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Abstract. Registration, which aims to find an optimal one-to-one correspondence between
different data, is an important problem in various fields. This problem is especially challenging
when large deformations occur. In this paper, we present a novel algorithm to obtain diffeomorphic
image or surface registrations with large deformations via quasi-conformal maps. The basic idea is to
minimize an energy functional involving a Beltrami coefficient term, which measures the distortion of
the quasi-conformal map. The Beltrami coefficient effectively controls the bijectivity and smoothness
of the registration, even with very large deformations. Using the proposed algorithm, landmark-based
registration between images or surfaces can be effectively computed. The obtained registration is
guaranteed to be diffeomorphic (1-1 and onto), even with a large deformation or large number of
landmark constraints. The proposed algorithm can also be combined with matching intensity (such
as image intensity or surface curvature) to improve the accuracy of the registration. Experiments
have been carried out on both synthetic and real data. Results demonstrate the efficacy of the
proposed algorithm to obtain diffeomorphic registration between images or surfaces.

Key words. Registration, large deformation, diffeomorphic, quasi-conformal mapping, Beltrami
coefficient

1. Introduction. Registration is a process of finding the optimal one-to-one
correspondence between different data, such as images or surfaces. Applications can
be found in various fields, including computer graphics, computer visions and medical
imaging. For example, in medical imaging, finding accurate 1-1 correspondence be-
tween medical data is crucial for statistical shape analysis of the anatomical structures.
While in computer graphics, surface registration is needed for texture mapping.

Different registration approaches have been developed. Existing algorithms can
mainly be divided into three categories, namely, 1. landmark based registration,
2. intensity based registration and 3. hybrid registration using both landmark and
intensity information. Landmark based registration computes a smooth 1-1 corre-
spondence between corresponding data that matches important features. This kind
of registration, with good feature alignment, is particularly crucial in medical imaging
and computer graphics. For example, in computer graphics, landmark based regis-
tration is used to obtain the constrained texture mapping. The main advantage of
the landmark based method is that larger deformations can be dealt with and intu-
itive user-interaction can be incorporated. Intensity based registration aims to match
corresponding data without feature landmarks. Registration is usually obtained by
matching intensity functions, such as image intensity for image registration or surface
curvature for surface geometric registration. The main advantage of the intensity
based registration is that more image information is taken into account and the delin-
eation of feature landmarks is not required. However, it usually cannot cope with large
geometric deformations. Recently, hybrid registration that combines landmark based
and intensity based methods have gained increased attention. Hybrid approaches use
both the landmark and intensity information to guide the registration. This type of
approaches can usually obtain more accurate registration result, since the advantages
of landmark based and intensity based registration can be combined. In this work,
we will mainly focus on the landmark based registration and the hybrid registration.

Most existing algorithms can compute registration accurately and efficiently when
the deformation is small. However, the registration problem becomes challenging when
large deformations occur. Bijectivity can be easily lost and overlaps can usually be
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observed in the obtained registration. This causes inaccuracies in the registration.
It is therefore necessary to develop an algorithm to obtain diffeomorphic registration
with large deformations.

In this paper, we introduce a novel method to obtain diffeomorphic image or sur-
face registrations via quasi-conformal maps, which can deal with large deformations.
The key idea is to minimize an energy functional involving a Beltrami coefficient
term, which measures the distortion of the quasi-conformal map. The Beltrami coef-
ficient effectively controls the bijectivity and smoothness of the registration, even with
very large deformations. By minimizing the energy functional, we obtain an optimal
Beltrami coefficient associated to the desired registration, which is guaranteed to be
bijective. Using the proposed algorithm, landmark-based registration between images
or surfaces can be effectively computed. The obtained registration is guaranteed to
be diffeomorphic (1-1 and onto), even with a large deformation or a large number of
landmark constraints. The proposed algorithm can also be combined with matching
intensity (such as image intensity or surface curvature) to improve the accuracy of the
registration. Numerical results show that the combination of landmark constraints
with intensity matching can significantly improve the accuracy of the registration. To
test the effectiveness of the proposed algorithm, experiments have been carried out on
both synthetic and real data. Results show that the proposed algorithm can compute
diffeomorphic registration between images or surfaces effectively and efficiently.

In summary, the contributions of this paper are three-folded. Firstly, we propose
a variational method to search for an optimized Beltrami coefficient associated to
a diffeomorphic quasi-conformal map with large deformations, which minimizes the
local geometric distortion. Secondly, we apply the model to compute the landmark
based registration, which can deal with very large deformations and large amount of
landmark constraints. Thirdly, we extend the landmark based registration model to
a hybrid registration model, which combine both landmark and intensity information
to obtain more accurate registration.

The rest of the paper is organized as follows. In section 2, we review some
previous works closely related to this paper. In section 3, we describe some basic
mathematical background related to our proposed model. In section 4, our proposed
model for diffeomorphic registration with large deformations is explained in details.
We describe the numerical implementation of the proposed algorithm in section 5.
Experimental results are reported in section 6. Finally, we conclude our paper in
section 7.

2. Previous works. In this section, we will review some related works closely
related to this paper.

Intensity-based image registration has been widely studied. A comprehensive
survey on the existing intensity-based image registration can be found in [1]. One
of the commonly used method is based on the variational approaches to minimize
the intensity mismatching error. For example, Vercauteren et al. [24] proposed the
diffeomorphic demons registration algorithm, which is a non-parametric diffeomor-
phic image registration algorithm based on Thirion’s demons algorithm[3]. The basic
idea is to adapt the optimization procedure underlying the demons algorithm to a
space of diffeomorphic transformations. The obtained registration is smooth and bi-
jective. Several algorithms for surface registration that matches geometric quantities,
such as curvatures, have also been propsoed [4][2][23][25]. For example, Lyttelton
et al. [2] proposed an algorithm for surface parameterizations based on matching
surface curvatures. Yeo et al. [25] proposed the spherical demons method, which
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adopted the diffeomorphic demons algorithm [24], to drive surfaces into correspon-
dence based on the mean curvature and average convexity. Conformal surface regis-
tration, which minimizes angular distortions, has also been widely used to obtain a
smooth 1-1 correspondence between surfaces [13, 5, 7, 6, 14, 15, 16, 17]. An advantage
of conformal registrations is that they preserve local geometry well. Quasi-conformal
surface registrations, which allows bounded amount of conformality distortion, have
also been studied [18, 19, 20, 21]. For example, Lui et al. [19] proposed to compute
quasi-conformal registration between hippocampal surfaces based on the holomorphic
Beltrami flow method, which matches geometric quantities (such as curvatures) and
minimizes the conformality distortion [18].

