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Abstract Finding a meaningful 1–1 correspondence between different data, such as images
or surface data, has important applications in various fields. It involves the optimization of
certain energy functionals over the space of all diffeomorphisms. This type of optimization
problems (called the diffeomorphism optimization problems, DOPs) is especially challenging,
since the bijectivity of the mapping has to be ensured. Recently, a method, called the Beltrami
holomorphic flow (BHF), has been proposed to solve the DOP using quasi-conformal theories
(Lui et al. in J Sci Comput 50(3):557–585, 2012). The optimization problem is formulated
over the space of Beltrami coefficients (BCs), instead of the space of all diffeomorphisms.
BHF iteratively finds a sequence of BCs associated with a sequence of diffeomorphisms, using
the gradient descent method, to minimize the energy functional. The use of BCs effectively
controls the smoothness and bijectivity of the mapping, and hence makes it easier to handle
the constrained optimization problem. However, the algorithm is computationally expensive.
In this paper, we propose an efficient splitting algorithm, based on the classical alternating
direction method of multiplier (ADMM), to solve the DOP. The basic idea is to split the
energy functional into two energy terms: one involves the BC whereas the other involves the
quasi-conformal map. Alternating minimization scheme can then be applied to minimize the
energy functional. The proposed method significantly speeds up the previous BHF approach.
It also extends the previous BHF algorithm to Riemann surfaces of arbitrary topologies, such
as multiply-connected shapes. Experiments have been carried out on synthetic together with
real surface data, which demonstrate the efficiency and efficacy of the proposed algorithm to
solve the DOP.
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1 Introduction

Registration, which aims to find a meaningful one-to-one pointwise mapping between two
corresponding data, is important in various fields, such as medical imaging, computer visions
and computer graphics. For example, in medical imaging, finding accurate 1–1 correspon-
dences between brain cortical surfaces is crucial for medical shape analysis. While in com-
puter graphics, finding a 1–1 correspondence (called the texture mapping) between a surface
mesh and a two dimensional image is necessary for generating a textured surface. Developing
an effective way to obtain the registration becomes an important research field.

A meaningful registration often satisfies certain important properties. For example, for
image registration, a good registration is determined by how well it matches the image
intensities between the two images. While for geometric matching surface registration, it is
often desirable to look for registrations that match surface curvatures as much as possible.
Mathematically, this kind of problems can be formulated as an optimization problem of
certain energy functionals over the space of all diffeomorphisms. More specifically, suppose
S1 and S2 are two corresponding data to be registered. Our goal is to look for an orientation-
preserving diffeomorphism f ∗ : S1 → S2 such that:

f ∗ = argmin f ∈DiffE( f ) (1)

where Diff is the collection of all orientation-preserving diffeomorphisms between S1 and
S2 and E : Diff → R

+ is an energy functional defined on Diff. This kind of optimization
problems, which optimize an energy functional over the space of all diffeomorphisms, is
called a diffeomorphism optimization problem (DOP).

Solving a DOP is generally challenging, since the bijectivity of the mapping can be easily
lost during the optimization process. To tackle with this problem, finding a suitable repre-
sentation for Diff that facilitates the optimization process is necessary. In [1], the Beltrami
coefficient(BC) was proposed to represent an orientation-preserving diffeomorphism. A BC
is a complex-valued function defined on S1 with supreme norm strictly less than 1. We usually
denote the set of all BCs by B = {μ : S1 → C : ||μ||∞ < 1}. It can be shown that there is an
injection� : Diff → B from Diff to B under suitable boundary or landmark constraints [1].
In other words, every orientation-preserving diffeomorphism g is associated with a unique
BC μg .

The BC is more suitable for solving the DOP as it has the least amount of constraints. For
instance, the representation of a diffeomorphism using its coordinate functions has to satisfy
the 1–1 and onto constraints. It can be reduced to a constraint on the Jacobian, which is a
nonlinear partial differential inequality. This constraint adds extra difficulty when solving
the DOP. On the contrary, the BC has the least amount of constraints. It does not need to be
1–1 or onto. The only constraint is that its supreme norm has to be strictly less than 1. The
original DOP (1) can then be reformulated over the space of BC B as follows:

ν∗ = argminμ∈BEB(μ) (2)

subject to the constraint that (i) ν∗ = μ( f ∗) = BC of some f ∗ ∈ Diff and (ii) ||ν∗||∞ < 1.
Formulating the DOP over B makes the optimization problem more manageable, since the
bijectivity can be easily controlled.

It is noteworthy to mention that formulating the DOP over B does not only make the
optimization problem easier, the BC also captures local geometric distortions of the diffeo-
morphism. Therefore, by incorporating the BC into the energy functional, one can enforce
desired properties on the geometric distortions of the map. For example, suppose S1 and
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S2 are two surfaces, say two human faces. Let H1 and H2 are the mean curvatures of S1

and S2 respectively. To obtain a geometric matching registration, one might need to find a
diffeomorphism that matches the surface curvatures while minimizing the local geometric
(conformality) distortion. This problem can be formulated as a DOP as follows:

ν∗ = argminμ∈B

{∫
S1

|μ|p + α

∫
S1

|H1 − H2( f μ)|2
}

(3)

with the constraint that ν∗ = μ( f ∗) = BC of some f ∗ ∈ Diff, where f μ is the quasi-
conformal map associated to μ. The first term minimizes the L p norm of the conformality
distortion measured by the BC of the quasi-conformal map. The second term aims to minimize
the curvature mismatching error. Sometimes, it might be required that the registration matches
corresponding landmarks {pi }n

i=1 and {qi }n
i=1 on S1 and S2 respectively. In this case, we add

an extra constraint to the DOP (3) that f ∗(pi ) = qi for i = 1, 2, . . . , n.
To solve the DOPs (2) or (3), a gradient descent based method was proposed in [1]. The

quasi-conformal map associated to a given perturbed BC, which is needed in deriving the
descent direction [such as the second term in (3)], was computed using an integral formula.
Although the optimization problem can be effectively solved, the computation is quite ineffi-
cient. Also, this gradient descent based algorithm converges slowly. In this paper, we propose
an efficient splitting method, based on the classical alternating direction method with mul-
tipliers (ADMM), to solve the DOP over the space of BCs. The basic idea is to split the
energy functional into two energy terms: one involves the BC whereas the other involves
the quasi-conformal map. Alternating minimization scheme can then be applied to minimize
the the energy functional. The proposed method significantly speed up the previous BHF
approach in [1]. It also extends the previous BHF algorithm to Riemann surfaces of arbitrary
topologies. Experiments have been carried out on synthetic together with real medical data.
Results show that the proposed algorithm solves the DOP efficiently.

In summary, the main contribution of this paper is to apply the alternating direction method
of multipliers (ADMM) together with the quasi-conformal theories to solve the DOP. Using
ADMM, a splitting method can be used to minimize the energy functional in the DOP
alternatively over the quasi-conformal maps and BCs. The algorithm speeds up the previous
method proposed in [1] and extends it to solve DOPs on Riemann surfaces of arbitrary
topologies. Experimental results show that the newly proposed method often yields better
registration results.

2 Related Work

Finding meaningful mapping or registration between corresponding data that optimizes cer-
tain kinds of energy functionals has been extensively studied. In this section, we briefly
describe some related methods commonly used.

Conformal maps have been widely studied to obtain smooth 1–1 correspondence between
surfaces that minimize angular distortions [2,8–11,13,25,39]. Conformal maps are usually
computed using variational approaches that minimize some energy functionals, such as the
harmonic energy [8] and the least-squares energy based on the Cauchy–Riemann equation
[25]. A 1–1 correspondence between surfaces can be obtained in the optimal state. However,
the above registration cannot map anatomical features, such as sulcal landmarks, consistently
from subject to subject.

To obtain a surface registration that matches important landmark features, landmark-
based diffeomorphisms are often used. Optimization of surface diffeomorphisms by landmark
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matching has been extensively studied. Gu et al. [8] improved a conformal parameterization
by composing an optimal Möbius transformation so that it minimizes a landmark mismatch
energy. The resulting parameterization remains conformal, although features cannot be per-
fectly matched. Wang et al. [19,20,40] proposed a variational framework to compute an
optimized conformal registration that aligns landmarks as well as possible. However, land-
marks are not matched exactly and diffeomorphisms cannot be guaranteed when there is
a large number of landmark features. Durrleman et al. [3,4] developed a framework using
currents, a concept from differential geometry, to match landmarks within surfaces across
subjects, for the purpose of inferring the variability of brain structure in an image database.
Landmark curves are not perfectly matched. Tosun et al. [32] proposed a more automated
mapping technique that attempts to align cortical sulci across subjects by combining para-
metric relaxation, iterative closest point registration, and inverse stereographic projection.
Glaunès et al. [7,12] proposed to generate large deformation diffeomorphisms of a sphere
onto itself, given the displacements of a finite set of template landmarks. The diffeomorphism
obtained can better match landmark features.

