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a b s t r a c t

Alzheimer's disease (AD) is a no-cure disease that has been frustrating the scientists for many years.
Analyzing the disease has become an important but challenging research topic. The shape analysis of the
sub-cortical structure of AD patients has been commonly used to understand this disease. In this paper,
we assess the feasibility of using shape information on the hippocampal (HP) surfaces to detect some

which allows us to study local regional geometric changes in the HPs amongst normal control (NC) and
AD groups. A shape index defined by the quasi-conformality and surface curvatures is used to char-
acterize region-specific shape variations of the HP surfaces. Feature vectors can be extracted for each HPs,
with which a classification model can be built using machine learning methods to classify HPs into NC
and AD subjects. Experiments have been carried out on 99 normal controls and 41 patients with AD.
Results demonstrate that the proposed quasi-conformal based model is effective for classifying HPs into
NC and AD groups with high classification accuracy (with highest overall classification accuracy reaching
87.86% in a leave-one-out experiment using the whole dataset).

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Alzheimer's disease (AD) is a chronic neurodegenerative
disease characterized by a decline in cognitive functions. The cause
of AD is poorly understood. It usually starts slowly, gets worsen
over time and eventually leads to death. Early detection of AD is
thus an important but a challenging task.

Amongst the various subcortical structures, the hippocampus
(HP) has demonstrated pronounced shape changes in the early
stages of AD. For example, the hippocampal atrophy has been
recognized to be more aggressive in AD in comparison with the
normal aging [1–6]. The HP surface is therefore amongst the most
important biomarker for the early diagnosis of the disease.

HP shape analysis has usually been carried out by studying its
global and local shape changes. For global shape analysis, the
overall HP volumes are usually evaluated to study global shape
differences amongst AD patients. It is believed that HP volumetric
decline is correlated to the memory lost [7]. Tissue losses in the HP
have also been found in the AD [8]. As a matter of fact, HP
Chan),
hk (L.M. Lui).
volumetry on MR images has been widely used and found helpful
for the diagnosis of AD.

Although the HP volume can provide significant information
to discriminate AD from normal control subjects, significant
regional shape changes in the HP have been observed in the
neurodegenerative process of AD [9,10]. For example, neuron loss
has commonly been found in CA1 and subiculum subfields
[11–13]. In view of this, the examination of the local regional
shape changes in the HPs is expected to provide better infor-
mation to analyze the disease and classify HPs between AD and
NC groups. Besides, another potential limitation of the global
shape analysis approach is that geometric differences between
AD and NC groups may only occur at some specific local regions.
Taking into account the overall shape change of the whole HP
volume may average out or diminish the discriminative power of
the geometric differences amongst the normal and diseased
groups, which hinder the shape analysis accuracy. It is therefore
desirable to design local shape analysis model that can measure
regional shape changes effectively.

In order to analyze the localized pattern of HP shape changes,
surface-based morphometry can be employed. A shape index that
quantifies regional shape changes is often defined, with which
statistical shape analysis can be performed for the HP classifica-
tion. In this work, we propose a quasi-conformal based shape
analysis approach, which allows us to study local regional shape
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differences of the HP amongst NC and AD groups. A shape index
based on the quasi-conformality and surface curvatures is applied
to characterize region-specific shape variations of the HP surfaces
amongst different subjects. The shape index is a positive real-
valued function defined on every vertices of the HP. Feature vec-
tors for each HP can be extracted from their shape indices using
statistical methodologies. A classification model can then be built
using the extracted feature vectors. The proposed quasi-conformal
based model is found to be an effective approach to classify HPs
into NC and AD groups.

Our experiments are performed on 99 normal controls and 41
patients with AD. The data is obtained using 1.5 T magnetic resonance
imaging (MRI) scanner. Using our method, we can accurately achieve
a high accuracy of classification between NC and AD groups.

The rest of the paper is organized as follows. In Section 2, we
review some previous literatures closely related to this work. Our
proposed quasi-conformal shape analysis model will be described in
detail in Section 3. Experimental results will be shown in Sections
4 and 5. The paper is concluded in Section 6, in which possible future
works are discussed.
2. Related works

The shape analysis of the HP for the disease analysis of AD has
been widely studied by various research groups. Different approa-
ches have been developed. For global shape analysis, HP volume has
been used for classifying AD subjects and AD diagnosis [5,6,14–17].
In particular, by studying the HP volumes, [18] has reported the
classification result between AD and cognitively normal subjects
with a success rate of about 72–74% over an Alzheimer's Disease
Neuroimaging Initiative (ADNI) database. To further improve the
accuracy for the analysis of AD, local shape changes in the HP have
been taken into account. Surface-based morphometry of the HP
surfaces has been extensively studied. The spherical harmonic
(SPHARM) representation of the HP surface has been exploited to
extract shape features to quantify shape changes caused by AD [18–
22]. Longitudinal approaches which study the HP atrophy rates over
times have been proposed for AD classification problems [23,24].
These approaches can often achieve higher classification accuracy
than the volumetric approaches (e.g. 82% on 568 images of the
ADNI dataset byWolz et al. [24]). Younes et al. [25] applied the large
deformation diffeomorphic metric mapping method for HP surface
registration and successfully detected the changing point that
indicated the AD. Wang et al. [26] proposed the tensor-based sur-
face morphometry on the HP to analyze shape changes in HPs of AD
subjects. To better examine the regional shape changes of the HP,
algorithms which segment subfields of the HP have been proposed
to detect the local atrophy pattern [27,28]. Lui et al. [29] also pro-
posed to obtain HP registration using Beltrami holomorphic flow.
Using the registration, vertex-wise shape changes can be detected
and statistically significance map (p-map) can be computed to
visualize the regions with significant shape differences.