Landmark-based registration has also been widely studied and different algo-
rithms have been proposed. Bookstein et al. [26] proposed to use a thin-plate spline
regularization (or biharmonic regularization) to obtain a registration that matches
landmarks as much as possible. Tosun et al. [31] proposed to combine iterative clos-
est point registration, parametric relaxation and inverse stereographic projection to
align cortical sulci across brain surfaces. These diffeomorphisms obtained can better
match landmark features, although not perfectly. Wang et al. [27, 30, 28, 29] pro-
posed to compute the optimized harmonic registrations of brain cortical surfaces by
minimizing a compounded energy involving the landmark-mistmatching term [27, 30].
The obtained registration obtains an optimized harmonic map that better aligns the
landmarks. However, landmarks cannot be perfectly matched, and bijectivity can-
not be guaranteed under large number of landmark constraints. Later, Lin et al.
[22] propose a unified variational approach for registration of gene expression data
to neuroanatomical mouse atlas in two dimensions that matches feature landmarks.
Again, landmarks cannot be exactly matched. Inexact landmark-matching registra-
tions are sometimes advantegous. In the case when landmark points/curves cannot
be accurately delineated, this method is more tolerant of errors in labeling landmarks
and gives better parameterization. In the situation when exact landmark matching
is required, smooth vector field has been applied to obtain surface registration. Lui
et al. [28, 29] proposed the use of vector fields to represent surface maps and recon-
struct them through integral flow equations. They obtained shape-based landmark
matching harmonic maps by looking for the best vector fields minimizing a shape
energy. The use of vector fields to compute the registration makes the optimization
easier, although it cannot describe all surface maps. An advantage of this method is
that exact landmark matching can be guaranteed. Time dependent vector fields can
also be used [8, 9, 10, 11, 12]. For example, Glaunés et al. [9] proposed to generate
large deformation diffeomorphisms of a sphere, with given displacements of a finite
set of template landmarks. The time dependent vector fields facilitate the optimiza-
tion procedure, although it may not be a good representation of surface maps since
it requires more memory. The computational cost of the algorithm is also expen-
sive. Quasi-conformal mapping that matches landmarks consistently has also been
proposed. Wei et al. [34] also proposed to compute quasi-conformal mappings for
feature matching face registration. The Beltrami coefficient associated to a landmark
points matching parameterization is approximated. However, either exact landmark
matching or the bijectivity of the mapping cannot be guaranteed, especially when
very large deformations occur.

Algorithms for hybrid registration, which combines both the landmark and inten-
sity information to guide the registration, has also been proposed[36][37][35][38]. For
example, Christensen et al. [38] propsoed an algorithm for hybrid registration that
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Fig. 3.1. Illustration of how the Beltrami coefficient determines the conformality distortion.

uses both landmark and intensity information to guide the registration. The method
utilizes the unidirectional landmark thin-plate spline (UL-TPS) registration technique
together with a minimization scheme for the intensity difference to obtain good cor-
respondence between images. Paquin et al. [36] proposed a registration method using
a hybrid combination of coarse-scale landmark and B-splines deformable registration
techniques. Chanwimaluang et al. [37] proposed a hybrid retinal image registration
approach that combines both area-based and feature-based methods. Existing hybrid
registration techniques can drive data into good correspondence when deformations
are not too large. In this work, we propose a hybrid quasi-conformal registration
method, which can deal with very large deformations.

3. Mathematical background. In this work, we apply quasi-conformal maps
to obtain diffeomorphic registrations with large deformations. In this section, we
describe some basic theories related to quasi-conformal geometry. For details, we
refer to readers to [32][33].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure. A generalization of conformal maps is the quasi-conformal maps, which
are orientation preserving homeomorphisms between Riemann surfaces with bounded
conformality distortion, in the sense that their first order approximations takes small
circles to small ellipses of bounded eccentricity [32]. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. It measures how far the map at
each point is deviated from a conformal map. In particular, the map f is conformal
around a small neighborhood of p when µ(p) = 0. Infinitesimally, around a point p,
f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
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Fig. 3.2. Reconstruction of a diffeomorphism from its associated Beltrami coefficient. (A)
shows a diffeomorphism between two rectangles. Its Beltrami coefficient is computed. (B) shows
the reconstructed quasi-conformal map from the Beltrami coefficient. (C) shows the norm of the
Beltrami coefficient.

with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of
fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is
the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. Thus, the
Beltrami coefficient µ gives us all the information about the properties of the map
(See Figure 3.1).

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (3.3)

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential is used. A

Beltrami differential µ(z)dzdz on a Riemann surface S is an assignment to each chart
(Uα, φα) of an L∞ complex-valued function µα, defined on local parameter zα such
that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (3.4)

on the domain which is also covered by another chart (Uβ , φβ). Here,
dzβ
dzα

= d
dzα

φαβ
and φαβ = φβ ◦ φ−1α .

An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal

associated with µ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ , ψβ) on S2,

the mapping fαβ := ψβ ◦ f ◦ f−1α is quasi-conformal associated with µα(zα)dzαdzα
.

4. Proposed algorithm. In this section, we explain our proposed model for
diffeomorphic registration with large deformation in details. The basic idea is to look
for a quasi-conformal map to register two corresponding data, which can either be
images or surfaces. The quasi-conformal map is obtained by minimizing an energy
functional involving a Beltrami coefficient term, which measures the distortion of the
quasi-conformal map. The Beltrami coefficient effectively controls the bijectivity and
smoothness of the registration, even with very large deformations.
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4.1. Proposed model. Let S1 and S2 be two corresponding images or surfaces.
Our goal is to find a smooth 1-1 mapping f : S1 → S2 between S1 and S2 satisfying
certain prescribed criteria. For landmark-based registration, we look for a registration
that matches corresponding feature landmarks. Let {pi ∈ S1}mi=1 and {qi ∈ S1}mi=1 be
the sets of corresponding feature landmarks defined on S1 and S2 respectively. We
search for a diffeomorphism f : S1 → S2 subject to the landmark constraints that
f(pi) = qi for all 1 ≤ i ≤ m.

We propose a variational approach to obtain an optimized quasi-conformal map f ,
which minimizes an energy functional ELM involving the Beltrami coefficient terms.
More specifically, we propose to solve the following minimization problem:

f = argming:S1→S2
ELM (g)

:= argming:S1→S2
{
∫
S1

|∇µg|2 + α

∫
S1

|µg|p}
(4.1)

subject to the constraints that:
C(i) f(pi) = qi for 1 ≤ i ≤ m (landmark constraint);
C(ii) ||µf ||∞ < 1 (bijectivity).

