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Abstract harmonic map minimizes the elastic membrane energy,
and biharmonic map minimizes the thin plate energy.
This work proposes a novel framework for optimization 3. It should satisfy physical feature landmark constraints
in the constrained diffeomorphism space for deformable Supposg pi} and{q;},i = 1..mare given,f(pi) = q;.
surface registration. First the diffeomorphism space iglmo 4. It should respect and reflect the physical deformation

eled as a special complex functional space on the source o5ty determined by physical characteristics of mate-
surface, the Beltrami coefficient space. The physicallypla rials and governed by physical laws.

sible constraints, in terms of feature landmarks and defor- 5 The computation should be efficient and accurate
mation types, define subspaces in the Beltrami coefficient ™ P o '
space. Then the harmonic energy of the registration is min-  Although there are many existing methods for de-
imized in the constrained subspaces. The minimization isformable surface registration, few of them satisfy the &bov
achieved by alternating two steps: dptimization- diffuse ~ Criteria. The iterative closest point (ICP) methaq ¢an

the Beltrami coefficient, and Pyojection- first deform the ~ handle surfaces which differ by a rigid motion, but cannot
conformal structure by the current Beltrami coefficient and handle nonrigid isometric deformation. Conformal param-
then compose with a harmonic map from the deformed con-éterization based registration methotg][can handle non-
formal structure to the target. The registration result is d rigid isometric defor_matlon, but have difficulties for non-
iffeomorphic, satisfies the physical landmark and deforma- conformal deformation, such as large human expression
tion constraints, and minimizes the conformality disamti ~ changes. Optimal mass transportation maps cannot handle
Experiments on human facial surfaces demonstrate the effi/andmarks or surfaces with complicated topologies. Har-

ciency and efficacy of the proposed registration framework. Monic maps may not be diffeomorphic if the target domain
has complicated topologies or with landmark constraints.

Biharmonic maps cannot handle surfaces with landmarks.

This work addresses the deformable surface registra-
tion problem and formulates it as an optimization prob-

Surface registration plays a fundamental role in comput- lem in diffeomorphism space. Basically, any diffeomor-
er vision and engineering fields. Given the source and targetphism f : S, — S induces a complex differentigl(f) on
surfaces with Riemannian metri¢§, gk), k= 1,2, thereg-  the source||u(f)||» < 1, the so-called Beltrami coefficien-
istration problem is to find a mapping: S; — $. In prin- t. Reversely, the diffeormorphism can be fully recovered
ciple, the diffeomorphisms between the two surfaces form by its Beltrami coefficient. Therefore, the diffeomorphis-
an infinite dimensional space. It is intrinsically chall@rg m space is converted to a complex functional space on the
to find an optimal one in this mapping space. In general, thesource, denoted a®(S;). We perform the optimization in
desirablef should satisfy many criteria as follows: this Beltrami coefficient space.

Furthermore, depending on the physical nature of the
mappings, we only consider those diffeomorphisms that are
physically plausible, whose Beltrami coefficients formsub
2. It should minimize distortions. For example, confor- spaces irg(S;). In this work, we add two types of phys-

mal registration minimizes the angle distortion, opti- ical constraints to the diffeomorphism between human fa-

mal mass transport map minimizes the area distortion, cial surfaces: 1)andmark constraints Assume the map-

1. Introduction

1. It should be a diffeomorphism, namely smooth and bi-
jective, for surfaces with any topologies.



ping corresponding to a givep is f#, then we require
fH(pi) = qi,i = 1..m; 2) constraints related to the facial
skin deformation The skin in forehead and nose regions,
denoted a€), has much less deformations during expres-
sion change, so we can require the deformatiof ito be
close to an isometry and its Beltrami coefficient to be zero.
Therefore our optimization is performed in the subspace

¢80 = 2(S) Nl o =0} (kI (P) =),

The energy we try to optimize is the conformality dist(ortion

of the mapping, which is achieved by minimizing the har-

monic energy of the Beltrami coefficient in the subspace.
The computation process has mainly two steps:

