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Abstract

In shape analysis, finding an optimal 1-1 correspondence between surfaces within a large class of admissible

bijective mappings is of great importance. Such process is called surface registration. The difficulty lies in the

fact that the space of all surface diffeomorphisms is a complicated functional space, making exhaustive search

for the best mapping challenging. To tackle this problem, we propose a simple representation of bijective surface

maps using Beltrami coefficients (BCs), which are complex-valued functions defined on surfaces with supreme

norm less than 1. Fixing any 3 points on a pair of surfaces, there is a 1-1 correspondence between the set of

surface diffeomorphisms between them and the set of BCs. Hence, every bijective surface map can be represented

by a unique BC. Conversely, given a BC, we can reconstruct the unique surface map associated to it using the

Beltrami Holomorphic flow (BHF) method. Using BCs to represent surface maps is advantageous because it is a

much simpler functional space, which captures many essential features of a surface map. By adjusting BCs, we

equivalently adjust surface diffeomorphisms to obtain the optimal map with desired properties. More specifically,

BHF gives us the variation of the associated map under the variation of BC. Using this, a variational problem

over the space of surface diffeomorphisms can be easily reformulated into a variational problem over the space

of BCs. This makes the minimization procedure much easier. More importantly, the diffeomorphic property is

always preserved. We test our method on synthetic examples and real medical applications. Experimental results

demonstrate the effectiveness of our proposed algorithm for surface registration.

Index Terms

Beltrami coefficient, Beltrami holomorphic flow, surface diffeomorphism, surface registration, shape analysis,

optimization

1. INTRODUCTION

Surface registration is a process of finding an optimal 1-1 correspondence between surfaces satisfying

certain constraints. It is of great importance in different research areas, such as computer graphics and

medical imaging. For example, in medical imaging, surface registration is always needed for statistical

shape analysis, morphometry and the processing of signals on brain surfaces (e.g., denoising and filtering).

In many cases, a surface must be non-rigidly aligned with another surface, while matching various features

lying on both surfaces. Finding an optimal surface registration that best matches the required constraints

is difficult, especially on convoluted surfaces such as the human brain. It is therefore necessary to develop

an effective algorithm to compute the best surface registration.
In order to obtain the best 1-1 correspondence between two surfaces, an optimized surface registrations

is often required. Optimization of surface registrations is the process of selecting an optimal surface

† Lok Ming Lui, Department of Mathematics, Harvard University and UCLA{malmlui@math.harvard.edu}

1

ar
X

iv
:1

00
5.

32
92

v1
  [

m
at

h.
O

C
] 

 1
4 

M
ay

 2
01

0



2

diffeomorphism within a large class of admissible smooth mappings to best satisfy certain properties. It

can usually be formulated as a variational problem in the form:

min
f∈FDiff

E0(f) (1)

where FDiff = {f : S1 → S2 : f is a diffeomorphism} is the space of all diffeomorphisms from surface S1

to surface S2.

Solving this type of variational problem is generally difficult, since the space of all surface diffeomor-

phisms FDiff is a complicated functional space. For instance, FDiff is inherently infinite dimensional and

has no natural linear structure. Constructing an efficient optimization scheme in such space that guarantees

to obtain a minimizer is a big challenge, and a loss of bijectivity of the surface maps (overlapping) is

often observed during the optimization process. To solve this problem, it is necessary to develop a simple

representation of surface diffeomorphisms which helps to simplify the optimization procedure.

In this paper, we propose a simple representation of surface diffeomorphisms using Beltrami coefficients

(BCs). The BCs are any complex-valued functions defined on surfaces with L∞-norm strictly less than 1.

Fixing any 3 points on a pair of surfaces, there is a one-to-one correspondence between the set of surface

diffeomorphisms and the set of BCs. Hence, every bijective surface map can be represented by a unique

BC. Conversely, given a BC, we propose to reconstruct the unique surface map associated to it using the

Beltrami Holomorphic flow (BHF) method introduced in this paper. The BHF formulates the variation of

the surface maps under the variation of BCs. Hence, variational problems of surface diffeomorphisms can

be easily reformulated into variational problems of BCs in the form:

min
µ∈FBC

E(µ) (2)

where FBC = {µ : S1 → D : ||µ||∞ < 1} is the set of BCs.