Statistical shape analysis methods to analyze AD have also
drawn much attention recently. For instance, Miklossy et al. [30]
used Koch's and Hill's criteria in finding the AD. The analysis of the
reviewed data following Koch's and Hill's postulates shows a
probable causal relationship between neurospirochetosis and AD.
Comelli et al. [31] combined the univariate tests and logistic
regression in proposing a therapy for AD. Thompson et al. [32]
used the statistical region-of-interest method in assessing the
twelve-month metabolic declines in probable AD and Amnestic
Mild Cognitive Impairment. It is noteworthy that both the statis-
tical analysis and surface mapping take an important role in
human brain analysis especially for the study of AD. Recently,
multidimensional classification methods have been widely used
for disease classification [19,33–38].

In order to perform local shape analysis, surface registration that
captures the one-to-one vertex-wise correspondence between dif-
ferent HP surfaces is crucial. Harmonic surface registration has been
widely used [39,40], which produces smooth surface mapping by
simply solving an elliptic PDE. Landmark-matching optimized har-
monic map has also been proposed to obtain an optimal harmonic
map that matches the corresponding landmark features [41–44].

Quasi-conformal theory will be applied in this work. Compu-
tational quasi-conformal mapping has been studied recently and
applied successfully in the medical imaging field. Lui et al. [29]
proposed to obtain quasi-conformal surface registration using the
Beltrami holomorphic flow method. The method has been applied
to compute HP surface registration [45]. Quasi-conformality has
also been utilized to quantify non-isotropic deformations, which
can be used to detect abnormal growth or deformation [46]. To
deal with higher genus surfaces, different methods have been
developed to compute quasi-conformal mappings of surfaces with
general topologies [47,48]. Landmark-based surface quasi-
conformal registration has also been investigated [47,49].
3. The proposed model

In this section, we will describe our proposed quasi-conformal
statistical shape analysis model in detail. Suppose we are given a
collection of hippocampal (HP) surfaces of normal controls (NCs)
and diseased subjects suffering from Alzheimer's disease (AD). Our
goal is to learn a classification model using their shape informa-
tion, with which a new input HP surface can be classified into
either normal or diseased subject. This can potentially assist
physicians for the diagnosis of the AD. For this purpose, we pro-
pose to combine quasi-conformal theories and statistical tools to
develop a shape classification machine. Shape deformation mea-
surement is firstly obtained through quasi-conformal theories,
which provide accurate measurement of local geometric differ-
ences amongst subjects. A shape classification model can then be
learnt through statistical tools and machine learning procedures.

Denote the collection of HP surfaces of m normal controls and n
diseased subjects by ~N ¼ fSti g

m
i ¼ 1 and ~A ¼ fSti g

mþn
i ¼ mþ1, respectively,

where t ¼ 0 or 1. The HP surface of each subject was captured at
the base-time t ¼ 0 and after one year t ¼ 1. Their surfaces are
denoted by Si

0 and Si
1, respectively. Our proposed quasi-conformal

statistical shape analysis can be summarized as follows, which
consists of five main steps.

1. Surface registration: For each subject i, the deformation f i : S
0
i -

S1i of subject i is obtained. Also, surface registrations gij : S
0
i -S0j

are computed. These registrations give point-wise correspon-
dence between subjects for further shape analysis.

2. Shape deformation measurement: For each subject i, measure the
shape deformation at each vertex of the HP from t ¼ 0 to t ¼ 1
using quasi-conformal theories. A shape index Eishape : S

0
i -Rþ is

obtained that measures the degree of deformation at each
vertex.

3. Extraction of statistically significant regions: Statistically sig-
nificant p-map is obtained based on the shape index computed
for each subject. A statistically significant region Ω can be
extracted to obtain more accurate classification results.

4. Extraction of feature vector: The shape index Eshape
i together with

the statistically significant region Ω gives rise to a dis-
criminative feature vector ~ci for each subject. A mean feature
~cNCmean amongst the normal control group can also be extracted.
Distance di between each feature vector ~ci and the mean feature



Fig. 1. Infinitesimal behaviour of quasi-conformal map.
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vector ~cNCmean can be computed, which can be used to build the
shape classification machine.

5. Building the classification model: Using the discriminative feature
vector, a classification model is to be built to classify a new input
subject into either NC group or AD group.

We will now explain each step in detail.

3.1. Surface registration

Registration between HP surfaces must be computed to obtain
point-wise correspondences between surfaces. With the registration,
vertex-wise geometric difference between subjects can be measured
and local shape analysis can be carried out. In this work, we apply the
radial registration, a non-rigid transformation model, about the cen-
terlines of the HP surfaces to obtain the surface registration.

Given two HP surfaces Si
0 and Sj

0, the centerlines of each sur-
face are computed via level-set based algorithm ([50]). Let li :
ð0;1Þ-R3 and lj : ð0;1Þ-R3 be the centerlines of Si

0 and Sj
0,

respectively. For each xAð0;1Þ, l0iðxÞ and l0jðxÞ are the tangent vec-
tors of li and lj at x, respectively. Let Ni(x) and Nj(x) be the collection
of all vectors, starting at li(x) and lj(x), respectively, perpendicular
to l0iðxÞ and to l0jðxÞ, respectively. Then, for each niðxÞANiðxÞ and
njðxÞANjðxÞ, ni(x) is a ray hitting Si

0 exactly once at pni ðxÞ and nj(x)
similarly hits Sj

0 at pnj ðxÞ. Write

Px
ni
¼ fpni

ðxÞAS0i : niðxÞANiðxÞg; ð1Þ

Px
nj
¼ fpnj

ðxÞAS0j : njðxÞANjðxÞg: ð2Þ

Px
ni

and Px
nj

extract radial loops on Si
0 and on Sj

0, respectively, at
level x.

Px
ni
and Px

nj
can be viewed as a curve, and can be parameterized

using the angular parametrization. That is

Px
ni
: θAð0;2πÞ-S0i ; ð3Þ

Px
nj
: θAð0;2πÞ-S0j ; ð4Þ

are curves and we register Px
ni
ðθÞ to Px

nj
ðθÞ for any θAð0;2πÞ and for

any xAð0;1Þ. Combining the registrations of every pairs of radial
loops, the surface registration gij : S

0
i -S0j between Si

0 and Sj
0 can be

obtained. Similarly, the surface registration f i : S
0
i -S1i between the

HP surfaces of a subject measured at different times can be computed.
For details of the registration algorithm, we refer the readers to [19].

