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Shape registration has a wide range of applications in geometric modeling, medical imag-
ing, and computer vision. This paper focuses on the registration of the genus-3 vestibular
systems and studies the geometric differences between the normal and Adolescent Idio-
pathic Scoliosis (AIS) groups. The non-trivial topology of the VS poses great technical chal-
lenges to the geometric analysis. To tackle these challenges, we present an effective and
practical solution to register the vestibular systems. We first extract six geodesic land-
marks for the VS, which are stable, intrinsic, and insensitive to the VS’s resolution and tes-
sellation. Moreover, they are highly consistent regardless of the AIS and normal groups. The
detected geodesic landmarks partition the VS into three patches, a topological annulus and
two topological disks. For each pair of patches of the AIS subject and the control, we com-
pute a bijective map using the holomorphic 1-form and harmonic map techniques. With a
carefully designed boundary condition, the three individual maps can be glued in a seam-
less manner so that the resulting registration is a homeomorphism with exact landmark
matching. Our method is robust, automatic and efficient. It takes only a few seconds on
a low-end PC, which significantly outperforms the non-rigid ICP algorithm. We conducted
a student’s t-test on the test data. Computational results show that using the mean curva-
ture measure EH , our method can distinguish the AIS subjects and the normal subjects.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Surface registration is the process that aligns a source
3D surface to a target. It has a wide range of applications
in geometric modeling, medical imaging, and computer
vision. This paper focuses on registration of the vestibular
systems (VS) and studies the geometric differences
between the normal and Adolescent Idiopathic Scoliosis
(AIS) groups. The vestibular system is the sensory system
situated in the inner ear, which contributes to balance
and the sense of spatial orientation. The VS is a genus-3
structure with three semicircular canals (see Fig. 1)) and
the morphometry of VS plays an important role in the anal-
ysis of various diseases such as the AIS disease, which is a
3D spinal deformity affecting about 4% school children
worldwide. The etiology of AIS is still unclear but believed
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Fig. 1. The vestibular system is a genus-3 structure (colored in brown) in the inner ear. Its homology basis fai; big3
i¼1 of the genus-3 vestibular system

contains 6 loops. Among them, the three geodesic tunnel loops ai are highly consistent regardless of the AIS/normal subjects. The locations of the geodesic
handle loops bi, however, may vary significantly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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to be a multi-factorial disease. One popular hypothesis was
suggested to be the structural changes in the VS that
induce the disturbed balance perception, and further cause
the spinal deformity [1,2]. Some recent works have
revealed the statistical differences in global morphology
of the VS between right-thoracic AIS and normal controls
[3,4]. In order to perform shape analysis effectively, mean-
ingful one-to-one correspondence between different VSs
must be obtained. Landmark-matching based registration
techniques, in which landmark features were required to
be consistently matched to guide the registration, have
proven to be effective in obtaining accurate point-wise cor-
respondences between 3D medical data. However, the
non-trivial topology of the VS poses great challenges for
the landmark based registration. The existing surface regis-
tration algorithms either work only for shapes with simple
topology (e.g., simply or multiply connected domains) or
are too time consuming and memory inefficient, which
are not suitable for our problem.

This paper presents a computational framework to reg-
ister the vestibular systems. Our contributions are two-
folded:

� First, we present a robust algorithm to extract the salient
geodesic landmark features from the vestibular systems.
Thanks to its intrinsic nature, the geodesic landmarks
are totally determined by the metric and are highly con-
sistent regardless of the AIS and normal groups.
� Second, we present an efficient algorithm to register the

vestibular systems with exact landmark correspon-
dence. We first partition each VS into three patches, a
topological annulus and two topological disks, using
the extracted landmark features. Then for each pair of
patches of the AIS subject and the control, we compute
a bijective map using the holomorphic 1-form and har-
monic map techniques. With a carefully designed
boundary condition, the three individual maps can be
glued in a seamless manner. The resulting registration
is guaranteed to be a homeomorphism with exact land-
mark correspondence.

To our knowledge, this is the first work to address the
landmark based registration of the vestibular systems.
Our method is robust, automatic and efficient, which takes
only a few seconds on a low-end PC. We have tested our
algorithms on 13 normal subjects and 15 AIS patients.
Computational results show that our method can distin-
guish the AIS subjects and normal subjects by using the
mean curvature measure.

