
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. IMAGING SCIENCES c© 2014 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 337–365

Geometric Registration of High-Genus Surfaces∗

Lok Ming Lui† and Chengfeng Wen†

Abstract. This paper presents a method of obtaining geometric registrations between high-genus (g ≥ 1)
surfaces. Surface registration between simple surfaces, such as simply connected open surfaces, has
been well studied. However, very few works have been carried out for the registration of high-genus
surfaces. The high-genus topology of the surface poses a great challenge for surface registration.
A possible approach is to partition surfaces into simply connected patches and registration can be
done in a patch-by-patch manner. Consistent cuts are required, which are usually difficult to obtain
and prone to error. In this work, we propose an effective way to obtain geometric registration
between high-genus surfaces without introducing consistent cuts. The key idea is to conformally
parameterize the surface into its universal covering space, which is either the Euclidean plane or the
hyperbolic disk embedded in R

2. Registration can then be done on the universal covering space by
iteratively minimizing a shape mismatching energy measuring the geometric dissimilarity between
the two surfaces. The Beltrami coefficient of the mapping is considered and adjusted in order
to control the bijectivity of the mappings in each iteration. Our proposed algorithm effectively
computes a smooth registration between high-genus surfaces that matches geometric information
as much as possible. The algorithm can also be applied to find a smooth registration minimizing
any general energy functionals. Numerical experiments on high-genus surface data show that our
proposed method is effective for registering high-genus surfaces with geometric matching. We also
applied the method to register anatomical structures for medical imaging, which demonstrates the
usefulness of the proposed algorithm.

Key words. surface registration, high-genus surface, universal covering space, conformal parameterization,
shape mismatching energy
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1. Introduction. Registration refers to the process of finding an optimal 1-1 correspon-
dence between images or surfaces. It has been extensively applied to different areas, such as
medical imaging, computer graphics, and computer vision. For example, in medical imaging,
registration is always needed for statistical shape analysis, morphometry, and processing of
signals on brain surfaces (e.g., denoising or filtering), while in computer graphics, surface reg-
istration is needed for texture mapping, which aligns each vertex to a position of the texture
image, to improve the visualization of the surface mesh. Developing an effective algorithm for
registration is therefore very important.

Surface registration between simple surfaces, such as simply connected open surfaces or
genus-0 closed surfaces, has been extensively studied. A lot of effective algorithms have been
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338 LOK MING LUI AND CHENGFENG WEN

proposed. However, as far as we know, very little literature has reported on the registration
between high-genus surfaces. The high-genus topology of the surfaces poses a great challenge
for registering the surfaces. A possible approach for coping with high-genus surface regis-
tration is by introducing cuts to partition the surface into several simply connected patches.
Registration can then be carried out in a patch-by-patch manner. As a result, consistent cuts
are required, which are usually difficult to locate and prone to error. Motivated by this, we
are interested in developing a geometric registration algorithm for high-genus surfaces that
does not involve the introduction of boundary cuts.

In this paper, we propose an effective way to obtain registrations between high-genus
surfaces without introducing any cuts that match the geometry as much as possible. The
key idea is to conformally parameterize the surface into its universal covering, which is either
the two dimensional (2D) Euclidean plane C or the hyperbolic disk H

2, using the discrete
Ricci flow method [35, 36]. Registration can then be done on the universal covering space by
minimizing a shape mismatching energy measuring the geometric dissimilarity between the
surfaces. Our proposed algorithm effectively computes a smooth registration between high-
genus surfaces that matches the geometric information as much as possible. The algorithm
can also be applied to find a smooth registration minimizing any general energy functionals.
To test the performance of the proposed method, numerical experiments have been done on
synthetic high-genus surface data. Results show that our proposed algorithm is effective in
registering high-genus surfaces with complete geometric matching. The proposed method has
also been applied to register anatomical structures for medical imaging, which demonstrates
the usefulness of the proposed algorithm.

The rest of the paper is organized as follows. In section 2, we describe some previous works
closely related to our paper. In section 3, we introduce some basic mathematical concepts.
The proposed algorithm for high-genus surface registration is explained in detail in section 4.
The detailed numerical implementation of the algorithm will be described in section 5. In
section 6, we show the numerical experimental results. The conclusion and future works are
described in section 7.

2. Previous works. In this section, we will describe some previous works closely related
to our works.

Our proposed algorithm requires surface parameterization of the high-genus surface onto
its universal covering space. Surface parameterization has been extensively studied, and
different algorithms have been proposed. Conformal registration, which minimizes angular
distortion, has been widely used to obtain a smooth 1-1 correspondence between surfaces
[4, 5, 7, 1, 16, 6]. For example, Hurdal and Stephenson [16] proposed computing the con-
formal parameterizations using circle packing and applied it to registration of human brains.
Gu et al. (see [5, 7, 6]) proposed computing the conformal parameterizations of human brain
surfaces for registration using harmonic energy minimization and holomorphic 1-forms. Con-
formal registration is advantageous since it preserves the local geometry well.

Surface registration, which aims to find an optimal 1-1 correspondence between surfaces,
has also been extensively studied. Various algorithms have been proposed by different re-
search groups. Landmark-free registration has been proposed to obtain 1-1 correspondences
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HIGH-GENUS SURFACE REGISTRATION 339

between shapes without feature landmarks. Different algorithms have been proposed to obtain
registrations based on the shape information (such as curvatures) defined on the surfaces. Lyt-
telton et al. [2] computed surface registrations with surface curvature matching. Fischl et al.
[4] proposed an algorithm for brain registration that better aligns cortical folding patterns by
minimizing the mean squared difference between the convexity of the surface and the average
convexity across a set of subjects. Lord et al. [17] proposed matching surfaces by minimiz-
ing the deviation of the registration from isometry. Bronstein et al. [9] propose finding the
registration between nonrigid shapes by solving an isometric similarity problem. Lipman
et al. (see [10, 11]) proposed another similarity criterion, which is determined by solving a
mass-transportation problem between surfaces’ conformal density. Yeo et al. [18] proposed
the spherical demons method, which adopted the diffeomorphic demons algorithm [20], for
driving surfaces into correspondence based on the mean curvature and average convexity.
Quasi-conformal mappings have been applied to obtain surface registration with bounded
conformality distortion [27, 29, 28, 30]. For example, Lui et al. [29] proposed computing
quasi-conformal registrations between hippocampal surfaces based on the holomorphic Bel-
trami flow method, which matches geometric quantities (such as curvatures) and minimizes
the conformality distortion [27]. Most of the above registration algorithms cannot match fea-
ture landmarks, such as sulcal landmarks on the human brains, consistently. To alleviate this
issue, landmark-matching registration algorithms are proposed by various research groups.
Bookstein [19] proposed obtaining a registration that matches landmarks as much as possible
using a thin-plate spline regularization (or biharmonic regularization). Tosun, Rettmann, and
Prince [33] proposed combining iterative closest point registration, parametric relaxation, and
inverse stereographic projection to align cortical sulci across brain surfaces. These diffeomor-
phisms obtained can better match landmark features, although not perfectly. Wang et al. (see
[21, 24]) proposed computing the optimized conformal parameterizations of brain surfaces by
minimizing a compounded energy. Besides, smooth vector fields have also been proposed to
represent surface maps. Lui et al. [23] proposed the use of vector fields to represent sur-
face maps and reconstruct them through integral flow equations. They obtained shape-based
landmark-matching harmonic maps by looking for the best vector fields minimizing a shape
energy. The use of vector fields to represent surface maps makes optimization easier, but
they cannot describe all surface maps. Time dependent vector fields can be used to represent
the set of all surface maps. For example, Joshi and Miller [8] proposed the generation of
large deformation diffeomorphisms for landmark point matching, where the registrations are
generated as solutions to the transport equation of time dependent vector fields. The time
dependent vector fields facilitate the optimization procedure, although it may not be a good
representation of surface maps since it requires more memory. Later, Lin et al. [37] proposed
a unified variational approach for registration of gene expression data to a neuroanatomical
mouse atlas in two dimensions that matches feature landmarks. Again, landmarks cannot
be exactly matched. Note that inexact landmark-matching registrations are sometimes ben-
eficial. In the case when landmark points/curves are not entirely accurate, this method is
more tolerant of errors in labeling landmarks and gives better parameterization. Most of the
above algorithms deal with the registration problem between simply connected open or closed
surfaces. Few works have dealt with registering high-genus surfaces.
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340 LOK MING LUI AND CHENGFENG WEN