3.2. Shape deformation measurement

The surface registration f i : S
0
i -S1i for each subject allows us to

analyze the shape deformation at each vertex of the HP surface. It
is believed that significant shape deformations (atrophy) occur on
HP surfaces of patients suffering from AD [2,11–15]. Under-
standing the shape deformation pattern of the HP surface over
time can possibly provide information to classify HP surfaces into
normal and AD groups. To quantitatively measure the degree of
shape deformation, we compute a shape index using the quasi-
conformality and curvatures to measure subtle deformation of the
HP surface. Given the surface registration f i : S

0
i -S1i , the shape

index Eishape : S
0
i -Rþ is a positive real-valued function on Si

0. In
practice, HP surfaces are represented discretely by triangular
meshes. Eshapei is defined on each vertex vj

i of Si
0 as follows.

Definition (Shape index). Given the surface registration f i : S
0
i -S1i ,

the shape index Eishapeðvj
iÞ at the vertex vj

i of Si
0 is defined as:

Eishapeðvj
iÞ ¼ γ jμðf iÞðvj

iÞj þαjH0ðvj
iÞ�H1ðf iðvjiÞÞj þβjK0ðvj

iÞ�K1ðf iðvj
iÞÞj
ð5Þ
where α, β and γ are real positive scalar parameters. jμðf iÞðvjiÞj is
the complex dilation defined by:

jμðf iÞðvjiÞj ¼
∂f i
∂z

ðvj
iÞ

����
���� ∂f i

∂z
ðvjiÞ

����
����:

�
ð6Þ

H1 and H2 are the mean curvature on Si
0 and Si

1, respectively. K1

and K2 are the Gaussian curvature on Si
0 and Si

1, respectively.

The complex dilation jμðf iÞðvjiÞj measures the conformality
distortion of the deformation at the vertex vji. Intuitively, a general
deformation maps an infinitesimal circle at vji to an infinitesimal
ellipse at f iðvjiÞ. The distortion from the small circle to the small
ellipse can be measured by jμðf iÞðvjiÞj . More specifically, the
maximal stretching and shrinkage can be measured by 1þjμðf iÞð
vjiÞj and 1�jμðf iÞðvjiÞj , respectively see Fig. 1. In particular, the
deformation is conformal or locally isotropic at vji if jμðf iÞðv

j
iÞj ¼ 0.

The partial derivatives ∂f i
∂z ðv

j
iÞ and ∂f i

∂z ðv
j
iÞ are defined using the

coordinate charts of Si0 and Si
1. Let ϕj : Uj � S0i -C and φj : Vj � S1i

-C be coordinate charts of Si
0 and Si

1 around vji and f iðvjiÞ,
respectively. The partial derivatives can be defined as:

∂f i
∂z

ðvjiÞ≔
∂φj○f i○ϕ

�1
j

∂z
ðϕjðvjiÞÞ;

∂f i
∂z

ðvjiÞ≔
∂φj○f i○ϕ

�1
j

∂z
ðϕjðvjiÞÞ; ð7Þ

where ∂
∂z ¼ 1

2ð ∂∂xþ i ∂∂yÞ and ∂
∂z ¼ 1

2ð ∂∂x� i ∂∂yÞ.
This shape index has been used to formulate an energy func-

tional over all possible surface mappings to solve the geometric
matching surface registration problem [45]. Note that Eshape

i is a
complete shape index measuring different kinds of distortions of
the deformation. A different combination of parameters gives rise
to different shape indices measuring different kinds of distortions,
which can be summarized as below:

� α¼ β¼ 0 and γa0: Eshapei measures the conformality distortion
of the deformation. In other words, Eishape � 0 if the deformation
is locally isotropic everywhere.

� α¼ 0, βa0 and γa0: Eshapei measures the isometric distortion
of the deformation. An isometric deformation preserves the
metric (both length and angle). In other words, Eishape � 0 if the
deformation deforms the shape while keeping the length and
angle structure of the shape.

� γ ¼ 0, αa0 and βa0: Eshapei measures the curvature deviation
of the deformation.

� αa0, βa0 and γa0: Eshapei measures all kinds of distortions of
the deformation. In particular, Eishape � 0 under the deformation
fi if and only if Si0 and Si

1 are equal up to a rigid motion.

In this work, we set αa0, βa0 and γa0 to measure all kinds
of distortions of the deformation. The shape index functions can be
computed for every subjects. A feature matrix can then be built to
learn a classification machine. Since all HP surfaces are registered,
we assume that all HP surface meshes have the same number of
vertices and connectivity. Suppose the vertices of Si0 are ordered
and denoted by fv1i ; v2i ;…; vNi g. Without loss of generality, we
may assume that vik and vj

k correspond to each others for every
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1rkrN. Using the shape index function Eshape
i, a feature vector ci

can be computed for each subject:

ci ¼ ðci1; ci2;…; cij;…; ciNÞ ð8Þ

where cij ¼ EishapeðvjiÞ. Combining all feature vectors, we obtain a
feature matrix C, which can be used to study the geometric dif-
ference of the HP deformations and build the classification model:

C ¼

c1
⋮
ci
⋮

cmþn

0
BBBBBB@

1
CCCCCCA

¼

c11 c12 … c1j … c1N
⋮ ⋮ ⋮ ⋮
ci1 ci2 … cij … ciN
⋮ ⋮ ⋮ ⋮

cmþn;1 cmþn;2 … cmþn;j … cmþn;N

0
BBBBBB@

1
CCCCCCA

ð9Þ

Without loss of generality, we may assume that the firstm rows
of C are the feature vectors of the HP surfaces from the normal
control group. The last n rows are the feature vectors of the HP
surfaces from the AD group. Each column of C captures the degrees
of distortions of the HP deformations at a particular (corre-
sponding) vertex of all subjects. Since AD is believed to be related
to the shape changes of the HP, the feature matrix provides full
information of the shape deformation of the HP and hence can be
used to develop a classification model.
3.3. Extraction of statistically significant regions

The feature matrix C gives full information about the shape
deformation at every vertices of the HPs. In real situation, AD may
have effect only on some particular regions or positions of the HP.
Utilizing the full information of the deformation at every vertices to
build the statistical model may hinder the classification accuracy. To
solve this issue, we propose to extract significant regions and analyze
their shape deformations to enhance the classification accuracy.