2. Related work

As a fundamental problem in medical imaging, digital
geometry processing and graphics, surface registration has
been studied extensively in the past two decades. Most of
the existing registration algorithms focus on rigid registra-
tion, where the motion between the source and the target
is rigid. Representative work is the iterative closest point
(ICP) algorithm [5], which iteratively computes correspon-
dence between the source and the target, and performs a
rigid motion in response to these correspondences. Rigid
registration and non-rigid registration under small defor-
mation are ideal for 3D scanning systems, in which the
source and the target are the overlapped scans of static
model. However, they are not suitable for our problem,
where the deformation between the source and the target
could be large.

Recently, non-rigid registration dealing with large
deformation has attracted increasing attention. Huang
et al. [6] formulated non-rigid registration as an optimiza-
tion problem and solved it by alternating correspondence
computation and deformation optimization in terms of
the resulting correspondences. By enforcing the geodesic
distances between sets of corresponding points, their
method is highly stable and works well for aligning par-
tially overlapping point clouds, which are sampled from
models under isometric deformation. However, the map-
ping between two VS surfaces are in general not isometric,
their method cannot be applied to our problem.

Amberg et al. [7] proposed the optimal step non-rigid
ICP algorithm, which recovers global and local deforma-
tions of the mesh by successive application of ICP. Starting
with a stiff template, the algorithm successively relaxes
the stiffness to recover more local deformations. To find
the optimal deformation for a given stiffness, optimal
iterative closest point steps are used. Their method can
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handle missing data robustly and is also insensitive to ini-
tial conditions. However, their method is memory ineffi-
cient and time consuming.

Salzmann et al. [8] focused on 3D shape recovery of
deformable surfaces from individual images. Unlike the
other approaches that require initial shape estimates and
track deformations from image to image, their method
produces the non-rigid registration in a closed-form solu-
tion. Their method assumes the to-be-recovered shape is
of rectangular shape (i.e., a topological disk) under isomet-
ric deformation, therefore, it cannot work for the VS due to
its non-trivial topology and non-isometric deformation.

The large deformation diffeomorphic metric mapping
(LDDMM) framework [9–11] places the shapes in a metric
space, and provides a diffeomorphic transformation by
solving the transport equation of a time dependent vector
field. The LDDMM framework is theoretically sound and
elegant, which can guarantee a diffeomorphism with exact
landmark matching. However, the high computational cost
and memory requirement diminish its application to large
surfaces.

The above-mentioned registration methods are extrin-
sic in the sense they align the source to the target via com-
puting the transformation in the embedding space R3. In
contrast, the parameterization based methods find the
mapping between the source and the target in an intrinsic
manner. Conformal maps [12,13] have received increasing
attention due to their smooth and angle preserving fea-
tures. Zeng et al. [14] tackled the non-rigid registration
problem using slit map, where the source and the target
are multiply connected domains (i.e., genus-0 surface with
nðP 2Þ boundaries). Each surface is conformally mapped to
a rectangular domain with n� 2 horizontal slits. Then they
computed a harmonic map between two rectangular
domains such that the boundaries and slits are mapped
to each other. Their method solves only a few sparse linear
system, therefore, it is very efficient. However, the topol-
ogy constraint diminishes its applications to only multiply
connected domains. Furthermore, conformal maps do not
allow for boundary positions to be prescribed. As a result,
landmarks cannot be exactly matched and bijectivity can-
not be ensured when large number of landmark con-
straints are enforced.

The space of quasi-conformal map [15,16] naturally
extends the space of conformal maps by allowing bounded
angle distortion. Among all quasi-conformal maps, the
Table 1
Comparison to the existing non-rigid surface registration algorithms.

Method Application domain

Huang et al. [6] 3D surfaces under isometric deformation

LDDMM [9] 2D/3D grids
Extremal quasi-conformal map

[17]
Simply/multiply connected domain, genus-
surfaces

Holomorphic differentials [14] Multiply connected domain
Salzmann et al. [8] Simply connected domain
Optimal step non-rigid ICP [7] General 3D surfaces

Our method Genus-3 VS surface
extremal quasi-conformal map [17,18] is of particular
interest, due to its many promising features, such as
uniqueness, minimizing the maximal angle distortion,
and allowing for solution of boundary value problems.
Unfortunately, only techniques for computing the extremal
quasi-conformal maps on planar domain or 3D surfaces of
simple topology (i.e., genus zero or one) are available.
Computing such maps for 3D surfaces with genus g P 2
(as required in our application), however, is non-trivial.