3. Mathematical background. In this section, we describe some basic mathematical con-
cepts related to our algorithms. For details, we refer the readers to [3, 31, 32].

A surface S with a Riemannian metric is called a Riemann surface. Given two Riemann
surfaces M and N , a map f : M → N is conformal if it preserves the surface metric up
to a multiplicative factor called the conformal factor. An immediate consequence is that
every conformal map preserves angles. With the angle-preserving property, a conformal map
effectively preserves the local geometry of the surface structure. Under the local coordinates
of M and N , f can be expressed as f(z) = u(z) + iv(z), where z = x + iy. Then, f is a
conformal map if and only if it satisfies the Cauchy–Riemann equation

(1)
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

or, equivalently,

(2)
∂f

∂z
= 0.

According to the Riemann uniformization theorem, every Riemann surface admits a con-
formal Riemannian metric of constant Gaussian curvature. Such a metric is called the uni-
formization metric. The uniformization metric for a genus g = 1 surface induces 0 Gaussian
curvature, whereas a genus g > 1 surface induces −1 Gaussian curvature, which is called the
hyperbolic metric of the surface.

Every high-genus surface S (with genus g ≥ 1) is associated with a universal covering
space Ŝ ⊆ R

2. A universal covering space is a simply connected space with a continuous
surjective conformal map π : Ŝ → S satisfying the following: for any p ∈ S, there exists an
open neighborhood U of p such that π−1(U) is a disjoint union of open sets in Ŝ. When
g = 1, Ŝ is equal to the whole plane R

2. π is called the covering map. The covering map

is invariant under the deck transformation. A deck transformation is a map σ : Ŝ → Ŝ such
that π ◦ σ = π. The collection of all deck transformations forms a group, called the deck
transformation group, which is 2g dimensional. When g > 1, Ŝ is the unit disk equipped with
the hyperbolic metric, which is called the Poincaré disk H

2. The Poincaré disk H
2 is a unit

disk equipped with a metric defined as follows:

(3) ds2 =
4dzdz̄

(1− zz̄)2
.

The above metric is related to the hyperboloid model {(x, y, z) | x2 + y2 + 1 = z2}
projectively. Suppose (x, y, z) is a point on the upper sheet of the hyperboloid. The point can
be projected onto the plane {(x, y, z) | z = 0} by intersecting it with a line drawn through
(0, 0,−1). The hyperbolic metric (3) can then be induced by this projective map.

The distance between two points z and z0 on the Poincaré disk is given by

(4) d(z, z0) = tanh−1

∣∣∣∣ z − z0
1− zz̄0

∣∣∣∣ .
All rigid motions on the Poincaré disk are Möbius transformations:

(5) z → eiθ
z − z0
1− zz̄0

, z0 ∈ D, θ ∈ [0, 2π].
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HIGH-GENUS SURFACE REGISTRATION 341

Figure 1. Illustration of how the Beltrami coefficient determines the conformality distortion.

Every high-genus surface can be conformally embedded into its associated universal cov-
ering space in R

2.
Next, a natural generalization of conformal maps are quasi-conformal maps, which are ori-

entation preserving homeomorphisms between Riemann surfaces with bounded conformality
distortion, in the sense that their first order approximations take small circles to small ellipses
of bounded eccentricity [3]. Thus, a conformal homeomorphism that maps a small circle to
a small circle can also be regarded as quasi-conformal. In general, surface registrations and
parameterizations can be considered as quasi-conformal maps. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation

(6)
∂f

∂z
= μ(z)

∂f

∂z

for some complex-valued Lebesgue measurable μ : C → C satisfying ||μ||∞ < 1. μ is called
the Beltrami coefficient, which is a measure of nonconformality. The Beltrami equation is a
generalization of the Cauchy–Riemann equation (2). In particular, the map f is conformal
around a small neighborhood of p when μ(p) = 0. From μ(p), we can determine the angles
of the directions of maximal magnification and shrinking and the amount of them as well.
Specifically, the angle of maximal magnification is arg(μ(p))/2 with magnifying factor 1 +
|μ(p)|; the angle of maximal shrinking is the orthogonal angle (arg(μ(p))−π)/2 with shrinking
factor 1− |μ(p)|. The distortion or dilation is given by

(7) K = (1 + |μ(p)|)/(1 − |μ(p)|).

Thus, the Beltrami coefficient μ gives us all the information about the properties of the
map (see Figure 1).

Given a Beltrami coefficient μ : C → C with ‖μ‖∞ < 1, there is always a quasi-conformal
mapping from C onto itself which satisfies the Beltrami equation in the distribution sense [3].

The Beltrami coefficient will be used in this work to control the bijectivity of the mappings
in each iteration.

4. Algorithms. In this section, we explain our algorithm for registering high-genus sur-
faces in detail. The basic idea is to embed the surfaces into their universal covering spaces.
The computation of the surface registration can then be carried out on the universal covering
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spaces in R
2. In summary, our proposed algorithm can be divided into the following three

main stages:
1. Conformal embedding of the high-genus surface into the universal covering space: The

high-genus surfaces are first conformally parameterized into their universal covering
spaces in R

2, which is the Euclidean plane R
2 for g = 1 and hyperbolic disk H

2 for
g > 1.

2. Initial registration: Harmonic registration between the fundamental domains is com-
puted to obtain an initial surface registration.

3. Shape matching registration: A surface registration which matches the geometry is
obtained by minimizing a shape mismatching energy on the universal covering space.

In the following, we will describe each stage in detail.

4.1. Conformal embedding of the high-genus surface into the universal covering space.
In this work, the computation of the surface registration is carried out on the universal covering
spaces in R

2 of the high-genus surfaces. This simplifies the calculation since all computations
can be done in the 2D space.

The conformal embedding of S into its universal covering space Ŝ can be computed using
the Ricci flow method introduced by Gu et al. (see [35, 36]). Ricci flow is the process of
conformally deforming the surface metric g = (gij(t)) according to its induced Gaussian
curvature K(t) to its uniformization metric. This process is similar to the heat flow of the
metric on the manifold:

(8)
dgij(t)

dt
= −2(K(t)− K̄)gij(t),

where K̄ = 0 (g = 1) or K̄ = −1 (g > 1) is target curvature. Convergence of this process is
guaranteed by Hamilton’s theorem. g(∞) is the desired uniformization metric.

