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Abstract. This paper presents a novel algorithm to obtain landmark-based
genus-1 surface registration via a special class of quasi-conformal maps called
the Teichmüller maps. Registering shapes with important features is an important
process in medical imaging. However, it is challenging to obtain a unique and
bijective genus-1 surface matching that satisfies the prescribed landmark con-
straints. In addition, as suggested by [11], conformal transformation provides the
most natural way to describe the deformation or growth of anatomical structures.
This motivates us to look for the unique mapping between genus-1 surfaces that
matches the features while minimizing the maximal conformality distortion. Ex-
istence and uniqueness of such optimal diffeomorphism is theoretically guaran-
teed and is called the Teichmüller extremal mapping. In this work, we propose
an iterative algorithm, called the Quasi-conformal (QC) iteration, to find the Te-
ichmüller extremal mapping between the covering spaces of genus-1 surfaces.
By representing the set of diffeomorphisms using Beltrami coefficients (BCs),
we look for an optimal BC which corresponds to our desired diffeomorphism
that matches prescribed features and satisfies the periodic boundary condition on
the covering space. Numerical experiments show that our proposed algorithm is
efficient and stable for registering genus-1 surfaces even with large amount of
landmarks. We have also applied the algorithm on registering vertebral bones
with prescribed feature curves, which demonstrates the usefulness of the pro-
posed algorithm.

1 Introduction

Surface registration is increasingly used in morphometric analysis. By finding a mean-
ingful one-to-one correspondence between anatomical surfaces, statistical shape anal-
ysis, processing of signals on anatomical surfaces (e.g., denoising or filtering) and
age-related comparison can be achieved. In landmark-based registrations, landmarks
are extracted to guide the registration process to obtain a meaningful transformation.
Through labeling landmarks, medical experts and doctors can get involved in the pro-
cess to assure good correspondences between the surfaces. However, obtaining a unique
and bijective registration that matches features consistently is generally challenging,
especially when a large number of landmark constraints are enforced. Developing an
effective algorithm for registration is therefore very important.

Surface registration between simple surfaces, such as simply-connected open sur-
faces or genus-0 closed surfaces, has been extensively studied. However, as far as we
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know, very few literatures have been reported on the registration between genus-one
surfaces. The high-genus topology of the surfaces poses a great challenge to register
the surfaces. For example, the vertebral shape is commonly analyzed through simple
geometric measurements of dimensions, which only describe limited features of the
complex vertebral shape. In order to provide a more comprehensive description, a more
sophisticated landmark-based surface registration is essential for analyzing both local
and global geometric information of a vertebral shape.

Motivated by this, we are interested in searching for the unique and bijective
landmark-matching diffeomorphism which minimizes the maximal conformality distor-
tion. The conformality distortion measures how far the mapping is deviated from a con-
formal mapping, and hence it measures the local geometric distortion.. The existence
and uniqueness of such a mapping is theoretically guaranteed by the Quasi-conformal
Teichmüller theory [2], and is named the Teichmüller extremal map. In this paper, we
propose a novel algorithm to compute the Teichmüller extremal map between genus-1
surfaces. Experiments on vertebral bones are also reported to show the accuracy and
effectiveness of the proposed algorithm.

2 Previous Work

Landmark-based registration has been widely studied in medical imaging, computer
graphics and computer visions. Various algorithms have been proposed to match fea-
ture landmarks consistently. For example, Bookstein et al.[1] proposed to obtain a reg-
istration that matches landmarks as much as possible using a thin-plate spline regular-
ization (or biharmonic regularization). Gu et al. [4,5] proposed to compute the confor-
mal parameterizations of human brain surfaces for registration using harmonic energy
minimization and holomorphic 1-forms. Conformal registration is advantageous for the
preservation of the local geometry. However, it cannot align landmark features, such as
sulci landmarks on brain surfaces, consistently. Sometimes, deformation between ob-
jects might not be conformal. Instead, certain amount of angular distortion could be
introduced. To tackle with this problem, quasi-conformal mappings have been applied
to obtain surface registration with bounded conformality distortion [8,9]. Introduction
of time-dependent vector fields for registration is also proposed [7,3]. For example,
Glaunés et al. in [3] presented to generate large deformation diffeomorphisms of a
sphere, with given displacements of a finite set of template landmarks. The time de-
pendent vector fields facilitate the optimization procedure, but the computational cost
of the algorithm is comparatively more expensive.