More specifically, we proceed to look for a set of vertices
fvj1i ;…; vjk

i ;…; vjl
i g, whose shape deformations give the most important

information for the classification of the HPs. Each column j of C captures
the degree of distortions of the HP deformation at a particular vertex. To
determine the importance of the shape deformation information at this
vertex, we quantitatively measure its statistical significance. We per-
form a t-test on each column to get a p-value pj at the vertex j. pj reports
the probability of the geometric difference in the deformation at vertex
j occurring from the same distribution by chance. The smaller the pj is,
the higher the probability that the shape deformation at vertex j can
distinguish between the normal and AD groups.

In order to stabilize and advance the discriminative power of
the selected feature points, we make use of the famous bagging
predictors [51]. We compute Pij, the p-value computed at vertex j,
using all the mþn subjects from the database except for the ith

one. Then we assign

~pj ¼ min
i ¼ 1;…;mþn

Pij ð10Þ

to the vertex j. Hence, we obtain a p-map ~p : ~S-½0;1�, where ~S is a
template mesh having the same number of vertices and con-
nectivity as the HP dataset, such that ~pðvjÞ ¼ ~pj.

From the p-map ~p, the statistically significant regions can be
extracted:

Ω≔ ⋃
jA Isig

f ~v jgD ~S; ð11Þ
where ~v j is the jth vertex of the surface mesh ~S and the index set
Isig is defined as:

Isig ¼ fj1; j2;…; jl : ~pjk rpcut for 1rkr lg: ð12Þ

Here, pcut is some constant threshold. In other words, we extract
all vertices having a p-value less than or equal to pcut as statisti-
cally significant regions for our investigation.

3.4. Extraction of discriminative feature vectors

Once the statistically significant region Ω is extracted, the
shape deformations at statistically significant vertices can be
analyzed and the classification model can be built. The dis-
criminative feature vector ~c i can be computed for each subject i as
follows:

~ci ¼ ðcij1 ;…; cijk ;…; cijl Þ: ð13Þ
Combining discriminative feature vectors of all subjects toge-

ther gives the discriminative feature matrix ~C defined as:

~C ¼

c1j1 c1j2 … c1jk … c1jl
⋮ ⋮ ⋮ ⋮
cij1 cij2 … cijk … cijl
⋮ ⋮ ⋮ ⋮

cmþn;j1 cmþn;j2 … cmþn;jk … cmþn;jl

0
BBBBBB@

1
CCCCCCA

ð14Þ

The discriminative feature matrix captures distortions of HP
deformations at vertices which provide the most significant
information to classify HP surfaces into normal and AD groups. The
mean discriminative feature vectors of the normal group can also
be constructed:

~cNCmean ¼
Xm
i ¼ 1

1
m
~c i ð15Þ

3.5. Building the classification model

The discriminative feature vectors can be used to build a clas-
sification machine. In this work, both for simplicity and efficiency,
we use a simple L2 classification model, which is based on the
mean discriminative feature vector ~cNCmean of the NC group. For each
subject i, we compute the distance of ~ci from ~cNCmean to get:

di ¼ J ~c i� ~cNCmean J2: ð16Þ
We make the assumption that the deformation patterns of the

HPs in the normal group are similar to each others. Thus, di is
assumed to be small if subject i is in the NC group. We proceed to
search for a parameter δ to classify the HP surfaces into either NC
or AD groups. More specifically, we conclude that the HP is from
the NC group if the distance of its discriminative feature vector
from ~cNCmean is less than δ. Otherwise, we conclude that the HP
comes from the AD group.

Our goal is to search for the optimal classification parameter
δopt that yields the best classification accuracy. We first rearrange
the distances di's in an ascending order:

di1 rdi2 r⋯rdimþ n : ð17Þ
For each δ, we can obtain the true positive set (TPS(δ)) and true

negative set (TNS(δ)) with respect to δ as follows:

TPSðδÞ ¼ fS0i : S0i is classified as a normal subject and 1r irmg;
TNSðδÞ ¼ fS0i : S0i is classified as an AD subject andm

þ1r irmþng: ð18Þ
The true positive rate (TPR(δ)) and the true negative rate (TNR

(δ)) with respect to δ can be defined as follows:
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TPRðδÞ ¼ jTPSðδÞj=m; TNRðδÞ ¼ jTNSðδÞj=n ð19Þ
The optimal classification parameter δopt can then be computed

by solving the following optimization problem:

δopt ¼ argmax
δ

jTPSðδÞj þ jTNSðδÞj
mþn

� �
ð20Þ

In practice, the number of HP surfaces are finite. Therefore, the
optimization problem (20) above is optimized over a finite set.
More specifically, we define:

P ¼ ~δ : ~δ ¼ dij þdijþ 1

2
for some j such that dij odijþ 1

� �
: ð21Þ

Then, P is a finite set and the optimization problem (20) can be
formulated as:

~δ
opt ¼ argmax

~δ AP

jTPSð ~δÞj þ jTNSð ~δÞj
mþn

( )
: ð22Þ

It becomes an optimization problem over a finite set, which can be
solved by maximizing amongst all possible choices.

Once the optimal classification parameter is computed, the
classification model can be built. Suppose a new input HP surface S
is given, S will be registered to the template surface ~S . The dis-
criminative feature vector ~cS of S will be constructed. The distance
between ~cS and ~cNCmean will then be computed: dS ¼ J ~cS� ~cNCmean J2. If
dSr ~δ

opt
, we conclude that S belongs to the NC group. Otherwise,

we conclude that S belongs to the AD group.
Apart from the simple L2 classification, we can also use other

clustering methods, like the K-mean clustering and the Support
Vector Machine (SVM) clustering.