Table 1 lists the features of the major non-rigid surface
registration methods. Most of the existing methods either
work only for models with simple topology or do not sup-
port landmark matching. The LDDMM algorithm [9] and
the optimal step non-rigid ICP algorithm [7] are not practi-
cal either, due to their extremely high computational costs.
Unlike to the existing methods that aim at solving the gen-
eral non-rigid registration problem, the proposed method
is an ad hoc solution to the genus-3 VS. It is fully automatic
and highly efficient, which takes only a few seconds on a
low-end PC. Besides, it guarantees the exact landmark
matching and bijectivity, which makes it a practical solu-
tion to our problem.

3. Algorithm

Our framework contains two stages, the first stage is to
detect the landmarks using stable geodesic loops and the
second one is to parameterize the VS surface using holo-
morphic 1-form and harmonic maps. Our registration
method can guarantee the bijection and the exact corre-
spondence between the landmarks.

3.1. Landmark extraction

Let us denote S the boundary surface of the vestibular
system, which is a closed oriented 3D surface of genus
g ¼ 3. S is topologically equivalent to a sphere with three
handles, which are horizontal canal, anterior canal, and
posterior canal, denoted by c1; c2 and c3 respectively. The
horizontal canal c1, is roughly orthogonal to the other
two regardless of the normal/AIS groups, see Fig. 1(a).

It is well known that one can cut a genus g surface S into
a topological disk by 2g loops, which form the basis of the
homology group. Dey et al. [19] defined two classes of
loops, called tunnel and handle loops in terms of a homol-
ogy group. A loop is a tunnel (resp. handle) if it spans a
Landmark
matching

Map quality Computational
cost

No Isometric
transformation

High

Yes Diffeomorphism High
0 or 1 Yes Diffeomorphism Low

Yes Diffeomorphism Low
Yes Homeomorphism Low
Yes No guarantee for

bijection
High

Yes Homeomorphism Low
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surface, say D, in the unbounded (resp. bounded) space bor-
dered by S and does not do so in S. Intuitively speaking, if
one cuts S along a tunnel loop and fills the boundaries with
two copies of D, one eliminates a handle. Similarly, remov-
ing a handle loop eliminates a tunnel. See Fig. 2.

Xin et al. observed that the geodesic tunnels on the VS
surface can be used to study the geometric differences
between the normal and AIS groups [4]. In this paper, we
adopt Xin et al.’s approach [4] to compute the three geode-
sic tunnels a1; a2 and a3 (see the red curves in Fig. 1). As a
byproduct, Xin et al.’s algorithm also produces the dual geo-
desic loops bi; i ¼ 1;2;3. Together fai; big3

i¼1 form the homol-
ogy basis of the genus-3 VS, such that the intersection
numbers of the paths are ai � aj ¼ bi � bj ¼ 0 and ai � bj ¼ dij.

It is worth noting that the geodesic tunnel loops
ai; i ¼ 1;2;3, are highly stable, regardless of the AIS and nor-
mal groups. However, the locations of the dual loops bi may
vary significantly (see Fig. 1(b)). To obtain consistent land-
mark features, we adopt the following strategy: for each
pair of handles, say ci and cj, we find a pair of points
pi 2 bi and pj 2 bj. Then we use Dijkstra’s algorithm to find
a path lij connecting pi and pj. The path cij , bilijbjl

�1
ij is

homotopic to bi þ bj. Next, we apply Xin et al.’s curve short-
ening algorithm [20] to deform cij into a geodesic loop (see
Fig. 3). As Xin et al.’s algorithm keeps the curve’s topology
during the length shortening process, cij is homotopic to
bi þ bj. Furthermore, as geodesic is intrinsic and geometry
aware, the computed loop cij is insensitive to the initial
curve bilijbjl

�1
ij . We observe the geodesic loops ai; cij are

highly consistent among AIS/normal subjects, thus, can be
used as the landmark features (see Fig. 4). The pseudocode
of landmark extraction is shown in Algorithm 1.

Algorithm 1. Extracting the six geodesic landmarks from a
VS surface.

