformal
parameterization. In the following, we assess the performance of our proposed frame-
work in different aspects. The datasets used in the experiments are freely adapted
from the AIM@SHAPE Shape Repository [51] and the Stanford 3D Scanning Reposi-
tory [52]. The mentioned algorithms are implemented in MATLAB. The sparse linear
systems for the Laplace equations are solved using the built-in backslash operator (\)
in MATLAB. All experiments are performed on a PC with an Intel(R) Core(TM)
i5-3470 CPU @3.20 GHz processor and 8.00 GB RAM.

7.1. The performance of our approximation of the Laplace-Beltrami
operator. In this work, we apply the moving least square method with a new weight
function for approximating the Laplace-Beltrami operator. It is natural to ask whether
our proposed weight function produces better results. It is also necessary to compare
other approximation approaches such as the local mesh method to justify our choice.
In this subsection, we compare the numerical accuracy of the local mesh method and
the moving least square method with several weighting functions for approximating
the Laplace-Beltrami operator on point clouds. More specifically, we compare the
performance of the following methods:

1. The local mesh method [20],
2. The moving least square method with the Wendland weight function [46, 47],
3. The moving least square method with the special weight function [25], and
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Fig. 7.1. Two experiments for assessing the approximation accuracies of the Laplace-Beltrami
operator. In each experiment, we generate a point cloud on the unit disk and transform it using a
conformal map with an explicit formula. We then approximate the Laplace-Beltrami operator on
the transformed point cloud and solve the Laplace equation back onto the unit disk. Top: the first
experiment. Bottom: the second experiment.

4. The moving least square method with our proposed weight function.

Experiments are carried out for assessing the numerical accuracies of the above-
mentioned approaches. Figure 7.1 shows the setups in two of the experiments. In each
experiment, we first generate a point cloud on the unit disk. This serves as the ground
truth in our analysis. Then, we transform the point cloud using a conformal map with
an explicit formula. We apply the mentioned approximation schemes for approximat-
ing the Laplace-Beltrami operator on the transformed point cloud. Then, we solve
the Laplace equation with the circular boundary constraints on the original unit disk.
Theoretically, the result obtained by the disk harmonic map should be exactly the
same as the original point cloud, as the transformation is given by a conformal map
with an explicit formula. In other words, the ideal position error between the disk
harmonic map and the original point cloud should be 0. By measuring the maximum
and average position error between the pairs of points, we can evaluate the accuracy of
the aforementioned approximation schemes for approximating the Laplace-Beltrami
operator.

Table 7.1 illustrates the approximation error of different approaches in the two
experiments. It is noteworthy that in both experiments, the moving least square
method with our proposed weight function produces approximations which are much
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Point clouds
No. of
points

Our proposed method Spherical embedding [50]

Time (s) / Mean(|distortion|) / SD(|distortion|)
Hippocampus 10242 13.0919 / 1.2855 / 1.4701 37.4124 / 14.3072 / 19.6461

Max Planck 21530 30.7785 / 0.7326 / 1.0803 87.0887 / 8.6058 / 14.0857

Bulldog 49797 88.9297 / 1.5432 / 2.9183 206.9920 / 16.2010 / 21.1544

Chinese Lion 50002 95.8935 / 1.8474 / 1.9286 212.5685 / 19.1579 / 22.7259

Bimba 74764 198.6064 / 0.6227 / 0.8129 360.7178 / 18.0340 / 20.6272

Igea 134345 427.7658 / 0.7076 / 1.4273 731.8661 / 5.0853 / 8.2623

Armadillo 172974 676.4106 / 1.4167 / 1.6855 995.7537 / 23.2354 / 23.9892

Lion Vase 256094 1305.9013 / 2.0920 / 4.1052 1484.7682 / 17.8501 / 21.9588
Table 7.2

Performance of two spherical parameterization methods for genus-0 point clouds. To quantita-
tively evaluate the conformality of the parameterization, we build a mesh structure on the spherical
parameterization using the spherical Delaunay method and then create an induced mesh structure
on the original point cloud. The conformality distortion of the parameterization is assessed using
the angle difference (in degrees) between an angle on a meshed point cloud and the mapped angle on
the meshed spherical parameterization result.

more accurate those produced by the local mesh method and the moving least square
method with the Wendland weight [46, 47]. With similar and negligible average po-
sition errors, our proposed scheme reduces the maximum position errors by about
25% on average when compared with the moving least square method with the spe-
cial weight [25]. The comparisons reflect the advantage of our proposed method for
approximating the Laplace-Beltrami operator.