1. Optimization diffuse current Beltrami coefficient to
reduce its harmonic energy in the whole spas, );

2. Projection projectu € %(S;) to the constraint sub-
spaces’(Sy).

1.1. Previous Works

1.2. Contribution

The major contribution of the current work is to propose
a novel registration framework for deformable surfaceswit
general and large deformations and landmark point con-
straints. The registration is formulated as an optimizatio
problem in a constrained diffeomorphism space. To our best
knowledge, this is the first work which 1) satisfies landmark
and physical deformation constraints, 2) guaranteesddiffe
morphism and 3) has minimal conformality distortion.

The diffeomorphism space is first modeled as a special
complex functional space on the source surface, the so-
called the Beltrami coefficient space. The landmark con-
straints and the physically meaningful constraints defiee t
subspaces in the Beltrami coefficient space. Then the har-
monic energy of the registration is minimized in the con-
strained subspaces by alternating two main stepsopi)
timizationand 2)projection The optimization step is to
diffuse the Beltrami coefficient; the projection step firet d
forms the conformal structure by the current Beltrami coef-

Surface registration and tracking has a broad range of ap<icient, and then composes with a harmonic map from the
plications, such as shape matching and recognition for de-deformed conformal structure to the target.

formable objects in computer vision, shape modeling in ge-

ometric modeling, morphological study in medical imaging,
and animation in game industrg,[3, 16, 17, 20]. In recent

2. Theoretic Background

years, 3D surface registration methods have been intensive  Thjs section briefly introduces the theoretic background.

ly explored. Most existing methods directly deal with non-
rigid deformations irlR3, but always stop at a local optima
and hardly get a global solution.

We refer readers tol[j] for detailed explanations in dif-
ferential geometry, 4] for harmonic mappings and] for
guasiconformal mapping.

Surface conformal mapping based methods have been

developed for surface matching,[15, 1], registration
[3, 27], and tracking P3]. The key idea is to map surfaces

to 2D canonical domains and then solve the surface regis-

2.1. Conformal Mapping

Given two metric surfacetS;,g1) and (S, 92), a map-

tration problem as an image registration problem. Theseping ¢ : S — $ is called aconformal mappingr angle-
methods can handle nonrigid deformations. Surface quasipreservingmapping, if the pullback metric induced lpon

conformal mapping has great potential to deal with large-
scale nonrigid deformations. The Beltrami holomorphic
flow method [L 7] and the auxiliary metric method [] were

Si, ¢*go = €2 g1, whereA is called the conformal factor.
Conformal mappings must be diffeomorphisms.

According to surface uniformization theorem, any met-

introduced for computing surface quasiconformal maps andric surface can be conformally mapped to 2D canonical do-

further applications of surface registration, compresaiad
inpainting. Extremal quasiconformal maps between two
planar disks with Dirichlet boundary conditions were re-
cently explored in 19] for surface parameterization. Te-
ichmuller map between surfaces with landmark point con-
straints was recently introduced i#]]

In real applications, landmark constraints are usually in-

troduced to guide surface registration, however, hard con-

straints sometimes will cause flipping in the mapping (i.e.,
not a diffeomorphism). The proposed method in this work

main. The mapping between two metric surfa¢8s gx)
can be converted to the mapping between their conformal
(isothermal) domains, as shown in the following diagram:

(S.h gl) 4f> (SZa gZ)

y g

(D,dzdz) — (D, dwadw)

(2)

can guarantee both diffeomorphism and hard landmark con-Suppose, w are conformal parameters 8f andS,, respec-

straints. Besides that, we introdupbysical deformation
constraintsfor those regions without specific conformality

tively, andgy : Sc — D are the corresponding parameteriza-
tions. The mapping between parameter doma&in® — D

distortions during surface deformation, which are denotedinduces a mappin§: S — S between two surfaces.is a

by Beltrami coefficientt.

diffeomorphism if and only iff is a diffeomorphism.