Input: A vestibular system (VS) surface S
Output: Six geodesic landmark features
1. Compute the geodesic homology basis fai; big for

each handle ci; i ¼ 1;2;3.
2. For any two handles ci and cj,
3. Choose two arbitrary points pi 2 bi and pj 2 bj.
4. Find a path lij connecting pi and pj using

Dijkstra’s shortest path algorithm.

5. Deform bilijbjl
�1
ij into a geodesic loop cij using

[20].
6. End For
7. Output fa1; a2; a3; c12; c23; c31g.
Fig. 2. Computing the geodesic homol
The extracted geodesic landmarks naturally induce a
surface segmentation: cutting S along the geodesic loops
c12; c23 and c31 produces a genus-1 surface with three
boundaries and a genus-0 surface with three boundaries.
Further cutting the two surfaces along the geodesic tunnel
loops a1; a2 and a3, we obtain three patches, i.e., a topolog-
ical annulus P1 and two topological disks P2 and P3 (see
Fig. 5). The six feature points, a1 \ c12; a1 \ c31; a2 \ c12; a2

\c23; a3 \ c23; a3 \ c31, are defined as the intersection of
two landmark curves. Note that each boundary @Pi; i ¼ 1;
2;3, has exactly 6 feature points, which allows us to define
a boundary condition in the registration so that the land-
mark curves can be matched.
3.2. Registration

Given two VS surfaces S1 and S2 with the extracted
landmarks fai

1; a
i
2; a

i
3; c

i
12; c

i
23; c

i
31g; i ¼ 1;2, our goal is to

find a bijective map / : S1 ! S2 with exact landmark corre-
spondence, i.e., /ða1

1Þ ¼ a2
1;/ðc1

12Þ ¼ c2
12, etc. As each VS sur-

face can be segmented into three genus-0 patches,

Si ¼
S3

j¼1Pi
j; i ¼ 1;2, our idea is to find a bijective map

/i : P1
i ! P2

i between each pair of patches. With a carefully
designed boundary condition for each individual map, we
can ‘‘glue’’ them together to form the bijective map with
exact landmark correspondence. See Algorithm 2 for the
pseuocode of the registration algorithm.
3.2.1. Computing the map between two topological annuli
The patch P1 containing three semicircular canals is the

major component of the VS. Its geometry resembles a long
tube and its topology is equivalent to an annulus. We first
parameterize the patch P1 to a canonical annulus (with
outer radius equals 1) using the Gu–Yau method [21]. Then
we cut the annulus open and map it to a rectangle using
the complex logarithm function z # log z. Let t denote
the conformal map from the patch P1 to the annulus and
g denote the conformal map from the annulus to a rectan-
gle. Then the composite map g � t maps P1 to a rectangular
domain R.

Now given two patches P1
1 and P2

1, we compute the
maps g1 � t1 : P1

1 ! R1 and g2 � t2 : P2
1 ! R2. Then we com-

pute a harmonic map r : R1 ! R2 between the two rectan-
gles. Similar to the harmonic function d in the disk map, we
specify the Dirichlet boundary condition by matching the
feature points and parameterize the non-feature points
using arc length parameterization. Finally, the annulus
ogy basis on the 3-torus model.



Fig. 4. Thanks to the intrinsic and geometry-aware nature of the geodesic loops, the extracted landmarks are stable and highly consistent among the AIS
and normal subjects.

Fig. 5. Cutting the VS surface along the geodesic landmarks we obtain 3 genus-0 patches. g: genus, b: number of boundaries.

Fig. 3. Computing the stable geodesic loop cij across two handles ci and cj . From left to right: the initial curve bilijbjl
�1
ij (in red) is continuously deformed into

a stable geodesic loop cij (in blue). The intermediate loops are rendered in green. Note that the final geodesic loop is homotopic to the initial curve, since the
curve shortening method [20] keeps the curve’s topology during the deformation. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. Registration. (a) The commutative diagram for the map between two topological annuli. (b) The commutative diagram for the map between two
topological disks. The red dots are the images of the feature points. To avoid label congestion, only two feature points and their images are labeled, the
others can be implied according to the order. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

1 http://www.tau.ac.il/stoledo/taucs/.
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map /1 : P1
1 ! P2

1 is defined as /1 ¼ t�1
2 � g�1

2 � r � g1 � t1,
See the commutative diagram in Fig. 6(a).