If we turn to use K-mean clustering, then after applying p-value
test to select feature points, we split those NC HP into KNC sub-groups
and those AD HP into KAD sub-groups, by packing those with similar
shape index on the statistically significant region together. A mean
discriminative feature vectors of each sub-group is built. Whenever a
new subject is imported, we compute its distance from all the KNCþ
KAD sub-groups similarly as (16). If the smallest distance is recorded to
any sub-group of NC HP models, we classify the new subject as NC.
Otherwise we classify it as AD.

This K-mean clustering is more advanced than the simple L2

classification since we have in total KNCþKAD sub-groups instead
of just one for each class. However, we should note that firstly, the
number KNC and KAD must be selected carefully. Too few sub-
groups may have only limited help to boost up the classification
accuracy of our algorithm, while too many sub-groups will induce
over-determining effect and hence causing inaccuracy. Also, the
proportion between the two class of data is important. Unbalanced
proportion of data will significantly induce bias to our algorithm
and hence limit its performance.

On the other hand, we can also choose to use the famous SVM
clustering to replace the simple L2 classification above. In SVM
clustering, we compute a hyperplane which best separates the NC
HPs and the AD HPs into zones concerning the shape index Eshape
on the region Ω. When a new subject is imported, we compute
Eshape on this subject and see which zone, NC or AD, it belongs to,
so as to classify it.

3.6. Overall algorithm

The overall algorithm can be described as follows.

Algorithm 1. Quasi-conformal statistical shape analysis.
Inp
ut: Training data: NC HP fSti g1r irm;tA f0;1g; AD HP

fSti gmþ1r irmþn;tA f0;1g. Input surface S to be classified.
tput: Classification value
Ou

CðSÞ ¼ 0 if S is NC
1 if S is AD

�

p 1: Compute the deformations f i : S
0
i -S1i and the pairwise

registrations gij : S
0
i -S0j .

p 2: For each Si, compute Eshape
i that measures the distortion

of the shape deformation of Si0.
p 3: Extract the statistical significant region Ω.
p 4: Compute the discriminative feature vector ~ci for each
Si
0 and the mean discriminative feature vector of the normal

control group ~cNCmean.

p 5: Compute di ¼ J ~ci� ~cNCmean J2 for 1r irnþm. Compute
the optimal classification parameter δopt.
p 6: Compute the discriminative feature vector ~cS of S.

Compute dS ¼ J ~cS� ~cNCmean J2. If dSrδopt , set CðSÞ ¼ 0: If

dS4δopt , set CðSÞ ¼ 1.
Remark. Step 5 and Step 6 can be replaced by other classification
models such as the K-mean clustering or the Support Vector Machine
(SVM) clustering. In this work, we use a simple L2 thresholding clas-
sification model, which can be computed efficiently. We have found
that even with such a simple model, the classification accuracy is
reasonably good. We have also compared this simple classification
model with the K-mean clustering and the SVM clustering in Section 5.
4. Experiments

We are given a data set consisting of 99 NC HP models and 41
AD HP models from the ADNI database. Segmentation of the HP
surfaces is based on a semi-automatic multi-atlas segmentation
method (see [52,53]), and the whole segmentation process is
accomplished and validated by neo-scientists.

In this section, our first focus is on analyzing the accuracy of
our proposed model via different experiments. We employ the
leave-one-out cross validation, with successful classification of an
NC (AD, resp.) model being counted as true positive (true negative,
resp.). The importance of each component in the shape index will
be verified. Parameters, including α, β and γ, the weighting func-
tion of shape index, and pcut, the threshold cutting in the feature
selection, will be varied to analyze the sensitivity of our algorithm
to them. Also, variation of the database will be conducted to check
the reliance of our model to the given database.

Our model does not only contribute to the numerical classifi-
cation of NC/AD HPs but visualization of the shape index is also
possible. We plot the template mesh ~S with colors indicating the
p-value of the shape index at each vertex. Therefore, the geometric
region being included in Ω in the feature selection process can be
better understood for further medical and statistical research.

Among all the experiments, we take the following setup:

α¼ 3:05; β¼ 0:35; γ ¼ 1; pcut ¼ 0:03 ð23Þ

4.1. Elements of the shape index

The shape index is constructed by three terms, namely, com-
plex dilation, mean curvature and Gaussian curvature. By setting
their corresponding weighting parameters to be 0, respectively,
the importance of each element can be studied. The result is
reported in Table 1.



Table 1
Importance of each energy element (0 for excluding the corresponding element).

α β γ TPR TNR Total accuracy

0 0.35 1.00 0.8687 0.7805 0.8429
3.05 0 1.00 0.8990 0.7805 0.8643
3.05 0.35 0 0.8586 0.5610 0.7714
3.05 0.35 1.00 0.9091 0.8049 0.8786

Table 2
Classification results with different α.

α(mean curvature) β(Gaussian curvature) TPR TNR Total accuracy

0.00 0.8687 0.7805 0.8429
0.35 0.8687 0.7805 0.8429
0.80 0.8485 0.7561 0.8214
1.25 0.8586 0.7561 0.8286
1.70 0.35 0.8384 0.8049 0.8286
2.15 0.8586 0.7561 0.8286
2.60 0.8990 0.8049 0.8714
3.05 0.9091 0.8049 0.8786
3.50 0.8687 0.7805 0.8429

Table 3
Classification results with different β.

α(mean curvature) β(Gaussian curvature) TPR TNR Total accuracy

0.00 0.8990 0.7805 0.8643
0.35 0.9091 0.8049 0.8786
0.80 0.8990 0.8049 0.8714
1.25 0.8889 0.8049 0.8643

3.05 1.70 0.8889 0.8049 0.8643
2.15 0.8788 0.8049 0.8571
2.60 0.8889 0.8049 0.8643
3.05 0.8889 0.8049 0.8643
3.50 0.8687 0.7805 0.8429
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An important observation is that among all three elements, the
complex dilation plays the most important role in the classification
model, as without it the accuracy drops very significantly (10%).
This can be explained by the ability of the complex dilation term to
capture local and non-conformal shape deformation, inferring it
with a bounded real number μ so that simple comparison can be
conducted directly. On the other hand, the mean curvature and the
Gaussian curvature are less essential but still contributes to a
higher accuracy.