To obtain the conformal embedding, the surface S is first sliced along the cut graph G.
Let p ∈ S be a base point on the surface S. There are many closed loops based at p. Two
loops γ1 and γ2 are said to be equivalent if one can be deformed to the other without breaking.
Mathematically, there exists a homotopy H : [0, 1] × [0, 1] → S such that H(0, ·) = γ1 and
H(1, ·) = γ2. All equivalent closed loops form an equivalence class, which can be represented
by one loop. That is, we pick a closed loop in each equivalence class to represent it. The
set of all equivalence classes forms a group, which is called the fundamental group, π(S, p),
of S. Let {a1, b1, . . . , ai, bi, . . . , ag, bg} be a basis of π(S, p). Suppose r, s are two elements
of π(S, p), which are two closed loops based at p. Thus, r : [0, 1] → S with r(0) = p = r(1)
and s : [0, 1] → S with s(0) = p = s(1). The operation • of the fundamental group is the
composition of two closed loops, which is defined as follows:

(9) (r • s)(t) =
{

r(2t), 0 ≤ t ≤ 1
2 ,

s(2t− 1), 1
2 ≤ t ≤ 1.

For simplicity, we write ai • b1 as aibi. The identity element is the constant map at the
base point. The inverse a−1

i of a loop ai is the same loop with opposite direction at the base
point. Figure 2 illustrates the basis of the fundamental group of a genus one surface and a
genus two surface.

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH-GENUS SURFACE REGISTRATION 343

Figure 2. (A) shows the genus one torus and its universal covering space (Euclidean plane). (B) shows
the genus two 2-torus and its universal covering space (hyperbolic disk).

Slicing along the basis, the high-genus surface will become a simply connected open surface,
denoted by Scut, which is called the fundamental domain.

The fundamental group basis {a1, b1, a2, b2, . . . , ag, bg} is called canonical if any two loops
intersect only at the base point p. From algebraic topology, the boundary of the fundamental
domain with respect to the canonical loops is given by

(10) a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga−1
g b−1

g .

In this paper, we apply the greedy approach proposed in [34] to compute the homotopic
basis. Each canonical cut is chosen to be the shortest path in its equivalence class.

With the uniformization metric, the fundamental domain Scut can be conformally embed-
ded onto a 2D domain Ω ⊂ R

2, called the fundamental polygon. By gluing copies of Ω together
along its boundaries, the universal covering space of S, Ŝ, is obtained. As a result, we get the
covering map π : Ŝ → S (see Figure 2). For a genus one closed surface, the universal covering
space is the Euclidean plane R2 (see Figure 2(A)). For a genus greater than one, the universal
covering space is the Poincaré disk H

2 (see Figure 2(B)). Also, π−1(S) =
⋃

α∈I D̃α, where I

is the index set. The fundamental polygon, Ω, belongs to one of the pieces, D̃α ⊂ Ŝ. D̃α and
D̃β intersect at the edges if α �= β.

Note that the canonical cuts are introduced to obtain the conformal embedding of the
surface into its universal covering space only. During the registration process, the canonical
cuts on the source surface are allowed to move freely on the target surface since the whole
process is carried out on the universal covering spaces. In other words, the correspondences
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between canonical cuts are not required. It avoids the issue of finding consistent cuts to obtain
an accurate registration (see Figures 5 and 11).

4.2. Initial registration between fundamental polygons. In this stage, we compute an
initial surface registration between S1 and S2. The basic idea is to compute a harmonic map
between the fundamental polygons of S1 and S2. An initial registration can then be obtained
by the composition map.

Suppose S1 and S2 are conformally parameterized onto their fundamental polygons Ω1

and Ω2, respectively (computed in the first stage as described in section 4.1). Denote the
conformal parameterizations of S1 and S2 by φ1 : S1 → Ω1 and φ2 : S2 → Ω2, respectively.
We proceed to look for a harmonic map h : Ω1 → Ω2 between Ω1 and Ω2. In this subsection,
the metric used is always chosen to be the Euclidean metric if genus g = 1 and the hyperbolic
metric if g > 1. In the following, we always use bold letters to denote mapping.

Each fundamental polygon Ωi of Si (i = 1, 2) has 4g vertices and hence 4g edges. Vertices
of the fundamental polygon correspond to a single base point pi on Si. Note that the base
point p1 ∈ S1 should correspond to the base point p2 ∈ S2. All edges of Si are chosen to be
geodesics.

To obtain the harmonic map h : Ω1 → Ω2, we first assign boundary correspondence
h : ∂Ω1 → ∂Ω2 between ∂Ω1 and ∂Ω2 (∂Ωi = boundary of Ωi). Here, we assume the
corresponding edges of Ω1 and Ω2 can be matched. The pointwise correspondence of the
corresponding edges can be given by the arc-length parameterization. The boundary condition
h : ∂Ω1 → ∂Ω2 can then be obtained.

Note that the boundary cuts on each surface might not exactly correspond to each other.
However, since canonical cuts are chosen, the edges of Ωi correspond to the shortest loops
on Si. As a result, the initial boundary correspondence is a reasonable guess for the initial
registration. We remark once again that the boundary correspondence between the boundary
cuts is not constrained for our final registration. The boundary correspondence is given here
just to obtain the initial registration. In the second stage, the boundary cuts on the source
surface are allowed to move freely on the target surface. Hence, the correspondence between
the boundary cuts is not enforced.

With the boundary correspondence h, a unique harmonic map between the two canonical
polygons can be computed. The harmonic map h : Ω1 → Ω2 can be computed by minimizing
the harmonic energy

(11) Eharmonic(h) =

∫
Ω1

|∇h|2Ω2
, given h|∂Ω1 = h.

Minimizing the above energy functional is equivalent to solving the following PDE:

(12) Δh = 0 subject to h|∂Ω1 = h,

where Δ is the Laplace–Beltrami operator under the uniformization metric.
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Once h : Ω1 → Ω2 is computed, an initial registration f0 : S1 → S2 can be obtained by
f0 := φ−1

2 ◦ h ◦ φ1. This initial registration is a smooth mapping between S1 and S2. Note
that there are other choices of initial maps, such as patch-by-patch registration or landmark-
matching registration.

Now, to obtain a geometric matching registration, we propose iteratively adjusting the
registration from the initial registration to minimize a geometric mismatching energy.

4.3. Shape matching registration. In the previous subsection, we obtained the initial
registration by computing the harmonic map between the fundamental polygons. We assume
that the boundary cuts are properly matched. Edges of each canonical polygon Ωi are shortest
loops on the surface Si which pass the base point pi. However, the shortest loops depend on the
uniformization metric, which does not directly take the geometric information of the surfaces
into consideration. Constraining the boundary cuts to be exactly matched often induces error
in the final registration. To obtain a better geometric matching registration, we propose a
variational approach, which minimizes a geometric mismatching energy, to iteratively adjust
the registration without fixing the correspondences of the boundary cuts.

Surface curvatures are important quantities for describing the surface geometry. We there-
fore consider an energy functional which measures the curvature mismatching under a reg-
istration f : S1 → S2. More specifically, we propose finding an optimal diffeomorphism
f∗ : S1 → S2 which minimizes the following energy functional Eshape:

Eshape(f) =
1

2

∫
S1

|∇g1f |2S2
+

α2

2

∫
S1

(H1 −H2 ◦ f)2 + β2

2

∫
S1

(K1 −K2 ◦ f)2,(13)

where H1,H2 are mean curvatures on S1 and S2, respectively, and K1,K2 are the Gaussian
curvatures on S1 and S2, respectively.

