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Abstract. This paper proposes a novel approach to extract two intrinsic feature curves on
hippocampal (HC) surfaces. The HC is a key target of study in medical imaging, as it degenerates in
conditions such as epilepsy and Alzheimer’s disease (AD), but its structure is complex. To facilitate
HC morphometry, we generate two intrinsic feature curves that describe their global geometries.
For example, the separation of them captures thickness changes in HC surfaces, which can be used
to effectively measure HC atrophy found in patients with AD. They also separate HC surfaces into
upper and lower surface patches where intrinsic shape analysis using conformal modules can be carried
out. Based on these curves, we further propose a parameterization of HC surfaces called the eigen-
harmonic parameterization (EHP). EHP maps each HC surface onto a parameter domain and imposes
longitudinal and azimuthal coordinates on each surface, which follow the gradient and level-sets of
its first non-trivial Laplace-Beltrami eigenfunction respectively. Each tubular domain is constructed
according to the geometry of individual HC surface. This gives a parameter domain with much
less geometric distortion compared to spherical parameterization. With EHP, all HC surfaces are
automatically registered with intrinsic feature curves preserved, and geometric distortions minimized.
This allows shape analysis on any number of HC surfaces to be performed consistently. We studied
geometric changes over time in 138 HC surfaces of patients with AD and normal subjects scanned
at two different times. We successfully located areas with significantly different shape changes over
time between the two groups.

Key words. hippocampus, intrinsic feature curve, Laplace-Beltrami eigenfunction, shape anal-
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1. Introduction. The hippocampus (HC) is an important subcortical structure
in medical research due to its central role in learning and memory. Its shape and
changes over time in diseases such as Alzheimer’s disease, epilepsy, and schizophrenia
are extensively studied; in addition, the earliest signs of degenerative brain diseases
are often first apparent in this area.

Surface-based HC shape analysis is commonly used, where 1-1 registrations be-
tween HC surfaces are required. Good registrations are characterized by their smooth-
ness and correspondence of geometric features. Detection and correct localization of
shape changes and statistical differences across populations also require accurate map-
ping of ‘landmark lines’, which are consistently identifiable anatomical feature curves
on biological shapes, such as the sulci and gyri on cortical surfaces. Therefore, many
registration algorithms rely on landmark curve correspondences to work properly [21].
However, unless high-field imaging is used, there are no consistently identifiable, well-
defined landmarks lines on HC surfaces. This makes accurate surface registration more
challenging, when standard brain scanning methods are used (such as T1-weighted
MRI at 1.5 or 3 Tesla, which typically uses 1mm cubic voxels). Besides, accurate HC
shape morphometry also requires well-defined feature curves that are stable under
shape changes, intrinsic to surface geometry and efficient to compute, as a basis for
further analysis. However, there is no standard criterion to extract such curves on
HC surfaces. In fact, some labor intensive and time consuming approaches have been
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proposed, that attempt to manually landmark curves on unfolded HC surfaces [32]
[2].

Although these have advanced brain research [33], the need for expert intervention
makes them impractical to use in samples of more than a few brain scans. Instead,
most high-throughput HC morphometry approaches in large samples of subjects have
used simple parameterizations that ignore intrinsic surface landmarks [17] [18] [20].
To tackle this problem, in this paper we make contributions in three key areas. First,
we propose an algorithm that automatically extracts two precisely defined intrinsic
feature curves on each HC surface based on intrinsic surface geometry. Second, we
further propose a complete parameterization of the whole HC surface based on these
curves. This automatically gives a smooth, one-to-one, point-to-point correspondence
on all HC surfaces for shape analysis. Finally, to make our parameterizations smoother
and reduce distortion, we define a parameter domain according to the shape of each
HC surface, so that our parameterization onto the domain can be smoothed and
optimized to geometry.

With the resolution and image contrast typically obtained with standard T1-
weighted brain MRI at 1.5 or 3 Tesla, the HC surface as a whole takes the shape of
a flattened and curved tube. We identify two ridge feature curves of this shape, one
lying on the inner curved region and the other lying on the outer curved region (see
Figure 4.2). Both of them proceed in the longitudinal direction. To extract these two
features, one needs a function that ‘understands’ the geometry of HC surfaces – the
first non-trivial eigenfunction of the Laplace-Beltrami (LB) operator on the surface.

The LB operator is an intrinsic operator defined on Riemannian manifolds, in-
variant to the embedding of these surfaces in Euclidean space. Reuter et al. [23] [22]
proposed to use its eigenfunctions for shape analysis. In particular, its first non-trivial
eigenfunction has the property of monotonically increasing its value from one end to
the other end of elongated shapes like HC surfaces. With this property, and noting
that the two feature curves proceed in the longitudinal direction, they must intersect
each eigen-loop at exactly two points. This enables us to propose a variational ap-
proach to construct these curves by extracting a pair of points on each eigen-loop and
joining the points on the same side.

Using the two feature curves, we construct a shape indicator by computing the
separation between them at different locations of HC surfaces. This gives a robust
measure of the ‘thickness’ of HC surfaces in different areas. We demonstrate that the
shape indicator can effectively detect atrophy in HC surfaces by comparing normal
subjects with AD patients. Furthermore, the landmarks divide HC surfaces into
upper and lower patches. By mapping these patches conformally onto rectangles, we
compute the conformal modules of these patches, which are important indicators for
shape analysis.

Finally, we apply the extracted feature curves on HC surface registration. Using
the feature curves and eigen-loops, we construct a parameter domain according to
the geometry of each HC surface, which is parameterized by longitudinal (α) and
azimuthal (θ) coordinates. We map each HC surface onto its domain using a normal-
ized LB eigenfunction as the longitudinal coordinate, and map the intrinsic feature
curves onto θ = 0 and θ = π. To further optimize the parameterization, we minimize
the harmonic energy of map from the HC surface onto its parameter domain. Our
results show that this parameterization, also called the eigen-harmonic parameteri-
zation (EHP), is smooth, and gives much less geometric distortions compared to the
widely used method of mapping HC surfaces onto spheres. Using EHP, all HC sur-
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faces are automatically registered under a consistent parameterization optimized for
geometry. This allows us to perform shape analysis on any number of HC surfaces. In
our experiment, we compute the EHP of 478 HC surfaces acquired from 93 patients
with Alzheimer’s disease and 146 normal subjects at two different times. By ana-
lyzing the temporal geometric changes of 138 random HC surfaces in these subjects,
we successfully locate areas with statistically significant shape changes between two
groups.