3.2.2. Computing the map between two topological disks
Observe that both P2 and P3 are topological disks and the

boundary of each disk has 6 feature points, which are the
intersection points of landmark curves. Here we present
the method to compute the map /2 : P1

2 ! P2
2. The other

map /3 : P1
3 ! P2

3 can be constructed in the same way. Let

qi
j; j ¼ 1; � � � ;6 denote the six feature points on @Pi

2. We

map each disk Pi
2 to the unit disk D by computing a har-

monic function fi : Pi
2 ! D;Dfi ¼ 0. The Dirichlet boundary

condition is specified by using the arc length parameteriza-
tion: set the feature point qi

1 as the reference point with

fiðqi
1Þ ¼ ei0. Then for any boundary point q 2 @Di; fiðqÞ ¼

eihðqÞ, where hðqÞ ¼ 2plðq; qi
1Þ=L, and lðs; tÞ measures the

boundary length from s to t, and L is the total length of

the boundary @Di. Next, we compute another harmonic
map d : D! D, which aligns two unit disks such that the
images of the feature points dðf1ðq2

i ÞÞ ¼ f2ðq2
i Þ are matched

and the non-feature boundary points are determined by
the arc-length parameterization. Finally, the map /2 : P1

2

! P2
2 is constructed by the composite map /2 ¼ f�1

2 � d�
f1. See Fig. 6(a) for the commutative diagram.

3.2.3. Constructing the global map
The global map / : S1 ! S2 is simply constructed by glu-

ing all three individual maps together, i.e., / ¼
S3

i¼1/i. Here
we show the map / is a homeomorphism with exact
landmark correspondence. In the disk maps /2;/3 and the
annulus map /1, the harmonic functions f1; f2; d and r
are all diffeomorphic, since the domains and co-domains
are all convex and the Dirichlet boundary conditions are
homeomorphisms. The holomorphic 1-form induced map-
pings t1; t2 are conformal and diffeomorphic. The complex
log functions g1 and g2 are also diffeomorphic when
restricting the argument to ½0;2p�. Thus, all three maps
/1;/2 and /3 are diffeomorphic for all the interior points.

Although the maps /i’s are calculated individually, they
can be glued seamlessly, since we use the arc-length
parameterized boundary condition in computing the har-
monic maps. Note that each boundary has exactly 6 feature
points, which are guaranteed to be matched as required in
the Dirichlet boundary conditions used in the harmonic
functions f1; f2; d and r. For the non-feature points on the
boundary, their images are completely determined by the
metric since we parameterize them using the arc-length
parameterization. Thus, for two adjacent patches sharing
a common boundary, both the feature and non-feature
points can be matched exactly, which implies that all the
boundary maps are homeomorphic. Putting it altogether,
the global map, / ¼

S3
i /i, is in fact a homeomorphism with

exact landmark correspondence.

Algorithm 2. Registration of vestibular system surfaces
registration with guaranteed landmark correspondence.

Input: Two vestibular system surfaces S1 and S2

Output: The homeomorphism / : S1 ! S2 with
guaranteed landmark correspondence

1. Compute the six geodesic landmarks for each VS
surface using Algorithm 1.

2. Cut each VS surface into three genus-0 patches
P1; P2, and P3, along the extracted landmark
features.

3. Compute the map /1 : P1
1 ! P2

1 between two
topological annuli.

4. Compute the map /2 : P1
2 ! P2

2 between two
topological disks.

5. Compute the map /3 : P1
3 ! P2

3 between two
topological disks.

6. Output the map / ¼
S3

i¼1/i.
4. Results and comparisons

4.1. Experimental results

We implemented our algorithm in C++ on a PC with an
Intel Core2 Quad CPU 2.83 GHz and 16 GB RAM. TAUCS1 is
adopted as the linear system solver for the harmonic map
and holomorphic 1-form methods.

http://www.tau.ac.il/stoledo/taucs/


Fig. 7. We measured the difference between the AIS subjects and the control model in terms of various geometric features, such as area EA , Gaussian
curvature EK , mean curvature EH , and conformal representation EC . We conducted a student’s t-test to evaluate our method and the non-rigid ICP method.
With our method (row 1), the mean curvature difference EH is statistically significant with a P-value less than 0.05, which implies that we can use mean
curvature EH to distinguish these two groups. Note that the results of the non-rigid ICP method (row 2) are not statistically important, since all the resulting
P-values are much bigger than the commonly used threshold 0:05.