Lui et al. [21] proposed to compute shape-based landmark matching registrations between
brain surfaces using the integral flow method. The one-parameter subgroup within the set of
all diffeomorphisms was considered and represented by smooth vector fields. Landmarks can
be perfectly matched and the correspondence between landmark curves is based on shape
information. Leow et al. [16] proposed a level-set-based approach for matching different
types of features, including points, 2D and 3D curves represented as implicit functions.
These matching features in the parameter domain were then pulled back onto surfaces to
compute correspondence fields. In related work, Lepore et al. [17] used a level-set repre-
sentation to match curves embedded in surfaces, using a diffeomorphic flow parametrized
by velocity fields on the sphere. In this work, features within the landmark curves were not
matched, and the landmark curves were matched as level sets. Later, Shi et al. [31] computed
a direct harmonic mapping between two surfaces by embedding both surfaces as the level-
set of an implicit function, and representing the mapping energy as a Dirichlet functional
in 3D volume domains. Although such an approach can incorporate landmark constraints,
it has not been proven to yield diffeomorphic mappings. Quasi-conformal mapping that
matches landmarks consistently has also been proposed. Wei et al. [26] proposed to compute
quasi-conformal mappings for feature matching face registration. The Beltrami coefficient
associated to a landmark-matching parameterization is approximated. However, either exact
landmark matching or the bijectivity of the mapping cannot be guaranteed, especially when
very large deformations occur.

Since there may not be well-defined landmarks on surfaces, some authors proposed driving
features into correspondence based on shape information or scalar fields defined on the sur-
faces. Lyttelton et al. [27] computed surface parameterizations that match surface curvature.
Fischl et al. [5] improved the alignment of cortical folding patterns by minimizing the mean
squared difference between the average convexity across a set of subjects and that of the indi-
vidual. Wang et al. [33] computed surface registrations that maximize the mutual information
between mean curvature and conformal factor maps across subjects. Lord et al. [18] matched
surfaces by minimizing the deviation from isometry. Quasi-conformal surface registrations,
which minimize geometric mismatching, have also been studied [1,22–24]. For example, Lui
et al. [22] proposed to compute quasi-conformal registration between hippocampal surfaces,
which matches geometric quantities (such as curvatures) and minimizes the conformality
distortion [22]. In most situations, one has to pay extra attention to ensure the optimal map
computed is diffeomorphic. In [1], a method, called the Beltrami holomorphic flow, has been
proposed to optimize the energy functional defined over the space of quasi-conformal maps.
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The algorithm effectively computes a diffeomorphic quasi-conformal map that optimizes
the given energy functional, although it is computationally expensive. Furthermore, various
techniques for computing the quasi-conformal map of a given BC have also been proposed
[23,24,36].

3 Background

3.1 Quasi-conformal Geometry

In this subsection, we give a brief description on quasi-conformal theories. For details, we
refer the readers to [6,14,15].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann
surfaces M and N , a map f : M → N is conformal if it preserves the surface metric up
to a multiplicative factor called the conformal factor. An immediate consequence is that
every conformal map preserves angles. With the angle-preserving property, a conformal
map effectively preserves the local geometry of the surface structure. A generalization of
conformal maps is the quasi-conformal maps, which are orientation preserving homeomor-
phisms between Riemann surfaces with bounded conformality distortion, in the sense that
their first order approximations takes small circles to small ellipses of bounded eccentricity
[15]. Mathematically, f : C → C is quasi-conformal provided that it satisfies the Beltrami
equation:

∂ f

∂z
= μ(z)

∂ f

∂z
. (4)

for some complex-valued function μ satisfying ||μ||∞ < 1. μ is called the Beltrami coef-
ficient, which is a measure of non-conformality. It measures how far the map at each point
is deviated from a conformal map. In particular, the map f is conformal around a small
neighborhood of p when μ(p) = 0. Infinitesimally, around a point p, f may be expressed
with respect to its local parameter as follows:

f (z) = f (p)+ fz(p)z + fz(p)z

= f (p)+ fz(p)(z + μ(p)z). (5)

Obviously, f is not conformal if and only if μ(p) �= 0. Inside the local parameter domain, f
may be considered as a map composed of a translation to f (p) together with a stretch map
S(z) = z +μ(p)z, which is postcomposed by a multiplication of fz(p),which is conformal.
All the conformal distortion of S(z) is caused by μ(p). S(z) is the map that causes f to map
a small circle to a small ellipse. From μ(p), we can determine the angles of the directions
of maximal magnification and shrinking and the amount of them as well. Specifically, the
angle of maximal magnification is arg(μ(p))/2 with magnifying factor 1 + |μ(p)|; The
angle of maximal shrinking is the orthogonal angle (arg(μ(p))−π)/2 with shrinking factor
1 −|μ(p)|. Thus, the Beltrami coefficient μ gives us all the information about the properties
of the map (see Fig. 1).

The maximal dilation of f is given by:

K ( f ) = 1 + ||μ||∞
1 − ||μ||∞ . (6)

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be defined.
Instead of the Beltrami coefficient, the Beltrami differential is used. A Beltrami differential
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Fig. 1 Illustration of how the Beltrami coefficient determines the conformality distortion

μ(z) dz
dz on a Riemann surface S is an assignment to each chart (Uα, φα) of an L∞ complex-

valued function μα , defined on local parameter zα such that

μα(zα)
dzα
dzα

= μβ(zβ)
dzβ
dzβ

, (7)

on the domain which is also covered by another chart (Uβ, φβ). Here, dzβ
dzα

= d
dzα
φαβ and

φαβ = φβ ◦ φ−1
α .

An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal associ-

ated with μ(z) dz
dz if for any chart (Uα, φα) on S1 and any chart (Vβ, ψβ) on S2, the mapping

fαβ := ψβ ◦ f ◦ φ−1
α is quasi-conformal associated with μα(zα).

3.2 Beltrami Holomorphic Flow

The Beltrami holomorphic flow (BHF) refers to a flow of quasi-conformal maps over t ∈ C,
which is associated with a flow of Beltrami coefficients. Mathematically, suppose μ(t, z) :
C× S1 → C such thatμ(t, ·) ∈ B for all t ∈ C. Assume thatμ(·, p) is holomorphic for each
fixed p ∈ S1. Then, μ = μ(t, ·) is called a holomorphic flow of the Beltrami coefficients.
For simply-connected S1 and S2, each μ(t, ·) is associated with a quasi-conformal map
f (t, ·) : S1 → S2. f (t, ·) is called the Beltrami holomorphic flow (BHF) of quasi-conformal
maps associated with μ(t, ·). It can be shown that for any fixed p ∈ S1, f (·, p) : C → C

is holomorphic. More specifically, let {μ(t, ·)} be a family of BCs depending on a complex
parameter t ∈ C. Suppose μ(t, ·) can be written in the form:

μ(t, z) = μ(z)+ (t − t0)ν(z)+ (t − t0)ε(t − t0)(z) (8)

for z ∈ C, with a suitable μ(z) in the unit ball of C∞(C), ν, ε ∈ L∞(C) such that ||ε(t −
t0)||∞ → 0 as t → t0. Then for all p ∈ S1,

f μ(t,·)(p) = f μ(p)+ (t − t0)V( f μ, ν)+ o(|t − t0|) (9)

local uniformally as t → t0, where

V( f μ, ν)(p) = − f μ( f μ(p)− 1)

π

∫
C

ν(z)(( f μ)z(z))2

f μ(z)( f μ(z)− 1)( f μ(z)− f μ(p))
dxdy (10)

if S1 and S2 are genus-0 closed surfaces. Here, we have identified S1 and S2 with S
2 ∼= C

through spherical conformal parameterizations. And if S1 and S2 are simply-connected open
surfaces, we have
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V( f μ, ν)(p) = − f μ( f μ(p)− 1)

π

(∫
D

ν(z)(( f μ)z(z))2

f μ(z)( f μ(z)− 1)( f μ(z)− f μ(p))
dxdy

+
∫

D

ν(z)(( f μ)z(z))2

f μ(z)(1 − f μ(z))(1 − f μ(z) f μ(p))
dxdy

)
. (11)