The space of BCs is a much simpler functional space that captures the essential features of surface maps.

There are no restrictions that BCs have to be 1-1, surjective or satisfy some constraints in their Jacobians.

By adjusting BCs, we can adjust surface registrations accordingly using BHF to obtain surface maps with

the desired properties. This greatly simplifies the minimization procedure. More importantly, the surface

maps obtained is guaranteed to be diffeomorphic (bijective and smooth) during the optimization process.

We have applied our proposed algorithm on synthetic examples and real medical applications for surface

registration, which demonstrate the effectiveness of our proposed method.

In summary, our work contributes to the following three aspects:

• We propose a simple representation of surface diffeomorphisms to facilitate the optimization of

surface registrations.

• We develop a reconstruction algorithm of the surface diffeomorphism from a given BC, using BHF.

This completes the representation scheme and allows us to move back and forth between BCs and

surface diffeomorphisms.

• With BHF, we formulate variational problems of surface maps into variational problems of BCs. This

greatly simplifies the optimization procedure.
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A flow chart summarizing the framework proposed in this paper is shown in Figure 1.

Fig. 1

A FLOW CHART SUMMARIZING THE FRAMEWORK PROPOSED IN THIS PAPER.

2. PREVIOUS WORK

Surface registration has been extensively studied by different research groups. Most methods compute

the optimal surface registration by minimizing certain kinds of energy functionals. In this section, we

briefly describe some related methods commonly used.

Conformal surface registration has been widely studied to obtain smooth 1-1 correspondence between

surfaces and minimize angular distortions [1][7][8][9][10][13][20][28].. Conformal maps are usually com-

puted using variational approaches to minimize some energy functionals, such as the harmonic energy [7]

and the least square energy based on the Cauchy-Riemann equation [20]. A 1-1 correspondence between

surfaces can be obtained in the optimal state. However, the above registration cannot map anatomical

features, such as sulcal landmarks, consistently from subject to subject.

To obtain a surface registration that matches important landmark features, landmark-based diffeo-

morphisms are often used. Optimization of surface diffeomorphisms by landmark matching has been

extensively studied. Gu et al. [7] improves a conformal parameterization by composing an optimal Möbius

transformation so that it minimizes a landmark mismatch energy. The resulting parameterization remains

conformal, although features cannot be perfectly matched. Wang et al. [18][29] proposed a variational

framework to compute an optimized conformal registration which aligns landmarks as well as possible.

However, landmarks are not matched exactly and diffeomorphisms cannot be guaranteed when there is

a a large amount of landmark features. Durrleman et al. [2][3] developed a framework using currents, a

concept from differential geometry, to match landmarks within surfaces across subjects, for the purpose

of inferring the variability of brain structure in an image database. Landmark curves are not perfectly

matched. Tosun et al. [26] proposed a more automated mapping technique that attempts to align cortical

sulci across subjects by combining parametric relaxation, iterative closest point registration, and inverse

stereographic projection. Glaunès et. al [6][12] proposed to generate large deformation diffeomorphisms

of a sphere onto itself, given the displacements of a finite set of template landmarks. The diffeomorphism
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obtained can better match landmark features. Lui et al. [19] proposed to compute shape-based landmark

matching registrations between brain surfaces using the integral flow method. The one parameter subgroup

within the set of all diffeomorphisms is considered and represented by smooth vector fields. Landmarks

can be perfectly matched and the correspondence between landmark curves is based on shape information.

Leow et al. [15] proposed a level-set-based approach for matching different types of features, including

points, 2D and 3D curves represented as implicit functions. These matching features in the parameter

domain were then pulled back onto surfaces to compute correspondence fields. Later, Shi et al. [24]

computed a direct harmonic mapping between two surfaces by embedding both surfaces as the level-set

of an implicit function, and representing the mapping energy as a Dirichlet functional in 3D volume

domains. Although such an approach can incorporate landmark constraints, it has not been proven to

yield diffeomorphic mappings.