Fig. 8. Computing the control shape by averaging the 13 normal subjects. Our method guarantees a bijective mapping between any two subjects, whereas
the optimal step non-rigid ICP algorithm has no such guarantee. As a result, our result is smoother and has less distortion than that of the ICP algorithm.

Fig. 9. Visualizing the shape distortion measures on an AIS subject and a normal subject. The AIS subjects have larger distortion than the normal subjects.

538 M. Zhang et al. / Graphical Models 76 (2014) 532–541



Fig. 10. Experimental results. We map the control model M to a VS subject N and then measure various types of geometric difference between M and N. The
landmarks can be matched exactly. The 4-tuple under each model shows the measures EK ; EH ; EC and EA , respectively. Using our approach, the AIS subjects
have consistently larger distortion measures than the normal subjects. However, the results of the non-rigid ICP algorithm are not consistent.
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We tested 28 VS surfaces (15 AIS patients and 13 normal
subjects), which were extracted from the MRI. Each VS sur-
face is modeled as a triangle mesh with about 4 K vertices.
Our method is automatic and efficient: computing the geo-
desic landmark features takes less than 1 s for each VS sur-
face and registering two VS surfaces takes roughly 6 s.

To evaluate the difference of VS between the AIS and
normal subjects, we computed the average shape for all
13 normal subjects, which is used as our control model
(see Fig. 8(a)). Let f : M ! N be the mapping from the con-
trol M to a VS subject N. Then we defined the following
functionals to measure the difference between M and N
based on various types of geometric properties,
EA ¼
Z

M
j dr� dðr � f Þj2

EK ¼
Z

M
j K � K � f j2dr

EH ¼
Z

M
j H � H � f j2dr

EC ¼
Z

M
j k� k � f j2 þ s j H � H � f j2dr

where � denotes the function composition, r is the area ele-
ment, K is the Gaussian curvature, H is the mean curvature, k
is the conformal factor. The scalar s > 0 balances the terms
of conformal factor and mean curvature. The functionals



Fig. 11. Comparison. The optimal step non-rigid ICP algorithm [7] iteratively deforms the control VS towards the target. The deformation is carried out in an
extrinsic manner, which cannot guarantee the bijectivity. Furthermore, since the control VS is very smooth and the target VS has features (see the red close-
up view), the template (the control shape) can easily stuck into a local optimal, which produces large distortion. One can see the difference between the
target and the result by the non-rigid ICP algorithm. In contrast, our method is completely intrinsic and guarantees the registration is a homeomorphism. All
the features on the target are well preserved by our algorithm.(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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EA; EK and EH measure the distortion of area, Gaussian curva-
ture and mean curvature, respectively. The functional EC

extends EH by considering the conformal factor k, which
measures the stretch distortion of the conformal represen-
tation ðk;HÞ. Some results are shown in Fig. 10. Fig. 9 visual-
izes the various distortion measures on an AIS subject and a
normal subject. The AIS subject has larger distortion mea-
sures than that of the normal subject.

To verify whether the proposed geometric measures
can distinguish the AIS subjects and the normal subjects,
we conducted a student’s t-test on the 13 normal subjects
and 15 AIS subjects. As shown in Fig. 7 (row 1), our method
produces EH with a P-value 0:029, which is less than the
commonly used threshold 0:05. As a result, the mean cur-
vature difference EH can be used to distinguish the two
groups. Our results also show that the other three mea-
sures EC ; EA and EK are not statistically important in terms
of distinguishing the two groups.

4.2. Comparisons

As discussed in Section 2, most of the existing non-rigid
registration algorithms work only for surfaces either under
isometric transformations or with simple topology, only
the LDDMM algorithm [9,22] and the optimal step non-
rigid ICP algorithm [5] could be used in our problem. In this
subsection, we compare our method to these alternative
methods.