Here, we have identified S1 and S2 with D through conformal parameterizations.
BHF has been applied to solve the DOP [1]. In particular, as the Beltrami coefficient

is updated during the gradient descent based iterative minimization process, the associated
quasi-conformal map is also updated using Eqs. (10) or (11). This method has been success-
fully applied for surface registration in the field of medical imaging and computer graphics.
However, the computation of the quasi-conformal map of a given BC using the integral for-
mula (10) or (11) is quite time-consuming in practice. Recently, various algorithms have been
proposed to compute the quasi-conformal map from a prescribed BC efficiently. For exam-
ple, Lui et al. [24,37] proposed to compute quasi-conformal maps by solving a generalized
Laplace’s equation. The algorithm, which is called the Linear Beltrami Solver (LBS), can
be discretized into a sparse symmetric positive definite linear system. The linear system is
then solved by the conjugate gradient method. Gu et al. [41] proposed to compute the quasi-
conformal map using the holomorphic differential 1-form under the auxiliary metric given by
the BC. Zeng et al. [23] proposed a curvature flow method to compute the quasi-conformal
map through calculating a conformal map under the auxiliary metric given by the prescribed
BC. The algorithm converges exponentially. Wong et al. [36] proposed to approximate the
small perturbation of the quasi-conformal map from the identity map under a small variation
tν of the BC fromμ = 0 by solving a PDE. This gives a first-order approximation of the per-
turbation when t is small. The quasi-conformal map of a given target BC can then be obtained
using a composition formula of quasi-conformal maps. Ng et al. [38] proposed to iteratively
compute the quasi-conformal map f ν with Beltrami coefficient ν by solving the Beltrami’s
equation in each iteration. The Beltrami’s equation is solved by a L p-minimization of the
Beltrami energy:

f̃ = argmin f ∈Diff

{
||∂ f

∂z
− ν

∂ f

∂z
||p

p

}
(12)

This is applied to solve a subproblem for computing the Teichmüller map between multiply-
connected domains.

Note that when p = 2, the minimizer of the least square problem (12) is called the least-
square quasi-conformal map (LSQC) associated to ν, which has also been studied in [35,42].
In this paper, we will apply the method in [38] to cope with a subproblem in the alternating
minimization algorithm for solving the DOP.

3.3 Alternating Direction Method with Multipliers (ADMM)

ADMM is an optimization algorithm that solves the following type of problems:

Minimize {E1(x)+ E2(Ax)} (13)

where A ∈ Mm×n(R) has full column rank. E1 and E2 are often assumed to be convex
functionals.

The problem (13) can be reformulated as a constrained optimization problem:

Minimize {E1(x)+ E2(y)} subject to Ax = y (14)
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The augmented Lagrangian associated to the problem (15) is given by

L(x, y,λ, μ) = E1(x)+ E2(y)+ λT (Ax − y)+ μ

2
||Ax − y||2 (15)

The classical augmented Lagrangian method iteratively solves the problem (15) as follow:

(xk+1, yk+1) = argmin{L(x, y,λk, μk)} (16)

λk+1 = λk + μk(Axk+1 − yk+1) (17)

where {λk} is the sequence approximating the Lagrange multiplier of the constraint Ax = y
and {μk} is a sequence of positive real number, called the penalty parameters. A variants of
the choices of {λk} and {μk} have been proposed.

However, solving the subproblem (16) is sometimes non-trivial, since E1 and E2 are
strongly coupled with each others under the constraint Ax = y. To simplify the problem, the
alternating direction method with multiplier (ADMM) has been proposed to decouple the
minimization process as follows:

xk+1 = argmin{L(x, yk,λk, μk)}
yk+1 = argmin{L(xk+1, y,λk, μk)}
λk+1 = λk + μk(Axk+1 − yk+1) (18)

More specifically, ADMM first solves for xk+1 by fixing y = yk , and then solves for yk+1

by fixing x = xk+1. This simple decoupling leads to efficient and parallelizable optimization
algorithms for the subproblem (16).

ADMM dates back to 1975 but regains lots of attention recently due to its simple imple-
mentation and extensive applications to image processing and compressive sensing. For
details, we refer the readers to [28–30].

4 Proposed Algorithm

We restate our mathematical problem as follows. Let S1 and S2 be two corresponding domains,
which can either be 2D domains or Riemann surfaces embedded in R

3. Our goal is to look
for a diffeomorphism f ∗ : S1 → S2 that solves:

f ∗ = argmin f ∈DiffE( f ) (19)

where Diff is the collection of all surface diffeomorphisms between S1 and S2 and E :
Diff → R is a functional on Diff.

Solving the above DOP is generally challenging, since the bijectivity has to be ensured.
It is especially difficult when S1 and S2 has complicated geometry. In [1], we introduced the
idea of using the Beltrami coefficients to represent Diff. Every diffeomorphism f ∈ Diff

is associated with a unique Beltrami coefficient μ( f ) : S1 → C. The Beltrami coefficient
μ( f ) also measures the local geometric (conformality) distortion of the mapping f . Thus,
it is sometimes desirable to incorporate μ( f ) in the energy functional in order to control the
geometric distortion of the mapping. In other words, our optimization problem can generally
be written as finding f ∗ : S1 → S2 that solves:

f ∗ = argmin f ∈Diff {E1( f )+ E2(μ( f ))} (20)

subject to ||μ( f ∗)||∞ := || ∂ f ∗
∂z /

∂ f ∗
∂z ||∞ < 1, where E1 : Diff → R

+ and E2 : B → R
+

are energy functionals defined on Diff and B respectively. E1 drives the mapping to satisfy
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some desired properties, such as matching landmarks or curvatures. E2 controls the local
geometric distortions of the mapping.

The above optimization can be further formulated as finding f ∗ : S1 → S2 and ν∗ : S1 →
C such that:

( f ∗, ν∗) = argmin f ∈Diff,ν∈B {E1( f )+ E2(ν)} (21)

subject to (i) ν∗ = μ( f ∗) and (ii) ||ν∗||∞ < 1. Condition (i) guarantees that ν∗ is an
admissible Beltrami coefficient, which is associated to a quasi-conformal map f ∗. Condition
(ii) ensures that f ∗ is diffeomorphic. It can be understood by the following theorem.

Proposition 1 If ν∗ and f ∗ : S1 → S2 satisfies the constraints (i) and (ii), then f ∗ is a
diffeomorphism.

Proof Suppose f ∗ = u + iv under some local coordinates. According to condition (i), the
Beltrami coefficient of f ∗ is ν∗. ν∗ is given by:

ν∗ = ∂ f ∗

∂z
/
∂ f ∗

∂z
(22)

where

∂ f ∗

∂z
= (ux − vy)+ i(uy + vx ); ∂ f ∗

∂z
= (ux + vy)+ i(vx + uy); (23)

Now, the Jacobian of f ∗, J f ∗ , is given by:

J f ∗ = uxvy − uyvx

= (ux + vy)
2 + (vx + uy)

2 − (ux − vy)
2 − (uy + vx )

2

4

= |∂ f ∗

∂z
|2 − |∂ f ∗

∂z
|2 = |∂ f ∗

∂z
|2(1 − |ν∗|2) (24)

Since ||ν∗||∞ < 1, | ∂ f ∗
∂z |2 �= 0. Also, (1 − |ν∗|2) > 0. Hence, J f ∗ > 0 everywhere.

Since the Jacobian is postive everywhere, by the inverse function theorem, the mapping
f ∗ is locally invertible everywhere. In other words, f ∗ is a diffeomorphism. 	


The incorporation of Beltrami coefficient into the optimization problem makes it easier
to control the bijectivity of the mapping.

Now, in order to solve the DOP (21), our strategry is to apply an ADMM-like alternating
optimization scheme. We consider the augmented Lagrangian of the problem (21), which is
given by:

L( f, ν, λRe, λIm, ρ) = E1( f )+ E2(ν)+ < λRe,Re(ν − μ( f )) >

+ < λIm, Im(ν − μ( f )) > +ρ
2

||ν − μ( f )||22 (25)

where < α, β >:= ∫
S1
αβ and ||α|| := (

∫
S1

|α|2)1/2.
Following the minimization procedure of ADMM, we iteratively solve (21) as follows.

Given fk , νk , λk
Re, λk

Im and ρk at the k-th iteration, we compute

f k+1 = argmin f

{
L( f, νk, λ

k
Re, λ

k
Im, ρ

k)
}

(26)

νk+1 = argminν
{

L( fk+1, ν, λ
k
Re, λ

k
Im, ρ

k)
}

(27)

123



582 J Sci Comput (2015) 63:573–611

λk
Re, λ

k
Im and ρk are updated as follows.

If ||νk+1 − μ( fk+1)||2 < ηk , update:

λk+1
Re = λk

Re + ρkRe(νk+1 − μ( fk+1));
λk+1

Im = λk
Im + ρkIm(νk+1 − μ( fk+1));

ρk+1 = ρk . (28)

If ||νk+1 − μ( fk+1)||2 ≥ ηk , update:

λk+1
Re = λk

Re;
λk+1

Im = λk
Im;

ρk+1 = ρk(1 + γk). (29)

We proceed to discuss how we can solve the subproblems (26) and (27).

