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QCMC: QUASI-CONFORMAL PARAMETERIZATIONS FOR
MULTIPLY-CONNECTED DOMAINS

KIN TAT HO AND LOK MING LUI

Abstract. This paper presents a method to compute the quasi-conformal parameterization
(QCMCQ) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map
from a multiply-connected domain S onto a punctured disk Dg associated with a given Beltrami
differential. The Beltrami differential, which measures the conformality distortion, is a complex-
valued function p : S — C with supremum norm strictly less than 1. Every Beltrami differential
gives a conformal structure of S. Hence, the conformal module of Dg, which are the radii and
centers of the inner circles, can be fully determined by u, up to a Md&bius transformation. In this
paper, we propose an iterative algorithm to simultaneously search for the conformal module and the
optimal quasi-conformal parameterization. The key idea is to minimize the Beltrami energy subject
to the boundary constraints. The optimal solution is our desired quasi-conformal parameterization
onto a punctured disk. The parameterization of the multiply-connected domain simplifies numerical
computations and has important applications in various fields, such as in computer graphics and
vision. Experiments have been carried out on synthetic data together with real multiply-connected
Riemann surfaces. Results show that our proposed method can efficiently compute quasi-conformal
parameterizations of multiply-connected domains and outperforms other state-of-the-art algorithms.
Applications of the proposed parameterization technique have also been explored.

Key words. Quasi-conformal, parameterization, multiply-connected, Beltrami differential, con-
formal module, Beltrami energy

1. Introduction. Parameterization refers to the process of mapping a compli-
cated domain one-to-one and onto a simple canonical domain. For example, according
to the Riemann mapping theorem, a simply-connected open surface can be confor-
mally mapped onto the unit disk . The geometry of the canonical domain is usu-
ally much simpler than its original domain. Hence, by parameterizing a complicated
domain onto its simple parameter domain, a lot of numerical computations can be
simplified.

Parameterizations have been extensively studied and various parameterization al-
gorithms have been developed. In particular, conformal parameterizations have been
widely used, since it preserves the local geometry well. For example, in computer
graphics, conformal parameterizations of 3D surfaces onto 2D images have been ap-
plied for texture mapping [2]. While in medical imaging, conformal parameterizations
have been used for obtaining surface registration between various anatomical struc-
tures, such as the brain cortical surfaces [9, [10] T6]. Conformal parameterizations have
also been applied to solve PDEs on complicated 2D domains or surfaces [30][35][36].

In case of extra constraints have to be enforced, obtaining conformal surface
parameterizations may not be feasible. In such situation, quasi-conformal param-
eterizations, which allow bounded amount of conformality distortions, have to be
considered. The conformality distortion can be measured by Beltrami differential.
Quasi-conformal parameterization of a complicated domain onto a simple parameter
domain is useful and have found important applications in various fields. For example,
in computer graphics, constrained texture mapping that matches feature landmarks
are quasi-conformal parameterizations [25]. Besides, by parameterizing two surfaces
quasi-conformally onto simple parameter domains in R?, quasi-conformal map be-
tween two Riemann surfaces with a given Beltrami differential can be easily computed.
Quasi-conformal parameterization can also simplify the process of solving the elliptic
partial differential equations (PDEs) on a complicated surface. Elliptic PDEs arise
in many imaging problems, such as in surface registration. Through quasi-conformal
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parameterization, the elliptic PDE on a complicated domain can be formulated into
a simpler PDE on the simple parameter domain. For instance, the elliptic PDE
V - (AVf) = g on a multiply-connected surface S with certain boundary conditions
can be converted to a simpler PDE: Af o ¢ = go ¢ on a circle domain, where ¢
is the quasi-conformal parameterization of S whose Beltrami differential is given by
A (SPD matrix). The simpler PDE defined on a simpler parameter domain can be
solved much easier. Other applications of quasi-conformal parameterizations include
remeshing, grid generation, texture mapping, spline fitting and so on. Because of
its wide applications, various algorithms for quasi-conformal parameterizations have
been proposed recently [32], B3], 15}, [18].

Most parameterization algorithms deal with domains or surfaces with simple
topologies, such as simply-connected open surfaces. Parameterizing domains with
complicated topologies is generally challenging. In this work, our main focus is to
compute the quasi-conformal parameterization (QCMC) of the multiply-connected
domain onto the punctured disk (a unit disk with several inner disks removed). Ac-
cording to Quasi-conformal Teichmiiller theories, every quasi-conformal map is asso-
ciated with a Beltrami differential, which is a complex-valued function defined on the
source domain with supremum norm strictly less than 1. The Beltrami differential
measures the conformality distortion. Given a Beltrami differential x4, a multiply-
connected domain can be parameterized quasi-conformally onto a punctured disk.
The inner radii and centers of the punctured disk depend on the Beltrami differential.
We propose an iterative algorithm to simultaneously look for the conformal mod-
ule and the quasi-conformal parameterization of a multiply-connected 2D domain or
surface. The key idea is to minimize the Beltrami energy subject to boundary con-
straints. By incorporating the conformal module into the energy functional of the
optimization problem, the quasi-conformal map together with the conformal module
can be simultaneously optimized. In particular, when p is set to be zero, a least square
conformal map (LSCM) from a multiply-connected domain to a punctured disk can
be obtained. Experiments have been carried out on synthetic data together with
real multiply-connected Riemann surfaces. Results show that our proposed method
can efficiently compute quasi-conformal map associated to a given Beltrami differen-
tial and outperforms other state-of-the-art algorithms. Applications of the proposed
parameterization technique have also been explored.