2. Previous Work. Hippocampus has been widely studied in medical research
for shape analysis in normal subjects, people with disabilities such as blindness [10],
and in diseases such as Alzheimer’s [27] and epilepsy [11]. As in the study of cor-
tical surfaces, accurate registration is vital in improving the power to detect differ-
ences between groups and for creating classifiers that attempt to automatically assign
individuals to diagnostic groups based on their imaging measures. Many different
methods of surface-based registration exist in the current literature. Thompson et al.
proposed to parameterize cortical surfaces onto spheres [26]. They further proposed
using the spherical parameterization to create brain atlases that describe variations
of a group of cortical surfaces over time [28]. Gu et al. [6][30] proposed to register
cortical surfaces conformally onto a sphere or a disk for further analysis. Lord et al.
[12] proposed to register surfaces by minimizing an energy functional describing local
metric changes. Other methods have also been used, such as driving surface regis-
trations using mutual information on surfaces [29], and finding landmark-matching
diffeomorphic deformations by modeling sulcal lines as ‘currents’ [4].

While surfaces from medical imaging can be registered based only on geometric
features extracted from surface (e.g., the local surface curvature or metric), the results
may not agree well with the anatomical landmarks that would be recognized and la-
beled by an anatomist or radiologist. Therefore, landmark lines labeled by researchers
expert in anatomy are important to guide the registration process. For instance, Lui
et al. [15] used a variational approach to compute an optimized conformal registra-
tion that aligns landmarks as well as possible. However, landmarks are not matched
exactly and diffeomorphisms cannot be guaranteed when there is a large number of
landmarks. In [13], they further computed shape-based landmark matching regis-
trations between brain surfaces using a method called the integral flow method. The
one-parameter subgroup within the set of all diffeomorphisms was considered, and the
one parameter subgroup was represented by smooth vector fields. Landmarks can be
perfectly matched and the correspondence between landmark curves is based on the
shape information. Joshi et al. [8] proposed to register cortical surfaces by minimizing
a harmonic energy function in the p-th norm. A related method was applied by Shi et
al. [25] to match implicitly-defined surfaces by solving PDEs on them using level set
methods. Leow et al. [9] proposed a feature-based brain image warping approach by
a hybrid implicit/explicit framework and applied it on corpus callosums and cortical
surfaces. In general, landmark-based methods are more accurate as they make use
of the information from anatomically trained researchers, but the manual labeling of
surfaces is time-consuming and prohibitive in larger projects.

When there are no well-defined landmark lines from trained anatomists, as is
usually the case for HC surfaces, one has to look for more information in the geometry
of the shapes. Lui et al. [16] proposed to look for an optimized geometric matching
registration between HC surfaces by minimizing a complete shape energy, which is
defined by the Beltrami coefficient and curvatures. Reuter et al. [23] proposed shape
analysis using LB spectra of shapes, as they are almost unique to each shape except
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in rare exceptional cases constructed artificially. Shi et al. [24] further proposed using
LB eigenfunctions to find landmark lines on HC surfaces and map them onto a sphere
for HC registration. The end points of the landmark curves are based on geodesic
transforms, which can be sensitive to local geometric changes. Hence, the extracted
landmarks are sensitive to noise. Also, a sphere has a different geometry from HC
surfaces and is not elongated like HC surfaces. This results in large distortions for
some cell sizes in the imposed parametric grid, especially near the poles of the sphere.
Landmark detection based on more direct geometric quantities such as curvature has
also been proposed by Yoshizawa et al. [31]. Later, Lui et al. [14] also proposed
to trace sulci landmarks on brain cortical surfaces based on the mean curvature and
principal curvatures. In general, methods based on curvature can be sensitive to subtle
surface changes such as bumps, and may wrongly detect them as feature curves on
HC surfaces. Some regularization is necessary.

3. Theoretical Background and Terminology. In this section, we present
the theory of LB eigenfuctions, which enables us to extract intrinsic feature curves on
HC surfaces.

3.1. The Laplace-Beltrami Operator and its Eigenfunctions. In differen-
tial geometry, the Laplace-Beltrami operator is well-studied [1][3]. Given a function
f : M → R on a Riemannian manifold M , the operator is defined as the divergence
of the gradient: ∆f = div gradf . On compact manifolds, the operator has a discrete
spectrum 0 ≤ λ1 ≤ λ2 ≤ · · · ↑ ∞. We are interested in its first non-trivial eigen-
function f : M → R, satisfying −∆f = λf and λ > 0. The function is smooth and
minimizes the harmonic energy functional: f = arg min‖f‖=1

∫
M
‖∇Mf‖2. In some

sense, it is the ‘least expanding’ map in orthogonal directions.
On a Riemann surface, its first non-trivial LB eigenfunction carries much geomet-

ric and topological information, such as the branching and genus of the surface. For
example, if f : M → R is such an eigenfunction on Riemann surface M of genus g,
then f has at least 2g+2 critical points. The number of critical points is stable under
small changes in the surface metric. Therefore, the eigenfunctions on similar surfaces
have the same number of critical points. On a simply-connected closed surface such
as the HC surface, their first non-trivial LB eigenfunctions always increase from one
tip to the other. There are always two critical points located at the two tips of the
HC surface. This gives us a longitudinal coordinate on the HC surface, and enables
us to map each HC surface onto a tube-like domain, given by the following theorem:

Theorem 3.1. Let M be a smooth manifold and f : M → R be a smooth function.
Assume f has exactly two critical points p1, p2 ∈ M with f(p1) < f(p2). Pick some
ε < (f(p2) − f(p1))/2. Then f−1([f(p1) + ε, f(p2) − ε]) is diffeomorphic to I × S1,
where I = [f(p1) + ε, f(p2)− ε] and S1 is a circle.