The first term of ELM ensures the smoothness of f . The second term of ELM
aims to minimize the conformality distortion of f . The constraint C(i) is the landmark
constraint, which enforces f to match corresponding landmarks consistently.

Proposition 4.1. If f : S1 → S2 satisfies the constraint C(ii), then f is a
diffeomorphism.

Proof. Suppose f = u+ iv under some local coordinates. The Beltrami coefficient
µf is given by:

µf =
∂f

∂z
/
∂f

∂z
(4.2)

where

∂f

∂z
= (ux − vy) + i(uy + vx);

∂f

∂z
= (ux + vy) + i(vx + uy); (4.3)

Now, the Jacobian of f , Jf , is given by:

Jf = uxvy − uyvx

=
(ux + vy)2 + (vx + uy)2 − (ux − vy)2 − (uy + vx)2

4

= |∂f
∂z
|2 − |∂f

∂z
|2 = |∂f

∂z
|2(1− |µf |2)

(4.4)

Since ||µf ||∞ < 1, |∂f∂z |
2 6= 0. Also, (1− |µf |2) > 0. Hence, Jf > 0 everywhere.

Since the Jacobian is postive everywhere, by the inverse function theorem, the
mapping f is locally invertible everywhere. In other words, f is a diffeomorphism.

Proposition 4.2 (Landmark-matching registration). Let:

A ={ν ∈ C1(Ω1) : ||Dν||∞ ≤ C1; |ν(pi)| ≤ C2 + ε; fν(pi) = qi for 1 ≤ i ≤ n}. (4.5)

Then: ELM has a minimizer in A. In fact, A is compact.

Proof. Note that A 6= ∅. In particular, the unique Teichmüller map is indeed
in A. We first prove that A is complete. Let {νn}∞n=1 be a Cauchy sequence in A
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under the norm || · ||s. Then, {ν′n}∞n=1 is also a Cauchy sequence with respect to
the || · ||∞ norm. Since A ⊂ H1Ω1, which is complete. Thus, ν′n → g uniformly for
some g ∈ H1(Ω1). Since ν′n is continuous, g is also continuous. Besides, νn(pi) is
convergent. Hence, νn → ν and νn → ν′ uniformly for some ν ∈ C1(Ω1).

In addition, |νn(pi)| < C1 + ε for all n implies |ν(pi)| ≤ C1 + ε. ||Dνn||∞ ≤ C2

implies ||Dν||∞ ≤ C2. Since νn → ν uniformly, fvn → fν locally uniformly. This
implies fν(pi) = qi for 1 ≤ i ≤ n. Therefore, ν ∈ A. Obviously, A is totally bounded.
We conclude that A is compact.

Since A is compact and ELM is continuous in A, ELM has a minimizer in A.
In order to improve the accuracy of the registration, one can combine the landmark-

matching registration model with the intensity matching model. The intensities are
functions defined on S1 and S2. Usually, they are image intensities for image regis-
tration and surface curvatures for surface registration. Ideally, we want to obtain a
landmark-matching diffeomorphism f : S1 → S2 that matches the intensities as much
as possible. We denote the intensities on S1 and S2 by I1 : S1 → R and I2 : S2 → R
respectively. Our registration model can be modified as solving the following mini-
mization problem:

f = argming:S1→S2
EIM (g)

:= argming:S1→S2
{
∫
S1

|∇µg|2 + α

∫
S1

|µg|p + β

∫
S1

(I1 − I2(f))2}
(4.6)

subject to the constraints C(i) and C(ii).
Proposition 4.3 (Landmark and intensity matching registration). EIM has a

minimizer in A if I1 and I2 are continuous.
Proof. The exisitence of minimizer depends on the continuity of I1 and I2. If I1

and I2 are continuous, EIM is continuous. Since A is compact, EIM has a minimizer
in A.

4.2. Energy minimization. In this subsection, we describe an algorithm to
approximate the solutions of the above minimization problems.

4.2.1. Landmark based registration model. Given two corresponding sets
of landmarks {pi}ni=1 and {qi}ni=1on S1 and S2 respectively, our goal is to look for a
diffeomorphism f : S1 → S2 that satisfies f(pi) = qi (i = 1, ..., n) while minimizing
the local geometric distortion. Our proposed model is to solve the variational problem
(4.1) as described in the last subsection.

More specifically, our goal is to look for an optimal Beltrami coefficient ν : S1 →
C, which is the Beltrami coefficient of some diffeomorphism f : S1 → S2, minimizing
the following energy functional ELM :

ELM (ν) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p (4.7)

subject to the constraints that ||ν||∞ < 1, f(pi) = qi for i = 1, 2, ...n and ν = µ(f),
where µ(f) is the Beltrami coefficient of f .

We apply a splitting method to solve the constrained optimization problem. In
particular, we consider to minimize:

EsplitLM (ν, f) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p + γn

∫
S1

|ν − µ(f)|2 (4.8)
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subject to the constraints that ||ν||∞ < 1 and f(pi) = qi for i = 1, 2, ...n.

We iteratively minimize EsplitLM subject to the constraints. Set ν0 = 0. Suppose νn
is obtained at the nth iteration. Fixing νn, we minimize EsplitLM (νn, f) over f , subject
to the constraint that f(pi) = qi (i = 1, 2, ...n), to obtain fn. Once fn is obtained,

fixing fn, we minimize EsplitLM (ν, fn) over ν to obtain νn+1.

To minimize EsplitLM (νn, f) over f fixing νn, it is equivalent to finding a landmark
matching diffeomorphism fn : S1 → S2, whose Beltrami coefficient closely resembles
to νn and satisfies the landmark constraints f(pi) = qi). To obtain such fn, we
propose to use the Linear Beltrami Solver (LBS) to find the descent direction for
the Beltrami coefficients µ(f) such that it approaches to νn and the corresponding f
satisfies the landmark constraints.

Let f = u+ iv. From the Beltrami equation (3.1),

µ(f) =
(ux − vy) + i (vx + uy)

(ux + vy) + i(vx − uy)
(4.9)

Let µ(f) = ρ+ i τ . We can write vx and vy as linear combinations of ux and uy,

−vy = α1ux + α2uy;

vx = α2ux + α3uy.
(4.10)

where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ; α2 = − 2τ
1−ρ2−τ2 ; α3 = 1+2ρ+ρ2+τ2

1−ρ2−τ2 .
Similarly,

−uy = α1vx + α2vy;

ux = α2vx + α3vy.
(4.11)

Since ∇ ·
(
−vy
vx

)
= 0, we obtain

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (4.12)

where A =

(
α1 α2

α2 α3

)
.