Since there may not be well-defined landmarks on surfaces, some authors proposed driving features

into correspondence based on shape information. Lyttelton et al. [21] computed surface parameterizations

that match surface curvature. Fischl et al. [4] improved the alignment of cortical folding patterns by

minimizing the mean squared difference between the average convexity across a set of subjects and that

of the individual. Wang et al. [27] computed surface registrations that maximize the mutual information

between mean curvature and conformal factor maps across subjects. Lord et al. [16] matched surfaces by

minimizing the deviation from isometry.

In most situations, one has to pay extra attention to ensure the optimal map computed is diffeomorphic.

Hence, developing an effective optimization algorithm that guarantees to give diffeomorphic surface

registrations is necessary. This motivates us to look for a simple representation of surface diffeomorphisms

which helps to simplify the optimization procedure.

3. THEORETICAL BACKGROUND

In this section, we describe some basic mathematical concepts related to our algorithms. For details,

we refer readers to [5] and [14].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann surfaces

M and N , a map f : M → N is conformal if it preserves the surface metric up to a multiplicative

factor called the conformal factor. An immediate consequence is that every conformal map preserves

angles. With the angle-preserving property, a conformal map effectively preserves the local geometry

of the surface. A generalization of conformal maps is quasi-conformal maps, which are orientation-

preserving diffeomorphisms between Riemann surfaces with bounded conformality distortion, in the sense

that their first order approximations takes small circles to small ellipses of bounded eccentricity [5]. Thus,

a conformal homeomorphism that maps a small circle to a small circle can also be regarded as quasi-

conformal. Figure 2 illustrates the idea of conformal and quasiconformal maps.

Mathematically, f : C→ C is quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3)
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Fig. 2

ILLUSTRATION OF A CONFORMAL MAP AND A QUASICONFORMAL MAP. (A) SHOWS A HIPPOCAMPAL SURFACE. A CIRCLE PACKING

PATTERN IS PLOTTED ON THE PARAMETER DOMAIN AS IN (B). (C) SHOWS A CONFORMAL PARAMETERIZATION, WHICH MAPS CIRCLES

ON THE PARAMETER DOMAIN TO CIRCLES ON THE SURFACE. (D) SHOWS A QUASICONFORMAL PARAMETERIZATION, WHICH MAPS

CIRCLES ON THE PARAMETER DOMAIN TO ELLIPSES ON THE SURFACE.

for some complex valued functions µ satisfying ||µ||∞ < 1. In terms of the metric tensor, consider the

effect of the pullback under f of the usual Euclidean metric ds2
E; the resulting metric is given by:

f ∗(ds2
E) = |

∂f

∂z
|2|dz + µ(z)dz|2. (4)

which, relative to the background Euclidean metric dz and dz, has eigenvalues (1 + |µ|)2
∣∣∂f
∂z

∣∣2 and

(1−|µ|)2
∣∣∂f
∂z

∣∣2. µ is called the Beltrami coefficient, which is a measure of non-conformality. In particular,

the map f is conformal around a small neighborhood of p when µ(p) = 0. Infinitesimally, around a point

p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(5)

Obviously, f is not conformal if and only if µ(p) 6= 0 at p. Inside the local parameter domain, f may be

considered as a map composed of a translation to f(p) together with a stretch map S(z) = z + µ(p)z,

which is postcomposed by a multiplication of fz(p), which is conformal. All the conformal distortion of

S(z) is caused by µ(p). S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),

we can determine the angles of the directions of maximal magnification and shrinking and the amount

of them as well. Specifically, the angle of maximal magnification is arg(µ(p))/2 with magnifying factor

1 + |µ(p)|; The angle of maximal shrinking is the orthogonal angle (arg(µ(p)) − π)/2 with shrinking

factor 1− |µ(p)|. The distortion or dilation is given by:

K = (1 + |µ(p)|)/(1− |µ(p)|). (6)

Thus, the Beltrami coefficient µ gives us important information about the properties of the map (See
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Fig. 3

ILLUSTRATION OF HOW THE BELTRAMI COEFFICIENT µ MEASURES THE DISTORTION OF A QUASI-CONFORMAL MAPPING THAT MAPS A

SMALL CIRCLE TO AN ELLIPSE WITH DILATION K .