By the theorem, there exists a smooth mapping from I × S1 to f−1(I), where
I = [a, b] is an interval inside the range of the eigenfunction f excluding the two
critical points, i.e. I ⊆ f(M\{p1, p2}). This allows us to parametrize HC surfaces
into longitudinal and azimuthal coordinates.

4. Our Proposed Framework and Algorithms. In this section, we explain
in detailed how the two intrinsic feature curves can be computed on each HC sur-
face. This leads to a full parameterization defined at every point on the surface. To
give readers some idea about this process, we first give an overview of our proposed
framework in Subsection 4.1. After that, we describe every step and our algorithms
in detail.
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Fig. 4.1. Our proposed procedures for parameterizing a HP surface H.

4.1. An Overview of Our Proposed Framework. In order to compute two
intrinsic feature curves on a HC surface, we need a robust method to obtain the correct
orientation of the HC surface, such as distinguishing the head and tail tips of the HC
surface. As discussed in Section 1, the first nontrivial LB eigenfunction ‘understands’
the geometry of the HC surface and is suitable for this purpose. It will also be used
to construct the longitudinal parameterization of the whole HC surface. Due to the
shape of the HC surface, every eigen-loop of the function is simply connected and
intersects with the two intrinsic feature curves at exactly two points. In Subsection
4.2, we precisely define these curves and discuss an algorithm for extracting them.

Once the two intrinsic feature curves are computed, we begin to compute a global
parameterization for the HC surface. After a normalization process, the LB eigen-
function is used as the longitudinal coordinate α, which maps the HC surface onto
[0, 1]. At the same time, we also give every point on the HC surface an azimuthal
coordinate θ according to its location with respect to the feature curves, which lies in
[0, 2π). This is a preliminary parameterization of the HC surface onto [0, 1]× [0, 2π)
and will be discussed in Subsection 4.3.

After a preliminary parameterization is computed, it is time to optimize the pa-
rameterization so that the same coordinate on all HC surfaces corresponds well. We
aim to minimize the unevenness that may have occurred in the preliminary param-
eterization process, and at the same time preserve geometric information well. To
meet these goals, we construct a parameter domain based on the geometry of the HC
surface, but with a well-defined parameterization on [0, 1]×[0, 2π). The parameteriza-
tion of the HC surface induces a diffeomorphic map onto the parameter domain. The
map can be optimized to improve the parameterization of the HC surface. Details of
the construction of the domain are given in Subsection 4.4.

Finally, in Subsection 4.5, we discuss how the parameterization can be optimized
by minimizing the harmonic energy of the map from the HC surface onto its param-
eter domain. This completes the whole process of extracting two intrinsic feature
curves and computing a consistent global parameterization on all HC surfaces. Since
the HC surface is not very convoluted, exponential maps may be used to give good
parameterizations locally. However, since we aim at obtaining a consistent global pa-
rameterization across all subjects, harmonic maps are more appropriatefor this goal.
A flowchart summarizing our procedures is presented in Figure 4.1.

4.2. Intrinsic Feature Extraction from LB Eigenfunctions. Given a HC
surface H. Let f : H → R be its first non-trivial LB eigenfuction. f satisfies −∆f =
λf , where λ is the first non-zero eigenvalue of the LB operator. We propose to extract
two intrinsic feature curves from H using the eigenfunction f . Since the HC surface
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H takes the shape of an elongated tube, f is a smooth function on H with exactly
two critical points at its tips. We aim to locate two intrinsic feature curves that lie
on the opposite sides of the most curved regions of H and go along the longitudinal
direction. Therefore, they must intersect with each eigen-loop at exactly two points.
Motivated by this observation, we define the intrinsic feature curves as follows:

Definition 4.1. Let H be a HC surface in R3 and f : H → R be its first non-
trivial LB eigenfunction, with f(H) = [a, b]. Then we define the intrinsic feature
curves on H to be the curves γ1, γ2 : [a, b]→ H such that

{γ1, γ2} = argmax
1

b− a

∫ b

a

|γ1(t)−γ2(t)| dt− c1
∫ b

a

|γ̇1(t)| dt− c2
∫ b

a

|γ̇2(t)| dt, (4.1)

where c1, c2 ≥ 0 are user parameters.

The motivation of this definition is that the feature curves should be separated as
much as possible since the two ridges along the sides of the HC surfaces are opposite
to each other. Therefore the first term representing their average separation should
be minimized. The second and third terms represent the lengths of the feature curves
and are added to regulate their smoothness. In our experiments, we set c1 and c2 to
0.5 to put more emphasis on the average separation of the curves.

We discretize the two feature curves by V = {v0, . . . , vn} and W = {w0, . . . , wn}
on H, where f(v0) = f(w0) = a, f(vn) = f(wn) = b, and f(vi) − (vi−1) = f(wi) −
(wi−1) = (b − a)/n for all i. This implies f(vi) = f(wi) = a + i(b − a)/n for
i = 0, 1, . . . , n. Initially, we take vi, wi to be the furthest pair of points on their
corresponding eigen-loop f−1(a+i(b−a)/n). The discrete version of the minimization
problem becomes:

{V,W} = argmax
1

n+ 1

n∑
i=0

|vi − wi| − c1
n−1∑
i=0

|vi+1 − vi| − c2
n−1∑
i=0

|wi+1 − wi|. (4.2)

Let E(V,W ) be the energy functional in (4.2). To optimize this energy functional,
we look for directions {α0d0, . . . , αndn} and {β0e0, . . . , βndn} such that Vtmp = {v0 +
tα0d0, . . . , vn + tαndn} and Wtmp = {w0 + tβ0e0, . . . , wn + tβnen} give the steepest
descent to (4.2) for small t > 0, where di’s and ei’s are unit tangential vectors along
the eigen-loops containing vi’s and wi’s respectively, αi’s and βi’s are the amounts of
descent for vi’s and wi’s respectively, which will be computed in the appendix. The
algorithm is summarized in Algorithm 1.

We illustrate the first non-trivial LB eigenfunction of a HC surface, its eigen-
loops and two initial intrinsic feature curves in Figure 4.2. The final curves will be
illustrated in Section 5.