The rest of the paper is organized as follows. In Section [2 we describe some
previous works closely related to this paper. In Section [3] we describe some basic
mathematical concepts. Our proposed model is explained in details in Section [4]
The numerical implementation details will be described in Section[5] In Section [6] we
show some experimental results of the proposed method. Applications of the proposed
parameterization technique will be explored in Section [} The paper is concluded in
Section

2. Related works. Parameterization has been widely studied and different pa-
rameterization algorihtms have been developed. The goal is to map a 2D complicated
domain or 3D surface onto a simple parameter domain, such as the unit sphere or
2D rectangle. In general, 3D surfaces are not isometric to the simple parameter
domains. As a result, parameterization usually causes distortion. Tannenbaum et
al. [I3] proposed to obtain a close-to-isomtric parameterization, called the IsoMap,
which minimizes geodesic distance distortion between pairs of vertices on the mesh.
Eck et al. [3] propose the discrete harmonic map for mesh parameterization, which
approximates the continuous harmonic map by minimizing a metric dispersion crite-
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rion. Dominitz et al. [I] proposed a parameterization, which is as area-preserving as
possible, for texture mapping via optimal mass transportation. Graph embedding of
a surface mesh has also been studied by Tutte [4]. The parameterization technique,
which is now called the Tutte’s embedding, was introduced. The bijectivity of the
parameterization is mathematically guaranteed. Floater [B] improved the quality of
the parameterization by introducing specific weights, in terms of area deformations
and conformality.

Besides, conformal parameterization has been extensively studied [6] 8, @, 10} 1T
12] 26], 27, 28, 20]. Levy et al. [2] proposed to compute the least square confomal
parameterization through an optimiziation approach, which is based on the least
square approximation of the Cauchy-Riemann equations. Hurdal et al. [I2] proposed
to compute the conformal parameterizations using circle packing and applied it to
register human brains. Porter [26] proposed to compute the conformal maps of simply-
connected planar domains by the interpolating polynomial method. Gu et al. [9] [10]
1] proposed to compute the conformal parameterizations of Riemann surfaces for
the purpose of registration using harmonic energy minimization and holomorphic 1-
forms. Later, the curvature flow method to compute conformal parameterizations
of high-genus surfaces onto their universal covering spaces was also proposed, which
deforms the Riemmannian metric to the uniformization metric [22} 23, 24]. Curvature
flow method can also be used to parameterize multiply-connected domains onto the
punctured disks [29] B1]. Hale et al. [27] proposed to compute conformal maps to
multiply-slit domains by using a Schwarz-Christoffel formulation. DeLillo et al. [2§]
proposed a numerical method to compute the Schwarz-Christoffel transformation for
multiply-connected domains. Crowdy [37] proposed a formula for the generalized
Schwarz-Christofeel conformal mapping from a bounded multiply-connected circular
domain to an unbounded multiply-connected polygonal domain. Conformal maps
have been widely used since it preserves the local geometry well.

Sometimes, when further constraints are enforced, exact conformal parameteri-
zations may not be achievable. In this case, quasi-conformal parameterizations have
to be considered. Recently, various algorithms for quasi-conformal parameterizations
have been developed. For example, Mastin et al. [32] proposed a finite difference
scheme for constructing quasi-conformal mappings for arbitrary simply and doubly-
connected region of the plane onto a rectangle. In [33], Daripa proposed a numerical
construction of quasi-conformal mappings in the plane by solving the Beltrami equa-
tion. This method was further extended to compute the quasi-conformal map of an
arbitrary doubly connected domain with smooth boundaries onto an annulus [34]. All
of these methods deal with simple domains in the complex plane. Recently, surface
quasi-conformal maps have also been studied. Lui et al. [I6] proposed to compute
quasi-conformal registration between hippocampal surfaces which matches geometric
quantities (such as curvatures) as much as possible. A method called the Beltrami
holomorphic flow was used to obtain the optimal Beltrami coefficient associated to
the registration [15 [14, [19]. Wei et al. [21] also proposed to compute quasi-conformal
mapping for feature matching face registration. The Beltrami coefficient associated
to a landmark points matching parameterization was approximated. However, either
exact landmark matching or the bijectivity of the mapping cannot be guaranteed,
especially when very large deformations occur. In order to compute quasi-conformal
mapping from the Beltrami coefficients effectively, Quasi-Yamabe method was in-
troduced, which applied the curvature flow method to compute the quasi-conformal
mapping [18]. The algorithm can deal with surfaces of general topologies. Later, ex-
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Fic. 3.1. The figure illustrates how the conformality distortion can be measured by the Beltrami
coefficient.

tremal quasi-conformal mappings, which minimize conformality distortion has been
proposed. Lui et al. [25] proposed to compute the unique Teichmiiller extremal map
between simply-connected Riemann surfaces of finite type. The proposed algorithm
was applied for landmark-based surface parameterization.

3. Mathematical background. In this section, we describe briefly some basic
mathematical concepts closely related to this work. For details, we refer the reader
to [1].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N, a map f : M — N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure. A generalization of conformal maps is the quasi-conformal maps, which
are orientation preserving homeomorphisms between Riemann surfaces with bounded
conformality distortion, in the sense that their first order approximations take small
circles to small ellipses of bounded eccentricity [7]. Mathematically, f: C — C is
quasi-conformal provided that it satisfies the Beltrami equation:

of ( )3f
— = plz)=—.
0z "o
for some complex-valued function p satisfying ||u||lc < 1. p is called the Beltrami
coefficient, which is a measure of non-conformality. It measures how far the map at
each point is deviated from a conformal map. In particular, the map f is conformal

around a small neighborhood of p when u(p) = 0. Infinitesimally, around a point p,
f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + f(p)z + f=(p)Z
= f(p) + f=(p)(z + u(p)Z).

(3.1)

(3.2)

Obviously, f is not conformal if and only if u(p) # 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z 4+ p(p)Z, which is postcomposed by a multiplication of
f2(p), which is conformal. All the conformal distortion of S(z) is caused by u(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From u(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
is arg(u(p))/2 with magnifying factor 1 + |u(p)|; The angle of maximal shrinking is
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F1c. 3.2. The figure illustrates how surface quasi-conformal map is defined.

the orthogonal angle (arg(u(p)) — m)/2 with shrinking factor 1 — |u(p)|. Thus, the
Beltrami coefficient p gives us lots of information about the properties of the map
(See Figure 3.1)).

The maximal dilation of f is given by:

_ 1+ [|plles

K= Tl

(3.3)

Suppose f : Q1 — Qs and g : Qs — Q3 are quasi-conformal maps, whose Bel-
trami coeflicients are py and p, respectively. Then, the Beltrami coefficient of the
composition map go f: )y — Qg is given by:

oy +1y(pg o f)
1+ TfW(Ug of)

Hgof = (3.4)

where ry = f./f..