3 Mathematical Background

3.1 Quasi-Conformal Map

Quasi-conformal maps are orientation preserving homeomorphisms between Riemann
surfaces with bounded conformality distortion. Intuitively, they take infinitesimal
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circles to infinitesimal ellipses of bounded eccentricity. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z̄
= μ(z)

∂f

∂z
(1)

for some complex-valued function μ satisfying ‖μ‖∞ < 1. The function μ is a measure
of non-conformality and is named the Beltrami coefficient. In particular, a map f is
conformal at p if μ(p) = 0. Denote i =

√−1 and f = u + iv. From the Beltrami
equation (1),

μ(f) =
(ux − vy) + i(vx + uy)

(ux + vy) + i(vx − uy)
(2)

Let μ(f) = ρ+ iτ . We have the following linear combinations between ux, uy, vx and
vy: {−vy = α1ux + α2uy

vx = α2ux + α3uy
;

{−uy = α1vx + α2vy
ux = α2vx + α3vy

(3)

where α1 = (ρ−1)2+r2

1−ρ2−r2 ; α2 = 2r
1−ρ2−r2 ; α3 = 1+2ρ+ρ2+r2

1−ρ2−r2 . By taking divergence on
both sides of equations (3), we obtain

∇ ·
(
A

(
ux

uy

))
= 0; ∇ ·

(
A

(
vx
vy

))
= 0, where A =

(
α1 α2

α2 α3

)
(4)

According to the Quasi-conformal Teichmüller theory, a quasi-conformal map can be
uniquely determined up to Mobiüs transformations. Ambiguity of the Mobius transfor-
mation can be eliminated by providing three points correspondence, in which a unique
solution can be obtain from equation (4).

3.2 Teichmüller Extremal Map

Let μ(f) be the Beltrami coefficient of f . Define the maximal dilation of f to be:

K(f) =
1 + ‖μ(f)‖∞
1− ‖μ(f)‖∞ . (5)

Using maximal dilation, we can define extremal map as:

Definition 1 Let f : S1 → S2 be a quasi-conformal mapping between S1 and S2. f
is said to be an extremal mapping if for any quasi-conformal mapping h : S1 → S2

isotopic to f relative to the boundary,

K(f) ≤ K(h) (6)

It is uniquely extremal if the inequality (6) is strict when h �= f .

Another kind of mapping, called the Teichmüller mapping, is closely related to the
extremal mapping. Teichmüller mapping is defined as follows:
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Definition 2 Let f : S1 → S2 be a quasi-conformal mapping. f is said to be a
Teichmüller mapping associated to the quadratic differential q = ϕdz2 where ϕ : S1 →
C is a holomorphic function if its associated Beltrami differential is of the form:

μ(f) = k
ϕ

|ϕ| (7)

for some constant k < 1 and quadratic differential q �= 0 with ||q||1 =
∫
S1

|ϕ| < ∞.

Let S1 and S2 be Riemann surfaces with the same topology. Let {pi}ni=1 ∈ S1 and
{qi}ni=1 ∈ S2 be the corresponding interior landmark constraints. A Teichmüller map-
ping f between S1 and S2, which satisfies the landmark constraints, is actually the
unique extremal map. With this, both uniqueness and existence of landmark match-
ing Teichmüller extremal map can be guaranteed. We can therefore obtain a unique
landmark matching registration by searching for an optimal Beltrami coefficient whose
maximal dilatation is the minimum. For details, please refer to [2].

4 Proposed Algorithms

In this section, we explain our algorithm for obtaining a feature aligned Teichmüller
extremal mapping between genus-1 surfaces. The basic idea is to first embed the sur-
faces into their universal covering spaces and find the Teichmüller extremal mapping
between their conformal parameterizations.