4.3. Estimating the Initial Parameterization. In this subsection, we give
an initial global parameterization for a HC surface H. As its first non-trivial LB
eigenfunction f increases its value from one tip to another tip, we can normalize f
and use it as the longitudinal coordinate function of H. Let f(H) = [a, b]. We change
the sign of f if necessary such that f takes smaller values near the slimmer tip and
bigger values near the fatter tip (as in Figure 4.2). Then we define the longitudinal
coordinate function α : H → [0, 1] by

α(v) =
f(v)− a
b− a . (4.3)
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Algorithm 1 Compute two intrinsic feature curves from a HC surface H

Require: A HC surface H and its first non-trivial LB eigenfunction f , f(H) = [a, b]
Set n = 100;
for all i = 0, 1, . . . , n do

Compute the pair of furthest points vi and wi on eigen-loop f−1(a+ i(b− a)/n);
end for
Set V = {v0, . . . , vn}, W = {w0, . . . , wn};
Set step size t = 0.01;
repeat

Compute the tangential directions di’s and ei’s for all vi’s and wi’s respectively;
Set Vtmp = {v0 + tα0d0, . . . , vn + tαndn}, Wtmp = {w0 + tβ0e0, . . . , wn + tβndn};
Compute αi’s and βi’s that give the steepest descent to E(Vtmp,Wtmp);
Update V and W using Vtmp and Wtmp with αi, βi and step size t;

until improvement in the energy functional over the last 50 iterations < 0.001
(mm).

Intrinsic Feature Curve 1 (IFC1)

INITIAL

Intrinsic Feature Curve 2 (IFC2)

INITIAL

Fig. 4.2. The color-map of the first non-trivial LB eigenfunction of a HC surface, its level-sets
and the initial intrinsic feature curves.

α is a normalization of f that parameterizes H longitudinally onto [0, 1]. It has
the same level-sets as f , which are also closed curves called eigen-loops. To obtain
a global parameterization of H, we further define an azimuthal coordinate function
θ : H → [0, 2π) for every point on H according to its position on its eigen-loop.

To begin with, we label the two intrinsic feature curves we computed on H. The
longer curve lies on the outer side of human brain and is labeled as IFC1, while the
shorter curve lies on the inner side of human brain and is labeled as IFC2. We aim
to parameterize H such that θ = 0 on IFC1 and θ = π on IFC2. Points on every
eigen-loop are parameterized from 0 to 2π according to the right-hand rule, with the
thumb pointing to the direction u of increasing α. Our labelings of the two intrinsic
feature curves are shown in Figure 4.2 and the direction of increasing θ is shown in
Figure 4.3.

Given a point v on H, let Γ be the eigen-loop v lies on, i.e., Γ = α−1(α(v)). We
locate points p1, p2 on Γ where it intersects with IFC1 and IFC2 respectively. Let m
be the mid-point of p1 and p2. We compute the angle σ segment {v,m} makes with
{p1,m}. If {p1−m, v−m,u} is positively oriented, we set θ(v) = σ. Otherwise, we set
θ(v) = 2π − σ. The algorithm is summarized in Algorithm 2. For better illustration,
in Figure 4.3, we label the variables used by the algorithm to compute θ(v) for a
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mi+1

m

mi

p1

p2

θ(v)

v

u

vi+1

vi

wi

wi+1

θ ↑

Γ

Fig. 4.3. The variables used in Algorithm 2 to compute θ(v) for every vertex v on a HC surface
and the direction of increasing θ.

vertex v.

Algorithm 2 Compute an initial azimuthal parameterization θ on a HC surface H

Require: A HC surface H represented by a triangular mesh (V, E ,F), its two
intrinsic feature curves IFC1 and IFC2 represented by V = {v0, . . . , vn} and
W = {w0, . . . , wn} respectively, its longitudinal parameterization α : H → [0, 1]
for all v ∈ V do
i = bnα(v)c;
mi = (vi + wi)/2;
mi+1 = (wi+1 + wi+1)/2;
u = (mi+1 −mi)/ ‖mi+1 −mi‖;
Γ = α−1(α(v));
σ = acos[(v −m) · (p1 −m)/ ‖v −m‖ ‖p1 −m‖];
Compute the intersections p1 and p2 of Γ with V and W respectively;
if det[p1−m, v −m,u] > 0 then

Set θ(v) = σ;
else

Set θ(v) = 2π − σ;
end if

end for

The initial parameterization of H using α and θ is global and carries a geometric
interpretation. However, to justify that it is robust, we need a standard measure and
compare it with other methods. In the next subsection, we construct a parameter
domain according to the geometry of H and define what this measure is. After that,
we can measure how good our parameterization is and optimize it accordingly.

4.4. A Parameter Domain for HC Surfaces. In this subsection, we con-
struct a parameter domain for a HC surface H. In this way, our parameterization
in Subsection 4.3 is realized as a mapping from H onto it. This gives our parame-
terization a well-defined geometric meaning and allows us to measure its robustness.
Further optimization can then be applied.

To construct a parameter domain for H, we look for a surface that has a similar
geometry to H and can be easily parameterized. Since every eigen-loop of H is a closed
curve resembling an ellipse, we construct a tube-like domain where every cross section
is an ellipse. We aim to map H onto this domain so that every eigen-loop is mapped
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onto an elliptic cross section. The eccentricity of every such cross section is determined
by the corresponding eigen-loop. The height h of the parameter domain is given by the
length of a medial axis of H, which is computed from the mid-points of the correspond-
ing points in IFC1 and IFC2. Using the parameterization constructed in Subsection
4.3, a point v in H is mapped to the point (a(v) cos(φ(v)), b(v) sin(φ(v)), hα(v)) on the
parameter domain, where a(v) and b(v) depend on the shape of the ellipse, and φ(v)
is computed such that (b(v) tan(φ(v))/a(v) = tan(θ(v)), and cos(φ(v)) and cos(θ(v))
take the same sign. We construct the parameter domain K and map H onto it using
Algorithm 3.