Given a Beltrami coefficient p : C — C with ||u||cc < 1. There is always a
quasiconformal mapping from C onto itself which satisfies the Beltrami equation in
the distribution sense [7].

Quasiconformal mapping between two Riemann surfaces S; and S can also be

defined. Instead of the Beltrami coefficient, the Beltrami differential is used. A

Beltrami differential u(z)j—z on a Riemann surface S is an assignment to each chart

(Uqy, o) of an Lo, complex-valued function p,, defined on local parameter z, such
that

dzo, dzs
Na(za)a = Nﬂ(zﬁ)dzﬁ, (3.5)

on the domain which is also covered by another chart (Ug, ¢). Here, % = %gbag

and dop = ¢ o @' (See Figure .

Given a Beltrami differential ,u(z)g—z on a Riemann surface S, the surface can
always be parameterized quasi-conformally onto a punctured disk with the prescribed
Beltrami differential. The geometry (centers and radii of the inner circles) depends

solely on u(z)%. More precisely,

Theorem 3.1. Suppose S is an open Riemann surface with multiple boundaries.

dz

T, there erist a quasi-conformal parameterization

Given a Beltrami differential u(z)



6 Ho and Lui

f S — Dg with the prescribed Beltrami differential, where Dg is a unit disk with
circular holes (or the punctured disk). Two such kind of parameterizations differ by
a Mébius transform .

In this work, our goal is to develop an effective numerical algorithm to compute
such quasi-conformal parameterization.

4. Proposed method. The problem we address in this paper is to compute
the quasi-conformal parameterization of a multiply-connected domain S with a given
Beltrami differential p.

Without loss of generality, we may assume S to be an open connected domain
in R?2. Thus, we can regard the Beltrami differential ; as the Beltrami coefficient.
More specifically, if S is a multiply-connected surface in R?, we can easily map it
onto an arbitrary 2D domain  using, for instance, the IsoMap [I3], the spectral
conformal map algorithm [20] or the Beltrami holomorphic flow algorithm with free
boundary condition [I5, [I7]. Of course, the parameter domain € has an arbitrary
shape (see Figure . Denote the initial parameterization by ¢ : S — €2, whose
Beltrami differerential is pg. Our goal is to find a quasi-conformal parameterization
f : Q — Dg between the 2D domain 2 and the punctured disk Dg, such that the
composition map has Beltrami differential equals to pu. According to equation ,
f should be a quasi-conformal map with Beltrami coefficient v equals to:

1 _
y- L {MW] . (4.1)
rr L= pig

With this setting, we can now mathematically formulate our problem as follows:
given a multiply-connected domain S and a Beltrami coefficient p : S — C, we look
for a punctured disk :

Ds =D\ | B (c). (4.2)

=1

where B, (¢;) = {z € D : |z — ¢;| < 1}, U/, Bri(c;) € D and N, By, (¢;) = ¢
(0 <r <1and ¢; € D C C), together with a quasi-conformal parameterization
f:S — Dg such that:
of _ of
oz Mo (43)
Let ¥ = (r1,...,7) € R™ and & = (cy,...,c,) € C™. (7,¢) is called the conformal
module of Dg. Solving the above problem and is challenging since both
the conformal module of the target parameter domain and the quasi-conformal map
f are unknown.
In this work, we propose a variational approach to solve the problem. Let 0S5 =
{70515 -+ Yn } Where g is the outermost boundary, 71, ..., ¥, are the inner boundaries.
Equation is equivalent to solving:

of of

f= argminf:SﬂDs{H% - ﬂ&”OO}'

Hence, we can set up our problem as minimizing:

0 0
Eafe) ={ [ 15— il ras), (14
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subject to the constraints that:

(1) fls; (i) = 0By, (¢;) for i =1,2,...,n ,
(2) flro(70) = 0D and

(3) [[()lloo = 1155/ 51l < 1.

The optimal map is called the quasi-conformal parameterization (QCMC) for the
multiply-connected domain. Note that if we set p to be large enough, the optimization
problem gives a good approximation of the quasi-conformal parameterization solving
equation (4.3). In practice, we set p = 2 and it is found that the obtained optimal
map is already a close approximation of the desired quasi-conformal parameteriza-
tion. In this case, the optimal map is a least square quasi-conformal parameterization
(LSQCMC) for S.

Furthermore, constraint (3) guarantees the map f is bijective. This can be ex-
plained by the following theorem.

Theorem 4.1. If f: S; — Sy is a C* map satisfying the constraint (3) , then f
is bijective .

Proof. Suppose f = u 4+ iv under some local coordinates. The Beltrami coef-
ficient py is given by : u(f) = %/g—g, where : % = w and g—}; =
(ua+vy ) +i(vatuy)

2
Also , the Jacobian of f, J is given by:

Jp = ugvy — Uyvy
_ (ug + Uy)2 + (ve + Uy)2 — (ug — Uy)Q — (uy + v;)?
4 (4.5)

6 2
-1 (1l

*|of
0z

*_|of
oz

Since ||u(f)|lo <1, we have |J;| > 0 everywhere , hence bijective . O

The optimization problem is not a standard LP-minimization problem. It
involves both the optimizations of the quasi-conformal map f together with the bound-
ary constraints. In other words, we simultaneously look for the best conformal module
for the boundary constraints and the optimal quasi-conformal map f satisfying the
constraints such that the energy Ep is minimized. Theoretically, there exists a con-
formal module and quasi-conformal map f such that Fg = 0.

In this paper, we propose to solve this optimization problem by an iterative
descent algorithm, which considers both the map f and the conformal module (7, ¢) as
variables, to minimize EFp. We will explain the proposed iterative method in details
in the following subsections.