4.1 Minimization of Subproblem (27) Involving ν

Subproblem (27) is often relatively easy to solve. In many situations, the Euler-Lagrange
equation of E2(μ) is an elliptic PDE. For example, if E2(μ) = ∫

S1
|∇μ|2 + |μ|2, then the

Euler-Lagrange equation for the subproblem (27) can be written as:

Δν − 2ν − λk
ReRe(ν − μ( fk+1))− iλk

ImIm(ν − μ( fk+1))− ρk(ν − μ( fk+1)) = 0 (30)

In the discrete case, it becomes a sparse linear sytem and can be solved efficiently.
In the situation that E2(μ) is more difficult to optimize, we use the gradient descent

method. For example, if E2(μ) = ∫
S1

|∇μ|2 + |μ|p , then we optimize (27) iteratively by:

νnew = νold + dtdν, where (31)

dν = Δν − p(Re(ν))p−1 − i p(Im(ν))p−1 − λk
ReRe(ν − μ( fk+1))

−iλk
ImIm(ν − μ( fk+1))− ρk(ν − μ( fk+1)) (32)

The stopping criteria is chosen to be ∇νL( fk+1, ν, λ
k
Re, λ

k
Im, ρk) < εk .

4.2 Minimization of Subproblem (26) Involving f

Solving the subproblem (26) involving the quasi-conformal map f is comparatively more
challenging. Subproblem (26) can be written as:

fk+1 = argmin f

{
E1( f )+ < λk

Re,Re(νk − μ( f )) >

+ < λk
Im, Im(νk − μ( f )) > +ρk

2
||νk − μ( f )||22

}
. (33)

By looking for a descent direction in each step, we iteratively minimize the above problem.
To minimize the first term, we compute the descent direction V1 for minimizing E1( f ). For

instance, suppose E1 is defined as the intensity mismatching error: E1( f ) = ||I1 − I2( f )||22,
where I1 and I2 are the intensity functions defined on S1 and S2 respectively. Then, the
descent direction V1 is given by: V1 = 2(I1 − I2( f ))∇ I2( f ).

The last three terms can be minimized as follows. Note that the gradient descent direction
∂μ̃ in term of the Beltrami coefficient for minimizing the last three terms is given by:

∂μ̃ = λk
Re + iλk

Im + ρk(νk − μ( f )). (34)
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Doing gradient descent by several steps, we obtain a new Beltrami coefficient, μ̃, that
reduces the value of the last three energy terms. We can then look for a quasi-conformal map
f̃ with BC μ̃. It is equivalent to looking for f̃ satisfying:

∂ f̃

∂z
= μ̃

∂ f̃

∂z
(35)

subject to the boundary constraints that f̃ |∂S1 = ∂S2. In [1], the quasi-conformal map
is obtained using the integration formula (10) or (11). The computation is therefore quite
time-consuming. Various efficient algorithms have been introduced to compute the quasi-
conformal map [23,24,36–38,41]. In this paper, we approximate the quasi-conformal map
f̃ with a Beltrami coefficient μ̃ by directy solving the Beltrami’s equation (35) as in [38].
The details of the computation of the quasi-conformal map will be explained in Sect. 4.3

Once f̃ is obtained, we get another descent direction V2 := f̃ − fk for the quasi-conformal
map that minimizes the last three terms of the energy functional. The gradient descent method
can then be applied to solve the subproblem (26):

d f

dt
= V1 + V2 (36)

We set the stopping criteria for the gradient descent algorithm as∇ f L( f, νk, λ
k
Re, λ

k
Im, ρk)<

εk to obtain a updated fk+1.

4.3 Computation of Quasi-conformal Map of a Given Beltrami Coefficient

To solve the subproblem (26), a crucial step is to find a quasi-conformal map of a given
Beltrami coefficient (BC). More specifically, given a map f μ with BC μ, we need to deform
f μ to a new f ν with BC ν. Without loss of generality, we may assume the quasi-conformal
maps are diffeomorphisms between Ω1 and Ω2 in R

2. If not, we can always parameterize
the Riemann surfaces conformally onto the 2D parameter domains.

Let f μ : Ω1 → Ω2 be an initial quasi-conformal map, whose BC isμ : Ω1 → C. Assume
μ changes to ν, and assume its associated quasiconformal map is denoted by f ν . As in [38],
our goal is to obtain a sequence of quasi-conformal maps { f μn }∞n=1 such that f μ0 = f μ and
f μ∞ = f ν . To do this, the basic idea is to flow μ to ν iteratively to obtain a sequence of BCs
converging to ν. Their associated quasi-conformal maps { f μn }∞n=1 converges to f μ∞ = f ν .
This procedure can be illustrated in more details as follows:

μ0 := μ −→ μ1 −→ · · · −→ μn −→ · · · −→ μ∞ = ν


 
 
 

f μ0 := f μ −→ f μ1 −→ · · · −→ f μn −→ · · · −→ f μ∞ = f ν

(37)

More specifically, we first set f μ0 = f μ and μ0 = μ. We then flow f μ0 to f μ1 whose
BC μ1 is close to ν1 := (1 − ε)μ0 + εν (ε > 0). To find f μ1 , we need to solve:

f μ1 = argmin f

{
||∂ f

∂z
/
∂ f

∂z
− ν1||∞

}
(38)

For a small variation ν1 −μ0, the above problem can be solved by a L p-minimization of
the following Beltrami energy (for sufficiently large p):

f μ1 = argmin f ∈Diff

{
||∂ f

∂z
− ν1

∂ f

∂z
||p

p

}
(39)
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subject to the boundary constraint that f μ1 |∂Ω1 = ∂Ω2. This problem can be reformulated
as finding g1 : Ω1 → R

2 such that:

g1 = argming:Ω1→R2

{
||∂( f μ0 + g)

∂z
− ν1

∂( f μ0 + g)

∂z
||p

p

}
. (40)

subject to the boundary constraints.
Equivalently, we find g1 that solves

g1 = argming:Ω1→R2
{||A(ν1)g + A(ν1) f μ0 ||p

p
}
, (41)

subject to the boundary constraints, where A(ν1) := ∂
∂z − ν1

∂
∂z .

To simplify the computation, we set p = 2 in our actual implementation. It is found
that the performance is already satisfactory. As a result, we get a new quasi-conformal map
f μ1 := f μ0 + g1 whose BC is denoted by μ1.

Suppose at the nth iteration, we have the quasi-conformal map f μn with BC μn . We then
flow f μn to f μn+1 whose BC μn+1 is close to νn := (1 − ε)μn + εν (ε > 0). This is again
done by a L p-minimization of the Beltrami energy (39) subject to the boundary constraint.
More explicitly, we find gn+1 that solves:

gn+1 = argming:Ω1→R2
{||A(νn+1)g + A(νn+1) f μn ||p

p
}
, (42)

subject to the boundary constraints, where A(νn+1) := ∂
∂z − νn+1

∂
∂z . f μn+1 is then obtained,

whose BC is denoted byμn+1. Note that in each step, ε can be chosen so that ||μn+1 −ν||∞ is
minimized. In practice, we choose ε = 1 and it works well for all our numerical experiments.
A sequence of quasi-conformal maps { fn}∞n=1 is obtained, whose BCs converge to ν. We call
such a process to deform f μ to f ν iteratively the Beltrami holomorphic flow (BHF) from μ

to ν, and denote it by: BHF(μ → ν).
The Beltrami holomorphic flow can be summarized as follows:

Algorithm 1 : (Beltrami holomorphic flow)
Input : f μ : Ω1 → Ω2 with BC μ, target BC ν, threshold ε′
Output : Sequence of quasi-conformal maps { f μn }∞n=1

1. Set f μ0 = f μ. Solve Equation (42) to obtain g1;
2. Given f μn , compute μn := μ( fn) and νn := (1 − ε)μn + εν; solve Equation (42) to

obtain gn+1; Set fn+1 := fn + gn+1;
3. If ||μn+1 − μn || ≥ ε′, repeat step 2. Otherwise, stop the iteration.

4.4 Summary of the Splitting Method

The proposed splitting method using the ADMM method can be summarized as follows:
Algorithm 2 : (Splitting method for DOP, version 1)
Input : Energy functional E( f, ν) = E1( f )+ E2(ν), threshold ε
Output : Optimal quasi-conformal map f ∗ with Beltrami coefficient ν∗

1. Set ν0 = 0 and f0 = harmonic map between Ω1 and Ω2;
2. Given fn , νn , λn and ρn , compute fn+1 by:

fn+1 = argmin f L( f, νn, λn, ρn);
3. Compute νn+1 by:

νn+1 = argminνL( fn+1, ν, λn, ρn);
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4. Compute λn+1 and ρn+1;
5. If |E( fn+1, νn+1)− E( fn, νn)| ≥ ε, repeat step 2. Otherwise, stop the iteration.