Algorithm 3 Construct and map a HC surface H onto its parameter domain K by
defining Φ: H → K

Require: A HC surface H represented by a triangular mesh (V, E ,F), its two
intrinsic feature curves IFC1 and IFC2 represented by V = {v0, . . . , vn} and
W = {w0, . . . , wn} respectively, its initial parameterization by α : H → [0, 1] and
θ : H → [0, 2π)
for all i = 0, 1, . . . , n do
mi = (vi + wi)/2;

end for
h =length of {m0,m1, . . . ,mn};
for all v ∈ V do

Γ = α−1(α(v));
Compute the intersections p1 and p2 of Γ with V and W respectively;
a(v) = ‖p1 − p2‖ /2;
Compute b(v) such that the ellipse {(x/a(v))2 + (y/b(v))2 = 1} has the same
perimeter as Γ;
φ(v) = arctan(a(v) tan(θ(v))/(b(v));
Add π or 2π to φ(v) such that φ(v) ≥ 0 and cos(φ(v)) and cos(θ(v)) take the
same sign;
Φ(v) = (a(v) cos(φ(v)), b(v) sin(φ(v)), hα(v));

end for
K is given by the triangular mesh (Φ(V), E ,F).

Formally, K is a closed surface in R3 with height h. The intersection of K with
z = c is {(x/a)2+(y/b)2 = 1, z = c}, where the values of a and b are taken respectively
as a(v) and b(v) computed in the loop of the algorithm by setting Γ = α−1(c/h). Also
note that we may equivalently parameterize K by α and θ instead of α and φ. Since
the angle θ can be intuitively given in Figure 4.3, we will use θ for our registration,
but will use φ for the optimization of our parameterization for easy computation.
The algorithm allows us to consider the initial parameterization in Subsection 4.3
as a mapping from H onto K. This enables us to define the smoothness of our
parameterization and further optimize it. In the next subsection, we discuss how our
parameterization can be further optimized to give the final parameterization of H.

4.5. The Eigen-Harmonic Parameterization of HC Surfaces. At this
point, we have computed an initial global parameterization of a HC surface H onto
{(α, θ) ∈ [0, 1] × [0, 2π)}, which is also a mapping from H onto a parameter domain
K. In this section, we further optimize our parameterization to give a final parame-
terization of H.

To further improve the mapping from H onto K, we define a good mapping to be
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u

v

αu,v

βu,v

Fig. 4.4. Angles defined in the cotangent-weight Laplacian operator.

one that induces the least amount of distortion in the mapping. A widely accepted
measure is the harmonic energy of the mapping. Since H and K are both simply-
connected closed surfaces, the mapping with the least harmonic energy is a conformal
mapping preserving angles. Therefore, if we optimize its harmonic energy by changing
both α and θ, the mapping becomes conformal and the motivation to parameterize H
using its first non-trivial LB eigenfunction is lost. To avoid this problem, we optimize
the harmonic energy by adjusting θ. We also require that IFC1 and IFC2 to be
mapped onto {θ = 0} and {θ = π} on K. The final parameterization is defined as
follows:

Definition 4.2. Let H be a HC surface, Γ1 and Γ2 be its IFC1 and IFC2
respectively, and K be its parameter domain, which is equivalent to {(α, θ) ∈ [0, 1] ×
[0, 2π)}. We define the final parameterization of H as the mapping Φ: H → K such
that

Φ = argminΦ(Γ1)={θ=0},Φ(Γ2)={θ=π}

∫
H

‖∇Φ‖2 . (4.4)

Φ is called the eigen-harmonic parameterization (EHP) of H.
Using EHP, a consistent coordinate system (α, θ) can be given on every HC surface

H. To compute the final Φ in a discrete setting, we start from the initial parame-
terization Φ given in Algorithm 3 for a HC surface represented by a triangular mesh
(V, E ,F). We define the cotangent-weight Laplacian operator:

Lu,v =


1
2 (cot(αu,v) + cot(βu,v)) if u 6= v and u ∈ Nbr(v),

−∑
w∈Nbr(v) Lu,w if u = v,

0 otherwise,

(4.5)

where αu,v and βu,v are defined for an edge (u, v) ∈ E as in Figure 4.4. This formula
can be derived from finite element analysis [7].

Let Φ = (Φ1,Φ2,Φ3). The discretization of the energy in (4.4) is given by

E(Φ) =

3∑
i=1

Eharmonic(Φi), (4.6)

where Eharmonic is defined as

Eharmonic(f) =
1

2

∑
u,v∈V

Lu,v · (f(u)− f(v))2 (4.7)

for a function f : V → R. This energy is a standard discretization of the harmonic
energy and can be easily minimized using gradient descent.
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We minimize E by optimizing the function φ in the (α, φ) parameterization
of H in Algorithm 3. Since we are keeping α fixed, we may write E as E(φ) =
E(φ1, φ2, . . . , φm), where m is the number of vertices in V = {v1, v2, . . . , vm} and
φi = φ(vi) for i = 1, 2, . . . ,m. To optimize E, we look for adjustments δi’s such
that (φ1 + tδ1, . . . , φm + tδm) give the steepest descent to E for small t > 0. The
descent direction will be given in the appendix. To map IFC1 and IFC2 onto {θ = 0}
and {θ = π} respectively, we simply fix every φ(vi) with vi on IFC1 or IFC2. The
algorithm is summarized in Algorithm 4.

Algorithm 4 Compute the eigen-harmonic parameterization of a HC surface H

Require: A HC surfaceH represented by a triangular mesh (V, E ,F), its two intrinsic
feature curves IFC1 and IFC2, its initial parameterization by α : H → [0, 1] and
θ : H → [0, 2π)
Compute φ : H → [0, 2π) from θ;
repeat

Compute δi’s that give the steepest descent to E(φ1 + tδ1, . . . , φm + tδm);
Update every φ(vi) such that vi is not on IFC1 or IFC2 using φi + tδi with step
size t;

until improvement in the energy functional over the last 50 iterations < 0.01%;
Update θ using φ.

Using this algorithm, we obtain the EHP for every HC surface H, which is the
least distorted mapping from H onto its parameter domain K. This gives H a global
parameterization onto {(α, θ) ∈ [0, 1] × [0, 2π)}. EHP carries intrinsic geometric
meaning and automatically registers every pair of HC surfaces H1 and H2. This allows
us to compute shape changes from H1 to H2 precisely by comparing the corresponding
changes in geometric quantities from H1 to H2, such as the mean curvature and
Gaussian curvature. In the next section, we present our experimental results and
show how this method can be used for HC morphometry.