4.1. Energy minimization with fixed conformal module. In this subsec-
tion, we discuss how we can iteratively adjust the map f to minimize Fp with fixed
conformal module. More specifically, given a punctured disk Dg = D\ U}, B, (i),
we look for an optimal map f : S — Dg that minimizes Eg. To solve this problem,
we propose to iteratively find a sequence of maps from an initial map, which converges
to our desired quasi-conformal parameterization minimizing Ep. Let f” be an initial
quasi-conformal map with Beltrami coefficient ». Our goal is to deform f* to another
map f such that it reduces Eg(f). Let 0f = f — f¥ and let A(u) be the differential
operator defined by A(u) := % — ,u%. Then, the energy functional Eg(f) can be
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reformulated as follows:
Bo() = (61 = [ 1AG3S + Aoy as. (4.6)

Using the above formualtion, we propose to iteratively deform an initial map
g : S — Dg to an optimal quasi-conformal map ¢g* : S — Dg, whose Beltrami
coeflicient is closest to the given p in the LP-sense. The initial map can be chosen as
the harmonic map with boundary pointwise correspondence given by the arc-length
parameterization. Let the Beltrami coefficient of g° be 1. Our goal is to deform ¢°
to g' = g° + d¢°, whose Beltrami coefficient is closer to the target p in the LP-sense.
According to new formulation , it can be achieved by finding a 6¢° that minimizes

Ely(64°) = /5 A(1)8g° + A()g PdS (4.7)

subject to the boundary constraints: g'|,, (v;) = By, (¢;) and g'|,, (7o) = ID.

The boundary constraints can be enforced as follows. In general, points on the
boundary 7; of S are allowed to move along the target boundary v, C dDg (v, =
OBy, (¢;) if i = 1,2,...,n and ) = ID). In other words, we need to restrict the
movement to be the tangential direction of the target boundary component. Let
uy € y; be a point on the boundary component v; of S. We require that the variation
5g° on uy, satisfies the following:

69° (ur) = t1 T (9° (ur)), (4.8)

where T, (¢°(ug)) is the unit tangent vector of v at g°(uy) and t; € R is a variable
measuring the length of §g" at uy, (how far it deforms the map ¢°).

Note that the target boundary component +, is a circle. Suppose 7, is a circle
centered at ¢ with radius r, the equation can be simplified as:

go(uk) — Ck

(4.9)
Tk

5go(uk) = itk

With this setting, our problem becomes solving the optimization problem

subject to the boundary constraint . In practice, we choose p = 2. In this case,

the problem becomes a least square minimization problem. In the discrete case, it is
equivalent to a sparse linear system.

Now, as the boundary point u; moves along the tangential direction, it may leave

the target boundary ~, by a short distance. Thus, we project it back to 7}, by solving:

°(ur) + 6¢°(ur) — |3 (4.10)

g'(uy) = argmin

ze’y,;

Since ~; is simply a circle, this process is just rescaling the distance between ¢°(uy) +
§9°(ug) and ¢y, to 7, as follows:

9° (ur) + 69° (ur) — ci

1
= . + cp. 4.11
97 () = g0 (we) +0g0(un) — ] "E T (4.11)

Note that, according to our setting, we only allow the boundary points to move
a bit along the target boundary. Although g' := ¢° + §¢° reduces the energy E%, it
is unlikely the optimal map that solves the optimization problem (4.7)) and (4.9).
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Therefore, we repeat the procedure. More precisely, suppose g* is obtained at
the k-th iteration. We can obtain a new map g**! := ¢* + §g¥ that reduces El
by minimizing [|A(z)dg" + A(u)g¥|[2 subject to the boundary constraint (4.9). As
a result, we obtain a sequence of maps {g*}22, with Beltrami coefficients {p*}22 ,
which converges to the desired optimal map.

In summary, the iterative scheme for computing the optimal quasi-conformal map

with fixed conformal module of the target parameter domain can be described as
Algorithm [1]

Algorithm 1: Energy minimization for fixed conformal module

Data: triangular mesh of the source domain S, target domain Dg and target
Beltrami coeflicient u.

Result: g* : S; — Dg

. Initialize ¢° to be harmonic.

Calculate the Beltrami coefficient u° of f°.

while ||pn, — ptn—1] > € do

Find 6¢g™~ ' that optimizes 1| subject to the constraint 1)
Set g" = g™t + dgn L.

Gk W N =

4.2. Adjustment of the conformal module. One of the main challenge for
solving the optimization problem is that the boundary constraints is not fixed.
In other words, the geometry of the target parameter domain or the conformal module
can be adjusted to further minimize E’;.

To solve this problem, our strategy is to regard the conformal module as another
variable, and let it vary together with the map during the optimization process. In
other words, we need to incorporate the conformal module into the energy functional
of the optimization problem.

Given a multiply-connected domain S, we first obtain an intial guess of the con-
formal module (r° c%). ¥ = (ro,r1,...,7,)7 and c® = (co, c1, ..., cn)T can be chosen
as follows. For each ~; (i = 0,1,2,...,n), we find a circle approximating ~;. In this
way, we obtain a circle domain (a disk with n inner disks removed). The circle do-
main is then normalized such that the outermost boundary becomes the unit circle.
The initial guess r and c® are then obtained, and the initial guess of the parameter
domain D is obtained. In other words, Dg =D\ U;_, B,o(c}).

Our problem can now be regarded as finding a sequence of punctured disks DiS
and maps ¢°, which iteratively minimizes Eg(g,r,c). To do this, we propose to give
an extra freedom to the variation §g* on the boundary component v, (k = 1,2,...,n).
The main idea is to allow r? and ¢ to vary. More specifically, the translation of the
center from ¢, to ¢}, + Ac} can be considered as all points on 7 being translated by
Aci. Also, the scaling of the radius from 7, to ri + Ari can be regarded as all points
on v, being moved along the radial direction by Ar,i. Therefore, the variation d¢° on
the boundary point ug € v can be formulated as:

Uk — ¢y,

kAT (4.12)
[ = il

0g" (ur) = txToy (9" (ur)) + Acy, +

Note that the target boundary of the outermost boundary is always fixed to be
the unit circle. Thus, the above formulation does not apply to ~q.
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We then minimize the energy functional subject to the boundary constraint
(4.8) and . This new optimization problem involves new variables Ac’ and
Ar®, which are the perturbation of the centers and radii (conformal module) of the
inner disks of Dis. With this setting, we simultaneously optimize the map ¢* and the
conformal module (r?, c?) to optimize E5.

Note that the variation §g° for the interior points is a complex number, which can
be represented by two real scalars (one for the real part and one for the imaginary
part). Besides, the variation §g° for the boundary points must be a scalar multiple of
the tangential direction of the boundary and can be represented by one real scalar.