In the discrete case, the elliptic PDEs (4.12) can be discretized into sparse positive
definite linear systems. Given νn and the landmark constraints, one can solve the
linear systems with the landmark constraints in the least square sense. A landmark
matching quasi-conformal map fn, whose Beltrami coefficient closely resembles to νn,
can then be obtained.

Once fn is obtained, we minimize EsplitLM (ν, fn) over ν while fixing fn. In other
words, we look for νn+1 minimizing:∫

S1

|∇ν|2 + α

∫
S1

|ν|p + γn

∫
S1

|ν − µ(fn)|2 (4.13)

By considering the Euler-Lagrange equation, it is equivalent to solving:

(∆ + 2αI + 2γnI)νn+1 = µ(fn) (4.14)

In discrete case, equation (4.14) can be discretized into a sparse linear system
and can be solved efficiently. However, by simply minimizing equation (4.14) does not
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ensure that the corresponding diffeomorphism fn of the resultant Beltrami coefficient
νn satisfies the landmark constraints. Therefore, we use the Linear Beltrami Solver
with input νn together with the landmark constraints to obtain a mapping with the
corresponding Beltrami coefficients νni resemble to νn and satisfies the exact landmark
matching requirement. Using d = νni − νn as a descent direction, we update νn from
the solution of the Equation (4.14) by νn ← νn+ td for some small t. This guarantees
the resultant νn is smooth and the landmark mismatch decreases.

We keep the iteration going to obtain a sequence of pair {(νn, fn)}∞i=1. The
iteration stops when |νn+1 − νn| < ε for some small threshold ε. Theoretically, the
conventional penalty method requires that γn increases in each iterations. In practice,
we set γn to be a large enough constant and the algorithm gives satisfactory results.

In summary, the proposed landmark based registration model can be described
as follows:

Algorithm 1 : (Landmark based registration)
Input : Images or surfaces: S1 and S2; cooresponding landmark sets {pi ∈ S1}mi=1

and {qi ∈ S1}mi=1.
Output : Optimal Beltrami coefficient ν∗ and the landmark matching registration
f∗ : S1 → S2

1. Set ν0 = 0. Use LBS to reconstruct f0 from ν0 satisfying the landmark
constraints.;

2. Given νn. Fixing νn, obtain fn by LBS satisfying the landmark constraints.
Fixing fn, obtain νn+1 by solving: νn+1 = argminν

∫
|∇ν|2 + α

∫
|ν|p +

γn
∫
|ν − µ(fn)|2

3. Use LBS to obtain f̃n from νn satisfying the landmark constraints. Obtain
d = µ(f̃n)− νn and update νn ← νn + td for some small t.

4. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.

4.2.2. Hybrid registration model. The propsoed landmark based registration
model can also be combined with matching intensity (such as image intensity for image
registration or surface curvature for surface registration) to improve the accuracy of
the registration result. More specifically, our goal is to look for an optimal Beltrami
coefficient ν : S1 → C, which is the Beltrami coefficient of some diffeomorphism
f : S1 → S2, minimizing the following energy functional EIM :

EIM (ν, f) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p + β

∫
S1

(I1 − I2(f))2 (4.15)

subject to the constraints that ||ν||∞ < 1 and f(pi) = qi for i = 1, 2, ..., n. Here, I1
and I2 are the intensity functions defined on S1 and S2 respectively.

We again apply a splitting method to solve the above constrained optimization
problem. We consider to minimize:

EsplitIM (ν, µ) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p + σn

∫
S1

|ν − µ|2

+ γ

∫
S1

(I1 − I2(fµ))2
(4.16)

subject to the constraints that ||ν||∞ < 1 and fµ is the quasi-conformal map with
Beltrami coefficient µ satisfying fµ(pi) = qi for i = 1, 2, ...n.

To solve the above optimization problem, we iteratively minimize EsplitIM subject
to the constraints. Set ν0 = 0. Suppose νn and µn is obtained at the nth iteration.
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Fixing νn, we minimize EsplitIM (νn, µ) over µ, subject to the constraint that fµ(pi) = qi
(i = 1, 2, ...n), to obtain µn+1. Once µn+1 is obtained, fixing µn+1, we minimize

EsplitIM (ν, µn+1) over ν to obtain νn+1.

We first discuss the minimization EsplitIM (νn, µ) over µ fixing νn, subject to the
constraint that fµ(pi) = qi (i = 1, 2, ...n). This problem is equivalent to solving:

µn+1 = argminµγ

∫
S1

(I1 − I2(fµ))2 + σn

∫
S1

|µ− νn|2 (4.17)

Using the gradient descent method, we compute the descent direction df , which
minimizes

∫
S1

(I1 − I2(fµ))2. df is given by:

df = 2(I1 − I2(fµ))∇fµ. (4.18)

As fµ is perturbed, its associated Beltrami coefficient is also adjusted by dµ1.
The adjustment can be explicitly computed. Note that :

∂(f + df)

∂z̄
= (µ+ dµ1)

∂(f + df)

∂z
(4.19)

which implies:

∂f

∂z̄
+
∂df

∂z̄
= µ

∂f

∂z
+ dµ1

∂df

∂z
+ µ

∂df

∂z
+ dµ1

∂df

∂z
(4.20)

Thus, the adjustment dµ1 can be obtained by:

dµ1 =

(
∂df

∂z̄
− µ∂df

∂z

)
/
∂f

∂z
(4.21)

Similiarly, we can obtain the descent direction dµ2, minimizes
∫
S1
|µ− νn|2. dµ2

is given by:

dµ2 = −2(µ− νn). (4.22)

Therefore, the descent direction to solve the optimization problem (4.17) is given
by:

dµ = γdµ1 + σndµ2 (4.23)

Using the above formula for the descent direction, we obtain an updated Beltrami
coefficient:

µ̃n+1 = µn + dµ (4.24)

We then compute a quasi-conformal map fn+1, whose Beltrami coefficient closely
resembles to µ̃n+1, using LBS with the landmark constraints enforced. This step
ensures a landmark matching registration can be obtained. We then update µn by:
µn+1 = µ(fn+1).

Once µn+1 is obtained, fixing µn+1, we minimize EsplitIM (ν, µn+1) over ν to obtain
νn+1. In other words, we look for νn+1 minimizing:∫

S1

|∇ν|2 + α

∫
S1

|ν|p + σn

∫
S1

|ν − µn+1|2 (4.25)
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In the case when p = 2, by considering the Euler-Lagrange equation, it is equiv-
alent to solving:

(∆ + 2αI + 2σnI)νn+1 = µn+1 (4.26)

In discrete case, equation (4.26) can be discretized into a sparse linear system and
can be solved efficiently. Similar to section 4.2.1, we use the Linear Beltrami Solver
with input νn together with the landmark constraints to obtain a descent direction d
to update νn by νn ← νn + td for some small t. This guarantees the resultant νn is
smooth and the landmark mismatch decreases.