2.2. Surface Ricci Flow We construct an auxiliary metrig= |dz+ pdz*. Then we
use Ricci flow to mafdS,§) to a planar rectangle, and the

An efficient way to compute conformal mapping is mapping is the quasiconformal mép

Hamilton’s surface Ricci flow1]. Let the metric tensor of
the surface ig) = (gij). Assume the user prescribes a target 2.5. Harmonic Map

curvatureK (p). Then the Ricci flow is defined as
urvature (p) cetfiowts dett Let f : (I, |d22) — (DD, |dw2) be a Lipschitz map be-

agij(p,t) ~ - tween two disksz = x+ iy andw = u+iv are complex pa-
ot 2(K(p) —K(p,))gij (P.). rameters. Théarmonic energyf the map is defined as

Hamilton and Chow4, 7] proved that whern — oo, K() _/ 2 2
converges to the target curvati¢eexponentially fast. E(T) = D(|W2| + [wl")dxdy @
Suppose(S,g) is a topological disk with four bound-  pefinition 2.1 (Harmonic Map) A critical point of the

ary points as markerso, v1,V2,va}. We can set the target  harmonic energy is called a harmonic map.
Gaussian curvaturé(p) to be zero at every interior point,

the target geodesic curvature to be zero at every boundary TheHopf differentialof a mappingf ¢(f) is defined as
point except the markers, and the target exterior angles at —

markers to b&f. Then Ricci flow conformally deforms the ®(f) = WoEdZ. ®)
surface to be a planar rectangle. The mapping is denotedf the mapping is harmonic, then it satisfies the Laplace e-
as@: (S,g) — (R dzdz). Furthermore, the four markers are quationwz = 0. This is equivalent tap(f) being holo-

mapped to the four corners, respectively. morphic. Furthermorep(f) is zero if and only iff is a
. . conformal mapping. In general, harmonic mapping is un-
2.3. Quasiconformal Mapping necessarily diffeomorphic.

Given two surfaces with same topology, in general, there Suppose one change the parameterization of the source
doesn'’t exist a conformal mapping between them, but therefrom zto ¢, such thai(z = (K + ev)(z, then+08<3mpute the
must be quasiconformal (g.c.) mappings between them. harmonic map with respect 3 denoted ab*"*", then the

Let complex differential operators bé, = %(ax _ variation of the harmonic energy is given by
idy),07 = 3(+1idy). A complex functionf : C — C is d
holomorphic if dzf = 0. The Beltrami coefficienu; of &E(hwgv) = —4%€/I[D¢(h“)Vded(y- (6)

the mappingdf : z— w(z) is defined as o _ ) _
3. Optimization in Constrained Diffeomor-

Wz = Ut (Z)Wy, 3) phism Space
called theBeltrami equation The mappings between the
unit disks and their Beltrami coefficients have one-to-one
correspondences. Namefy : D — ID|J, > 0} /Mob(ID) ==
AB(D), whereZ(D) := {1 : D — C|||H]|e < 1}. The left
hand side is the space of all diffeomorphisms from the disk
to itself, wherel, is the Jacobian; the right hand side is the
functional space of all Beltrami coefficients with norm less
than one everywhereMob(D) is Mobius transformation
group, each Mabius map has the forms ¢ 22

In our current work, two metric surfacéS, gk),k=1,2
are given with landmarkgpi} € S, {gi} € S, i=1..mand
subregion$) C S;. We aims at finding a map: (S1,01) —
($,092), such thatf is a smooth diffeomorphism and satis-
fies the landmark constraintE( pi) = i, furthermoref on
Q is conformal, i.e.u(f)|q = 0. Namely,u(f) € ¢(S1),
which is the subspace 08(S;) defined in ().