7.2. Performance of our proposed spherical conformal parameteriza-
tion. After demonstrating the advantage of our approximation scheme for the Laplace-
Beltrami operator, we investigate the performance of our proposed spherical conformal
parameterization algorithm for genus-0 point clouds. Figure 7.2 and Figure 7.3 show
the results of parameterizing a lion point cloud and a bulldog point cloud using our
proposed parameterization method.

Moreover, with the aid of the spherical conformal parameterization, we can create
a Delaunay triangulation on the spherical parameterization result by the spherical
Delaunay algorithm and define an induced triangulation on the input point cloud.
Using the mesh structures, we can measure the angle differences of the two meshed
point clouds and hence effectively evaluate the conformality of our parameterization
scheme. In particular, we define the conformality distortion of the parameterization
by the angular distortion between the two meshes. The angle difference provides
an accurate measurement of the conformality distortion of the parameterizations. It
can be easily observed in Figure 7.2 and Figure 7.3 that the histograms of the angle
differences highly concentrate at 0. Besides, for better visualizations of the spherical
conformal parameterization results, we color the surfaces by the approximated mean
curvature on the source surfaces. It can be observed from the colored figures that the
local geometries of the point clouds are well preserved under our proposed spherical
conformal parameterization algorithm.

We compare our proposed spherical conformal parameterization method with the
spherical embedding method proposed by Zwicker and Gotsman [50], which also com-
putes a spherical parameterization for a genus-0 point cloud. In our experiment,
k = 25 nearest neighbors of every point are used for approximating the Laplace-



Spherical Conformal Parameterization for Meshing 21

Fig. 7.2. Parameterizing a lion point cloud. Top left: A lion point cloud. Top right: The
spherical conformal parameterization of the lion point cloud. Middle left: A triangulation created
by our method. Middle right: The conformality distortion of the parameterization based on the tri-
angulation. Bottom: The triangulated point cloud and the spherical parameterization result colored
with the approximated mean curvature at each vertex.
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Fig. 7.3. Parameterizing a bulldog point cloud. Top left: A bulldog point cloud. Top right:
The spherical conformal parameterization of the bulldog point cloud. Middle left: A triangulation
created by our method. Middle right: The conformality distortion of the parameterization based on
the triangulation. Bottom: The triangulated point cloud and the spherical parameterization result
colored with the approximated mean curvature at each vertex.
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Beltrami operator in Algorithm 1. The stopping threshold for the N-S reiteration is
set to be ε = 0.0001. Table 7.2 summarizes the computational time and the con-
formality distortion of our proposed scheme and the spherical embedding method for
computing the spherical parameterizations of genus-0 point clouds. In all of the exper-
iments, our proposed method produces parameterizations with better conformality.
Moreover, our method is more efficient than the algorithm in [50]. The above results
indicate that our parameterization algorithm preserves the local geometry of the point
clouds very well.

7.3. Performance of our meshing scheme. As mentioned in the last sub-
section, we generate mesh structures on genus-0 point clouds by building Delaunay
triangulations on their spherical conformal parameterizations. Our meshing scheme
has two important advantages. First, the regularity of the triangulations generated
is guaranteed by the preservation of the angle structures of the Delaunay triangula-
tions computed on the spherical parameterizations. As the angle structures are well
retained under the spherical conformal parameterization, a regular triangulation de-
fined on the parameterized point clouds can effectively induce a regular triangulation
on the original point clouds. Besides Figure 7.2 and Figure 7.3, some more examples
of triangulations created by our approach are shown in Figure 7.4. It can be observed
that our meshing method can handle point clouds with different geometry. High
quality triangulations can be created even with the presence of sharp, non-convex
and convoluted regions on the input point clouds. Second, unlike most of the existing
meshing methods, the meshes produced by our proposed scheme are guaranteed to
be genus-0 closed meshes. No holes or unwanted boundaries will be present in our
meshing result. Hence, post-processing steps are not required in our meshing scheme.