We keep the iteration going to obtain a sequence of pair {(νn, µn)}∞i=1. The iter-
ation stops when |µn+1−µn| < ε for some small threshold ε. Again, the conventional
penalty method requires that γn increases in each iterations. However, in practice,
we set σn to be a large enough constant and the algorithm gives satisfactory results.

In summary, the proposed hybrid registration model can be described as follows:
Algorithm 2 : (Hybrid registration)
Input : Images or surfaces: S1 and S2; cooresponding landmark sets {pi ∈ S1}mi=1

and {qi ∈ S1}mi=1; intensity functions I1 and I2 defined on S1 and S2 respectively.
Output : Optimal Beltrami coefficient µ∗ and the landmark matching registration
f∗ : S1 → S2

1. Set ν0 = 0. Use LBS to reconstruct f0 from µ̃0 = 0 satisfying the landmark
constraints. Set µ0 = µ(f0);

2. Given νn and µn. Fixing νn, obtain µ̃n+1 by solving:

µ̃n+1 = argminµ

{
γ

∫
S1

(I1 − I2(fµ))2 + σn

∫
S1

|µ− νn|2
}

.
3. Using LBS, compute fn+1 whose Beltrami coefficient closely resembles to
µ̃n+1 with landmark constraints enforced. Let µn+1 = µ(fn+1).

4. Fixing µn+1, obtain νn+1 by solving:
νn+1 = argminν

∫
|∇ν|2 + α

∫
|ν|p + σn

∫
|ν − µn+1)|2

5. Use LBS to obtain f̃n+1 from νn+1 satisfying the landmark constraints. Ob-
tain d = µ(f̃n+1)− νn+1 and update νn+1 ← νn+1 + td for some small t.

6. If ||µn+1 − µn|| ≥ ε, continue. Otherwise, stop the iteration.

5. Numerical implementation. The proposed models for landmark based and
hybrid registration rely on the Linear Beltrami Solver(LBS) and solving the Euler-
Lagrange(E-L) equations. In this section, we will describe the numerical implemen-
tation of the LBS and also the discretization of equations.

Practically speaking, 2D domains or surfaces in R3 are usually represented dis-
cretely by triangular meshes. Suppose K1 and K2 are two surface meshes with the
same topology representing S1 and S2. We define the set of vertices on K1 and K2 by
V 1 = {v1i }ni=1 and V 2 = {v2i }ni=1 respectively. Similarly, we define the set of triangular
faces on K1 and K2 by F 1 = {T 1

j }mj=1 and F 2 = {T 2
j }mj=1.

5.1. Numerical details of LBS. Suppose f : K1 → K2 is an orientation
preserving piecewise linear homeomorphism between K1 and K2. We can assume K1

and K2 are both embedded in R2. In case K1 and K2 are surface meshes in R3, we
first parameterize them conformally by φ1 : K1 → D1 ⊆ R2 and φ2 : K2 → D2 ⊆ R2.
The composition of f with the conformal parameterizations, f̃ := φ2 ◦ f ◦ φ−11 , is
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then an orientation preserving piecewise linear homeomorphism between D1 and D2

embedded in R2.
To compute the quasi-conformal mapping, the key idea is to discretize Equation

4.12 with two linear systems.
Given a map f = (u + iv) : K1 → K2, we can easily compute its associated

Beltrami coefficient µf , which is a complex-valued function defined on each triangular
faces of K1. To compute µf , we simply need to approximate the partial derivatives on
every face T . We denote them by Dxf(T ) = Dxu+ iDxv and Dyf(T ) = Dyu+ iDyv
respectively. Note that f is piecewise linear. The restriction of f on each triangular
face T can be written as:

f |T (x, y) =

(
aTx+ bT y + rT
cTx+ dT y + sT

)
(5.1)

Hence, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
gradient:

∇T f := (Dxf(T ), Dyf(T ))t (5.2)

on each face T can be computed by solving the linear system:

(
~v1 − ~v0
~v2 − ~v0

)
∇T f̃i =

(
f̃i(~v1)−f̃i(~v0)
|~v1−~v0|

f̃i(~v2)−f̃i(~v0)
|~v2−~v0|

)
, (5.3)

where [~v0, ~v1] and [~v0, ~v2] are two edges on T . By solving equation (5.3), aT , bT , cT
and dT can be obtained. The Beltrami coefficient µf (T ) of the triangular face T can
then be computed from the Beltrami equation (3.1) by:

µf (T ) =
(aT − dT ) + i(cT + bT )

(aT + dT ) + i(cT − bT )
, (5.4)

Equation (4.10) and (4.11) are both satisfied on every triangular faces. Let
µf (T ) = ρT + i τT . The discrete versions of Equation (4.10) and (4.11) can be
obtained.

−dT = α1(T )aT + α2(T )bT

cT = α2(T )aT + α3(T )bT
(5.5)

and

−bT = α1(T )cT + α2(T )dT

aT = α2(T )cT + α3(T )dT
(5.6)

where: α1(T ) =
(ρT−1)2+τ2

T

1−ρ2T−τ2
T

; α2(T ) = − 2τT
1−ρ2T−τ2

T
and

α3(T ) =
1+2ρT+ρ

2
T+τ

2
T

1−ρ2T−τ2
T

.

In order to discretize Equation (4.12), we need to introduce the discrete diver-
gence. The discrete divergence can be defined as follows. Let T = [vi, vj , vk] and
wI = f(vI) where I = i, j or k. Suppose vI = gI + i hI and wI = sI + i tI (I = i, j, k).