Our next goal is to investigate the sensitivity of our algorithm
to the weighting of the elements of the shape index. From the
previous experiment, the complex dilation is undoubtedly the
most important term in the shape index. However, the sensitivity
of our model to the weighting of the curvature terms is still
unclear. Hence, an investigation will be conducted. Under nor-
malization of the shape index, we can always assume γ ¼ 1 if the
complex dilation is included and γ ¼ 0 if not. We will vary α and β,
respectively, so that performance of our model under different
parameters setting can be compared. The result is reported in
Tables 2 and 3. The graph of TA (total classification accuracy)
versus alpha and versus beta is plotted in Fig. 2.

From the results, by a slight variation of α, the performance of
our model is fluctuated to give 84–91% TPR, 76–80% TNR, and 82–
88% overall accuracy. And by varying β slightly, the performance
varies between 88–91% TPR, 78–80% TNR, and 86–88% overall
accuracy. Therefore, our model is more sensitive to the variation of
α than that of β.

4.2. Threshold cutting in feature selection

In our model, feature selection is applied for data filtering,
highlighting only the significant region for further statistical ana-
lysis. A vertex on HPs is selected if the p-value of the shape index
at that vertex is less than pcut. Small pcut infers a strict criterion
that only a few vertices are included inΩ. On the contrary, if pcut is
large, a lot of vertices is included inΩ but too many feature points
may weaken the significance of those critical vertices. In the fol-
lowing experiment, pcut will be varied and the performance of our
model will be compared to seek for a better trade-off for pcut. The
result is recorded in Table 4 and Fig. 3.

The result suggests that setting pcut to be 0.03 is the best trade-
off, for if pcuto0:03, too few vertices are included such that the
performance of our model is hindered, and if pcut40:03, too many
vertices are selected and this downgrades the performance of our
model. In particular, if we do not perform feature selection (i.e.
select every vertex as feature points), the model reports TPR¼95%,
TNR¼44%, and total accuracy¼80%. Therefore, applying a suitable
feature selection is essential to maintain the discriminative power
of the proposed shape index.
4.3. Variation of database

Sensitivity of our model to variations in the database should
also be analyzed, so that the reliance of our algorithm to the given
database can be checked. Since we are given just a few AD HP
models, we will pick randomly, from those NC HP models, 10–90
models with step size 10 each time, and compare the performance
of our algorithm using a different database. The total number of HP
models involved varies from 51 to 140. In each setting, parameters
of the shape index are trained to optimize the performance and
the threshold cutting pcut is set to be 0.03 constantly. The result is
recorded in Table 5 and Fig. 4.

When the total number of HPs involved is low, our model
shows itself to be very accurate. However, this may be just a
consequence of unstable fluctuation when a machine learning
algorithm is tested by an extremely small-size database. And when
the total number of HPs involved is beyond 81, our model becomes
stable and achieves 87–88% overall accuracy. This shows that our
model is accurate not only with respect to a specific database.

Another observation is that when the total number of HPs
involved increases, TPR generally increases while TNR generally
decreases. This can be explained by the variation of the proportion
between NC HPs and AD HPs throughout the experiment. When
there are only 10 NC HPs involved, the corresponding ratio is about
1:4. But when the whole database is used, the corresponding ratio
elevates to about 2:1. Besides, TPR is about the same as TNR when
the ratio is about 1:1. Therefore, though the overall accuracy of our
model is stable when a large size database is being used, a
balanced database is better to remain our model unbiased.
4.4. Visualization of the statistical significant region

To facilitate further medical and statistical analyses, our model is
made to allow the visualization of the statistically significant region of
the shape index. Under the setting pcut ¼ 0:03, a total of 1600 vertices
out of 6002 vertices are selected as significant features in the feature
selection process. We plot the template mesh ~S with colors indicating
the p-value at the corresponding vertex in Fig. 5.

Fig. 5 (a) and (b) shows a smooth color plot of the p-value at each
vertex from the front view and back view, respectively. Fig. 5(c) and
(d) shows the highlighting (in red) of vertices with p-values less than
0.03 from the front view and back view, respectively.



Fig. 2. Plot of TA (total accuracy) versus (a) α and (b) β.

Table 4
Classification results with different pcut.

pcut TPR TNR Total accuracy pcut TPR TNR Total accuracy

0.01 0.8788 0.8049 0.8571 0.11 0.9192 0.5366 0.8071
0.02 0.8586 0.8049 0.8429 0.12 0.9293 0.5122 0.8071
0.03 0.9091 0.8049 0.8786 0.13 0.9293 0.5366 0.8143
0.04 0.8788 0.7805 0.8500 0.14 0.9293 0.5366 0.8143
0.05 0.8788 0.7317 0.8357 0.15 0.9192 0.5366 0.8071
0.06 0.8687 0.6829 0.8143 0.16 0.9192 0.5366 0.8071
0.07 0.8586 0.5610 0.7714 0.17 0.9192 0.5366 0.8071
0.08 0.9192 0.5854 0.8214 0.18 0.9192 0.5366 0.8071
0.09 0.9596 0.5854 0.8500 0.19 0.9394 0.5366 0.8214
0.10 0.9596 0.5854 0.8500 0.20 0.9697 0.5366 0.8429

Fig. 3. Plot of TA versus different pcut.

Table 5
Classification results with different numbers of HP models used.