Let ¢ : (S, 9x) — R« be the conformal parameterization,

_ _ o 11;“2702‘" whereR(’s are planar rectangle domains. et Ry — Ry
Define the maximal dilation of asKt = lfHﬁH:' Intu- be the corresponding mapping between parameter domains.

itively, a g.c. mapf maps infinitesimal circles to infinites-  According to @), the desired map i§ = qa;zo foq. Then
imal ellipses, and the ratio between the major axis and thethe problem is converted to find the optimal diffeomorphism
minor axis is given bt (z). A homeomorphism with dila- . For convenience, we define two subspace®R; ),

tion less tharK is called aK-quasiconformal mappind. is

conformal if and only ifys = O everywhere ant; = 1. io = }ZI?L%)TES?}’ (). Vi)
1 = i)) — i )s )
2.4. Auxiliary Metric for Solving Beltrami Equation and formulate our optimization problem as follows:

Supposef : z— w is a quasiconformal mapping with  Problem 3.1 (Constrained Optimal Diffeomorphism)
Beltrami coefficieniu. The Beltrami equatiowz = p(z)w;

can be solved using Ricci flow method as well. Suppose u* = arg min/ (|Ilz|2+ quﬂz)dxdy
the mappingf maps a topological quadrilater@lc C to a IR
rectangle, and the original Riemannian metrigis dzdz. subject to:



Algorithm 1 Optimal Quasiconformal Mapping

Input: Two triangular mesheM;, M, of disk topology; land-
marks{p;} and{q}, i = 1..m, the first four are on boundary
Output: Optimal g.c. mapf : M1 — My, s.t., f(pi) = ¢, Vi.
1: Compute conformal mapg : Mk — R, k=1,2
2: Initialize up =0
3: repeat
Optimization: Diffusepin 1 < Un+ 0ALn
Projection:
a. Compute g.c. map : (Ry,z) — (RH, )
b. Compute harmonic mapgh : (Rf) — (Rp,w)
c. Updatepin 1  p(hh o fHn)
9: d. Set[,ln+1‘Q =0
10: until || piny1 — pnlleo < €
11: The desired mapping = @, L oht o fHo g

N aR

1. diffeomorphisni || < 1,
2. landmark constraints,(¢ (pi)) = @(qi), Vi,
3. conformality constraintgy|y, ) =0,

namely,u* € Z(Ry) N AN A.

The optimization is performed by alternating two main
stepsOptimizationandProjection

Optimization The optimization ofu is straightforward.
We apply the traditional heat flow method,

ou _

E - _IJZZa
which will reduce the harmonic energy pf

Projection First, we projectu to the subspac&?(R;) N
0. This can be easily achieved by directly settin¢go be
zero in the regiom (Q).

Then, we project the currept to the subspacg?(Ry) N
.71. We propose to solve the problem by two stages:

(RLz) — RLO) —w (Rw)

Stage 1 For a givenu on Ry, by solving Beltrami equation,
we mapR; to an intermediate parameter dom&th with
complex parametef, f* : (Ry,z) — (R*,{), U|o =0.

Stage 2 We compute a harmonic map from the interme-

diate domain to the target domain satisfying the landmark

constraintsh* : (R*,{) — (Rz,w). The composition map
is h* o fH, whose Beltrami coefficient is in the subspace
P(R1)N.71. We replace the currept by p(hH o fH).

The computational pipeline is shown in Algorithin
Note that, after the second step of the projectiorvig the
Beltrami coefficient may be outsidep. We can alternate
the two projection steps several times to ensure the fisl
inside.#pN.1. The algorithm is guaranteed to converge to

4. Computational Algorithms

This section explains the computational algorithms in
detail. The facial surfaces are genus zero and with a single
boundary. They are represented as triangle meshes, denoted
asM = (V,E,F), whereV, E, F represent vertex, edge and
face sets, respectively. Suppose four boundary vertiaes ar
labeled as the markersyo, vy, V2,v3} C M.