Diffeomorphic Registration with Large Deformations 13

Using equation (5.3), aT , bT , cT and dT can be written as follows:

aT = ATi si +ATj sj +ATk sk;

bT = BTi si +BTj sj +BTk sk;

cT = ATi ti +ATj tj +ATk tk;

dT = BTi ti +BTj tj +BTk tk;

(5.7)

where:

ATi = (hj − hk)/Area(T ),

ATj = (hk − hi)/Area(T ),

ATk = (hi − hj)/Area(T );

BTi = (gk − gj)/Area(T ),

BTj = (gi − gk)/Area(T ),

BTk = (gj − gi)/Area(T );

(5.8)

Suppose ~V = (V1, V2) is a discrete vector field defined on every triangular faces.
For each vertex vi, let Ni be the collection of neighborhood faces attached to vi. We
define the discrete divergence Div of ~V as follows:

Div(~V )(vi) =
∑
T∈Ni

ATi V1(T ) +BTi V2(T ) (5.9)

By careful checking, one can prove that∑
T∈Ni

ATi bT =
∑
T∈Ni

BTi aT ;
∑
T∈Ni

ATi dT =
∑
T∈Ni

BTi cT . (5.10)

This gives,

Div

(
−Dyu
Dxu

)
= 0 and Div

(
−Dyv
Dxv

)
= 0 (5.11)

As a result, Equation (4.12) can be discretized:

Div

(
A

(
Dxu
Dyu

))
= 0 and Div

(
A

(
Dxv
Dyv

))
= 0 (5.12)

where A =

(
α1 α2

α2 α3

)
. This is equivalent to:

∑
T∈Ni

ATi [α1(T )aT + α2(T )bT ] +BTi [α2(T )aT + α3(T )bT ] = 0

∑
T∈Ni

ATi [α1(T )cT + α2(T )dT ] +BTi [α2(T )cT + α3(T )dT ] = 0
(5.13)

for all vertices vi ∈ D. Note that aT , bT , cT and dT can be written as a linear
combination of the x-coordinates and y-coordinate of the desired quasi-conformal map
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f . Hence, equation (5.13) gives us the linear systems to solve for the x-coordinate
and y-coordinate function of f .

Besides, f has to satisfy certain constraints on the boundary. One common
situation is to give the Dirichlet condition on the whole boundary. That is, for any
vb ∈ ∂K1

f(vb) = wb ∈ ∂K2 (5.14)

Note that the Dirichlet condition is not required to be enforced on the whole
boundary. The proposed algorithm also allows free boundary condition. For example,
in the case that K1 and K2 are rectangles, the desired quasi-conformal map should
satisfy

f(0) = 0; f(1) = 1 f(i) = i f(1 + i) = 1 + i;

Re(f) = 0 on arc [0, i]; Re(f) = 1 on arc [1, 1 + i];

Imag(f) = 0 on arc [0, 1]; Imag(f) = 1 on arc [i, 1 + i]

(5.15)

Besides, in our case, interior landmark correspondences {pi}ni=1 ↔ {qi}ni=1 are also
enforced. Thus, we should add this constraint to the linear systems. Mathematically,
it is described as f(pi) = qi (i = 1, 2, ..., n).

5.2. Discretization of E-L equations. In discrete case, as the Beltrami coef-
ficient µ(T ) is defined on each triangular face, we first approximate µ(v) by

µ(vi) =
1

Ni

∑
T∈Ni

µ(T ) (5.16)

where Ni is the collection of neighborhood faces attached to vi. The obtained µ(vi)
will be the average of the Beltrami coefficients µ(T ) on 1-ring neighbourhood triangles.

Discretizing Equation (4.14) turns down to the problem of discretizing the lapla-
cian operator ∆. Let T1 = [vi, vj , vk] and T2 = [vi, vj , vl]. The mesh laplacian is
defined to be

∆(f(vi)) =
∑
T∈Ni

cotαij + cotβij
2

(f(vj)− f(vi)) (5.17)

where αij and βij are the two interior angles of T1 and T2 which are opposite to the
edge [vi, vj ]. To find αij and similar βij , we follows the idea of [39]. Let lij be the
length of the edge [vi, vj ]. By law of cosines: l2ij = l2jk + l2ki − 2ljklki cosαij , we have

cosαij =
−l2ij + l2jk + l2ki

2ljklki
. (5.18)

Similar, by the law of sines: Area(T1) = 1
2 ljklki sinαij , we have

sinαij =
2Area(T1)

ljklki
. (5.19)

Therefore we have

cotαij =
−l2ij + l2jk + l2ki

4Area(T1)
(5.20)
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and the discrete laplace beltrami operator can be constructed.

As the solution of the equation (4.14), νn+1 , is defined on vertices, we have to
approximate νn+1(T ) on each face before proceeding to next step . The approximation
is taken to be

νn+1(T ) =
1

3

∑
vi∈T

νn+1(vi) (5.21)

5.3. Intensity matching. In section 4.2.2, we propose to solve

argminµ

{
γ

∫
S1

(I1 − I2(fµ))2 + σn

∫
S1

|µ− νn|2
}
.

by using gradient descent. However, the steps involves calculations of the gradient of
µ, which is a second order derivatives. It may cause computation error and instability.
We therefore separately search for the descent direction of µ1 and µ2 for the two terms∫
S1

(I1 − I2(fµ))2 and
∫
S1
|µ− νn|2 respectively in the following way.

For the first term, we apply the Demon force proposed by Wang et al. [40] to find
the deformation:

u =
(I1 − I2)∇(I2)

|∇(I2)|2 + α2(I1 − I2)2
+

(I1 − I2)∇(I1)

|∇(I1)|2 + α2(I1 − I2)2
(5.22)

where u is the deformation vector field. The corresponding Beltrami coefficient of the
deformation is

µd =
∂(Id+ u)

∂z̄

/
∂(Id+ u)

∂z
(5.23)

By the composition rule of the Beltrami coefficient, we have

µ(u(f)) =
µ(f) + fz

fz
µd

1 + fz
fz
µ(f)µd

(5.24)

Then the descent direction of dµ1, minimizes
∫
S1

(I1 − I2(fµ))2, is approximated
by

dµ1 ≈ µ(u(f))− µ(f) (5.25)

For the second term, we can obtain the descent direction as dµ2 = −2(µ − νn).
Therefore, the descent direction to solve the optimization problem is given by:

dµ = γdµ1 + σndµ2 (5.26)

Using the Demon force as registration guarantee the smoothness of µd and also
stabilize the calculation of descent direction.
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Fig. 6.1. Landmark based registration with large amount of landmark constraints. (A) shows
the the correspondence between two landmark sets defined on two unit squares. (B) shows the
obtained landmark matching diffeomorphic registration using our proposed algorithm.

5.4. Multiresolution scheme. To reduce the computation cost of registering
high resolution images (high quality surface meshes), we adopt a multiresolution
scheme for the registration procedure. In the scheme, we first coarsen the both I1 and
I2 by k layers, where I0j = Ij and Ikj is the coarest images of Ij , for j = 1, 2. Registra-

tion process is then carried out to register between Ik1 and Ik2 . Diffeomorphism fk can
then be obtained. To proceed to finer scale, we adopt a linear interpolation on fk to
obtain fk−1, which serves as the initial map for regstration in finer layer. Resultant
mapping of this scheme will be the diffeomorphism which matches the intensity and
satisfies the landmark constraints for the original image resolution.