Fig. 1. Torus & Ω Fig. 2. Vertebral bone 1 Fig. 3. Vertebral bone 2

4.1 Embed Genus-One Surface into the Euclidean Plane

The embedding of the genus-1 surface is computed using the Ricci flow method intro-
duced by Gu et al. [6]. The basic idea of Ricci flow is to conformally deform the metric
g = (gij(t)) according to its induced Gaussian curvature K(t). Mathematically, we
have

dgij(t)

dt
= −2(K(t)− K̄)gij(t) (8)

where we set K̄ = 0 for genus-one to be the target curvature. Convergence of this pro-
cess is guaranteed by Hamilton’s theorem. g(∞) is the desired uniformization metric.
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Let S be a genus-1 surface and p be a base point for S. Two closed loops based at p
are introduced to slice the genus-1 surface into the fundamental domain. With the uni-
formization metric, the fundamental domain can be conformally embedded onto a 2D
domain Ω ∈ R2, called the fundamental polygon (See Figure 1). Denote the boundaries
and vertices of the polygon as {a1, a2, a−1

1 , a−1
2 } and {pi} respectively. The boundary

pairs {a1, a−1
1 },{a2, a−1

2 } and vertices {pi} correspond to the closed loop and the sin-
gle based point introduced. Note that ai and a−1

i , i = 1, 2 are related by ϕi(ai) = a−1
i ,

where ϕi are translations in R2. Therefore, periodic constraints are enforced in the
boundaries of the fundamental polygon. With this conformal parameterization, registra-
tion can be done on the fundamental domains instead of the complex genus-1 surfaces.
For details, please refer to [6,10].

4.2 Computing the Teichmüller Extremal Mapping between Parameter
Domains

Let Ω1 and Ω2 be the fundamental polygons of two genus-1 surfaces S1 and S2 re-
spectively. Denote the boundaries and vertices of Ω1 and Ω2 by {a1, a2, a−1

1 , a−1
2 },

{pS1

i } and {b1, b2, b−1
1 , b−1

2 }, {pS2

i } respectively. As the boundary cuts of S1 and S2

may not be consistent, only periodic constraints are considered during the registration.
Let {rk}nk=1 and {qk}nk=1 be the landmark correspondences on Ω1 and Ω2 respec-
tively. Mathematically, the problem of finding Teichmüller extremal mapping between
the fundamental domains can be formulated as follows:

f = argminf :Ω1→Ω2
‖μ(f)‖∞ (9)

subject to:

– μ(f) = k ϕ̄
|ϕ| where 0 ≤ k < 1 and ϕ : Ω1 → C is integrable holomorphic;

– ϕi(f(ai)) = f(a−1
i ) for i = 1, 2; (Periodic constraints) (10)

– f(pS1

i ) = pS2

i for i = 1, ..., 4; (Base points consistency) (11)
– f(rk) = qk for k = 1, 2, ..., n. (Landmark constraints) (12)

To solve the above minimization problem, we propose an iterative scheme called the
Quasi-conformal (QC) iteration. The basic idea is to find a path in the space of all
Beltrami coefficients, which approaches from μ = 0 to the unique admissible Beltrami
coefficient ν∗ of Teichmüller type. The process is summarized in Algorithm 1. For the
convergence of Algorithm 1, please refer to [12].

5 Experimental Results

To evaluate the proposed algorithm, we apply it on the vertebral bones to compute the
Teichmüller extremal map between 5 pairs of vertebral bones with prescribed feature
points and landmark curves as landmarks (See Figure 2 & 3). There are two landmark
curves labeled on the top and bottom side of the cortical rim and ten features marked
on other parts of each vertebral bone. To register between a pair of vertebral bones,
we first parameterize them into the fundamental domains Ω1 and Ω2 by the Ricci flow
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Algorithm 1: QC-iteration
Input: Ω1 and Ω2; landmark constraints {rk} and {qk}.
Output: Optimal Beltrami coefficient ν and the Teichmüller extremal map f

1 Initial: ν0 = 0;
2 repeat
3 Update f = (u, v) by solving (4) with νn+1 and constraints (10),(11) and (12);
4 Compute μn+1 := A(L(νn)), where L is the laplace smoothing operator and

A(μ) =

∫
Ω1

|μ|dΩ1

/∫
Ω1

dΩ1;