In the situation when both the subproblem (26) and subproblem (27) are difficult to solve,
the following algorithm can be used.

Algorithm 3 : (Splitting method for DOP, version 2)
Input : Energy functional E( f, ν) = E1( f )+ E2(ν), thresholds εk and ε
Output : Optimal quasi-conformal map f ∗ with Beltrami coefficient ν∗

1. Set ν0 = 0 and f0 = harmonic map between Ω1 and Ω2;
2. Given fn , νn , λn and ρn , put f̃ = fn and ν̃ = νn . Compute the gradient descent

directions V1 and V2 to minimize L( f, νn, λn, ρn); Update f̃ := f̃ + (V1 + V2)dt ;
3. Compute the gradient descent direction ∂ν that minimizes L( fn+1, ν, λn, ρn); Update
ν̃ := ν̃ + (∂ν)dt ;

4. If |∇ f L +∇νL| < εk , put fn+1 = f̃ and νn+1 = ν̃; Go to step 5. Otherwise, put fn = f̃
and νn = ν̃. Go to step 2.

5. Compute λn+1 and ρn+1;
6. If |E( fn+1, νn+1)− E( fn, νn)| ≥ ε, go to step 2. Otherwise, stop the iteration.

5 Numerical Implementation Details

In this section, we will explain in details the numerical implementation of the algorithms
proposed in Sect. 4.

In practice, 2D domains or surfaces in R
3 are usually represented discretely by triangular

meshes. Suppose K1 and K2 are two meshes with the same topology representing S1 and S2.
We define the set of vertices on K1 and K2 by V 1 = {v1

i }n
i=1 and V 2 = {v2

i }n
i=1 respectively.

Similarly, we define the set of triangular faces on K1 and K2 by F1 = {T 1
j }m

j=1 and F2 =
{T 2

j }m
j=1.

5.1 Implementation Details of Algorithm 1

The major step in computing the Beltrami holomorphic flow as described in Algorithm 1 is
to solve equation (42). We first discretize the operator A in Eq. (42). Let f = (u + √−1v) :
K1 → K2. To compute A, we simply need to approximate the partial derivatives at each face
T . We denote them by Dx f = Dx u +√−1Dxv and Dy f = Dyu +√−1Dyv respectively.
Note that f is piecewise linear. The restriction of f on each triangular face T can be written
as:

f |T (x, y) =
(

aT x + bT y + rT

cT x + dT y + sT

)
(43)

Clearly, Dx u(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
gradient ∇T f := (Dx f (T ), Dy f (T ))t on each face T can be computed by solving the
linear system:

(
v1 − v0

v2 − v0

)
∇T f =

( f (v1)− f (v0)
|v1−v0|

f (v2)− f (v0)
|v2−v0|

)
, (44)
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where [v0, v1] and [v0, v2] are two edges on T . By solving equation (44), aT , bT , cT and dT

can be obtained. Hence on each face T ,

∇T f = 1

2A

3∑
j=1

f (v j )s j , (45)

where A is the area of T and

s1(T ) = n × (v3 − v2)

s2(T ) = n × (v1 − v3)

s3(T ) = n × (v2 − v1), (46)

where n is the unit normal of T . Let ν(T ) be a constant over the face T . Using the relations
∂
∂z = (Dx − √−1Dy)/2 and ∂

∂ z̄ = (Dx + √−1Dy)/2, the operator A can be discretized on
each face T as follows:

A f (T ) = 1

4A
(1 − ν(T ),

√−1 + √−1ν(T ))
3∑

j=1

f (v j )s j . (47)

Note that the right hand side of the above equation is linear in every u(v j ) and v(v j ),
j = 1, 2, 3. Let g(v1

i ) = (Pi , Qi )
t and f μ(v1

i ) = ui + √−1vi , the optimization problem
(42) can be discretized as minimizing:

∑
T 1

j ∈F1

1

4Area(T 1
j )

∣∣∣∣∣(1 − ν(T 1
j ),

√−1 + √−1ν(T 1
j ))

3∑
i=1

(PT 1
j (i)

+ √−1QT 1
j (i)
)si (T

1
j )

+(1 − ν(T 1
j ),

√−1 + √−1ν(T 1
j ))

3∑
i=1

(uT 1
j (i)

+ √−1vT 1
j (i)
)si (T

1
j )

∣∣∣∣∣
p

, (48)

where T 1
j (i) are the indices of the vertices of T 1

j , i.e. T 1
j = [v1

Tj (1)
, v1

Tj (2)
, v1

Tj (3)
].

Secondly, the boundary constraint can be approximated by a linear constraint. For each
boundary vertex v1

i ∈ γ j , we only require V(v1
i ) to be tangential to γ ′

j at f μ(vi ). That is, if

g(v1
i ) = (Pi , Qi )

t and (ai , bi )
t is the direction of the tangent, then

bi Pi − ai Qi = 0, (49)

which is a linear constraint. By putting p = 2, the optimization problem (48) together with
the constraint (49) becomes a least square problem. For each iteration of Algorithm 1, gn(v1

i )

is solved as above. Set f̃n+1(v1
i ) := fn(v1

i ) + gn(v1
i ). For each boundary vertex v1

i ∈ γ j ,
it is not necessary that f̃n+1(v1

i ) ∈ γ ′
j because the boundary constraints are approximated.

Nevertheless, when ||νn − μn ||∞ is sufficiently small, f̃n+1(v1
i ) shall not be far away from

γ ′
j . Hence we can project f̃n+1(v1

i ) onto γ ′
j and obtain the solution fn+1(v1

i ) such that
fn+1(γ j ) = γ ′

j , i.e.

fn+1(v1
i ) := argminz∈γ ′

j
‖ f̃n+1(v1

i )− z‖2. (50)
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5.2 Implementation Details of Algorithm 2 and Algorithm 3

In this subsection, we give the numerical implementation details for Algorithms 2 and 3.
In the discrete setting, νn , μ( fn) and λn are all complex-valued functions defined on each

triangular faces. More precisely, they are functions from F1 to C. ρn is a positive constant.
Given a piecewise linear homeomorphism fn between K1 and K2, the value of μ( fn) on
each face T is given by

μ( fn)(T ) = (1, i)∇T fn

(1,−i)∇T fn
, (51)

where ∇T is given by (45).
The augmented Lagrangian L in (2) can then be discretized.
Step 2 of Algorithm 2 and Algorithm 3 requires us to compute the descent direction V1+V2

that minimize L( fn, νn, λn, ρn), where V1 is the descent direction for E1( f ) and V2 is the
descent direction for< λRe,Re(ν−μ( f )) > + < λIm, Im(ν−μ( f )) > + ρ

2 ||ν−μ( f )||22.
The computation of V1 depends on the form of the energy E1( f ). For example, if E1( f )

is defined as the intensity mismatching error ||I1 − I2( f )||22, then on each vertex vi , the value
of V1 is given by V1(vi ) = 2(I1(vi ) − I2( fn(vi )))∇ I2( fn(vi )). Here we assume that we
have the explicit forms of I1, I2 and ∇ I2 so that we can evaluate their values on arbitrary
points. Otherwise, if the values of I1 and I2 are only known on each vertices, we can use the
method introduced in the last subsection to compute ∇ I2 on each face. Interpolations can be
used to evaluate the values ∇ I2( fn(vi )) and I2( fn(vi )).

To compute V2, we will use Algorithm 1 as follows. On each face T , the decent direction
for μ( fn) is given by

∂μ(T ) = Area(T )[λn(T )+ ρn(νn(T )− μ( fn)(T ))] (52)

Use Algorithm 1, we obtain a quasiconformal map f ′ such that its Beltrami coefficientμ( f ′)
is approximately equal to μ( fn)+ ∂μdτ , where dτ is a small positive number. Then we set
V2 = ( f ′ − fn)/dτ .

After computing V1 and V2, we set f̃ = fn + (V1 + V2)dt and project the boundary
points to the corresponding boundaries. For Algorithm 2, we repeat the above computations
but replacing fn by f̃ at each time. When the computations converge, we set fn+1 = f̃ .

Now, step 3 of both Algorithm 2 and Algorithm 3 require us to minimize L( fn+1, ν, λn, ρn)

with respect to ν:

E2(ν)+ < λn
Re,Re(ν − μ( fn+1)) > + < λn

Im, Im(ν − μ( fn+1)) > +ρn

2
||ν − μ( fn+1)||22.