6. Experimental results. We have test our proposed algorithms on synthetic
data together with real medical data. In this section, experimental results are re-
ported.

6.1. Landmark based registration.
Example 1. In this example, we test our proposed landmark based registration

model on a synthetic example with large amount of landmark constraints enforced.
Figure6.1(A) shows the the correspondence between two landmark sets defined on two
rectangles. 78 corresponding landmark features are labeled on each rectangles. We
compute the landmark matching diffeomorphic registration between the two rectan-
gles, using our proposed landmark based registration model. The registration result
is as shown in (B), which is visualized by the deformation of the regular grids under
the registration. Note that the obtained registration is bijective. No overlaps or flips
can be found.

Example 2. We first test our proposed algorithm on a synthetic example to obtain
a landmark matching registration between two 2D rectangles with very large deforma-
tions. Figure 6.2(A) shows two rectangles, with corresponding landmark sets defined
on each of them. The presecribed deformations of the landmarks are large. Using
our proposed landmark based registration model, we compute the landmark matching
diffeomorphic registration between the two rectangles. The registration result is as
shown in (B), which is visualized by the deformation of the regular grids under the
registration. Note that the obtained registration is bijective. No overlaps or flips can
be found.

Example 3. (Brain landmark matching registration) We apply the proposed al-
gorithm to compute landmark matching quasi-conformal registration between brain
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Fig. 6.2. Landmark based registration with large deformations. (A) shows the the correspon-
dence between two landmark sets defined on two unit squares. (B) shows the obtained landmark
matching diffeomorphic registration using our proposed algorithm.

cortical surfaces. Figure 6.3(A) and (B) show two brain cortical surfaces, each of
them are labeled by 6 sulcal landmarks. Using our proposed method, we compute
the landmark-matching quasi-conformal registration between them. Figure 6.3(C)
shows the conformal registration between the two surfaces. Note that the correspond-
ing landmarks cannot be matched. Figure 6.3(D) shows the registration result using
our proposed landmark-matching quasi-conformal registration, which matches corre-
sponding landmarks consistently. Figure shows the energy plot versus iterations. It
demonstrates our method iteratively minimizes the energy functional to an optimal
quasi-conformal map between the two brain surfaces. In Figure 6.5, we compute the
landmark-matching quasi-conformal registrations with 6 sulcal landmarks between 10
brain cortical surfaces. The mean surface is then computed after the cortical surfaces
are registered. The sulcal features are well-preserved, illustrating that the landmarks
are consistently matched under the registration.

Example 4. We also compared our proposed landmark-matching quasi-conformal
registration algorithm with other state-of-the-art algorithms, namely, 1. harmonic
map; 2. thin-plate spline (TPS) and 3. LDDMM. We compared our method with oth-
ers with different sizes of deformation. As shown in Table 6.1, our method outperforms
other methods. In all cases (tiny, moderate and large deformation), our method com-
putes a non-overlap landmark-matching registration with the least amount of time.
Both harmonic map and TPS has overlaps for their obtained landmark-matching
registration results, although the computations of these methods are efficient. LD-
DMM can obtain non-overlapping landmark-matching registration results, however,
the computational cost is comparatively much more expensive.

Table 6.1
Comparison with other methods with different sizes of deformation

(Time / Overlap) Tiny Moderate Large
QC 6.220 s / 0 9.632 s / 0 12.934 s / 0

Harmonic Map 1.633 s / 13 1.665 s / 42 1.652 s / 110
TPS 0.308 s / 20 0.339 s / 27 0.253 s / 27

LDDMM 382.316 s / 0 396.240 s / 0 409.902 s / 0

6.2. Hybrid registration.
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Fig. 6.3. (A) and (B) shows two brain cortical surfaces, each of them are labeled with six
corresponding sulcal landmarks. (C) shows the conformal registration between the two surfaces
without landmark matching. (D) shows the registration result using our proposed landmark-matching
quasi-conformal registration.

Fig. 6.4. The energy plot versus iterations for the landmark-matching quasi-conformal regis-
tration between brain cortical surfaces.

Example 5. We next test our proposed hybrid registration algorithm on a syn-
thetic example. Figure 6.6(A) and (B) shows two synthetic images to be registered.
(A) shows the image of the character ’A’. (B) shows the image of the character ’R’.
Corresponding feature landmarks are labeled on each images. Our goal is to look
for a diffeomorphic registration that matches the corresponding landmarks and also
the image intensities. (C) shows the obtained diffeomorphic registration using our
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Fig. 6.5. Using the proposed algorithm, the landmark-matching quasi-conformal registrations
with 6 sulcal landmarks between 10 brain cortical surfaces are computed. The mean surface is then
computed after the cortical surfaces are registered. The sulcal features are well-preserved, illustrating
that the landmarks are consistently matched under the registration.

Fig. 6.6. (A) and (B) shows two images to be registered. Corresponding feature landmarks are
labeled on each images. (B) shows the obtained diffeomorphic registration using our proposed hybrid
registration model.

proposed hybrid registration model. Image 1 in (A) is deformed under the obtain
registration to obtain a deformed image, which is shown in (C). The deformed image
closely resembles to the target image (Image 2 in (B)). Landmarks are consistently
matched, and the obtained registration is bijective. Figure 6.7 shows the plots of
energy versus iterations. In our algorithm, multi-level approach is applied to perform
the registration from the coarsest layer to the finest (original resolution) layer. In this
example, three layers are used. Layer 1 refers to the coarsest resolution and layer 3
refers to the finest (original) resolution. The energy plots at different layers are shown
in Figure 6.7. The energy is significantly reduced during the optimization process at
the first layer. The obtained coarse registration is then interpolate back to the finer
layer. An optimal solution is finally reached during the optimization process at the
third layer after about 10 iterations. Figure 6.2 shows the optimal registration at
different layers during the multiresolution scheme.

Example 6. We also test the proposed hybrid registration algorithm on another
synthetic example with larger deformation. Figure 6.9(A) and (B) shows two synthetic
images to be registered. (A) shows the image of the character ’I’. (B) shows the
image of the character ’C’. Corresponding feature landmarks are labeled on each
images. Again, the goal is to look for a diffeomorphic registration that matches the
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Fig. 6.7. The plots of energy versus iterations for the hybrid registration between the ’A’ and
’R’ images. Multi-level approach is applied to perform the registration from the coarsest layer to the
finest (original resolution) layer. The energy plots at different layers are shown.