The first term, which is the harmonic energy, controls the smoothness of the registration.
The last two terms, which measure the mismatching of surface curvatures, are used to match
the surface geometry.

Solving the above variational problem (13) directly on the surfaces is challenging. To
simplify the optimization process, we propose solving the problem on the universal covering
spaces of S1 and S2.

4.3.1. Optimization on universal covering spaces. Let π1 : S̃1 → S1 and π2 : S̃2 → S2

be the covering maps of S1 and S2, respectively. Suppose π−1
1 (S1) =

⋃
α∈I D̃

1
α, where I

is the index set and D̃1
i intersects with D̃1

j at their boundaries if i �= j. Similarly, we let

π−1
2 (S2) =

⋃
β∈I D̃

2
β, where D̃2

i intersects with D̃2
j at their boundaries if i �= j. We then look

for a diffeomorphism g∗ : S̃1 → S̃2, which is the lifting of the optimal registration f∗ : S1 → S2

minimizing Eshape. In other words, we require that

(14) g∗ = π−1
2 ◦ f∗ ◦ π1| ˜D1

α
for any α ∈ U.

Equation (14) ensures that g∗ satisfies the periodic condition on the covering spaces.
Suppose that the canonical cuts on S1 and S2 are given by {a1, b1, a2, b2, . . . , ag, bg} and
{c1, d1, c2, d2, . . . , cg, dg}, respectively. We can find the generator {ϕ1, φ1, ϕ2, φ2, . . . , ϕg, φg}D

ow
nl

oa
de

d 
08

/2
4/

16
 to

 1
37

.1
89

.2
04

.6
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

346 LOK MING LUI AND CHENGFENG WEN

of the deck transformation group of S2 such that ϕi(ci) = c−1
i and φi(di) = d−1

i (1 ≤ i ≤ g).
{ϕ1, φ1, ϕ2, φ2, . . . , ϕg, φg} are called the Fuchsian group generators. We then require that g∗

satisfy the following periodic condition:

(15) ϕi(g
∗(ai)) = g∗(a−1

i ) and φi(g
∗(bi)) = g∗(b−1

i ).

Therefore, to obtain the optimal diffeomorphism g∗, we need to minimize the following
energy functional:

EH(g) =
1

2

∫
˜S1

|∇g|2 + α2

2

∫
˜S1

(H̃1 − H̃2 ◦ g)2 + β2

2

∫
˜S1

(K̃1 − K̃2 ◦ g)2(16)

subject to the constraint that ϕi(g(ai)) = g(a−1
i ) and φi(g(bi)) = g(b−1

i ) for all 1 ≤ i ≤ g.
The first term is the harmonic energy of g. It is computed using the metric of universal
covering space.

When g = 1, ϕi and φi are just translations in R
2. When g > 1, ϕi and φi are Möbius

transformations of the unit disk that can be computed explicitly. We will describe the compu-
tation of ϕ1. The other Fuchsian group generators can be obtained in the same way. Suppose
the starting and ending points of c1 are r and s, and the starting and ending points of c−1

1

are s′ and r′. We need to look for a Möbius transformation ϕ1 such that ϕ1(r) = r′ and
ϕ1(s) = s′. We first compute a Möbius transformation to map r to the origin, which is given
by ρ1(z) = (z − r)/(1 − r̄z). Then, ρ1 maps rs to a radial Euclidean line. Let the angle
between ρ1(rs) and the real axis be θ, and let ρ2(z) = e−iθz. Then, ρ2 ◦ ρ1 maps r to the
origin and rs to the real axis. Similarly, we can find Möbius transformations ρ′1 and ρ′2 such
that ρ′2 ◦ρ′1 maps r′ to the origin and r′s′ to the real axis. The deck transformation ϕ1 is then
given by ϕ1 = ρ′−1

1 ◦ ρ′−1
2 ◦ ρ2 ◦ ρ1.

To solve the optimization problem (16), we use a splitting method to minimize

ED(g,h) =
1

2

∫
˜S1

|∇g|2 + σ2

2

∫
˜S1

|g − h|2

+
α2

2

∫
˜S1

(H̃1 − H̃2 ◦ h)2 + β2

2

∫
˜S1

(K̃1 − K̃2 ◦ h)2.
(17)

Fixing g, we first minimize E1(h):

(18) E1(h) =
σ2

2

∫
˜S1

|g − h|2 + α2

2

∫
˜S1

(H̃1 − H̃2 ◦ h)2 + β2

2

∫
˜S1

(K̃1 − K̃2 ◦ h)2.

It can be done by solving the following PDE:

(19) σ2(g − h) + α2(H1 −H2(h))∇H2(h) + β2(K1 −K2(h))∇K2(h) = 0.

In the discrete case, the above problem can be solved by the Gauss–Newton method, which
will be described in section 5.

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH-GENUS SURFACE REGISTRATION 347

Next, fixing h, we minimize

(20) E2(g) =
1

2

∫
˜S1

|∇g|2 + σ2

2

∫
˜S1

|g − h|2.

E2 can be minimized by solving the elliptic PDE

(21) Δg − σ2(g − h) = 0.

Recall that the registration computed should satisfy the constraint (14). Hence, we enforce
this constraint when solving (21). In the discrete case, the above problem becomes a nonlinear
system, which can be solved effectively using Newton’s method.

In this way, we can minimize ED alternatively over g and h. More specifically, suppose
(gn,hn) is obtained at the nth iteration and we fix gn to obtain hn+1 by solving (19). We
then fix hn+1 to obtain gn+1 by solving (21).

4.3.2. Controlling bijectivity in each iteration. To control the bijectivity of the mappings
in each iteration, we will consider and adjust the Beltrami coefficient of the mapping.

Let g : Ŝ1 → Ŝ2 be the mapping between the universal covering spaces of S1 and S2. We
want to control the bijectivity of g. Every mapping g is associated with a Beltrami coefficient,
μ(g), which is a complex-valued function defined on Ŝ1. g is bijective if and only if its Jacobian
Jg > 0 everywhere. Simple checking gives

(22) Jg =

∣∣∣∣∂g∂z
∣∣∣∣2 (1− |μ(g)|2).

Hence, g is bijective if and only if |μ(g)| < 1 everywhere.
In the discrete case, we also have a similar observation. Suppose K1 and K2 are trian-

gulation meshes approximating Ŝ1 and Ŝ2, respectively. Let �f : K1 → K2 be a piecewise
linear map (linear on each triangular face). Then, the discrete Beltrami coefficient �μ, which
is a complex-valued function defined on each triangular face, can be computed. According to
(22), |�μ(T )| > 1 on a triangular face T implies an orientation change on T . Also, the Jacobian
is equal to 0 if |�μ(T )| = 1, which means the map squeezes T to a point. Hence, |�μ(T )| < 1 for
all triangular faces T if and only if �f is a piecewise linear homeomorphism without flipping.

Motivated by the above observation, we propose enforcing μ(gn) < 1 in each iteration
during the optimization process described in the last subsection. This can be done as follows.
Suppose gn is obtained at the nth iteration. Let ε > 0 be a small parameter and μn = μ(gn)
be the Beltrami coefficient of gn. We first compute

(23) νn =

{
min{|μn|, 1− ε} μn

|μn| if |μn| �= 0,

0 if |μn| = 0.