Denote the representation of 6g by 5~gl. A linear operator K* transforms the repre-
sentation 5~gZ back to d¢*. K* depends on the variables Ar’ and Ac’. Hence, our

problem can be formulated as minimizing the following energy functional over 5~gl:

B(1c'5g) = [ s’ + Aug'| as. (4.13)

Representing dg’ by its representation 5~gl reduces storage requirement. More im-
portantly, it allows us to incorporate the conformal module into the energy functional
of the optimization problem. In practice, we solve by taking p = 2. In other
words, we solve by the least square method.

The overall iteratve scheme is summarized in Algorithm

Algorithm 2: Overall algorithm of QCMC

Data: triangular mesh of source domain .5, target Beltrami coefficient p,
tolerance e.
Result: Quasi-conformal parameterization g* : S — Dg.
1 Initialize Dy to be punctured disk with the same topology of S.
2 Initializa ¢° : 2 — Dg to be the harmonic map.
3 Calculate the Beltrami coefficient u° of ¢°.
4 while ||pn1+1 — pin|| > € do
Calculate tangent vector and outward normal vector at boundary.
Construct constraint matrix K.
Find g™, Ac™ and Ar™ by solving with LP-minimization.
Let g"tt = g" +t- K"3g" (e.g. take t = 0.5).

Update g™t (ug) + % i+ e for all uy, € .

© o N o O

5. Numerical implementation. In this section, we will describe briefly how
the proposed algorithms introduced in Section [4] can be implemented. The major
components of the proposed algorithms are the constrution of A and K™ in the dis-
crete setting. In the following subsection, we will describe how to discretize the two
operators.

In practice, 2D domains or surfaces in R? are usually represented discretely by
triangular meshes. Suppose M is the surface mesh representing the surface S. We
define the set of vertices on M by V = {v;}7 ;. Similarly, we define the set of
triangular faces on M by F' = {T;}7,. Our goal is to look for a quasi-conformal

parameterization f : M — C. We further introduce the following notions.
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—

e U is a 2n x 1 vector. It stores the position of {f(v;)}?,, namely, U =
(Re(f(v1)), Re(f(v2)), - Re(f (vn)), Im(f (v1)), Im(f (v2)), .., Im(f (vn)))" "

e V, isa2nx1 vector. It stores the vector field acting on U at the nt" iteration.

e Ais a 2m x 2m matrix, which is the matrix representation of the differential
operator: A = % — u% .

5.1. Construction of the matrix representation A of A. In practice, we
consider the parameterization f : M — D to be piecewise linear, where D is the
triangulation mesh of a punctured disk. In other words, we regard the restriction of
f on each trianguar face T; as an affine transform. Hence,

Ofi  Ofi_
i = . = 5i-
/ Tz, 0z af 0z 7
Let the vertices of T; be {wy,wq, w3} and vertices of f;(T;) be {z1, 22, z3}. Then, %J;"
and % satisfy the following linear system :
wy, w; 1 % 21
wey Wy 1 a—é = 29
w3 W3 1 51 Z3

The above linear system can be reduce to:

- 9t
We — W1 W2 — W 5)? [ 22—z
w3 —wW; W3 — W 8; zZ3 — 21 ’

Hence,

Ofi _ i \ ! _
<§f.>=<w2 wyp w2 wl) <22 21>.
821 w3 —w; W3z — Wi Z3 — 21
By solving this linear system, we get %]; L and
by Af; = 9 — w(Ty) 2.

Also, (Re(Af1), Re(Afs), ..., Re(Afm), Im(AfL), Im(Afs), ..., Im(Af,))T can be

written as AU, where A € Mo, x2m (R). Hence, the matrix representation A of A can
be obtained.

%2"' . With that, Af; can be constructed

5.2. Construction of the boundary constraint matrix K. Now, we discuss
how to construct the boundary constraint matrix K.

Let I;ne = {41,142, ..., i} be the indices of all interior vertices.

Let Ipgy = {i%, ...,i%} be the indices of all boundary vertices.

Denote the tangent vector of the boundary vertex vgb by t, € C.

Note that 7 + s = n. Under the boundary constraints, the admissible variation
dg can be represented by a vector g € R™"". In particular, the variation on the
interior vertices depends on two scalar variabes (real and imaginary parts of the
vector field). Hence, 2r scalars are required to represent the variation on the interior
vertices. For the boundary vertices, the variation must be a scalar multiple of the
tangential direction and it depends on one scalar variable. Thus, s scalars are required
to represent the variation on the boundary vertices. All together, 2r+s = n+r scalars
are required to represent the admissible variation.
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The boundary constraint matrix K transforms the variation representation 5~g
into the admissible variation dg. The matrix K can be regarded as a 2n x (n + )
sparse matrix, which can be constructed as follow :

For j=1,2,..,r,

K ; = 1
’ 5.1
Knyij = 1 (5.1)
For j=1,2,...,s,
Kip oy i Re(t;) (5.2)
Kn+i;?,r+j - Im(t])

In this way, dg := K 5~g € R?" becomes a vector of size 2n. The first n entries
represent the real part of the variation and the last n entries represent the imaginary
part of the variation.

6. Experimental results. In this section, we test our proposed algorithm to
compute conformal and quasi-conformal parameterizations of synthetic 2D multiply-
connected domains and multiply-connected real human face surfaces. All our experi-
ments are carried out on a desktop with following specification:

Hardware Specification
Processor AMD A8-6600K (3.9GHz x4)
Memory 8GB DDR3-1600
Operating system Window 8 Home Pre. 64bit
Experiment perform Matlab 2013a
GPU assisted computation No

6.1. Synthetic 2D domains. We first examine our algorithm on multiply-
connected 2D domains.

Ezample 1. In this example, we compute the least square conformal parameter-
ization of a 2D triply-connected frog mesh, which is shown in Figure A). The
conformal parameterization is shown in (B). The colormap is given by the norm of
the Beltrami coefficient. The blue color indictates the Beltrami coefficient is close
to 0, meaning that the parameterization is indeed conformal. Using the conformal
parameterization, we map the checkerboard texture and circle packing texture onto
the frog mesh, as shown in (C) and (D). Note that the right angle of the checkerboard
pattern are well-preserved, meaning that the parameterization is angle-preserving.
The circle pattern of the circle packing texture is also preserved. It means that under
the conformal parameterization, infinitesimal circles are mapped to infinitesimal cir-
cles as expected. Figure (A) shows the histogram of the angle distortion under the
parameterization. It accumultes at 0, meaning that the parameterization is indeed
angle-preserving. The energy versus iterations using our proposed algorithm is shown
in (B). Ep decreases as iteration increases.