4.1. Harmonic Mapping

The discrete harmonic mapping can be computed by
solving the Dirichlet problem. Theotangent edge weight
is defined as follows:

o

whereei‘} is the corner angle ifvi,v;j,v] at vi. Suppose
f:V — R is a piecewise linear function, then its harmonic
energy is

cote +cotb);  [vi,vj] & oM
cot6] Vi,vj] € oM ~

EW=2 5 wy(f(v)— ()2

[vi,vilcE
Then the discrete Laplace-Beltrami operator is defined as

M) = S wh(F(vj) — F(W): (7)

[Vi,vj|eE

The discrete harmonic mdp: My — {pi} — M2 — {qi}
can be computed by solving the linear system

Ah(v) = 0 Vi € My — oM — {pi}
Ah(p)) = qj pi € {pi} :
h(vo = 9v) w€EIM

whereg : dM; — dMy is a given mapping.

In order to compute the harmonic map witht' :
(RH, ) — (Rp,w), what we need is to modify the cotangent
edge weight. Suppose the Beltrami coefficigntV — C
is defined on vertices, and, vj, v] is isometrically embed-
ded onto the complex plane, with coordinadgs;, z.. Then
we define a linear mapping

(@) = 2+ 3(H(W) + 1)+ HOW)Z
then 1 distorts the triangle. We compute the corner an-
glesa(u), 6X(u), 6/ (1) on the image of, compute the
cotangent edge weight; (1) using the distorted angles.

4.2. Discrete Yamabe Flow

Discrete Yamabe flow is one scheme for discrete surface
Ricci flow. Let[v;,vj] € E be an edge with Euclidean length

the unique extremal quasiconformal map; the proof is using §j;. Define discrete conformal factor function V — R,

the method in [1].

then the discrete conformal deformation of edge length is



given byl;j < €i3;;€"i. The discrete vertex curvatukgV;)
is defined as angle deficit

R 2L I VRVRVA S eijI< Vi € oM
K(vi) = i _
TT— 3 [vi.vj.weF 6 Vi € oM
Thediscrete surface Yamabe flasvdefined as

dutvi) .~ _
dt _K(VI)_K(VI)a

which is the gradient flow of thdiscrete Yamabe energy

u VI

EW= [ 3 (Kiw) -Kw)du,

distortion, denoted by Beltrami coefficiept Meaningful
landmarks can be extracted from texture and/or geometry.
Different materials may have differentintrinsic elastiop-
erties and different conformality distortions in physidat
formations. In this work, we restrict the to be zero on the
regions whose deformation is close to isometry, such as the
forehead and nose areas during facial expression change.
In the following, we arrange our experiments with three
categories of constraints to evaluate the proposed aigorit
s: 1) Only landmark constraints, 2) Only constraints,
and 3) Landmarks constraints. The experimental result-
s demonstrate that our method is efficient and effective to
register surfaces with large deformations.

5.1. Optimization with Landmark Constraints

whereu = (ug,U,---,uy|). Discrete Yamabe energy is In this case, we take two surfaces with 16 landmark con-
convex, the unique global optimum is the desired discretestraints as input (see Figl (a)). The deformation of the
metric. We can use the Newton's method to optimize it source surface to the target surface is mainly defined by the
directly, which requires the Hessian matrix. The Hessian jandmark correspondence constraints. We first conformally
matrix is just the conventional cotangent weight Laplace- map them to the planar rectangle domain. By a harmonic
Beltrami operator in Eqn.7). mapping on the rectangle domain, we get the initial Beltra-
mi coefficientsu (b). We then apply the iterative optimiza-
tion process in Algorithii to updatey and compute the
Suppose we want to compute the quasiconformal map-harmonic mapping using the auxiliary metric. The magni-
ping f¥ : (Ry,z) — (R*,{) by solving the Beltrami equa-  tude of Beltrami coefficientqu| becomes evener and even-
tion {z= u{z. By theauxiliary metricstrategy in Section er from the initial distribution, and eventually it reachees
2.4, the quasiconformal map is converted to a conformal steady point that corresponds to the optimal Beltrami dif-
mapping. Supposg is defined on each vertex. We define ferential (c). The algorithm converges for all the experi-
the initial length of an edgp;, v;] as ments. The distribution dfu| is evaluated by both the nu-
merical histogram and the visual color-encoded mapping on
3D surface. The resulting mapping is a diffeomorphism and