No. of NC HP No. of AD HP TPR TNR Total accuracy

10 0.8000 1.0000 0.9608
20 0.7500 1.0000 0.9180
30 0.8000 0.9756 0.9014
40 0.8000 0.9268 0.8642
50 41 0.9000 0.8537 0.8791
60 0.9167 0.8283 0.8812
70 0.9143 0.8293 0.8829
80 0.8875 0.8293 0.8678
90 0.9111 0.7805 0.8702
99 0.9091 0.8049 0.8786

Fig. 4. Plot of TA versus different numbers of HP models used.

H.L. Chan et al. / Neurocomputing 175 (2016) 177–187 183
5. Evaluation of the model

In this section, we want to further evaluate the performance of
our algorithm. In the previous section, the tuning scheme of those
parameters is to optimize the performance of our model in the
leave-one-out cross validation. However, such scheme may cause
overfitting of parameters to the given database. That means, the
accuracy of our algorithm may decrease if another database is
being used while those parameters are kept unchanged. To check
if overfitting happens, we perform the following tests.

5.1. A reliability test

Recall that we are given altogether 140 subjects in our data-
base. Now we perform 140 experiments, and in the i-th experi-
ment, we remove the i-th subject out of our database, and use the
remaining 139 subjects as database to do a leave-one-out test. So
ultimately we would have done 140 leave-one-out tests. And
throughout all the tests, those parameters are set constantly as in
(23). In this way, the setting of the parameters is not optimal to
any of the 140 different database. We compute the statistical
distribution of these 140 classification accuracies. Fig. 6 shows the
histogram of the 140 values. The mean, median and standard
deviation are 87.20%, 87.77% and 0.81% respectively. And the 95%
confidence interval is ð87:07%;87:34%Þ.

The result suggests that our algorithm is very stable to reach a
classification accuracy over 87%, even though the parameters are
not tuned to fit the database in the best way.

5.2. Separation of training data and testing data

Another test is done to further validate the performance of our
algorithm. We randomly pick partial data from our database as
training data, leaving the remaining as testing data. Parameters are
tuned using only the training data, then we perform a leave-one-
out cross validation using only the testing data. Hence, the setting
of those parameters is completely independent of the testing data
set. The result is recorded in Table 6.

The result shows that even if we separate the database into one
training set and one testing set, the accuracy of our model still
remains over 86%. Comparing with the 87.86% accuracy we got in



Fig. 5. Color-map of HP surface indicating p-values at each vertex. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 6. Histogram of the classification accuracy of our algorithm under the optimal
parameters. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Table 6
Classification results with different numbers of HP models used as training data
(NTNC¼No. of training NC HP, NTAD¼No. of training AD HP).

NTNC NTAD α β γ pcut Total accuracy

15 15 0.7267 0.0015 0.8727
20 20 8.9796 8.9796 0.8600
25 25 10.2739 7.4650 1 0.03 0.8889
30 30 6.0064 1.9514 0.9250

Table 7
Classification results with different numbers of HP models used (K-mean
clustering).

No. of NC HP No. of AD HP TPR TNR Total accuracy

10 0.9000 1.0000 0.9804
20 0.8000 1.0000 0.9344
30 0.7667 0.9756 0.8873
40 0.8750 0.8537 0.8642
50 41 0.9200 0.8537 0.8901
60 0.8833 0.8293 0.8614
70 0.9714 0.7805 0.9009
80 0.9750 0.7561 0.9008
90 0.9667 0.6829 0.8779
99 0.8990 0.7073 0.8429
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the previous section, a slight decrease in accuracy is recorded
when the size of training data set is small. This is mainly a con-
sequence of having insufficient training data. And when the
number of data in the training set grows, the accuracy of our
model generally increases. In particular, we even recorded an
accuracy of over 92% in the test. Therefore, we are confident that
the performances of our algorithm throughout all the previous
experiments are reliable, being bias to neither the database setting
nor the parameters setting.
6. Comparison and discussion

In our work, a simple L2 classification model is applied to
classify AD. In this section, we investigate the classification
accuracies when other novel classification methods are used,
namely, 1. K-mean clustering and 2. Support Vector Machine
(SVM) clustering. Also, different approaches to classify Alzheimer's
disease are to be compared with our model.

6.1. Comparison with K-mean clustering and Support Vector
Machine

We modify our algorithm, using the K-mean clustering and
then the Support Vector Machine clustering to replace the L2

distance, respectively, and compare it with our original algorithm.
The accuracies are compared with respect to the variation in the
total number of HPs involved. In particular, when using K-mean
clustering, we set KNC ¼ KAD ¼ 2, respectively. The result is recor-
ded in Tables 7 and 8, and in Figs. 7 and 8.

From the result, the accuracy using the K-mean clustering
method is comparable to that using the L2 classification model.
And when the database is more balanced, the overall performance
of the modified algorithm is comparable to that of the original
model. But when the whole database is used, using the L2 classi-
fication model is better than using the K-mean clustering method.
Nevertheless, this motivates us to try replacing the L2 classification
method by the K-mean clustering method when a large database
is available.

For SVM clustering, we see that it generally helps our algorithm
reach significantly higher overall accuracy. However, when the
ratio of NC HPs to AD HPs is high, TNR drops sharply to even lower
than 60%. This can be explained by the sensitivity of SVM clus-
tering to the balance of the data set. Therefore, we are motivated
by the result to replace the simple L2 classification method by the
more advanced SVM clustering method, provided once again we
have a larger and balanced data size.



Table 8
Classification results with different numbers of HP models used (SVM clustering).

No. of NC HP No. of AD HP TPR TNR Total accuracy

10 0.9000 1.0000 0.9804
20 0.7500 1.0000 0.9180
30 0.9000 0.9756 0.9437
40 1.0000 0.9024 0.9506
50 41 0.9600 0.8049 0.8901
60 0.9333 0.8293 0.8911
70 0.9571 0.7561 0.8829
80 0.9750 0.7073 0.8843
90 0.9444 0.6829 0.8626
99 0.9798 0.5854 0.8642

Fig. 7. Plots of TA versus different numbers of HP models using L2 classification and
K-mean clustering. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 8. Plots of TA versus different numbers of HP models using L2 classification and
SVM clustering. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Table 9
Comparison of classification accuracies between different models under leave-one-
out cross validation on the whole given database (Parameters for each model, if
any, are set according to the suggestion from the corresponding paper).