Depend on the form of E2(ν), the minimizer can either be found by solving a linear system
directly, or by the gradient descent method. For example, if E2(ν) = ||∇ν||22 + ||ν||22, then
on each face, the minimizer ν̃ satisfies the linear equation

I f
v ΔIvf ν−2ν − λn

ReRe(ν − μ( fn+1))− iλn
ImIm(ν − μ( fn+1))− ρn(ν − μ( fn+1)) = 0.

(53)

In the above, Ivf is the interpolating matrix that converts functions defined on faces into

functions on vertices and I f
v is the interpolating matrix from vertices to faces.Δ is the Laplace

operator constructed by the cotangent formula. Let T1 = [vi , v j , vk] and T2 = [vi , v j , vl ].
The mesh Laplacian is defined as:
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Δ( f (vi )) =
∑

T ∈Ni

cot αi j + cot βi j

2
( f (v j )− f (vi )) (54)

where αi j and βi j are the two interior angles of T1 and T2 which are opposite to the edge
[vi , v j ]. To find αi j and βi j , we follow the idea of [34]. Let li j be the length of the edge
[vi , v j ]. By law of cosines: l2

i j = l2
jk + l2

ki − 2l jklki cosαi j ,

we have

cosαi j = −l2
i j + l2

jk + l2
ki

2l jklki
. (55)

Similar, by the law of sines: Area(T1) = 1
2 l jklki sin αi j , we have

sin αi j = 2Area(T1)

l jklki
. (56)

Therefore we have

cot αi j = −l2
i j + l2

jk + l2
ki

4Area(T1)
(57)

and the discrete Laplacian operator can then be constructed. Similarly, βi j can be computed.
The minimizer ν̃ can be computed by solving the above linear system (53) , and we set
νn+1 = ν̃.

In the situation when E2(ν) is not easy to minimize, we can use example the gradient
descent to compute the minimizer. As an example, consider E2(ν) = ||∇ν||22 + ||ν||p

p . The
descent direction for νn(T ) is given by

∂ν = Area(T )
[
I f
v ΔIvf νn − p|νn |p−2νn − λn

ReRe(νn − μ( fn+1))

−iλn
ImIm(νn − μ( fn+1))− ρn(νn − μ( fn+1))

]
. (58)

On each face T , we set ν̃(T ) = νn(T )+ ∂ν(T )dτ . For Algorithm 2, we repeat the procedure
as above but replacing νn by ν̃. When the computation reach convergence, we set νn+1 = ν̃.

Finally, λn+1 and ρn+1 are updated as follows. If the gradient ||∇ f L + ∇νL|| > εn for
some predefined parameter εn , then we set λn+1 = λn and ρn+1 = ρn . Otherwise we will
check the magnitude of the residue ||νn+1 − μ( fn+1)||2. If ||νn+1 − μ( fn+1)||2 < ηn for
some parameter ηn , then we set

λn+1 = λn + ρn(νn+1 − μ( fn+1)) (59)

and ρn+1 = ρn . Otherwise, we will set λn+1 = λn and set ρn+1 = ρn(1 + γn), where γn is
some positive number.

6 Experimental Results

6.1 Solving DOPs on Simply-Connected Domains

Example 1 We first test our proposed algorithm to compute a diffeomorphism of the unit
disk D = {(x, y) ∈ R

2 : x2 + y2 = 1} matching the intensity functions.
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Fig. 2 Example 1: a shows the input mesh. b Shows the intensity F(x, y) defined on D. c Shows the intensity
G(x, y) defined on D

Define F : D → R and G : D → R by:

F(x, y) = exp(−40x2 − 40(y − 0.5)2)+ exp(−40x2 − 40(y + 0.5)2)

G(x, y) = exp(−40(x − 0.25)2 − 40(y − 0.5)2)+ exp(−40(x − 0.25)2 − 40(y + 0.5)2)

(60)

We proceed to look for a diffeomorphism f ∗ : D → D that matches the intensities by
minimizing:

E( f ) = α||F − G( f )||22 + β||μ( f )||44 (61)

(with α = 50 and β = 0.0005).

Using the proposed splitting algorithm, we solve the above DOP with stopping criteria as
|| fk+1 − fk ||1 < 10−5 and ||μk+1 −μk ||1 < 10−5. Figure 2a shows the input mesh of D. (b)
and (c) shows the intensity F(x, y) and G(x, y) respectively. The optimal diffeomorphism
f ∗ obtained from our proposed algorithm is shown in Fig. 3a (which is visualized as an
output mesh obtained by deforming the input mesh using the optimal diffeomorphism).
Figure 3b shows the intensity function G ◦ f ∗(x, y), which closely resembles to F(x, y). It
means the registration matches the intensity functions well. Figure 4a–c shows the intensity
mismatching energy, conformality distortion and total energy versus iterations respectively.
Note that the number of iterations to minimize the subproblems might differ in each ADMM
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Fig. 3 Example 1: a shows the output mesh, obtained by deforming the input mesh by the optimal diffeo-
morphism f ∗. b Shows the intensity function G ◦ f ∗(x, y) defined on D, which closely resembles to F(x, y)

iterations. Hence, in our plots, the energy values at each sub-iterations are also shown. The
red dots in (c) indicate the energy values at each actual ADMM iterations. With that, the
number of sub-iterations in each ADMM iterations can be demonstrated. From the energy
plots, we observe that the intensity mismatching error reduces as iterations increase. The
conformality disortion increases as iterations increase, since the initial map is the identity
map with no conformality distortion. Conformality distortion is iteratively induced in order
to tolerate for more intensity matching.

We also compare our proposed method with the algorithm in [1]. The result is shown in
Fig. 5. The optimal diffeomorphism is shown in Fig. 5a, which looks similar to the one we
obtain (Fig. 2a). However, the intensity mismatching error at the optimal state is higher than
that of our proposed algorithm, as shown in (b). In fact, the total energy at the optimal state
is higher than that of our proposed method, as shown in (c). It indicates that the proposed
splitting method can optimize the map to a smaller energy value.

Example 2 In this example, we test our algorithm to compute the landmark-matching dif-
feomorphism f ∗ of D. Figure 6a shows the input mesh. We look for a diffeomorphism that
moves the initial landmark point p (labeled by ◦) to the target landmark point q (labeled by
×). We compute the diffeomorphism by minimizing:

E( f ) = α| f (p)− q|2 + β||μ( f )||22 (62)

(with α = 100 and β = 10).

Using the splitting method, we solve the above DOP and obtain the optimal diffeomor-
phism f ∗, which is shown in Fig. 6b. Landmark point is matched consistently. We also
optimize the DOP using the algorithm in [1]. The obtained diffeomorphism is shown in
Fig. 6c. Note that the landmark point cannot be matched consistently. Figure 7a, b show the
landmark mismatching error and conformality distortion versus iterations using the splitting
method. Note that the landmark mismatching error converges to 0. (c) shows the total energy
versus iterations. The red dots indicate the actual ADMM iterations. Figure 7d–f show the
landmark mismatching error, conformality distortion and total energy versus iterations using
the integral method proposed in [1]. The landmark mismatching error converges at about
0.12. The algorithm get stuck at a local minimum with higher total energy value than our
proposed splitting method.
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Fig. 5 Example 1: a shows the output mesh by deforming the input mesh by the optimal diffeomorphism
obtained using the method in [1]. b shows the intensity mismatching error versus iterations. c shows the total
energy versus iterations

Fig. 6 Example 2: a shows the input mesh, with the initial landmark point and target landmark point labeled
by ◦ and × respectively. b shows the output mesh obtained by deforming the initial mesh with the landmark-
matching diffeomorphism using the proposed splitting method. The point labeled by ◦ is moved to · under the
diffeomorphism. c shows the output mesh obtained by deforming the initial mesh with the landmark-matching
diffeomorphism using the integral method in [1]
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Fig. 7 Example 2: a–c show the landmark mismatching error, conformality distortion and total energy versus
iterations respectively using the splitting method. d–f show the landmark mismatching error, conformality
distortion and total energy versus iterations respectively using the integral method in [1]

Example 3 We have also compared our proposed splitting method to solve the DOP with the
method proposed in [1] on more examples. Two experiments to compute intensity match-
ing diffeomorphisms (similar to Example 1) and three experiments to compute landmark
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Table 1 Comparisons between the proposed splitting method and the previous method in [1]

Examples Splitting method Integral method [1]

Time taken (s) Final energy Time taken (s) Final energy

Intensity matching 1 19 1.46 × 10−3 1680 4.03 × 10−3

Intensity matching 2 23 8.88 × 10−3 1650 2.27 × 10−2

Landmark matching 1 116 2.03 × 10−4 1731 1.50 × 10−2

Landmark matching 2 78 4.18 × 10−4 2163 2.99 × 10−2

Landmark matching 3 77 2.91 × 10−4 2356 2.13 × 10−1

Fig. 8 Example 4: a shows the input mesh. b Shows the intensity F(x, y) defined on R. c Shows the intensity
G(x, y) defined on R

matching diffeomorphisms (similar to Example 2) have been carried out. Table 1 records
the computational times to solve the DOP using the two different methods on five differ-
ent examples. Results show that our proposed splitting method is much more efficient than
the previous approach. Also, the optimal solutions we obtained using our proposed splitting
method have much smaller final energy values.