We compare our meshing method with three existing meshing approaches. As an
example of parameterization-based approaches, Zwicker and Gotsman [50] generate
triangulations for a genus-0 point cloud with the aid of the spherical embedding
algorithm and the spherical Delaunay triangulation method. On the other hand,
two typical methods for meshing without using parameterizations are the marching
cubes algorithm [30] and the Tight Cocone algorithm [8]. Figure 7.5 provides a
comparison between our method and the three mentioned approaches. It can be
observed that our meshing scheme and the Tight Cocone algorithm [8] produce high
quality triangulations, while the triangulations produced by the approaches in [50]
and [30] consist of certain sharp and irregular triangles. Also, the result by the
marching cubes algorithm contains holes while our method is topology preserving.
Therefore, unlike the marching cubes algorithm, no further post-processing is needed
in our meshing scheme. The comparison demonstrates the advantages of our proposed
meshing scheme. A further comparison between our method and the Tight Cocone
algorithm [8] is given in the following subsection.

In addition, we can generate quadrangulations of point clouds with the aid of the
spherical conformal parameterization. Two examples of the quad meshes generated by
our method are given in Figure 7.6. To create quad meshes of point clouds, we make
use of a standard spherical quad mesh and our spherical conformal parameterization
results. With the aid of the spherical conformal parameterizations, we can interpolate
the standard quad mesh onto the input point clouds and thus generate quad mesh
representations. Because of the conformality of our parameterization scheme, the
resulting quad meshes are with high quality. Also, the meshes are guaranteed to be
topology preserving.

Before ending this subsection, we demonstrate the significance of our proposed
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Fig. 7.4. Meshes generated by our proposed method and a zoom-in of them. The regularity
of the triangulations is attributed to our spherical conformal parameterization and the spherical
Delaunay method.
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Fig. 7.5. A comparison between our meshing scheme and other approaches. A front view of
the triangulated point cloud and a zoom-in of the nose are shown for each method. Left to right:
Our meshing result, the method in [50], the marching cubes algorithm [30] and the Tight Cocone
algorithm [8].

Fig. 7.6. Quad mesh generation on point clouds using our proposed method.
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Fig. 7.7. The effect of our balancing scheme on meshing a genus-0 point cloud of Max Planck.
Top left: A spherical conformal parameterization without the balancing scheme. Bottom left: A
spherical conformal parameterization with the balancing scheme. Middle: The front view of the the
meshing results by interpolation with the aid of the parameterizations. Right: The back view.
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Fig. 7.8. Meshing a geometrically noisy point cloud.

balancing scheme in the spherical conformal parameterization. The redistribution is
vital for the meshing quality. Figure 7.7 shows the meshing results with and without
the redistribution scheme. It can be easily observed that if the spherical parame-
terization of a genus-0 point cloud is unbalanced, then on the mesh generated by
interpolation with the aid of the spherical conformal parameterization, most of the
vertices will be concentrated at one small region of the mesh. As a result, most
features of the underlying surface are lost. In contrast, with our proposed balancing
scheme, a high quality mesh can be effectively generated. The above results reflect the
importance of our balancing scheme in the point cloud parameterizations for meshing.

7.4. Stability under geometrical and topological noises. Our meshing
framework is stable under geometrical and topological noises of the input genus-0
point clouds. In some situations, the point clouds obtained by 3D cameras are geo-
metrically noisy. To compute triangulations which represent the underlying surfaces,
we can first apply a Poisson filtering on the noisy point clouds. Then, with the aid of
our spherical conformal parameterization, we can obtain high quality triangulations
on a uniform spherical point cloud and interpolate them back onto the filtered point
clouds to produce meshed surfaces. Figure 7.8 shows an example of geometrically
noisy point cloud and our meshing result.

We can also construct a faithful triangulated mesh on a geometrically noisy point
cloud without any filtering or sampling procedure. Figure 7.9 shows the triangulation
result of our meshing scheme and the Tight Cocone algorithm [8] on the noisy point
cloud in Figure 7.8. All points of the point cloud are considered and fixed in the
construction of the triangulation. It can be observed that there are irregular triangu-
lations and topological holes on the result by [8], while our meshing scheme guarantees
a regular and topology preserving triangulation even for noisy input point clouds.