We then smooth νn by minimizing the following energy functional:

(24)

∫
̂S1

|∇ν|2 + λ

2

∫
̂S1

|ν − νn|2.
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The above minimization problem is equivalent to solving the following PDEs:

(25) Δν + λ(ν − νn) = 0

subject to the constraint that for every 1 ≤ i ≤ g, ν(x) = ν(ϕi(x)) for all x ∈ ai and
ν(y) = ν(φi(y)) for all y ∈ bi.

Once a smooth Beltrami coefficient ν̃n is obtained, we need to find a quasi-conformal
map fn whose Beltrami coefficient closely resembles ν̃n. Suppose f = u + iv with Beltrami
coefficient μ(f) = ρ+ iτ . We can write vx and vy as linear combinations of ux and uy,

−vy = α1ux + α2uy,

vx = α2ux + α3uy,
(26)

where α1 =
(ρ−1)2+τ2

1−ρ2−τ2
, α2 = − 2τ

1−ρ2−τ2
, α3 =

(1+ρ)2+τ2

1−ρ2−τ2
.

Similarly,

uy = α1vx + α2vy,

−ux = α2vx + α3vy.
(27)

Since ∇ · (−vy
vx

)
= 0, we obtain

(28) ∇ ·
(
D

(
ux

uy

))
= 0 and ∇ ·

(
D

(
vx
vy

))
= 0,

where D =
(
α1 α2
α2 α3

)
.

In fact, (28) is the Laplace equation under the auxiliary metric |dz + μdz̄|2 on Ŝ1, where
|dz|2 and |dw|2 are the Euclidean or hyperbolic metrics under the local coordinates of Ŝ1

and Ŝ2, respectively. Solving (28) is equivalent to finding the generalized harmonic map
between Ŝ1 and Ŝ2 under the auxiliary metric on Ŝ1. The generalized harmonic map between
(Ŝ1, |dz+μdz̄|2) and (Ŝ2, |dw|2) is unique in each homotopic class since the curvature of Ŝ2 is
0 or −1 (≤ 0) under the uniformization metric |dw|2 of the high-genus surface Ŝ2. Also, the

unique generalized harmonic map is conformal if and only if (Ŝ1, |dz + μdz̄|2) and (Ŝ2, |dw|2)
are conformally equivalent. In fact, f : (Ŝ1, |dz + μdz̄|2) → (Ŝ2, |dw|2) is conformal under
the auxiliary metric on Ŝ1. Thus, solving (28) subject to one homotopic class gives the
unique conformal map f : (Ŝ1, |dz + μdz̄|2) → (Ŝ2, |dw|2), which is the quasi-conformal map
f : (Ŝ1, |dz|2) → (Ŝ2, |dw|2) with Beltrami differential μ under the original metric |dz|2 on Ŝ1.

Therefore, to construct fn, we let μ = ν̃n and solve (28) subject to the constraint that
ϕi(fn(ai)) = fn(a

−1
i ) and φi(fn(bi)) = fn(b

−1
i ) for all 1 ≤ i ≤ g. The details of the numerical

implementation for solving (28) in the discrete case will be explained in section 5. It is our
ongoing work to prove that the discrete map obtained from solving the discretization of (28)
converges to the continuous quasi-conformal (hence bijective) map as the mesh size tends
to 0. In practice, it is found that the obtained discrete map fn by solving (28) has Beltrami
coefficient �μ(fn) with supreme norm strictly less than 1 in all of our experiments. According
to the above discussion, the discrete map has no flipping (bijective) in each iteration.
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4.3.3. Summary of the algorithm. We now summarize our proposed high-genus surface
registration algorithm as follows.
Algorithm 1 : (High-genus surface registration)
Input : High-genus surfaces S1 and S2

Output : Geometric matching surface registration f : S1 → S2

1. Compute the conformal parameterizations φ1 : S1 → Ω1 and φ2 : S2 → Ω2 of S1 and
S2, respectively.

2. Compute the initial mapping f0; let g0 = h0 = f0.
3. Given (gn,hn) at the nth iteration, obtain hn+1 by fixing gn and solve (19); fixing

hn+1, obtain gn+1 by solving (21).
4. Compute the Beltrami coefficient μn+1 of gn+1; obtain a smooth Beltrami coefficient

ν̃n+1 by solving (23) and (25).
5. Obtain a quasi-conformal map fn+1 from ν̃n+1 by solving (28).
6. If ||ED(fn+1)− ED(fn)|| ≥ ε, continue. Otherwise, stop the iteration.

5. Numerical implementation. In this section, we describe in detail the numerical imple-
mentation of our proposed algorithm. All our computations are carried out on the universal
covering space, which is R

2 when g = 1 and H
2 when g > 1. The universal covering space

consists of infinite copies of fundamental polygons, which are unique up to deck transforma-
tions. Many important operators are identical on each fundamental polygon. For example,
the Laplace–Beltrami operator, which is crucial in our model, is identical on each fundamental
polygon since it is invariant under rigid motions. Based on this observation, the numerical
implementation can be done on one piece of the fundamental polygon, while allowing its
boundary to move freely on the universal covering space of the target surface. In other words,
boundary correspondences between the canonical cuts of the two surfaces are not required.

5.1. Poisson’s equation on the universal covering space. The Laplace–Beltrami opera-
tor plays a crucial role in our proposed algorithm. Most key steps involve solving Poisson’s
equation on the universal covering space. In this subsection, we describe how to discretize the
Laplace–Beltrami operator on the fundamental polygon, which can be lifted to the universal
covering space. Poisson’s equation can then be solved on the universal covering space.

On a triangular mesh, the Laplace–Beltrami operator can be discretized by the cotangent
formula

(29) ΔMf(zi) =
∑

j∈N1(i)

wij(f(zj)− f(zi)),

where N1(i) is the set of vertex indices of the one-ring neighborhood of the vertex zi and
wij =

1
2 (cotα+cot β), where α and β are the two angles facing the edge [vi, vj ]. Here, we use

zi to denote both the ith vertex and its complex coordinates. Poisson’s equation can then be
expressed in a matrix form:

(30) Af = b,

where A is a square matrix with A(i, j) = wij and A(i, i) = −∑
j∈N1(i)

wij .D
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350 LOK MING LUI AND CHENGFENG WEN

Figure 3. Fundamental domain on the Poincaré disk.

Note that the computation of ΔMf on each vertex uses only vertices in its one-ring
neighborhood. For the interior vertices of the fundamental polygon Ω1, the discretization of
ΔMf uses vertices in Ω1. However, for vertices on the boundary of the fundamental polygon,
the discretization of ΔMf uses vertices outside Ω1 (see Figure 3).