Ezxample 2. We next test the proposed algorithm on a 2D bird mesh, which is
shown in Figure [6.3[A). The conformal parameterization is shown in (B), whose col-
ormap is given by the norm of the Beltrami coefficient. The texture map of the
checkerboard and circle-packing pattern are shown in (C) and (D) respectively, indi-
cating the parameterization is angle-preserving. Figure A) shows the histogram
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Fi1G. 6.1. (A) shows the frog mesh. (B) shows the conformal parameterization. (C) shows the
texture mapping of the checkerboard using the obtained conformal parameterization. (D) shows the
texture mapping of the circle packing pattern.
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(A) Angle distortion histogram (B) Energy versus iterations

F1G. 6.2. (A) shows the histogram of the angle distortion under the conformal parameterization
of the frog mesh. (B) shows the energy versus iterations.

of the angle distortion under the parameterization. It accumultes at 0, meaning that

the parameterization is indeed angle-preserving. The energy versus iterations using
our proposed algorithm is shown in (B).

Example 3. We test our algorithm to compute the least square quasi-conformal
parameterization of a 2D triply-connected boy mesh, which is shown in Figure (A)
The quasi-conformal parameterization is shown in (B). (C) shows the histogram of the
norm of the target Beltrami coefficient. (D) shows the histogram of the norm of the
output Beltrami coefficient. It closely resemble to that of the target Beltrami coeffi-
cient. It means that the Beltrami coefficient of the quasi-conformal parameterization
is close to our target Beltrami coefficient. Figure shows the histogram of the error
between the target and output Beltrami coefficients. It accumulates at 0, indicating
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F1G. 6.3. (A) shows the bird mesh. (B) shows the conformal parameterization. (C) shows the
texture mapping of the checkerboard using the obtained conformal parameterization. (D) shows the
texture mapping of the circle packing pattern.
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(A) Angle distortion histogram (B) Energy versus iterations

F1G. 6.4. (A) shows the histogram of the angle distortion under the conformal parameterization
of the bird mesh. (B) shows the energy versus iterations.

that the obtained map is a good approximation to our desired quasi-conformal pa-
rameterization. The energy versus iterations using our proposed algorithm is shown
in (B).

Ezxample 4. In this example, we compute the quasi-conformal parameterization
of a 2D car mesh with three inner holes. The mesh is shown in Figure A). The
quasi-conformal parameterization is shown in (B). The histogram of the norm of
the output Beltrami coefficient is shown in (D), which closely resembles to that of
the target Beltrami coefficient as shown in (C). Figure shows the histogram of
the error between the target and output Beltrami coefficients, which accumulates at
0, indicating that the obtained map is a good approximation to our desired quasi-
conformal parameterization. The energy versus iterations is shown in (B).
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F1G. 6.5. (A) shows the boy mesh. (B) shows the quasi-conformal parameterization. (C) shows
the histogram of the target Beltrami coefficient. (D) shows the histogram of the norm of the output
Beltrami coefficient.

2500 18

2000

1500

1000

00

0
32 0 0z 0.4 [ 08 1 12 0 20 40 60 &0 100 120

(A) Histogram of the BC difference (B) Energy versus iterations

F1G. 6.6. (A) the histogram of the error between the target and output Beltrami coefficients for
the boy mesh example. (B) shows the energy versus iterations.

6.2. Multiply-connected Riemann surfaces. We next examine the algo-
rithm on multiply-connected Riemann surfaces.

Ezxample 5. In this example, we test the algorithm to compute the conformal pa-
rameterization of a triply-connected human face onto a punctured disk. The human
face is shown in Figure A), and the surface is conformally embeded into R? with
free boundary condition. The embedded domain is then conformally parameterized
onto the puntured disk. The conformal parameterization of the human face is shown in
Figure [6.10fA). The texture map (checkerboard and circle packing) using the confor-
mal parameterization is shown in (B). The right angle structure is well-preserved and
the parameterization maps infinitesimal circles to circles. (C) shows the histogram
of angle distortion, which shows that the parameterization is angle-preserving. (D)
shows the energy versus iterations.
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F1G. 6.7. (A) shows the car mesh. (B) shows the quasi-conformal parameterization. (C) shows

the histogram of the target Beltrami coefficient. (D) shows the histogram of the norm of the output
Beltrami coefficient.
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(A) Histogram of the BC difference (B) Energy versus iterations

Fic. 6.8. (A) shows the histogram of the error between the target and output Beltrami coeffi-
cients for the car mesh example.(B) shows the energy versus iterations.

Ezxample 6. We compute the conformal parameterization of a human face with
three interior regions removed, which is shown in Figure (B) The surface is again
conformally embedded into R? with free boundary conditions. Figure A) shows
the conformal parameterization. The texture maps (checkerboard and circle-packing)
using the parameterization are shown in (B). The parameterization is angle-preserving,
which is demonstrated from the histogram of the angle distortion in (C). (D) shows
the energy versus iterations.

Ezxample 7. Now, we compute the quasi-conformal parameterization of the triply-
connected human face in Figure[6.9(A). The norm of the target Beltrami differential is
shown in Figure[6.12f A). The quasi-conformal parameterization is shown in (B). The
colormap shows the norm of the Beltrami differential of the parameterization. (C)
shows the histogram of the error between the target and output Beltrami differential.
It accumulates at 0, meaning that the computed quasi-conformal parameterization is
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(A) Conformal embedding of Face 1 (B) Conformal embedding of Face 2

Fic. 6.9. (A) shows a triply-connected human face and its conformal embedding with free
boundary condition in R%2. (B) shows the human face with three interior regions removed and its
conformal embedding with free boundary condition in R?.
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Fic. 6.10. (A) shows the conformal parameterization of human face 1. The texture map
(checkerboard and circle packing) using the conformal parameterization is shown in (B). (C) shows
the histogram of angle distortion. (D) shows the energy versus iterations.

accurate. (D) shows the energy versus iterations.