5. Experimental Results. In this section, we present our results on the ex-
traction of intrinsic feature curves, global parametrization of HC surfaces and its
optimization to give eigen-harmonic parameterizations. We demonstrate the conver-
gence of our algorithms and their use for HC morphometry. Experiments were carried
out on 478 HC surfaces automatically extracted from 3D brain MRI scans of 239 pa-
tients at two different times (the baseline time-point and 12 months after). Scans
were acquired from 146 normal and 93 diseased (AD) elderly subjects on an 1.5T GE
Signa scanner, and the HC was automatically segmented from each brain scan using
a machine learning approach based on adaptive boosting [19] [17]. All computations
were programmed in MATLAB with MEX functions for labor-intensive tasks and
performed on a laptop with a 1.86GHz Intel Core 2 Duo processor and 2GB of RAM.

5.1. Intrinsic Feature Curves as Shape Indices. Before we use Algorithm 1
to extract two intrinsic feature curves on a HC surface H represented by a triangular
mesh (V, E ,F), we need to compute its first non-trivial LB eigenvalue. We discretize
the LB operator on H using the widely used cotangent formula derived from finite
element analysis [7], which is symmetric positive semidefinite in matrix form. We
compute its first non-trivial eigenfunction using an efficient algorithm by Golub et al.
[5] for symmetric matrices, which normally takes less than 5 seconds. After that, we
compute two intrinsic feature curves from H.
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Intrinsic Feature Curve 1 (IFC1)

INITIAL

Intrinsic Feature Curve 1 (IFC1)

FINAL

Intrinsic Feature Curve 2 (IFC2)

INITIAL

Intrinsic Feature Curve 2 (IFC2)

FINAL

Fig. 5.1. A comparison of the initial intrinsic feature curves (left) and the final intrinsic feature
curves (right) extracted from a HC surface.
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Fig. 5.2. A plot of the energy functional against the number of iterations in computing the
intrinsic feature curves in Figure 5.1.

The result of our algorithm is shown in Figure 5.1. Initially the intrinsic feature
curves extracted were not smooth and showed occasional jumps on H. After opti-
mizing the energy functional in Equation (4.2), the resulting curves lie on the most
curved regions of the HC surface with greatly improved smoothness. A plot of the
energy functional against the number of iterations is shown in Figure 5.2. In this
example, our algorithm converges successfully on H. On all other HC surfaces we
tested, similar results were observed.

The intrinsic feature curves may be used to extract geometric information from
HC surfaces. In this test, we cut the regions of HC surfaces with α in [0.01, 0.99] into
two patches using the curves, namely the front and back patches. Then each patch
is mapped conformally onto a rectangle, with the height to width ratio invariant up
to conformal deformations. This is an intrinsic surface property of the patch called
conformal module [34], which tells us about the thickness to length ratios of HC
surfaces. In Figure 5.3, the top and bottom patches of two groups of HC surfaces (AD
and normal) are mapped conformally onto rectangles, with the conformal modules
computed. The conformal modules of the AD subjects are smaller than that of the
normal subjects at different degrees, suggesting a smaller thickness to length ratios for
the HC surfaces in the AD subjects. This can be used by neuroscientists to determine
the location of atrophy in HC surface deformations.

To demonstrate the robustness of the extraction of the intrinsic feature curves,
we illustrate the results of our algorithm for two HC surfaces in Figure 5.4. One HC
surface was picked from the AD group and the other from the normal group. For



INTRINSIC FEATURE EXTRACTION ON HIPPOCAMPI 13

Fig. 5.3. The conformal modules of the upper and lower patches in HC surfaces of normal and
AD subjects.

Fig. 5.4. The results of the extraction of intrinsic feature curves on two HC surfaces. On the
left, the front and back of an HC surface from the AD group and two deformations by adding a
bump near each intrinsic feature curve are plotted with the extracted intrinsic feature curves marked
in blue and the bump in red. The figures on the right show the corresponding results for an HC
surface from the normal group. The intrinsic feature curves are stable and not seriously affected by
the bumps.

each HC surface, we test our algorithm on the original surface, and two deformed
HC surfaces by adding a bump very near one intrinsic feature curve. As shown in
Figure 5.4, only mild changes to the intrinsic feature curves was observed. The results
on other HC surfaces also show only mild changes to these curves on the deformed
surfaces. This demonstrates the robustness of our algorithm under bumps in the data.

Similarly, we test for the robustness of the intrinsic feature curves under noise.
In this test, we add evenly distributed noises in normal direction to the surface data,
making the surface uneven and jaggy. An example of this is shown in Figure 5.5. We
compare the extracted intrinsic feature curves on the original HC surface and those
from the noisy HC surface. It is found that even with noises added to all surface
data, the extracted intrinsic feature curves still look very close to those in the original
surface. Similar results are found on other HC surfaces. This shows that our algorithm
is also robust to noises in the surface data.

5.2. Initial Global Parameterization and its Optimization. In Subsection
4.3, we proposed an initial global parameterization of a HC surface. We constructed



14 T. W. WONG, L. M. LUI, P. M. THOMPSON, S.-T. YAU AND T. F. CHAN

Fig. 5.5. The results of the extraction of intrinsic feature curves on a HC surface and the same
surface with noise. In the upper figures, the front and back of the original HC surface are plotted
with the extracted intrinsic feature curves marked in blue. In the lower figures, the front and back of
the HC surface with noise in normal direction are plotted with the extracted intrinsic feature curves
marked in blue. Only mild changes are observed in the extracted intrinsic feature curves.

(a) (b) (c)

Fig. 5.6. The initial estimation of θ and its optimization. (a) shows a HC surface textured with
the final parameterization. (b) shows its parameter domain and one of its tip under the mapping of
the HC surface using the initial estimation of θ. (c) shows the parameter domain and its tip under
the final mapping using the optimized θ.

a parameter domain to realize it as a mapping in Subsection 4.4 and optimized this
parameterization in Subsection 4.5. In this subsection, we discuss the results of these
procedures.