Example 4 We test our algorithm on a rectangular domain R = [−0.5, 1.5] × [−0.5, 1.5].
We look for an optimal diffeomorphism f ∗ : R → R that matches two intensity functions
F : R → R and G : R → R defined by:
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Fig. 9 Example 4: a shows the output mesh deformed from the initial mesh with the intensity matching
diffeomorphism. b Shows the intensity mismatching error versus iterations. c Shows the total energy versus
iterations. The red dots indicate the actual ADMM iterations (Color figure online)

F(x, y) = exp(−10(x − 0.5)2 − 10(y − 0.5)2)

G(x, y) = exp(−10(x − 0.5)2 − 10(y − 0.75)2) (63)

We minimize: E( f ) = 500||F − G( f )||22 + 5||μ( f )||44. Figure 8a shows the input mesh
of R. (b) and (c) shows the intensity functions F(x, y) and G(x, y) respectively. Using the
splitting method, we solve the above DOP and obtain the diffeomorphism f ∗, which is shown
in Fig. 9a. (b) shows the intensity mismatching error versus iterations. (c) shows the total
energy versus iterations. Again, the red dots indicate the energy values at the actual ADMM
iterations.

Example 5 In this example, we solve the DOP to find a quasi-conformal map f ∗ : D → D

of the unit disk D with BC = ν that minimizes: E( f ) = ||μ( f ) − ν||44. We set ν = 0.3.
Figure 10a shows the input mesh. By solving the DOP, we find the optimal diffeomorphism
f ∗ minimizing E and deform the input mesh through f ∗. The deformed mesh is shown
in (b). The total energy versus iterations is shown in (c). The red dots indicate the actual
ADMM iterations. (d) shows the histogram of the norm of the BC, which accumulates at 0.3
as desired.
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Fig. 10 Example 5: a shows the input mesh. b Shows the output mesh deformed by the optimal diffeo-
morphism. c Shows the total energy versus iterations. d shows the histogram of the norm of the BC, which
accumulates at 0.3 as desired

6.2 Solving DOPs on Multiply-Connected Domains

Example 6 We test our proposed algorithm on a multiply-connected domainΩ . In this exam-
ple, we solve the DOP to find a quasi-conformal map f ∗ : Ω → Ω such that its BC μ( f )
minimizes E( f ) = ||μ( f )−ν||44, where ν = 0.3. Figure 11a shows the input mesh. By solv-
ing the DOP, we find the optimal diffeomorphism f ∗ minimizing E and deform the input
mesh through f ∗. The deformed mesh is shown in (b). The total energy versus iterations is
shown in (c). The red dots indicate the actual ADMM iterations. Note that a quasi-conformal
map of a multiply-connected domain with a given Beltrami coefficient ν may not exist. By
minimizing E , one can find a diffeomorphism whose BC is closest to the given BC ν in the
L4-sense. (d) shows the histogram of the norm of the BC of the optimal diffeomorphism.

Example 7 In this example, we test our proposed algorithm to find an intensity matching
diffeomorphism of a multiply-connected domain. Figure 12a shows an input mesh of a triply-
connected domain Ω . Define F : Ω → R and G : Ω → R by:

F(x, y) = exp(−10(x − 0.5)2 − 10(y − 0.5)2)

G(x, y) = exp(−10(x − 0.5)2 − 10(y − 0.75)2), (64)
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Fig. 11 Example 6: a shows the input mesh of a triply-connected domain. b Shows the output mesh deformed
from the inital mesh using the optimal diffeomorphism. c Shows the total energy versus iterations. d shows
the histogram of the norm of the BC of the optimal diffeomorphism

which are shown in Fig. 12b, c.

We proceed to look for a diffeomorphism f ∗ : Ω → Ω that matches the intensities by
minimizing:

E( f ) = α||G( f )− F ||22 + β||μ( f )||44 (65)

(where α = 500, β = 5). Using the splitting method, we obtain the optimal diffeomorphism
f ∗ as shown in Fig. 13a. Figure 13b–d shows the intensity mismatching error, conformality
distortion and total energy versus iterations. Next, we take α = 50 and β = 5. In other words,
we like to obtain more conformality. Figure 14a shows the obtained diffeomorphism. Note that
the diffeomorphism has less squeezing than that in Fig. 12a. Figure 14b, c shows the intensity
mismatching error and conformality distortion versus iterations. As shown in the energy
plots, the conformality distortion at the optimal state is much less than the previous results.
However, the intensity mismatching error at the optimal state is higher than the previous
result. Note that the algorithm in [1] cannot be applied to multiply-connected domains. Thus,
this problem cannot be solved by the method in [1].
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Fig. 12 Example 7: A shows the input mesh. b shows the intensity F(x, y). c shows the intensity G(x, y)

Example 8 In this example, we test the algorithm to compute the landmark matching dif-
feomorphism of a triply-connected domain Ω . Figure 15a shows an input mesh of Ω . We
look for a diffeomorphism f ∗ : Ω → Ω that matches the initial landmark points {p1, p2}
(labeled by ◦) to the target landmark points {q1, q2} (labeled by ×). The obtained diffeomor-
phism using the splitting method is shown in Fig. 15b, which matches landmark consistently.
Figure 16a, b shows the landmark mismatching error and the conformality distortion versus
iterations respectively.

Example 9 In this example, we test the algorithm to compute a diffeomorphism f ∗ : Ω → Ω

that matches both intensity functions and landmark constraints on a triply-connected domain
Ω . Figure 17a shows the input mesh of Ω . The initial landmarks {p1, p2} are labeled by ◦
and the target landmarks {q1, q2} are labeled by ×. The intensity functions F : Ω → R and
G : Ω → R, which are shown in Fig. 17b, c, are defined as in Eq. (63). Using the splitting
method, we compute f ∗ by minimizing the following energy functional:

E( f ) = α

2∑
i=1

| f (pi )− qi |2 + β||G( f )− F ||22 + γ ||μ( f )||44 (66)

(whereα = 102,β = 102 and γ = 10−2). The obtained diffeomorphism is shown in Fig. 18a.
Landmarks are matched consistently. (b) shows the intensity function G ◦ f ∗(x, y), which
closely resembles to F(x, y). It demonstrates the optimal diffeomorphism matches the inten-
sity functions. Figure 19a–d show the conformality distortion, intensity mismatching error,
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Fig. 13 Results of Example 7: a shows the output mesh deformed from the initial mesh using the intensity
matching diffeomorphism. b Shows the intensity mismatching error versus iterations. c Shows the conformality
distortion versus iterations. d shows the total energy versus iterations. The red dots indicate the actual ADMM
iterations (Color figure online)

landmark mismatching error and total energy versus iterations respectively. The landmark
mismatching error converges to 0 at the optimal state.

Example 10 This example tests our proposed algorithm to find an intensity matching dif-
feomorphism between two triply-connected domains Ω1 and Ω2 with different geometries.
Figure 20a shows the input mesh representing Ω1. Figure 20b shows the target domain Ω2

and the initial map, which is chosen to be the Teichmüller map [38]. Define F : Ω → R and
G : Ω → R by:

F(x, y) = exp(−20x2 − 20y2)

G(x, y) = exp(−5x2 − 5y2), (67)

which are shown in Fig. 20c, d. We then look for a diffeomorphism f ∗ : Ω1 → Ω2 that
minimizes:

E( f ) = α||G( f )− F ||22 + β||μ( f )||66 (68)
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Fig. 14 Results of Example 7 with different parameters (as to preserve more conformality). a Shows the
output mesh deformed from the initial mesh using the optimal diffeomorphism. The output mesh has less
squeezing. b Shows the intensity mismatching error versus iterations. c Shows the conformality distortion
versus iterations

Fig. 15 Example 8: a shows the input mesh. The initial landmark point and target landmark point are labeled
by open circle and multiplication sign respectively. b Shows the output mesh deformed by the optimal diffeo-
morphism. The initial landmark points (labeled by open circle) are moved to dot , which are close to the target
landmark points (labeled by dot)
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Fig. 16 Example 8: a shows the landmark mismatching error versus iterations. b Shows the conformality
distortion versus iterations. c Shows the total energy versus iterations. The red dots indicate the actual ADMM
iterations (Color figure online)

(where α = 5, β = 5). Using the splitting method, we obtain the optimal diffeomorphism
f ∗ as shown in Fig. 21A. Figure 21b,c show the intensity mismatching error and total energy
versus iterations.