Every vertex outside the fundamental polygon has a unique copy inside the fundamental
polygon up to a rigid motion. Hence, whenever vertices outside the fundamental polygon are
involved, we will refer to their unique copies inside the fundamental polygon Ω1. Note that
this is also valid for vertices zk associated with the base point p1 ∈ S1. That is, zk ∈ φ−1

1 (p1),
where φ−1

1 is the inverse mapping of φ1. In other words, we have a valid discretization on
zk ∈ φ−1

1 (p1). In practice, we always fix zk by letting A(k, k) = 1, A(k, j) = 0 if j �= k,
b(k) = f(zk) for any zk ∈ φ−1

1 (p1). For a vertex zi on the boundary of Ω1 other than points
in φ−1

1 (p1), the discretization can be obtained by

(31) ΔMf(zi) =
∑

j∈N1(i)

wij(f(zj)− f(zi)) +
∑

j∈ ˜N1(i)

wij(f(zj)− f(zi)),

where N1(i) is the set of vertex indices of one-ring neighbors of the vertex zi on the funda-
mental polygon Ω1 and Ñ1(i) is the set of vertex indices of one-ring neighbors of the vertex zi
outside the fundamental polygon. We denote further the set of vertex indices of the one-ring

neighborhood of the vertex zi inside the fundamental domain by
◦
N1(i). Thus, for example,

in Figure 3, N1(i) = {i1, i2, j1, j2}, Ñ1(i) = {j3, j4},
◦
N1(i) = {j1, j2}.

For simplicity, we let z̃i = f(zi). The Laplace–Beltrami operator becomes

(32) ΔM z̃i =
∑

j∈N1(i)

wij(z̃j − z̃i) +
∑

j∈ ˜N1(i)

wij(z̃j − z̃i).
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Suppose z̃j is outside the fundamental domain. We denote the inside copy of vertex z̃j by
z̃j′ . Let ϕ be the deck transformation that moves z̃j to z̃j′ , that is, z̃j′ = ϕ(z̃j); then we have

ΔM z̃i =
∑

j∈N1(i)

wij(z̃j − z̃i) +
∑

j∈ ˜N1(i)

wij(z̃j − z̃i)

=
∑

j∈N1(i)

wij(z̃j − z̃i) +
∑

j′∈
◦
N1(i′)

wi′j′(z̃j′ − z̃i′)

=
∑

j∈N1(i)

wij(z̃j − z̃i) +
∑

j∈ ˜N1(i)

wij(ϕ(z̃j)− ϕ(z̃i)).

(33)

The second equality uses the fact that Laplace–Beltrami operator ΔM is invariant under
rigid motions.

With this discretization, Poisson’s equation can be rewritten in the matrix form

(34) Az̃ +Q(z̃) = b,

where A is the matrix representation of the Laplace–Beltrami operator, and Q(i, j) is the deck
transformation that transforms outside neighbor zj of vertex zi to its inside copy zj′ and is
zero elsewhere, multiplied by wij .

For genus one surfaces, deck transformations are linear translations, and so Q is a linear
operator. Combining Q into A, (34) becomes a linear system and can be solved efficiently.

However, for higher genus surfaces (g > 1), deck transformations are Möbius transfor-
mations, which are nonlinear. Equation (34) becomes a nonlinear system. It can be solved
by Newton’s method efficiently. Let F (z̃) = Az̃ + Q(z̃) − b. The gradient of F is given by
∇F = A+Q′. The problem can then be solved using the standard Newton method:

1. Initialize z̃ by z̃0.
2. Compute F (z̃) = Az̃ +Q(z̃)− b. If ‖F (z̃)‖ < ε, stop the process.
3. Compute ∇F (z̃) = A+Q′(z̃), and solve s from equation ∇F (z̃) · s = F (z̃). If ‖s‖ < ε,

stop the process. Otherwise, let z̃ = z̃ − s and go to step 2.
The linear equation in step 3 can be solved by LU factorization, which turns out to be

quite efficient. In our numerical computation, we observe that Newton’s method converges
very quickly: usually two or three iterations will achieve 10−10 accuracy.

5.2. Solving energy minimizing problem. We use an alternating approach to minimize
the proposed energy functional ED. In each iteration, we first minimize E1(h) to get h and
then minimize E2(g) to get g.

We first discuss the minimization of E1(h).
At each point p ∈ Ŝ1, we consider Taylor’s expansion of H2 and K2 about g(p). For

simplicity, we denote g(p) as gp and h(p) as hp:

H2(hp) ≈ H2(gp) +∇H2(gp) · (hp − gp),

K2(hp) ≈ K2(gp) +∇K2(gp) · (hp − gp).
(35)
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With the linear approximation (35), we have

E1(h) =
σ2

2

∫
˜S1

|g − h|2

+
α2

2

∫
˜S1

(H̃1 − H̃2(g)−∇H̃2(g) · (h − g))2

+
β2

2

∫
˜S1

(K̃1 − K̃2(g)−∇K̃2(g) · (h− g))2

=

∫
˜S1

∥∥∥∥∥∥
⎛⎝ α(H̃1 − H̃2(g))

β(K̃1 − K̃2(g))
0

⎞⎠−
⎛⎝ α∇H̃2(g)

β∇K̃2(g)
σI2×2

⎞⎠ (h− g)

∥∥∥∥∥∥
2

.

(36)

Then the minimization problem can be solved individually for each vertex p in the least squares
sense: ⎛⎝ α∇H̃2(g)

β∇K̃2(g)
σI2×2

⎞⎠ (hp − gp) =

⎛⎝ α(H̃1 − H̃2(gp))

β(K̃1 − K̃2(gp))
0

⎞⎠ .(37)

Let

(38) S =

⎛⎝ α∇H̃2(gp)

β∇K̃2(gp)
σI2×2

⎞⎠ , d =

⎛⎝ α(H̃1 − H̃2(gp))

β(K̃1 − K̃2(gp))
0

⎞⎠ ;

then we have

(39) hp = gp + (STS)−1 · (STd).

In our computation, the inversion (STS)−1 can be obtained by the Sherman–Morrison formula.
Let uT = α

σ∇H̃2(g), v
T = α

σ∇K̃2(g); then S = σ(u, v, I2×2)
T , STS = σ2(I2×2 + uuT + vvT ).

Applying the Sherman–Morrison formula twice, we have

(40) (STS)−1 =
1

σ2

(
I2×2 − uuT + vvT + (uT · v⊥)2I2×2

1 + uTu+ vT v + (uT · v⊥)2
)
.

Hence we have a simple solution for h. If we consider only either the mean curvature H or
Gaussian curvature K (that is, β = 0 or α = 0), the expression of h can be further simplified.
For example, if β = 0, we have

(41) (STS)−1 =
1

σ2

(
I − uuT

1 + uTu

)
and hence

(42) hp = gp +
(H̃1 − H̃2(gp))∇H̃2(gp)
σ2

α2 +∇H̃2(gp)T∇H̃2(gp)
.

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH-GENUS SURFACE REGISTRATION 353

Next, the minimization of E2(g) can be done easily by solving (21):

(43) Δg − σ2(g − h) = 0,

where Laplace–Beltrami operator Δ is discretized using the cotangent formula.
The procedure discussed in section 5.1 can be applied to solving (43). More specifically,

we have to solve the following equation:

(44) (A− σ2I)g +Q(g) = −σ2h.

For genus one surfaces, (44) is a linear system and can be solved efficiently by a linear
solver. For higher genus surfaces (g > 1), (44) becomes a nonlinear equation and it can be
solved by Newton’s method.

5.3. Solving Beltrami equation. To preserve the bijectivity of the mappings, a smoothing
operation on the Beltrami coefficient is applied. A mapping is then reconstructed from the
smoothed Beltrami coefficient by solving the Beltrami equation.