. globally unique and optimal in diffeomorphism space.
We then compute the conformal map under the new metric

using the traditional surface Yamabe flow algorithin][

4.3. Solving Beltrami Equation

B 1z —2)+5(HMv) +1(v))(Z - 2)l.

5.2. Optimization with u Constraints

4.4. Diffusion of Beltrami Coefficient Suppose the Beltrami coefficieatof the mapping from

the source surface to the target has been given already. We
can generate the registration directly by the quasicordbrm
mapping based on the auxiliary metric methad][ The
mapping gives a guidance in diffeomorphism space to reach
the optimal one. We then apply the optimization process in
Algorithm 1 with p constraints to generate a unique quasi-
whered > 0 is a small positive constant. The whole algo- conformal mapping with the minimal maximjgi|.

rithm pipeline can be found in Algorithrh In practice, the
algorithm stably converges for all the experiments.

First, we compute the cotangent edge weigft then
form the discrete Laplace-Beltrami operator. The diffasio
of Beltrami coefficient is similar to the heat diffusion,

p(Vi) <= p(vi) + SAp(vi),

5.3. Optimization with Landmark- u Constraints

In practice, not like the explicit feature landmarks, the
Beltrami coefficientsu of encoding quasiconformal defor-

The primary goal of this work is to solve a globally op- mation is not accessible; usually, it is estimated by first-co
timal registration problem for surfaces with same topology structing a mapping between two surfaces. If the deforma-
and general deformations, which is required to be a diffeo- tion is conformal (rigid or isometric), then the is zero.
morphism and handle physically meaningful constraints, in Based on this fact, we design our registration strategy by
order to enlarge the scope in practice. The constraints in-considering physics of specific object deformation and fix-
clude two forms: 1) feature landmarks and 2) conformality ing theu for specific areas in the registration.

5. Experimental Results
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Figure 1. Optimization in diffeomorphism space with landknand/or Beltrami coefficienty() constraints.

We perform testing on human facial surfaces from the During the update process, we kempto be zeros for the
same subject, deforming slowly from neutral expression constrained areas. Finally we get the optimal registration
to smile expression (see Fidl), where the forehead and which respects the realistic physical deformation.
nose areas almost have no deformation during expression Figurel (d) shows the registration with a combination of
change. Then we have the following experiments. Weuset landmark andu constraints. We use circle-packing texture
to be zeros for the forehead and nose areas. Then we run theap result on 3D surface to visualize the quasiconformal-
optimization process along with the landmark constraints. ity. It is obvious that on the forehead and nose areas, the



circles are mapped to circles in the landmarkeonstrained ~ Newton’s method and has time complex@ynloge) (ver-
result (d), while the circles are mapped to ellipses in the on tex numbem, error tolerance); and 2) harmonic map also
ly landmark constrained result (c). The distribution|pf using conjugate gradient method, whichQgn). Both of

is shown by both the histogram and the color-encoded mapgshem are robust to geometric noises.

on 3D surface and 2D domain, where the blue color denotes We have tested our algorithms thoroughly on 1500 in-
zero local stretch, i.e., conformal deformation. dividual facial surfaces from multiple people’s expressio

In this registration strategy, the landmark constraints an sequences. For a surface withk3fiangles, it costs about
the u together guide the deformation. Note that the land- 10 seconds. The optimization is efficient and practical, and
marks won't stay inu-constrained areas, since landmark stably converges for all the experiments.
correspondence constraints generally generate quasireonf 2) Generality- Ricci flow can unify any surface to one
mal deformation. This registration is highly desirable for of three canonical spaces; any diffeomorphism can be rep-
simulating and recovering the real physical mapping be-resented by a uniqug, and vice versa. Therefore, the
tween two frames of one deforming object. proposed registration framework can be generalized to any
types of topology and handle any types of deformations.