Update f = (u, v) by solving (4) with μn+1 and constraints (10),(11) and (12);
5 Set νn+1 := μ(f), where μ(f) is the Beltrami coefficients of f
6 until ‖νn+1 − νn‖∞ ≤ ε;

Fig. 4. Fundamental polygon Ω1 Fig. 5. Registered polygon and Ω2

Fig. 6. Vertebral bone S1 Fig. 7. Resultant registration Fig. 8. |μ| on surface

method. Using the QC iteration, the Teichmüller extremal mapping f : Ω1 → Ω2

which satisfies the landmark constraints is obtained. Since no hard constraints is en-
forced on the cutting boundaries in the algorithm, the cutting boundaries of Ω1 can
move freely on the universal covering space, which satisfy the periodic conditions. Fig-
ure 5 shows the obtained Teichmüller extremal map between the covering spaces. Once
the Teichmüller extremal map is computed, we can obtain the registration between the
vertebral bones S1 and S2 by a composition of functions φ−1

2 ◦ f ◦ φ1 = T : S1 → S2.
The resultant registration is shown in Figure 7. The mesh is obtained by deforming the
source vertebral bone (Figure 6) to the target surface (Figure 3). Landmark curves and
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Table 1. Summary of the comparison experiment

Method emax emean ‖μ‖∞ SD(|μ|) dH Time (s)
Proposed 0 0 0.4193 0.0147 0.82 10.91s
rigid ICP 0.1467 0.0389 1.08e−13 5.33e−15 12.44 4.46s

non-rigid ICP 0.0798 0.0402 0.9841 0.1710 4.55 223.07s

feature points are exactly matched after the registration process. Figure 8 also shows
|μ(f)| of the Teichmüller Extremal mapping, which is represented by the color on the
vertebral bone surface. An even color distribution on the surface and a small standard
deviation of the BC norm of 0.001823 indicate that the resultant mapping is actually
of Teichmüller type. By the properties of Teichmüller map, the registration obtained is
guaranteed to be bijective. This demonstrates that our proposed algorithm can effec-
tively provide the unique registration result which minimizes the maximal conformality
distortion. We have also computed the Teichmüller extremal mappings between a set
of vertebral bones to construct the mean surface (Figure 9). Both feature points and
the landmark curves are well-preserved, illustrating that the landmarks are consistently
matched under the proposed registration algorithm.

To validate the invariance of the choice of cutting boundaries during the embedding
process, we manually labeled two arbitrary simple closed loops (blue-red loops in Fig-
ure 10) with the same base point and run the proposed algorithm. Figure 11 shows the
histogram of the optimal Teichmüller type BCs |μg| and |μbr| from the cases of green
loops and blue-red loops respectively. Experiment shows that both registration results
are coincident, with ‖|μg| − |μbr|‖∞ = 0.0021, indicating that our proposed algorithm
is invariant to the initial choice of the cutting boundaries. We have also compared our
implementation with rigid ICP and non-rigid ICP. The result is summarized in Table 1.
For ease of comparison, we first normalize every vertebral bone to fit into a unit cube. In
terms of the mean and maximum landmark matching errors (emean, emax), our proposed
method outperforms the two point-based registration methods. The Hausdorff distance
dH between the registration result and the target also shows that our proposed method
has a better overlay percentage to the target object. With the sacrifice of the registra-
tion accuracy, almost no conformality distortion is introduced by the rigid ICP, while
the non-rigid ICP produces a large distortion of 0.9841. Our proposed algorithm thus
provides a balance between the computation requirement and the registration accuracy.

Fig. 9. Vertebral bone mean surface Fig. 10. Different loops Fig. 11. |μg | & |μbr|
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6 Conclusion and Future Works

This paper presents a novel method to compute the Teichmüller extremal mapping with
prescribed landmark correspondences between genus-1 surfaces, which minimizes the
maximal conformality distortion. By the Teichmüller theory, existence and uniqueness
of such mapping is guaranteed. We applied the proposed algorithm for the vertebral
bone registration and the construction of mean surface of vertebral bones. Experimental
results show that our method is effective in computing bijective feature aligned regis-
tration with smallest maximal conformality distortion. In the future, we plan to extend
the proposed method to higher-genus surfaces and apply the method to more real appli-
cations in medical imaging for disease analysis.
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