The Beltrami equation is in fact Poisson’s equation with a generalized Laplace–Beltrami
operator (see (28)). We can solve the equation as described in section 5.1. Since we have a
generalized Laplace–Beltrami operator, the standard cotangent formula cannot be used. We
use the discretization scheme proposed in [30], which also uses the one-ring neighborhood of a
vertex to discretize the generalized Laplace–Beltrami operator. Hence, the method described
in section 5.1 can still be applied.

More specifically, the gradient operator ∇T can be discretized by a linear approximation.
For a triangle T = (i, j, k), pi = (xi, yi)

T , pj = (xj , yj)
T , pk = (xk, yk)

T the coordinates of the
three vertices, let ei = pk − pj, ej = pi − pk, ek = pj − pi; then we have

(45) ∇Tfi =
1

4aT
(fiti + fjtj + fktk),

where aT is the area of the triangle, ti = e⊥i , tj = e⊥j , and tk = e⊥k .
The discrete gradient operator at vertex i can then be obtained by

(46) ∇fi =
∑
T∈Ni

1

4aT
(fiti + fjtj + fktk),

where Ni is the collection of neighborhood faces attached to vertex i. Note that in the
summation we omit the superscripts on f and t to avoid confusion.

Similarly, the discretization of divergence operator ∇· for a vector F = (u, v)T can be
obtained by

(47) ∇ · Fi =
∑
T∈Ni

1

4aT
(Fi · ti + Fj · tj + Fk · tk).

The discretization of (28) can be obtained by applying the above two formulas.
Following the discussion in section 5.1, the Beltrami equation can be formulated as

(48) Az̃ +Q(z̃) = b.

The above equation is linear in the case of genus one surfaces and is nonlinear in the case of
higher genus surfaces. By solving the above equation, we get a reconstructed quasi-conformal
map associated with the smoothed Beltrami coefficient.
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5.4. Summary. In this subsection, we summarize the numerical implementation details.
Our proposed algorithm consists of three stages:

• Stage 1: Conformal embedding using the Ricci flow method. The implementation
details of the Ricci flow method can be found in [7, 35, 36].

• Stage 2: Computation of the harmonic map as the initial registration. The implemen-
tation details can be found in [7].

• Stage 3: Geometric registration by minimizing an energy functional as described in
section 5.2. Energy minimization is done by an alternative scheme:

• First, minimize E1(h) while fixing g. The explicit solution of the problem is
shown in (39).

• Second, minimize E2(g) while fixing h by solving elliptic PDE (21) as described
in section 5.1.

• Third, control the bijectivity by chopping and smoothing Beltrami coefficients,
which is described in section 5.3.

6. Experimental results. To test the efficacy of the proposed algorithm, experiments
have been carried out on synthetic high-genus surface data together with real medical data
(vertebrae bone and vestibular system).

6.1. Synthetic surface data. We first test our algorithm on synthetic surface data.
Example 1. In our first examples, we test the proposed method on a standard torus of genus

one. Figures 4(A) and (B) show two genus-1 tori, denoted by S1 and S2, respectively, with
different intensity functions defined on each of them. The two surfaces are parameterized onto
their universal covering spaces, and registration between the two surfaces is computed on the
2D parameter domains. The intensity functions on each surface are plotted on their universal
covering spaces, which are shown in (C) and (D). Figure 5(A) shows the registration result that

Figure 4. (A) and (B) show two genus-1 tori with different intensity functions defined on each of them.
(C) and (D) show the intensity functions plotted on the universal covering spaces of (A) and (B), respectively.
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HIGH-GENUS SURFACE REGISTRATION 355

Figure 5. (A) shows the registration result that matches the intensity function. The intensity function
defined on S1 is mapped to S2 using the obtained registration. (B) shows the registration result on the universal
covering spaces. Note that the boundary cuts are not fixed. They move freely on the universal covering space
and while satisfying the periodic conditions.

Figure 6. The intensity mismatching energy, harmonic energy, and total energy versus iterations for the
geometric registration problem in Figure 5.

matches the intensity functions. The intensity function defined on S1 is mapped to S2 using
the obtained registration. (B) shows the registration result on the universal covering spaces.
The intensity functions are perfectly matched under the obtained registration (compared with
Figure 4(D)). Note that the boundary cuts are not fixed. They move freely on the universal
covering space of S2 and while satisfying the periodic conditions. Figure 6 shows the intensity
mismatching energy, harmonic energy, and total energy versus iterations. All of them decrease
monotonically as the iteration increases. It demonstrates that our algorithm computes the
optimized (Euclidean) harmonic map between the two genus-1 surfaces that matches the
intensity functions as much as possible.

Example 2. We test our proposed algorithm to obtain geometric matching registration
between two synthetic genus-1 surfaces through matching their curvatures. Figures 7(A) and
(B) show two synthetic genus-1 surfaces, with three bumps added to each surface located
at different positions. The colormaps on each surfaces are given by their mean curvatures.
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Figure 7. Two synthetic genus-1 surfaces are shown in (A) and (B), respectively. Two bumps are added
to each surface at different locations. The colormap is given by the mean curvature.

Figure 8. The results of registration without curvature matching and with curvature matching are shown
in the figure. The color intensity on surface 1 (given by the mean curvature) is mapped to surface 2 using the
obtained registrations. The registration without curvature matching cannot match the feature bumps on the two
surfaces, whereas the registration with curvature matching can match the bumps consistently.

Using our proposed method, we compute both the registration without curvature matching
and the registration with curvature matching. The registration result is shown in Figure 8.
The color intensity on S1 (given by the mean curvature) is mapped to S2 using the obtained
registrations. The registration without curvature matching cannot match the feature bumps
on the two surfaces, whereas the registration with curvature matching can match the bumps
consistently. It illustrates that our proposed method can obtain a better registration that
matches the geometry between the two surfaces. The curvature mismatching energy, harmonic
energy, and total energy versus iterations are shown in Figure 9. Again, all energies decrease
monotonically as the iteration increases and converge in about 30 iterations.

Example 3. We next test our algorithm on synthetic genus-2 surfaces. Figures 10(A) and
(B) show two genus-2 surfaces, denoted by S1 and S2, respectively, with different intensity
functions defined on each of them. The two surfaces are parameterized onto their universal
covering spaces, and registration between the two surfaces is computed on the 2D parameter
domains. The intensity functions on each surface are plotted on their universal covering
spaces, which are shown in (C) and (D). In Figure 11(A), we show the obtained registration
between the two surfaces that matches the intensity functions. The intensity function defined
on S1 is mapped to S2 using the obtained registration. (B) shows the registration result
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Figure 9. The curvature mismatching energy, harmonic energy, and total energy versus iterations for the
geometric registration problem in Figure 8.

Figure 10. (A) and (B) show two genus-2 tori with different intensity functions defined on each of them.
(C) and (D) show the intensity functions plotted on the universal covering spaces of (A) and (B), respectively.

on the universal covering spaces. The intensity functions are perfectly matched under the
obtained registration (compared with (D)). Again, the boundary cuts are not fixed. They
move freely on the universal covering space of S2 and while satisfying the periodic conditions.
Figure 12 shows the intensity mismatching energy, harmonic energy, and total energy versus
iterations. All of them decrease monotonically as the iteration increases. It illustrates that our
algorithm computes the optimized (hyperbolic) harmonic map between the genus-2 surfaces
that matches the intensity functions as much as possible.