Besides, it is common that the sampling processes result in non-uniformly sampled
point clouds. In particular, there may be large holes on certain parts of the point
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Fig. 7.9. Comparison of our meshing scheme and the Tight Cocone algorithm [8] on a geomet-
rically noisy point cloud. All points are considered in the computations. Left: Our meshing result
with a zoom-in of the nose. Right: The result of the Tight Cocone algorithm with a zoom-in of the
nose.
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Fig. 7.10. Meshing a topologically noisy point cloud with unwanted holes.

clouds sampled from genus-0 objects, which create topological ambiguities and hinder
mesh generations. Our parameterization and meshing scheme produce satisfactory
results with these topological noises. Moreover, the meshes generated are guaranteed
to be genus-0 closed meshes. Figure 7.10 shows the performance of our algorithm on
topologically noisy point clouds. The above experiments demonstrate the stability
and robustness of our proposed method for noisy point clouds.

7.5. Multilevel representations of genus-0 point clouds. With our pro-
posed spherical conformal parameterization scheme, multilevel representations of a
genus-0 point cloud can be easily achieved. We start with a coarse spherical point
cloud. The vertices on the sphere can be interpolated onto the genus-0 point cloud
with the aid of its spherical parameterization. Then, we can progressively subdi-
vide the sphere using existing subdivision methods, such as the butterfly subdivision
method [9] and the loop subdivision method [29]. For each subdivided sphere, we can
repeat the mentioned interpolation procedure and obtain a coarse representation of
the point cloud. This method results in multilevel representations of the point cloud.
As the subdivision level increases, more details of the point cloud are represented.
Examples of multilevel representations of genus-0 point clouds are given in Figure
7.11 and Figure 7.12. In our examples, the subdivisions are generated using the loop
subdivision method [29]. The subdivision connectivity of the results can be easily
observed. The results indicate that our method can effectively generate the multilevel
representations of genus-0 point clouds.
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Fig. 7.11. Multilevel representations of a genus-0 point cloud of Igea. For better visualizations,
we create mesh structures on the representations. Top left: a point cloud with 134345 points of Igea.
Top middle to Bottom right: the multilevel representations with 0, 1, 2, 3 and 4 subdivisions. The
representations are with 642, 2562, 10242, 40962 and 163842 points respectively.

8. Conclusion and Future Work. In this paper, we presented a novel frame-
work for meshing genus-0 point clouds via global spherical conformal parameteri-
zations. We extended and improved the parameterization algorithm for triangular
meshes in [6]. Firstly, we enhanced the accuracy for approximating the Laplace-
Beltrami operator on point clouds by introducing a new weight function. Secondly,
we proposed an iterative scheme called the N-S reiteration to replace a key step in
[6] for achieving better conformality. Thirdly, we introduced a balancing scheme for
guaranteeing an even distribution of the spherical point cloud parameterization. Ex-
perimental results show that our proposed algorithm is highly efficient and accurate.
With the aid of the spherical conformal parameterizations, almost-Delaunay triangu-
lations and high quality quadrangulations of genus-0 point clouds can be effectively
created. The meshes generated are guaranteed to be of genus-0 and no post-processing
is needed. Besides, our meshing method is stable under geometrical and topological
noises on point clouds. Moreover, multilevel representations of genus-0 point clouds
can be easily computed. As a remark, our proposed spherical conformal parameteriza-
tion algorithm also works efficiently on triangular meshes. Furthermore, our meshing
framework for genus-0 point clouds can be easily extended for meshing point clouds
with disk topology. In the future, we plan to extend our method to handle point
clouds with arbitrary topology.
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Fig. 7.12. Multilevel representations of a genus-0 lion vase point cloud. For better visual-
izations, we create mesh structures on the representations. Top left: a lion vase point cloud with
256094 points. Top middle to Bottom right: the multilevel representations with 0, 1, 2, 3 and 4
subdivisions. The representations are with 696, 2778, 11106, 44418 and 177666 points respectively.
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