Method Total accuracy

Volume-based [14] 0.7071
Volume-based [15] 0.7643
SPHARM-based [20] 0.8029
SPHARM-based [19] 0.8643
Our method 0.8786
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6.2. Comparison with other surface-based models

In our work, we propose to study the complex dilations sup-
plied with curvature deformations on the hippocampus surface to
classify the Alzheimer's disease. Experiments suggest that, with
altogether 140 HP models, our model is confident to classify AD
HPs from NC HPs with over 87% accuracy. In advance, by using 60
HP models as training data and the remaining 80 HP models as
testing data, a leave-one-out cross validation on the testing data
shows our approach being possible to reach over 92% accuracy.

In this section, we compare the accuracy of our model with that
of other existing models. Since we are given the surface of hip-
pocampus only, we will focus on other hippocampal-surface-based
models to perform the comparison. And to promote fairness, for
each model we use the leave-one-out cross validation on our given
database.

Global shape analysis on HPs is a common approach to study
AD. Some recent methods include, for example, in [14], volumes
of the hippocampus are normalized and then the mean of the
volumes for the NC group and the AD group are computed. A new
subject is classified based on the difference between its volume of
the mean volume of each group. And in [15], the authors propose a
fully automatic method for hippocampus segmentation and
volume-based AD classification algorithm. We apply these two
algorithms on our database under the leave-one-out cross vali-
dation and the result is reported in Table 9.

The SPHARM approach is also a famous branch, in which the
shape change of each HP is described by a series of spherical
harmonics. Analysis is done on the coefficients of the spherical
harmonics to capture the details of the shape deformation process.
In [20], spherical conformal parametrization is used to compute
the spherical harmonics coefficients, which are then summed up
as shape invariants for AD classification. In [19], spherical har-
monics coefficients are used, with the aid of bagging predictors for
feature selection, to classify AD. We apply these two algorithms on
our database under the leave-one-out cross validation and the
result is reported in Table 9.

For global shape analysis based algorithms, results show that
the accuracies of them are around 70–77%. In addition, in [18],
authors tested two models using volume-based approach to clas-
sify AD. Although the tests are performed on a different database
(which contain 162 NC subjects and 137 AD subjects from ADNI
database), results show that the two methods report 72–74%
overall accuracy, which is significantly lower than that of our
algorithm. Comparing all these models with our model, which
achieves beyond 87% overall accuracy, it is persuasive that our
model is better than those models. This can be explained as the
difference between global measurements (volume) and local
measurements (quasi-conformality, curvature) on HPs. More spe-
cifically, the locally defined quasi-conformality is able to capture
fine details about the HP deformation which globally defined
measurements (e.g. volumes) may not capture. It is believed that
this is the major factor that contributes to the difference in the
classification accuracies. As for the spherical harmonics approach,
information may be lost when selecting a finite number of ele-
ments out of the spherical harmonic series, whereas our approach
uses quasi-conformality and curvature to capture local shape
deformations exactly. Therefore, our method generally performs
better than those SPHARM-based methods.

6.3. Discussion on other non-surface-based models

The study of AD classification is not limited to HP analysis.
There are models that concern not only the hippocampus but also
other features such as cortical thickness, probability of different
tissue classes in a given voxel, or even the volumetric whole brain
data are used to classify AD. For example, [18] tested 4 categories
of voxel-based approach and they reported 71–88% overall accu-
racy. Besides, [18] also tested 3 categories of cortical-thickness-
based approach and they turned out to have 83–85% overall
accuracy. On the other hand, based on multiple atlases that cap-
ture information of volumetric brain changes related to AD, [38]
suggested a criterion and a model to select the best atlases to
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classify AD and this method reached 91% accuracy with 128 NC
data and 97 AD data. Although we cannot perform a direct com-
parison between these models with ours due to the lack of non-
hippocampal-surface information, our model, which achieves over
87% accuracy in a leave-one-out test using the given full data set
and got over 92% accuracy under different setting of the data set, is
reliable to give a fair accuracy compared to these models.
7. Conclusion and future work

In this paper, we proposed a quasi-conformal based statistical
shape analysis model on hippocampal surfaces to study Alzheimer's
disease. Given a set of HP surfaces as training data, our algorithm
computes a shape index measuring local regional geometric chan-
ges, including quasi-conformality and curvature changes, on each
vertex of the surface. Based on the shape index, an automatic
machine learning algorithm is then built to classify any newly
imported HP surface into either NC or AD group. Experimental
results show that, in particular, the quasi-conformality term plays a
crucial role in the classification accuracy of our proposed model.
According to the results, the maximal total classification accuracy of
our algorithm is 87.86% in a leave-one-out cross validation using the
whole given database. In addition, the results show that there is a
possibility to further boost up the classification accuracy of our
algorithm using more advanced clustering methods, provided that
the database is balanced and large enough.

There are several directions which are still under investigation.
Firstly, our current algorithm fixes the parameters, such as α and β
in defining Eshape

i and pcut. In the future, we aim to develop an
algorithm to simultaneously search for the optimal parameters in
our classification model. Secondly, the current classification algo-
rithm utilizes a simple L2 threshold clustering model. While this
simple model together with the quasi-conformality gives reason-
ably satisfactory classification accuracy, a more advanced classifi-
cation model may further boost up the classification accuracy.
Other than the K-mean clustering and the SVM clustering, another
approach may be the following. Instead of studying the L2 distance
of the shape index between the input subject and the template
mean subject, the diffeomorphic deformation from the shape
index of the input subject to that of the template mean subject can
be studied, and hence a more robust and accurate shape-based
geometric distance classification model may be built, based on the
analysis on the deformation. Hence, our future works also include
the investigation of more classification models and combining
them into our current model to improve the performance of our
method. Finally, we will examine our method on a larger and more
balanced dataset, and consider including more sub-cortical brain
structures as inputs.
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