Example 4. We also test our method on two synthetic genus-2 surfaces. Figures 13(A)
and (B) show two synthetic genus-2 surfaces, with two bumps added to each surface located
at different positions. The colormaps on each surface are given by their mean curvatures.
Using our proposed method, we compute both the registration without curvature matching
and the registration with curvature matching. The registration results are shown in Figure 14.
The color intensity on S1 (given by the mean curvature) is mapped to S2 using the obtained
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Figure 11. (A) shows the registration result that matches the intensity function. The intensity function
defined on S1 is mapped to S2 using the obtained registration. (B) shows the registration result on the universal
covering spaces. Note that the boundary cuts are not fixed. They move freely on the universal covering space
and while satisfying the periodic conditions.

Figure 12. The intensity mismatching energy, harmonic energy, and total energy versus iterations for the
geometric registration problem in Figure 11.

registrations. The registration without curvature matching cannot match the feature bumps
on the two surfaces (see the regions in the highlighted boxes). It is, however, observed that the
registration with curvature matching can match the bumps consistently. It again demonstrates
the effectiveness of our proposed method for obtaining a geometric matching registration be-
tween genus-2 surfaces. Figure 15 shows the curvature mismatching energy, harmonic energy,
and total energy versus iterations. Again, all energies decrease monotonically as the iteration
increases and converge in about 20 iterations.

6.2. Real medical data. In medical imaging, studying shape changes of anatomical struc-
tures is important for the purpose of disease analysis. To perform shape analysis effectively, an
accurate surface registration between anatomical structures is necessary. In this subsection,
we will show two applications of our proposed algorithm in medical imaging for registering
two real medical data, namely, the vertebrae bone and the vestibular system.
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Figure 13. Two synthetic genus-2 surfaces are shown in (A) and (B), respectively. Two bumps are added
to each surface at different locations. The colormap is given by the mean curvature. (C) and (D) show the top
view of the two surfaces.

Figure 14. The results of registration without curvature matching and with curvature matching are shown
in the figure. The color intensity on surface 1 (given by the mean curvature) is mapped to surface 2 using the
obtained registrations. The registration without curvature matching cannot match the feature bumps on the two
surfaces, whereas the registration with curvature matching can match the bumps consistently.

Example 5 (vertebrae bone). The study of morphological changes of the vertebrae is im-
portant in detecting vertebral fractures and degenerative shape changes. An accurate and
meaningful registration between the vertebrae bone surfaces is therefore important. Using
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Figure 15. The curvature mismatching energy, harmonic energy, and total energy versus iterations for the
geometric registration problem in Figure 14.

Figure 16. (A) and (B): The vertebrae bones of genus one of two different subjects. (C) and (D) show the
mean curvature functions plotted on the universal covering spaces of (A) and (B).

our proposed algorithm, a geometric matching surface registration between different verte-
brae bones can be obtained. Figures 16(A) and (B) show the vertebrae bones of two different
subjects. They are both of genus one. Their mean curvature functions on each surface are
plotted on their universal covering spaces, which are shown in (C) and (D). Our goal is to
find a geometric matching registration between the two surfaces.

The registration result of the vertebrae bones using our proposed algorithm is shown in
Figure 17. (A) shows the vertebrae bone surface of Subject 1, colored by its mean curvature.
The color intensity (given by the mean curvature) on the vertebrae bone of Subject 1 is
mapped to the vertebrae bone of Subject 2 in (B), using the obtained registration. Note
that the high curvature regions are consistently matched. For example, the “hammers” on
the vertebrae bone of Subject 1 (labeled as regions I–V) are matched consistently with the
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Figure 17. The registration result of the vertebrae bones using our proposed algorithm. (A) shows the
vertebrae bone surface of Subject 1, colored by its mean curvature. The color intensity (given by the mean
curvature) on the vertebrae bone of Subject 1 is mapped to the vertebrae bone of Subject 2 in (B), using the
obtained registration. Note that the high curvature regions are consistently matched. (C) and (D) show the
registration result on the universal covering spaces.

Figure 18. The curvature mismatching energy, harmonic energy, and total energy versus iterations for the
geometric registration problem in Figure 17.

“hammers” on the vertebrae bone of Subject 2. (C) and (D) show the registration result on
the universal covering spaces. Note that the boundary cuts are not fixed. They move freely
on the universal covering space and while satisfying the periodic conditions.

Figure 18 shows the curvature mismatching energy, harmonic energy, and total energy ver-
sus iterations of our algorithm. All energies monotonically decrease as the iteration increases.
In particular, the curvature mismatching energy decreases monotonically, which means the
optimal map obtained matches curvatures as much as possible.
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Figure 19. (A) and (B): The VSs of genus three of two different subjects. (C) and (D) show the mean
curvature functions plotted on the universal covering spaces of (A) and (B).

Example 6 (vestibular system). The vestibular system (VS) is an inner structure of the ear,
which is responsible for perception of head movements and sending postural signals to the
brain. The shape analysis of the VS plays an important role in understanding a disease called
adolescent idiopathic scoliosis (AIS), which is a three dimensional spinal deformity affecting
about 4% schoolchildren worldwide [38, 39]. It therefore calls for the need to register the VSs.
The VS is of genus three. The high-genus topology of the surface poses great challenges for
obtaining the surface registration.

Using our proposed algorithm, we obtain a geometric matching surface registration be-
tween the VSs. Figures 19(A) and (B) show the VSs of two different subjects. They are both
of genus three. Their mean curvature functions on each surface are plotted on their universal
covering spaces, which are shown in (C) and (D). Our goal is to find a geometric matching
registration between the two surfaces.

The registration result of the VSs using our proposed algorithm is shown in Figure 20.
(A) shows the VS of Subject 1, colored by its mean curvature. The color intensity (given by
the mean curvature) on the VS of Subject 1 is mapped to the VS of Subject 2 in (B), using
the obtained registration. Note that the corresponding regions are consistently matched. For
example, the three canals of each surface are matched consistently. (C) and (D) show the
registration result on the universal covering spaces. Note that the boundary cuts are not
fixed. They move freely on the universal covering space and while satisfying the periodic

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH-GENUS SURFACE REGISTRATION 363

Figure 20. The registration result of the VS using our proposed algorithm. (A) shows the VS surface
of Subject 1, colored by its mean curvature. The color intensity (given by the mean curvature) on the VS of
Subject 1 is mapped to the VS of Subject 2 in (B), using the obtained registration. Note that the corresponding
regions are consistently matched. (C) and (D) show the registration result on the universal covering spaces.

conditions. In other words, it is not necessary to introduce consistent cuts on the two surfaces
in our algorithm.

7. Conclusion and future works. In this work, we propose a method to obtain geometric
registrations between high-genus (g ≥ 1) surfaces, without introducing consistent cuts. The
key idea is to conformally parameterize the surface into its universal covering space in R

2.
Registration can then be done on the universal covering by minimizing a shape mismatching
energy measuring the geometric dissimilarity between the surfaces. Our proposed algorithm
effectively computes a smooth registration between high-genus surfaces that matches geometric
information as much as possible. To test the performance of the proposed method, numerical
experiments have been done on synthetic high-genus surface data. Results show that our
proposed algorithm is effective in registering high-genus surfaces with complete geometric
matching. The proposed method has also been applied to registration of anatomical structures
for medical imaging, which demonstrates the usefulness of the proposed algorithm. In the
future, we will apply the proposed algorithm to register more anatomical structures, such as
the VS and the vertebrae bone, for the purpose of disease analysis.

Acknowledgment. The medical data were provided by CUHK Medical School.
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