Example 11 In this example, we test the algorithm to compute the landmark matching diffeo-
morphism between two multiply-connected domains Ω1 and Ω2 with different geometries.
Both Ω1 and Ω2 have three inner holes but with different sizes and at different locations.
Figure 22a shows an input mesh ofΩ1. Figure 22b shows the target domainΩ2 and the initial
map, which is again chosen to be the Teichmüller map [38]. We look for a diffeomorphism f ∗ :
Ω1 → Ω2 that matches the initial landmark points {p1, p2} (labeled by ◦) to the target land-
mark points {q1, q2} (labeled by ×). The obtained diffeomorphism using the splitting method
is shown in Fig. 22c, which matches landmark consistently. Figure 23a–c shows the landmark
mismatching error, conformality distortion and the total energy versus iterations respectively.

6.3 Solving DOPs on Riemann Surfaces

Example 12 Our proposed method can be easily applied to solving DOPs on Riemann sur-
faces through conformal parameterizations. Every connected Riemann surfaces can be para-
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Fig. 17 Example 9: Landmark and intensity matching diffeomorphism. a Shows the input mesh. The initial
landmark points and target landmark points are labeled by open circle and multiplication sign respectively. b
shows the intensity F(x, y). c shows the intensity G(x, y)

Fig. 18 Example 9: a shows the output mesh obtained by deforming the initial mesh using the optimal diffeo-
morphism. b Shows the intensity function G ◦ f ∗(x, y), which closely resembles to F(x, y). It demonstrates
the optimal diffeomorphism matches the intensity functions

meterized conformally onto the unit disk D or multiply-connected punctured disk. Solving
the DOP on Riemann surfaces is then equivalent to solving a DOP on the 2D domains. To
illustrate the idea, we test our method to find an optimized registration between two human
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Fig. 20 Example 10: a shows the input mesh. b Shows the target domain and the initial map. c Shows the
intensity F(x, y). d Shows the intensity G(x, y)

faces that matches both landmarks and curvatures. Figure 24a, b show two human faces,
with corresponding landmarks labeled on each of them. The colormaps on each surfaces are
given by their mean curvatures. Their conformal parameterizations are shown in (c) and (d)
respectively. We find a diffeomorphism that minimizes the following energy functional:

E( f ) = α

2∑
i=1

| f (pi )− qi |2 + β||H1( f )− H2||22 + γ ||μ( f )||44 (69)

where α = 104, β = 102, γ = 102 and H1 and H2 are the mean curvature functions on Face
1 and Face 2 respectively. Note that H1 and H2 are not smoothly defined in closed forms.

Figure 25a shows the registration result. The colormap (mean curvature) on Face 1 is
mapped to Face 2 using the computed registration. Note that the high curvature regions
(red colored regions) on Face 1 are mapped to corresponding high curvature regions on
Face 2. Landmarks on Face 1 are also mapped to Face 2 using the obtained registration.
Note that landmarks are matched consistently. (b) shows registration result on the conformal
parameter domain. (c) shows the registration result visualized by the texture map. The energy
plots of intensity mismatching error, landmark mismatching error and the total energy versus
iterations are shown in Fig. 26a–c respectively. The red dots indicate the energy values at the
actual ADMM iterations.
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Fig. 21 Results of Example 10: a shows the output mesh deformed from the initial mesh using the intensity
matching diffeomorphism. b Shows the intensity mismatching error versus iterations. c Shows the total energy
versus iterations. The red dots indicate the actual ADMM iterations (Color figure online)

Fig. 22 Example 11: a shows the input mesh. b Shows the target domain and the initial map. The initial
landmark point and target landmark point are labeled by open circle and multiplication sign respectively. c
Shows the output mesh deformed by the optimal diffeomorphism. The initial landmark points (labeled by
circle) are moved to ·, which are close to the target landmark points (labeled by ×)

Example 13 In this example, we test the proposed algorithm to solve the DOP on two
multiply-connected real human faces for face registration. We compute the surface regis-
tration that matches both curvature and landmarks. Instead of parameterizing the surfaces
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Fig. 23 Example 11: a shows the landmark mismatching error versus iterations. b Shows the conformality
distortion versus iterations. c Shows the total energy versus iterations. The red dots indicate the actual ADMM
iterations (Color figure online)

Fig. 24 Example 12: Solving DOP on Riemann surfaces. a, b show the meshes of two human faces. Corre-
sponding feature landmarks on the human faces are shown. c Shows the conformal parameter domain of Face
1. d Shows the conformal parameter domain of Face 2. The colormaps are given by the mean curvatures of
the human faces

onto a punctured disk with circular boundaries, we conformally parameterize the surfaces
onto multiply-connected domains with boundaries of arbitrary shapes. Our method is able
to solve the DOP on domains with arbitrary geometries. Figure 27a, b show two multiply-
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Fig. 25 Example 12: a shows the registration result. The colormap and landmarks on Face 1 are mapped to
Face 2 using the obtained registration. Note that the high curvature regions are mapped to the corresponding
high curvature regions. Landmarks are also consistently matched. b Shows the registration result on the
conformal parameter domain

Fig. 26 Example 12: a shows the intensity mismatching error versus iterations. b Shows the landmark
mismatching error versus iterations. c Shows the total energy versus iterations. The red dots indicate the actual
ADMM iterations (Color figure online)

connected real human faces, with corresponding landmarks labeled on each of them. The
colormaps on each surfaces are given by their mean curvatures. Their conformal parameter
domains are shown in (c) and (d) respectively. We find a diffeomorphism that matches corre-
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Fig. 27 Example 13: Solving DOP on multiply-connected real human faces. a, b Show the meshes of two
multiply-connected human faces. Corresponding feature landmarks on the human faces are shown. c Shows
the conformal parameter domain of Face 1. d Shows the conformal parameter domain of Face 2. The colormaps
are given by the mean curvatures of the human faces

Fig. 28 Example 13: a shows the registration result. The colormap and landmarks on Face 1 are mapped to
Face 2 using the obtained registration. Note that the high curvature regions are mapped to the corresponding
high curvature regions. Landmarks are also consistently matched. b Shows the registration result on the
conformal parameter domain

sponding landmarks and curvatures. The initial map is chosen to be the landmark matching
Teichmüller map [38].

Figure 28 shows the registration result. The colormap (mean curvature) on Face 1 is
mapped to Face 2 using the computed registration. Note that the high curvature regions (red
colored regions) on Face 1 are mapped to corresponding high curvature regions on Face
2. Landmarks on Face 1 are also mapped to Face 2 using the obtained registration. Note
that corresponding landmarks are matched consistently. (b) shows registration result on the
conformal parameter domain. (c) shows the registration result visualized by the texture map.
The energy plots of intenisity mismatching error, conformality distortion and the total energy
versus iterations are shown in Fig. 29a–c respectively. The red dots indicate the energy values
at the actual ADMM iterations.

7 Conclusion

This paper introduces an efficient algorithm to solve the diffeomorphism optimization prob-
lem (DOP), using quasi-conformal theories. DOP is a type of optimization problems which
minimizes energy functionals defined over the space of diffeomorphisms. In [1], the method
of Beltrami holomorphic flow (BHF) was proposed to solve the DOP by representing the
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Fig. 29 Example 13: a shows the intensity mismatching error versus iterations. b Shows the conformality
distortion versus iterations. c Shows the total energy versus iterations. The red dots indicate the actual ADMM
iterations (Color figure online)

diffeomorphisms using the Beltrami coefficients. The optimal Beltrami coefficient associated
to the diffeomorphism minimizing the energy functional can then be effectively found. How-
ever, the algorithm is computational expensive. In this work, we propose an efficient splitting
algorithm, based on the classical alternating direction method of multiplier (ADMM), to
solve the DOP. The basic idea is to split the energy functional into two energy terms: one
involves the BC whereas the other involves the quasi-conformal map. Alternating minimiza-
tion scheme can then be applied to minimize the energy functional. The proposed method
significantly speeds up the previous BHF approach [1]. It also extends the previous BHF
algorithm to Riemann surfaces of arbitrary topologies. Experiments have been carried out
on synthetic together with real surface data, which demonstrate the efficiency and efficacy
of the proposed algorithm to solve the DOP.
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