Ezample 8. We also compute the quasi-conformal parameterization of the human
faces with three interior regions removed in Figure B). The norm of the target
Beltrami differential is shown in Figure A). The quasi-conformal parameteri-
zation is shown in (B). The histogram of the error between the target and output
Beltrami differential is shown in (C), which indicates the obtained quasi-conformal
parameterization is accurate. (D) shows the energy versus iterations.

6.3. Computational time and comparisons. Table [6.1] reports the compu-
tational details of our proposed algorithm. For meshes with about 10k faces, our
proposed algorithm can generally obtain the parameterization onto the punctured
disk with in 10 seconds on average. All the parameterization results have no overlap-
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Fic. 6.11. (A) shows the conformal parameterization of human face 2. The texture map
(checkerboard and circle packing) using the conformal parameterization is shown in (B). (C) shows
the histogram of angle distortion. (D) shows the energy versus iterations.

Mesh || face | vertice | Time spent | mean(mu) | std(mu) | # of flips

Frog || 10603 | 5918 6.05 s 0.0124 0.0148 0

Boy 15164 | 8699 5.90 s 0.0196 0.0214 0

Cat 7857 | 4411 5.06 s 0.0247 0.0297 0

Bird || 10965 | 6210 7.57 s 0.0258 0.0378 0

Car | 10267 | 5805 8.57 s 0.0264 0.0282 0
TABLE 6.1

Computational details of the proposed algorithm

ping faces, which means the obtained parameterizations are indeed bijective.

We also compare our proposed algorithm with the Ricci flow (RF) method [22]
and the inverse curvature Ricci flow (IDRF) [23] method. The results are reported in
Table As shown in the table, our method is stable under different regularities of
the triangulations. On the contrary, both RF and IDRF fail on some meshes without
remeshing. After improving the regularity of the triangulation through a remeshing
process, RF and IDRF can be used to parameterize the mesh onto the punctured disk.
To compare the quality of the conformal parameterization, we compute the mean and
standard derivation of the angle distortion. From the table, it can be observed that
our proposed algorithm outperforms RF and IDRF.

7. Applications. In this section, we show some applications of the conformal
and quasi-conformal parameterizations.

7.1. Surface remeshing. Surface remeshing refers to the process of improving
the quality of the triangulation. This procedure is necessary in numerical compu-
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Fic. 6.12. Quasi-conformal parameterization of the human face 1. (A) shows the norm of the
target Beltrami differential. The quasi-conformal parameterization is shown in (B). The colormap
shows the norm of the Beltrami differential of the parameterization. (C) shows the histogram of the
error between the target and output Beltrami differentials. (D) shows the energy versus iterations.

Mesh Ordinary RF [22] IDRF [23] QCMC
(mean/sd) (mean/sd) (mean/sd)

Frog 0.1907/0.1548 0.0164/0.0196 | 0.0129/0.0164
Boy 0.1647/0.1263 0.0212/0.0288 | 0.0203/0.0241
Cat 0.1852/0.1545 0.0252/0.0284 | 0.0233/0.0255
Bird fail fail 0.0245/0.0401
Car 0.1881/0.1488 0.0277/0.0311 | 0.0253/0.0270
2hole_face 0.2937/0.2625 fail 0.0114/0.0351
2hole_face (remeshed) 0.2402/0.2412 0.0097/0.0175 | 0.0051/0.0058
3hole_face 0.3079/0.2591 fail 0.0195/0.0516
3hole_face (remeshed) 0.2281,/0.2205 0.0137/0.0220 | 0.0057/0.0070

TABLE 6.2

Comparison of different algorithms.

tations to improve the accuracies of numerical solutions. A common technique to
perform remeshing is done by parameterizing the surface onto a simple parameter
domain (usually in R?). A regular mesh can be built on the simple parameter do-
main and the remeshing can be done through interpolation. Figure A) shows the
original surface mesh. We conformally parameterize the surface onto a punctured
disk and a regular mesh is built on the parameter domin. Remeshing is then done by
interpolation. The remeshed surface is shown in (B). Figure left) shows the zoom
in of the triangulation mesh of the original surface. The right shows the zoom in of
the triangulation mesh of the remeshed surface. The quality of the triangulation is
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Fic. 6.13. Quasi-conformal parameterization of the human face 2. (A) shows the norm of the
target Beltrami differential. The quasi-conformal parameterization is shown in (B). The colormap
shows the norm of the Beltrami differential of the parameterization. (C) shows the histogram of the
error between the target and output Beltrami differentials. (D) shows the energy versus iterations.

(A) Original surface (B) Remeshed surface

Fic. 7.1. (A) shows the original surface mesh. (B) shows the remeshed surface.

much improved.

7.2. Surface registration. Quasi-conformal surface maps have been used for
surface registration. Computing quasi-conformal surface maps between multiply-
connected surfaces is challenging, due to the complicated topologies of the surfaces.
By parameterizing the surfaces onto the punctured disk, the computation can be sim-
plified. Figure A) and (B) show two metal sheets, which are doubly-connected.
Given a Beltrami differential on the metal sheet 1, our goal is to compute the quasi-
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Zoom in: Original surface Zoom in: Remeshed surface

F1ac. 7.2. The left shows the zoom in of the triangulation mesh of the original surface in Figure
(A ). The right shows the zoom in of the triangulation mesh of the remeshed surface.
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Fic. 7.3. (A) shows the metal sheet 1. (B) shows the metal sheet 2. (C) shows the quasi-
conformal parameterization of the metal sheet 1. (D) shows the conformal parameterization of the
metal sheet 2. The surface quasi-conformal map between the metal sheets can be obtained by the
composition map.

conformal surface map between the metal sheets. To do this, we first quasi-conformally
parameterize the metal sheet 1 with the prescribed Beltrami differential onto the an-
nulus. The parameterization is as shown in (C) and the colormap is given by the norm
of the Beltrami differential. Then, we parameterize the metal sheet 2 conformally onto
an annulus, as shown in (D). In this way, the conformal parameter domains of metal
sheet 1 and metal sheet 2 are conformally equivalent. Hence, their conformal mod-
ules are the same up to a Mobius transformation. As shown in the figure, the inner
radii of the two annulus are both approximately 0.6401. By the composition of the
parameterizations, the quasi-conformal surface map between the two metal sheets can
be obtained. Figure [7.4] shows the visualization of the surface quasi-conformal map
between the metal sheets. The circle packing pattern on the original metal sheet is
mapped onto the target metal sheet. Infinitesimal circles are mapped to infinitesimal
ellipses.