For consistency, we continue to use the HC surface H in Subsection 5.1 for illus-
tration. In Figure 5.6(a), we plot H and texture it with a checkerboard pattern, where
the grid lines represent lines with constant α and θ in the final parameterization. Ini-
tially, H is maped onto K in Figure 5.6(b) with the texture mapped from H. Due to
our geometric initialization of θ, the mapping appears to be a global parameterization.
However, in regions of H where surface geometry changes more abruptly, such as areas
near the tips, θ is not well-behaved and shows serious distortion (see the right side
of Figure 5.6(b)). This also causes some overlapping of the initial parameterization
from H onto K. Therefore some optimization is required.

After optimizing the initial parameterization using Algorithm 4, the final param-
eterization result is shown in Figure 5.6(c). The distortion near the tips disappears
and the overlapping regions are fixed by the algorithm. The final parameterization
is global, smooth and diffeomorphic. This shows that our initial parameterization is
very close to optimal. From the plot of the energy functional against the number of
iterations in Figure 5.7, our algorithm has clearly converged.

5.3. Distortion Control in Eigen-Harmonic Parameterizations. In this
subsection, we show that distortion is well-controlled in eigen-harmonic parameteri-
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Fig. 5.7. A plot of the energy functional against the number of iterations in computing the
final parameterization in Figure 5.6(c).
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Fig. 5.8. Distortion comparison between EHP and mapping the same HC surface onto a sphere
using conformal mapping.

zations (EHP). To illustrate this point, we compare the areal expansion factors using
our method and mapping HC surfaces conformally onto spheres. We randomly pick
20 HC surfaces of AD patients and 20 HC surfaces of normal subjects for this test.
In our method, we map these HC surfaces onto their parameter domains using EHP,
while in the other method, we map these HC surfaces conformally onto spheres of
the same surface areas. We compute the ratio of the mapped area to the original
area for each triangle in the original meshes and plot its distribution under the two
methods in Figure 5.8. Since all HC surfaces are triangulated evenly, a histogram of
the area expansion ratio gives us a good idea of the area distortion caused by different
methods. A good parameterization should preserve the area of the mapping well and
the area expansion factors should be close to 1, as far as possible.

In Figure 5.8, histograms showing the number of triangles against the logorithm
of the area expansion factors are plotted. In the left histogram for EHP, the triangles
lie highly concentrated around 0, which means they are being mapped onto triangles
of similar areas (since it means the area expansion ratio is e0 = 1). In contrast, from
the histogram for conformal mapping on the right, the distribution shows a huge
dispersion and is skewed towards the left. Some triangles are shrinking to as little as
e−10 times their original area. This shows that EHP controls area distortion better
than conformal parametrization.

Besides area distortion, we also compare the consistency of the mapped intrinsic
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Fig. 5.9. Comparison of eigen-harmonic parameterization with conformal parameterization
onto sphere.

Fig. 5.10. The front and back of three HC surfaces textured with checkerboard pattern according
to their parameterizations in EHP.

feature curves using these two methods. In Figure 5.9, we plot the results of these
two parameterizations. As we can see, a HC surface is smoothly mapped onto our
parameter domain, with IFC1 and IFC2 mapped onto {θ = 0} and {θ = π} respec-
tively. If we map it conformally onto a sphere of equal area, both IFC1 and IFC2 are
not mapped onto consistent locations, making registration difficult. We may enforce
such correspondence by mapping IFC1 and IFC2 onto latitudes {θ = 0} and {θ = π}
of the sphere, but we can no longer expect the mapping to be conformal. To make
the mapping as conformal as possible, harmonic map has to be computed. However,
since harmonic map is also used in EHP to map HC surfaces onto parameter domains
matching the geometry of HC surfaces, our algorithm will always induce less distortion
than mapping onto sphere while keeping feature curves fixed.

5.4. HC Shape Analysis using Eigen-Harmonic Registrations. In this
subsection, we demonstrate how our algorithms can be used to register HC surfaces
consistently for HC shape morphometry. Using EHP, we parameterize HC surfaces
onto [0, 1]× [0, 2π). This automatically registers all HC surfaces using their intrinsic
surface geometry. In Figure 5.10, the front and back of three HC surfaces are shown
from left to right. They are all textured with the same checkerboard pattern accord-
ing to their parameterizations in EHP. The grid lines of the checkerboard pattern
correspond to lines with constant α and θ, and both IFC1 and IFC2 are colored in
red. As we can see, although every HC surface displays a distinctive geometry, our
algorithms can still smoothly parameterize them and register IFC1 and IFC2 consis-
tently. Distortion is also well controlled, as no texture is largely sketched. This gives
us a good correspondence for HC shape morphometry.

Using EHP, each point on a HC surface is mapped to a point on an elliptic cross
section of its tubular domain with the same circumference as the eigenloop it’s on.
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Fig. 5.11. The result of detecting HC atrophy using EHP. The figures on the left show the
original HC surface. The figures in the middle show the artificially shrinked HC surface from the
original HC surface along the normal direction. The figures on the right show the change in distance
from the corresponding points on the tubular domains to their axises. Most of the areas except areas
near the tips show a decrease in the distance, indicating that the shrinkage is successfully detected
by EHP.

Fig. 5.12. Results of p-test for HC surfaces of 47 normal and 22 AD subjects.

Using the change of the distance from the mapped point to the axis of the tubular
domain, we can effectively study HC surface atrophy well known to occur in patients
with Alzheimer’s disease. To demonstrate this property, we choose an HC surface and
shrink it along the normal direction. Then we compute the EHP of both surfaces,
and measure the change of the distance from the corresponding points on the tubular
domains to their axises. As we can see from the result shown in Figure 5.11. EHP
successfully captures a decrease of distance from corresponding points on the tubular
domains to their axises. This shows that HC atrophy can be effectively detected by
EHP.

To study which areas of the HC surface show the most statistically significant
group differences in the shape changes over time (between subjects with AD and nor-
mal subjects), we perform a t-test of area change ratio between two different times
in a random group of 47 normal subjects and 22 AD subjects. The resulting p-values
are plotted in Figure 5.12. Areas near the head and the tip show more statistically
significant change in area ratio. Tests can be run using other geometric quantities or
even clinical data such as cognitive scores, age, sex, prognosis, or measures of pathol-
ogy in cerebrospinal fluid [17]. Our consistent registration using intrinsic geometry
could improve the ability of medical researchers to perform HC surface analysis in
large populations.