Figure 3).
Now, suppose µ and σ are the Beltrami coefficients of the quasiconformal maps fµ and fσ respectively.

Then the Beltrami coefficient τ of the composition map f τ = fσ ◦ (fµ)−1 can be computed as:

τ =

(
σ − µ
1− µσ

1

θ

)
◦ (fµ)−1, (7)

where θ = p
p

and p = ∂
∂z
fµ(z). In particular, if fσ is the identity, that is, if σ = 0, then

τ = −(µp
p
) ◦ (fµ)−1. (8)

4. MAIN ALGORITHM

In this section, we discuss in detail the main algorithms in this paper. Our goal is to look for a simple

representation scheme for the space of surface diffeomorphisms, with the least number of constraints

possible, to simplify the optimization process.

A. The Beltrami Holomorphic Flow

In this part, we describe two theorems about the Beltrami Holomorphic Flow(BHF) on the sphere S2

and the unit disk D. All the algorithms developed in this paper are mainly based on these theorems.
Theorem 4.1 (Beltrami holomorphic flow on S2): There is a one-to-one correspondence between the

set of quasiconformal diffeomorphisms of S2 that fix the points 0, 1, and ∞ and the set of smooth

complex-valued functions µ on S2 with ||µ||∞ = k < 1. Here, we have identified S2 with the extended

complex plane C. Furthermore, the solution fµ to the Beltrami equation depends holomorphically on µ.

Let {µ(t)} be a family of Beltrami coefficients depending on a real or complex parameter t. Suppose also

that µ(t) can be written in the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (9)
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for z ∈ C, with suitable µ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such that ‖ ε(t) ‖∞→ 0 as t→ 0.

Then for all w ∈ C,

fµ(t)(w) = fµ(w) + tV (fµ, ν)(w) + o(|t|) (10)

locally uniformly on C as t→ 0, where

V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π

∫
C

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy. (11)

Proof: This theorem is due to Bojarski. For detailed proof, please refer to [2].

Theorem 4.1 states that any diffeomorphism of S2 that fixes 0, 1 and ∞ can be represented uniquely

by a Beltrami coefficient. In fact, the 3-point correspondence can be arbitrarily set, instead of fixing 0,

1 and ∞ only. This can be done easily by composing Möbius transformations to the diffeomorphism.

Let f : S2 → S2 be any diffeomorphism of S2. Picking any 3-point coresspondence {a, b, c ∈ S2} ↔
{f(a), f(b), f(c) ∈ S2}, we can look for unique Möbius transformations φ1 and φ2 that map {a, b, c} and

{f(a), f(b), f(c)} to 0, 1,∞ respectively. Then, the composition map f̃ := φ2◦f ◦φ−1
1 is a diffeomorphism

of S2 that fixes 0, 1 and∞ and can be represented by a unique Beltrami coefficient. In other words, given

a diffeomorphism f of S2 and any 3-point correspondence, we can represent f uniquely by a Beltrami

coefficient.

The theorem also gives the variation of the diffeomorphism under the variation of the Beltrami coeffi-

cient. In order to adjust the diffeomorphism, we can simply adjust the Beltrami coefficient by using the

variational formula.

Theorem 4.1 can be further extended to diffeomorphisms of the unit disk D.