The LDDMM algorithm aims to quantify metric dis-
tances on anatomical structures in medical images. It is a
gradient decent algorithm using the Euler–Lagrange
equation to minimize a non-linear energy functional. It
guarantees that the computed map is a diffeomorphic and
the user-specified landmarks are matched exactly. The
LDDMM algorithm can be extended to 3D surfaces by 3-
dimensional rasterization (a.k.a. voxelization) so that the
velocity field is computed on the voxels. Each iteration
takes Oðmn3Þ time, where m is the number of discretized
time intervals, and n is the voxel resolution. In order to
obtain an accurate registration, high voxel resolution (i.e.,
large n) and small time step (i.e., large m) are often desired.
Since the LDDMM algorithm is a gradient decent algorithm,
it converges very slowly. As a consequence, the LDDMM
algorithm is very time consuming and space inefficient.
Moreover, implementing the LDDMM algorithm for 3D
models with complicated geometry and non-trivial topol-
ogy is difficult. To our knowledge, only results of models
with simple geometry and topology have been reported
to date.

The classic ICP algorithm [5] alternates between com-
puting correspondences between the source and target
and performing a rigid motion in response to these corre-
spondences. The optimal step non-rigid ICP algorithm [7]
extends the ICP algorithm so that it loops over a series of
decreasing stiffness weights, and incrementally deforms
the template towards the target, recovering the whole
range of global and local deformations. The optimal step
non-rigid ICP algorithm is extrinsic, since the deformations
are carried out in R3. Their method terminates when all the
template vertices are on the target. However, their method
cannot guarantee the bijectivity. As shown in Fig. 11, when
the non-rigid ICP algorithm deforms a smooth template
(the control VS) to a target, the part near the features can
be easily stuck. Since the nearby vertices are already on
the target, the algorithm cannot further improve the map-
ping. As a result, the deformed shape fails to capture the
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features. As Fig. 10(b) shows, the results of the non-rigid
ICP algorithm cannot distinguish the AIS subjects and the
normal subjects. For example, an AIS subject (left) has
EH ¼ 14:8, but, one normal subject (middle) has EH ¼ 17:7
and the other normal subject (right) has EH ¼ 13:8. Our
method, in sharp contrast, is intrinsic and can guarantee
that the resulted map is a homeomorphism. We observed
that the majority of our results are very stable so that the
distortion measures of the AISs are consistently higher
than the normal subjects. In particular, using the mean
curvature measure EH , our method can distinguish the
AIS subjects and the normal subjects, whereas the non-
rigid ICP algorithm fails (see Fig. 7 row 2).

Another limitation of the non-rigid ICP algorithm [5] is
its high computational cost. In each iteration, the algo-
rithm solves a linear system AT AX ¼ AT B, where A is of size
ð4Eþ VÞ � 4V and B of size ð4Eþ VÞ � 3;V and E are the
number of vertices and edges of the target mesh. Experi-
mental results show that the non-rigid ICP algorithm con-
verges in 200–300 iterations and each iteration takes 5 s on
average. Our method computes the harmonic maps and
holomorphic 1-forms, which are all based on solving
sparse linear systems of size V � V . Thus, our implementa-
tion is straightforward and the performance of our method
is much better than the non-rigid ICP algorithm.

We should point out that the existing methods aim at
solving the registration problem for general 3D surfaces,
whereas our application domain is limited to the genus-3
vestibular system, since both our landmark extraction
and registration take advantage of the unique geometric
as well as topological features of the VS. Our ad hoc solu-
tion is robust, fully automatic and highly efficient.

5. Conclusion

This paper presents an effective and practical solution
to register the genus-3 vestibular systems. Our method
first extracts six geodesic landmarks for the VS, which
are stable, intrinsic, and insensitive to the VS’s resolution
and tessellation. Moreover, they are highly consistent
regardless of the disease and normal groups. The detected
geodesic landmarks partition the VS into three patches, a
topological annulus and two topological disks. For each
pair of patches of the AIS subject and the control, we com-
pute a bijective map using the holomorphic 1-form and
harmonic map techniques. With a carefully designed
boundary condition, the three individual maps can be
glued in a seamless manner so that the resulting registra-
tion is a homeomorphism with exact landmark matching.
Our method is robust, efficient and fully automatic. It takes
only a few seconds on a PC, which significantly outper-
forms the non-rigid ICP algorithm. We conducted a stu-
dent’s t-test on the test data. Computational results show
that using the mean curvature measure EH , our method
can distinguish the AIS subjects and the normal subjects.
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