Fig. 6.8. The registration results using the multiresolution scheme with 3 layers.

corresponding landmarks and also the image intensities. (C) shows the obtained
diffeomorphic registration using our proposed hybrid registration model. Image 1 in
(A) is deformed under the obtain registration to obtain a deformed image, which is
shown in (C). The deformed image closely resembles to the target image (Image 2 in
(B)). Landmarks are consistently matched, and the obtained registration is bijective.

Example 7. We test the hybrid registration algorithm on real images. Figure 6.10
shows two images of the human hands. Corresponding landmark features are labeled
on each images. In Figure 6.11, we show the registration results using different ap-
proaches. Figure 6.11(B) shows the deformed image from Image 1 using the landmark
based registration model. Notice that if we only use landmarks as constraints to guide
the registration, the deformed image is very different (see regions in the red boxes)
from the target image (as shown in (A)). (C) shows the deformed image from Image
1 using the intensity based registration model. Similarly, the deformed image is very
different (see regions in the red boxes) from the target image if only intensity informa-
tion is used. (D) shows the deformed image from Image 1 using the proposed hybrid
registration model. The deformed image closely resembles to the target image. In
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Fig. 6.9. (A) shows the image of the character ’I’. (B) shows the image of the character ’C’.
These two images are to be registered. Corresponding feature landmarks are labeled on each images.
(B) shows the obtained diffeomorphic registration using our proposed hybrid registration model.

Fig. 6.10. Two images of human hands to be registered. Corresponding landmark features are
labeled on each images.

fact, the intensity mismatching error is less than 1%, meaning that the registration is
very accurate.

Example 8. We also test the hybrid registration algorithm to register two brain
MRIs. Figure 6.12 shows two human brain images. Corresponding landmark features
are labeled on each images. In Figure 6.13, we show the registration results using
different approaches. Figure 6.13(B) shows the deformed image from Image 1 using
the landmark based registration model. If we only use landmarks as constraints to
guide the registration, the deformed image is different (see regions in the red boxes)
from the target image (as shown in (A)). (C) shows the deformed image from Image
1 using the intensity based registration model. Similarly, the deformed image is
very different (see regions in the red boxes) from the target image if only intensity
information is used. Notice that the tumor in the red box does not move using
intensity based registration. (D) shows the deformed image from Image 1 using the
proposed hybrid registration model. The deformed image closely resembles to the
target image. The intensity mismatching error is less than 1%, meaning that the
registration is very accurate.

Example 9. We also test the hybrid registration algorithm to register two hu-
man teeth surfaces. Figure 6.14 shows two human teeth surfaces, each of them are
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Fig. 6.11. Registration results of the human hand images using different approaches. (A) shows
the target image (Image 2 as in Figure 6.10). (B) shows the deformed image from Image 1 using the
landmark based registration model. (C) shows the deformed image from Image 1 using the intensity
based registration model. (D) shows the deformed image from Image 1 using the proposed hybrid
registration model.

Fig. 6.12. Two human brain images to be registered. Corresponding landmark features are
labeled on each images.

labeled with corresponding landmarks. Figure 6.15 shows the registration results of
the two teeth surfaces using the landmark-matching quasi-conformal registration. (A)
shows the surface of Teeth 1, whose colormap is given by its mean curvature. (B)
shows the surface of Teeth 2, whose colormap is given by its mean curvature. (C)
shows the registration result using the landmark-matching quasi-conformal registra-
tion. The colormap on the surface of Teeth 1 is mapped to the surface of Teeth 2
using the obtained registration. Note that the curvature is not matched consistently
(see the regions in the red boxes). It shows that the registration is not accurate if
only landmarks are used to guide the registration process. Figure 6.16 (C) shows the
registration result using the hybrid quasi-conformal registration. In this case, both
landmarks and curvature information are used to guide the registration process. The
colormap (mean curvature) on the surface of Teeth 1 is mapped to the surface of Teeth
2 using the obtained registration. Note that the curvature is matched consistently,
which means the registration result is accurate.
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Fig. 6.13. Registration results of the human brain images using different approaches. (A)
shows the target image (Image 2 as in Figure 6.12). (B) shows the deformed image from Image 1
using the landmark based registration model. (C) shows the deformed image from Image 1 using the
intensity based registration model. (D) shows the deformed image from Image 1 using the proposed
hybrid registration model.

Example 10. We also test the hybrid registration algorithm to register two human
face surfaces. Figure 6.17 shows two human face surfaces, each of them are labeled
with corresponding landmarks. Figure 6.18 shows the registration results of the two
human faces using the landmark-matching quasi-conformal registration. (A) shows
the surface of human face 1, whose colormap is given by its mean curvature. (B)
shows the surface of human face 2, whose colormap is given by its mean curvature.
(C) shows the registration result using the hybrid quasi-conformal registration. The
colormap on the surface of human face 1 is mapped to the surface of human face 2
using the obtained registration. Note that the corresponding regions are consistently
matched. (D) shows the plot of curvature mismatching versus iterations. It shows
that our algorithm iteratively adjust the quasi-conformal registration to an optimal
one that minimizes the curvature mismatching error.

7. Conclusion. This paper presents a novel method to obtain diffeomorphic im-
age or surface registrations with large deformations via quasi-conformal maps. The
main strategy is to minimize an energy functional involving a Beltrami coefficient
term. The Beltrami coefficient measures the conformality distortion of the quasi-
conformal map. It controls controls the bijectivity and smoothness of the registra-



24 Ka Chun Lam and Lok Ming Lui

Fig. 6.14. Two human teeth to be registered, each of them are labeled with corresponding
landmarks.

Fig. 6.15. Registration results of the two teeth surfaces using the landmark-matching quasi-
conformal registration. (A) shows the surface of Teeth 1, whose colormap is given by its mean
curvature. (B) shows the surface of Teeth 2, whose colormap is given by its mean curvature. (C)
shows the registration result using the landmark-matching quasi-conformal registration. The col-
ormap on the surface of Teeth 1 is mapped to the surface of Teeth 2 using the obtained registration.
Note that the curvature is not matched consistently (see the regions in the red boxes).

tion. By minimizing the energy functional, we obtain an optimal Beltrami coefficient
associated to the desired registration, which is guaranteed to be bijective, even with
very large deformations. The proposed method can be applied for both landmark
based registration and hybrid registration. Experiments have been carried out on
both synthetic and real data. Results show that our proposed method can effectively
obtain diffeomorphic registration between images or surfaces with least amount of lo-
cal geometric distortion. The obtained registration is guaranteed to be bijective (1-1
and onto), even with a large deformation or large number of landmark constraints. In
the future, we plan to extend the proposed method to high-genus surfaces and apply
the method to more real applications in medical imaging for disease analysis.
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