Theorem 4.2 (Beltrami holomorphic flow on D): There is a one-to-one correspondence between the

set of quasiconformal diffeomorphisms of D that fix the points 0 and 1 and the set of smooth complex-

valued functions µ on D for which ||µ||∞ = k < 1. Furthermore, the solution fµ depends holomorphically

on µ. Let {µ(t)} be a family of Beltrami coefficients depending on a real or complex parameter t. Suppose

also that µ(t) can be written in the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (12)

for z ∈ D, with suitable µ in the unit ball of C∞(D), ν, ε(t) ∈ L∞(D) such that ‖ ε(t) ‖∞→ 0 as t→ 0.

Then for all w ∈ D
fµ(t)(w) = fµ(w) + tV (fµ, ν)(w) + o(|t|) (13)

locally uniformly on D as t→ 0, where

V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy.

)
.

(14)

Proof: The proof of this theorem can be found in the Appendix.
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Theorem 4.2 states that any diffeomorphism of D that fixes 2 points (i.e. 0 and 1) can be represented

uniquely by a Beltrami coefficient. Again, the 2-point correspondence can be arbitrary. Let g : D→ D be

a diffeomorphism of D. Given any 2-point correspondence {a, b ∈ D} ↔ {g(a), g(b) ∈ D}, we can find

two unique Möbius tranformations φ1 and φ2 of D that map {a, b} and {g(a), g(b)} to {0, 1} respectively.

Then, the composition map g̃ := φ2 ◦ g ◦ φ−1
1 is a diffeomorphism of D that fixes 0 and 1 and can be

represented by a unique Beltrami coefficient. Theorem 4.2 also gives the variation of the diffeomorphism

of D under the variation of the Beltrami coefficient. Therefore, we can again adjust the diffeomorphism

of D by adjusting the Beltrami coefficient, which is a much simpler functional space.

Theorem 4.1 and Theorem 4.2 can be extended to genus 0 closed surfaces and open surfaces with

disk topology. Therefore, they can be applied to represent general surface diffeomorphisms. This will be

discussed in Section 4.2.

B. Representation of Surface Diffeomorphisms using BCs

As mentioned earlier, it is crucial to look for a simple representation for the space of all surface

diffeomorphisms so that the optimization procedure can be simplified. Surface registration is commonly

represented by 3D coordinate functions in R3. This representation requires lots of storage space and is

difficult to manipulate. For example, 3D coordinate functions have to satisfy a constraint in the Jacobian

J (namely, J > 0) in order to preserve the 1-1 correspondence of surface maps. The Jacobian constraint is

a complicated partial differential inequality. Enforcing this constraint adds extra difficulty in manipulating

and adjusting surface maps. It is therefore important to have a simpler representation with as few constraints

as possible.

Theorem 4.1 and 4.2 allow us to represent surface diffeomorphisms of S2 and D by Beltrami coefficients.

The theorems can be further extended to genus 0 closed surfaces and open surfaces with disk topology.

Let S1 and S2 be two genus 0 closed surfaces with a 3-point correspondence between them: {p1, p2, p3 ∈
S1} ↔ {q1, q2, q3 ∈ S2}. By Riemann mapping theorem, S1 and S2 can both be uniquely parameterized by

conformal maps φ1 : S1 → S2 and φ2 : S2 → S2 respectively, such that φ1(p1) = 0, φ1(p2) = 1, φ1(p3) =∞
and φ2(q1) = 0, φ2(q2) = 1, φ2(q3) = ∞. The conformal parameterizations can be computed using the

discrete Ricci flow method [11]. Given any surface diffeomorphism f : S1 → S2. The composition map

f̃ := φ2◦f ◦φ−1
1 : S2 → S2 is a diffeomorphism from S2 to itself fixing 0, 1 and∞. By Theorem 4.1, f̃ can

be uniquely represented by a Beltrami coefficient µ̃ defined on S2. Hence, f can be uniquely represented

by a Beltrami coefficient µ := µ̃ ◦ φ−1
1 defined on S1. In other words, we have proven the following:

Corollary 4.3: Let S1 and S2 be two genus 0 closed surfaces. Suppose f : S1 → S2 is a surface

diffeomorphism. Given 3-point correspondence {p1, p2, p3 ∈ S1} ↔ {f(p1), f(p2), f(p3) ∈ S2}, f can be

represented by a unique Beltrami coefficient µ : S1 → C.