Furthermore, by parameterizing the multiply-connected surfaces onto the punc-
tured disk, surface registration can be computed easily on the simple parameter do-
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Fic. 7.4. Visualization of the surface quasi-conformal map between the metal sheets. The circle
packing pattern on the original metal sheet is mapped onto the target metal sheet. Infinitesimal
circles are mapped to infinitesimal ellipses.

mains. Figure [T.5(A) and (B) show two different human faces S; and S>. We look
for a geometric matching surface registration between them that matches curvatures.
More specifically, we look for a diffeomorphism f :.S; — S5 that minimizes:

u(f)[4ds + / (Hy — Hy(f))%dS (7.1)

S1

Eyeometric(f) = /

S1

where H; and H, are the mean curvatures on S; and Ss respectively. The first term
minimizes the conformality (local geometric) distortion of the map f. The second
term minimizes the curvature mismatching under the registration.

We first conformally parameterize the two surfaces onto their canonical parameter
domains, which are shown in (D) and (E). The colormaps on the two parameter
domains are given by the mean curvatures of the two human faces. We then perform
intensity-matching registration to find a mapping between the parameter domains
that matches the curvature intensities. Using the obtained mapping, we transform
source parameter domain to the target conformal parameter domain. The transformed
domain is shown in (E). Finally, the surface registration can be obtained from the
composition map. In (C), we map the curvature on the source surface to the target
surface using the obtained surface registration. Note that the corresponding regions
(high curvature regions) are consistently matched. It indicates that the obtained
registration is geometric matching. Figure[7.6]shows the energy plots versus iterations
during the process of registration between the parameter domains. (A) shows the
curvature mismatching energy E.yrvature Versus iterations. It decreases as iteration
increases until the optimal state is reached. (B) shows the total energy Egcometric
versus iterations.

7.3. Shape signatures of multiply-connected objects. Conformal param-
eterization of the 2D multiply-connected domain can be used to compute the shape
signature representing the 2D shape. With the conformal parameterizations, con-
formal weldings can be computed, which can be used to define the shape signature.
Figure A) shows the frog mesh. It consists of three sub-domains, namely, g, 1
and €, together with the infinite domain Q,¢si4e Outside the outermost boundary.
Their conformal parameterizations, ¢g : Q9 — Dg, ¢1 : Q1 — D1, ¢ : Qo — Dy
and @outside : QLoutside — D, are computed. The conformal weldings can be obtained
from the conformal parameterizations. More precisely, the conformal weldings can
be computed as follows: fo1 := ¢y 0 ¢y : S = SY, fo2 i= a0y’ : St = S!
and foutside := Qoutside © qjal : S' — S'. The conformal wedings together with the
conformal module of Dy form the shape signature of the frog mesh, as shown in (B).
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(A) Human face 1

(C) Surface registration

(D) Parameterization (E) Parameterization (F) Registration between
of face 2 of face 2

parameter domains

Fic. 7.5. (A) and (B) show the human face 1 and human face 2, whose colormaps are given
by their mean curvature. (C) shows the surface registration between the human faces. (D) shows
the conformal parameterization of face 1. (E) shows the conformal parameterization of face 2. (E)
shows the registration between the conformal parameter domians.
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Fic. 7.6. Energy plots for the surface registration example. (A) shows the curvature mismatch-
ing versus iterations. It decreases as iteration increases until the optimal state is reached. (B) shows
the total energy Egeometric versus iterations.

Figure[7.8(A) shows the bird mesh and the conformal parameterizations of differ-
ent sub-domains of the bird mesh. Using the conformal parameterizations, conformal
weldings can be defined. The conformal weldings together with the conformal module
of Dy define the shape signature of the frog mesh, which are shown in (B).

8. Conclusion. We address the problem of finding the quasi-conformal param-
eterization (QCMC) for a multiply-connected 2D domain or surface embedded in
R3. Our goal is to map the multiply-connected domain one-to-one and onto a sim-
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Fia. 7.7. (A) shows the conformal parameterizations of different sub-domains of the frog mesh.
Using the conformal parameterizations, conformal weldings can be defined. The conformal weldings
together with the conformal module define the shape signature of the frog mesh, which are shown in

(B).

Dy

e=0
=1
2} £=0.0635 +
03116
©=0.1312 - 0.06921
(L1153

0.6006(

€=-0.1270 - 0.07291
01162

(B) Shape signature (conformal welding)

Fi1G. 7.8. (A) shows the conformal parameterizations of different sub-domains of the bird mesh.
Using the conformal parameterizations, conformal weldings can be defined. The conformal weldings
together with the conformal module define the shape signature of the bird mesh, which are shown in

(B).
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ple paramter domain. According to the quasi-conformal Teichmiiller theory, given
a prescribed Beltrami differential measuring the conformality distortion, a multiply-
connected domain can be quasi-conformally parameterized onto a punctured disk.
The center and radii of the inner circles, which is called the confomral module, can
be uniquely determined up to a Mobius transformation. In this paper, we propose
an iterative algorithm to simultaeneously look for the conformal module and the op-
timal quasi-conformal map. The key idea is to minimize the Beltrami energy subject
to boundary constraints. By incorporating the conformal module into the energy
functional of the optimization problem, the quasi-conformal map and the confor-
mal module can be simultaneously optimized. The parameterization of the multiply-
connected domain simplifies numerical computations and has important applications
in various fields, such as in computer graphics and visions. Experiments have been
carried out on synthetic data together with real multiply-connected Riemann surfaces.
Results show that our proposed method can efficiently compute quasi-conformal pa-
rameterizations of multiply-connected domains and outperforms other state-of-the-art
algorithms. Applications of the parameterization technique have also been shown.
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