3) Rigor - The framework of optimization in diffeomor-
phism space has solid theoretical background and guaran-
tees the optimal diffeomorphism which exists and is unique.
4) Robustness The proposed framework can handle a
ge amount of hard landmark constraints and multiple
constrained areas. The algorithm fails when the input fea-
ture constraints or surface geometries are inconsistectt, s
as one surface occluded with a large portion missing.

5) Practicality - In most vision and medical imaging
Registration Accuracy Improvement We evaluate reg-  problems, landmarks are associated naturally, such as, face
istration accuracy in two ways.Visually, we check the  brains, and other organs with natural deformations. The
consistency of the circle-packing texture mappings on both proposed method guarantesstimal diffeomorphisgmand
source and target surfaces, through the registration mapis easy to carry out and compute. It has great potential
ping. The more consistent the textures on the source andor real applications surrounding shape matching, track-
target are, the more accurate the registration is. Obsgrvin ing, comparison, recognition, and analysis. This proposed
texture mappings on source in (b-d) and comparing themmethod can register surfaces without any constraint as well
with the texture mapping on target in (a) (for example, the with physical constraints, our method can perform better.
rightinner eye corner area), we can conclude that the opti-  6) Comparison- Most existing conformal map based
mization improves the registration accuradyumerically methods cannot guarantee diffeomorphism under hard land-
with the diffeomorphic mapping, we compute both the tex- mark constraints][8, 23] and reach the optimal conformal-
ture and geometry distance] to evaluate the registration ity distortion. The work in 23] only gives correspondence
accuracy,(dg,d;) = (0.003 0.041) (b), (0.0020.034) (c), between sparse nets and the correspondence between areas
and (0.001,0.018) (d). Thus the registration considering not on the net are completely ignored. Our method gives
physical deformation constraints is the most accurate one. dense registration over the whole surface. Furthermore, to

Geometric Registration of General Surfaces Besides our best knowledge, this is the first work to introduce phys-

the physical registration of different expression surface ICal constraintgt in registration.
from the same subject, the proposed method is also prac- .
tical to register general surfaces, such as the facial sesfa 6. Conclusion
from different subjects. Figur2shows one example of the In this work, we present a novel surface registration
registration to another targ& from the same sourcs, in framework by optimization in the constrained diffeomor-
Fig. 1. The geometric distance of the registration is 0.003, phism space. The landmark and deformation constraints
with about 60% improvement from.the initial registration. (denoted by Beltrami coefficient) define the subspaces
Note that for this registration case, it is unnecessaryés pr iy the diffeomorphism space. This registration framework
s_crlbe theu constraints, since ther_e is no real_physmal rela- guarantees diffeomorphism, satisfies physically meaaingf
tion between human faces from different subjects. constraints, and minimizes the conformality distorticme(t
optimal u). It has solid theoretical background and can be
generalized to surfaces of any topological types. It isprac
1) Efficiency- The algorithm has two parts: 1) conformal tical and has great potential in solving realistic surfeagp r
maps using Yamabe flow, which is a convex optimization by istration problems in engineering and medical fields.

Diffeomorphism Guarantee Figurel (e) shows the evo-
lution of meshing structure during the optimization. By-har
monic mapping, we can get the initial registration. It is ob-
vious that there is flipping| | > 1) around landmark con-
strained area (e.g., two mouth corners); the resulting map-Iar
ping is not a diffeomorphism, which can also be observed
in the histogram ofu| in (b) (|t|max > 1). By the relax-
ation process during optimization, the flips are smoothen
out gradually and reach a diffeomorphism eventually (c-d).

5.4. Discussion
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Figure 2. Geometric registration of human facial surfacemfdifferent subjects.
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