6. Conclusion. In this paper, we proposed an algorithm to find two intrinsic
feature curves according to the intrinsic geometry of HC surfaces, and labeled them
as IFC1 and IFC2. We constructed an initial parameterization of HC surfaces using
the first non-trivial LB eigenfunction as the longitudinal coordinate α, and estimated
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the azimuthal coordinate θ from IFC1 and IFC2. Based on surface geometry, we
constructed a parameter domain for each HC surface. We further smoothed the
parameterization by minimizing the harmonic energy of the mapping from the HC
surface onto its parameter domain, while keeping IFC1 and IFC2 mapped onto {θ = 0}
and {θ = π} respectively. This completes the construction of the eigen-harmonic
parameterization (EHP).

We showed that all our algorithms converged successfully and produced intrinsic
feature curves and smooth parameterizations as desired. We demonstrated how IFC1
and IFC2 can be used to detect atrophy on HC surfaces, and how they can be used
to extract conformal modules from the front and back of HC surfaces, which are
intrinsic surface properties. We compared the distortion of our parameterization with
the method of mapping HC surfaces conformally on spheres, and found that our
method preserves area well, while the other method causes severe shrinking of some
mapped areas. We also showed that the other method could not map IFC1 and
IFC2 to consistent locations while keeping the mapping conformal. We illustrated
how we can give consistent parameterization for HC surfaces with distinctive surface
geometry. Using EHP, we demonstrated how HC shape morphometry can be carried
out by performing a pointwise t-test on the area change ratio between two different
times in 47 normal subjects, compared to 22 AD subjects.

In medical imaging, many structures of interest have elongated tubular shapes,
including the deep nuclei of the brain, blood vessels, and parts of the skeleton. There-
fore, we believe our registration may also be effectively applied to other such struc-
tures, where a geometrically intrinsic registration is helpful. In the future, we will
explore such possibility by applying our algorithms to different kinds of subjects and
applications where shape morphometry is needed.

Appendix. In this part, we compute the descent directions used in Algorithm
1 and Algorithm 4. First of all, we compute the coefficients αi’s and βi’s that give
the steepest descent to E(Vtmp,Wtmp) in Algorithm 1. Recall that Vtmp = {v0 +
tα0d0, . . . , vn + tαndn}, Wtmp = {w0 + tβ0e0, . . . , wn + tβndn}, where di’s and ei’s
are unit tangential vectors along the eigen-loops containing vi’s and wi’s respectively.
Also, E is defined as

E(V,W ) =
1

n+ 1

n∑
i=0

|vi − wi| − c1
n−1∑
i=0

|vi+1 − vi| − c2
n−1∑
i=0

|wi+1 − wi|. (6.1)

Before computing the descent directions, we state the following identity without proof:

d|v + tw|
dt

|t=0 =
v · w
|v|2 , (6.2)

where v and w are vectors and t is a real variable. Now we evaluate

d

dt
E(Vtmp,Wtmp)|t=0 =

n∑
i=0

∇viE(Vtmp,Wtmp)|t=0 · (αidi)

+

n∑
i=0

∇wi
E(Vtmp,Wtmp)|t=0 · (βiei).

(6.3)
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To minimize E with a positive step t, the descent direction of αi has to be given by

αi = −∇viE(Vtmp,Wtmp)|t=0 · di

= − d

dt
E(v0, . . . , vi + tdi, . . . , vn, w0, . . . , wn)|t=0

= −(
1

n+ 1

d

dt
|vi + tdi − wi| − c1

d

dt
|vi + tdi − vi−1| − c2

d

dt
|vi+1 − vi − tdi|)|t=0

= − 1

n+ 1

(vi − wi) · di
|vi − wi|2

+ c1
(vi − vi−1) · di
|vi − vi−1|2

− c1
(vi+1 − vi) · di
|vi+1 − vi|2

,

(6.4)

where the second term does not appear for i = 0 and the third term does not appear
for i = n. Similarly βi is given by

βi = − 1

n+ 1

(wi − vi) · ei
|wi − vi|2

+ c2
(wi − wi−1) · ei
|wi − wi−1|2

− c2
(wi+1 − wi) · ei
|wi+1 − wi|2

, (6.5)

where the second term does not appear for i = 0 and the third term does not appear
for i = n.

For Algorithm 4, we compute the coefficients δi’s that give the steepest descent
to E(φ1 + tδ1, . . . , φm + tδm). Recall that

E(φ1, . . . , φm) =

3∑
i=1

Eharmonic(Φi)

=

3∑
i=1

1

2

∑
(vj ,vk)∈E

Lvj ,vk(Φi(vj)− Φi(vk))2.

(6.6)

We evaluate

d

dt
E(φ1 + tδ1, . . . , φm + tδm)|t=0 =

m∑
i=1

∂

∂φi
E(φ1, . . . , φm)δi. (6.7)

To minimize E with a positive step t, the descent direction of δi has to be given by

δi = − ∂

∂φi
E(φ1, . . . , φm)

= − ∂

∂φi

3∑
j=1

1

2

∑
(vk,vl)∈E

Lvk,vl(Φj(vk)− Φj(vl))
2

= − ∂

∂φi

3∑
j=1

1

2

∑
vk∈Nbr(vi)

Lvi,vk(Φj(vi)− Φj(vk))2

= −
3∑
j=1

∑
vk∈Nbr(vi)

Lvi,vk(Φj(vi)− Φj(vk))
∂

∂φi
Φj(vi).

(6.8)

Note that Φ(vi) = (a(vi) cos(φ(vi)), b(vi) sin(φ(vi)), hα(vi)). Therefore

δi =
∑

vk∈Nbr(vi)

Lvi,vk [(Φ1(vi)− Φ1(vk))a(vi) sin(φ(vi))

− (Φ2(vi)− Φ2(vk))b(vi) cos(φ(vi))].

(6.9)
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