Similarly, Theorem 4.2 can be extended to open surfaces with disk topology. Let M1 and M2 be two

genus 0 open surfaces. Given two points correspondence {p1, p2 ∈M1} ↔ {q1, q2 ∈M2} between them.

We can again uniquely parameterize M1 and M2 conformally to map the corresponding points to 0 and
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1. Denote them by φ1 : M1 → D and φ2 : M2 → D. The composition map f̃ := φ2 ◦ f ◦ φ−1
1 : D → D is

a diffeomorphism of D fixing 0 and 1. Again, f̃ can be uniquely represented by a Beltrami coefficient µ̃

defined on D. Hence, f can be uniquely represented by a Beltrami coefficient µ := µ̃ ◦ φ−1
1 defined on

M1. So, we have the following Corollary:

Corollary 4.4: Let M1 and M2 be two genus 0 open surfaces with disk topology. Suppose f : M1 →
M2 is a surface diffeomorphism. Given 2-point correspondence {p1, p2 ∈M1} ↔ {f(p1), f(p2) ∈M2}, f
can be represented by a unique Beltrami coefficient µ : M1 → C.

Corollary 4.3 and 4.4 allows us to represent diffeomorphisms of genus 0 closed surfaces and open

surfaces with disk topology using Beltrami coefficients. Thus, we can use the Beltrami coefficient µf
associated uniquely to such diffeomorphism f to represent f . First of all, we need to compute the Beltrami

coefficient µ̃f̃ of the composition map f̃ = φ2 ◦ f ◦ φ−1
1 : D → D, where D is the common conformal

parameter domain of the surfaces.. Mathematically, µ̃f̃ is given by the following formula:

µ̃f̃ =
∂f̃

∂z
/
∂f̃

∂z
=

1

2
(
∂f̃

∂x
+
√
−1∂f̃

∂y
)/
1

2
(
∂f̃

∂x
−
√
−1∂f̃

∂y
). (15)

Then, the Beltrami coefficient µf can be computed by µf := µ̃f̃ ◦φ
−1
1 : S1 → C. µf is a complex-valued

functions defined on S1 with ||µf ||∞ < 1. There are no restrictions on µf that it has to be 1-1, surjective

or satisfy some constraints on the Jacobian. With this representation, we can easily manipulate and adjust

surface maps without worrying about destroying their diffeomorphic property.

In practice, surfaces are commonly approximated by discrete meshes comprising of triangular or

rectangular faces. They are parameterized onto the mesh D in C. Then the partial derivatives (or gradient)

of the map can be discretely approximated on each face of D. By taking average, the partial derivatives and

hence the Beltrami coefficient can be computed on each vertex. The detailed numerical implementation

can be found in the Appendix.

Besides adjusting surface maps preserving diffeomorphism, another advantage of Beltrami coefficients

is that they consist of two real functions only, namely the real and imaginary parts. Compared to the

representation of surface maps using 3D coordinate functions, this representation reduces 1/3 of the

original storage space.

The computational algorithm can be summarized as follows:

Algorithm 1. Beltrami Representation of Surface Diffeomorphisms

Input: Surface diffeomorphism f : S1 → S2; points correspondence {pi} ↔ {qi = f(pi)}.
Output: Beltrami representation µf : S1 → C of f : S1 → S2.

1) Compute the conformal parameterizations of S1 and S2 that map {pi} and {qi} to consistent

locations on the parameter domain D. Denote them by φ1 : S1 → D and φ2 : S2 → D

2) Set f̃ = φ2 ◦ f ◦ φ−1
1 : D → D and compute the Beltrami coefficient µ̃f̃ by Equation 15.

3) Compute the Beltrami coefficient µf : S1 → C using µf := µ̃f̃ ◦ φ
−1
1 .
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Fig. 4

BELTRAMI REPRESENTATION AND RECONSTRUCTION OF A SURFACE DIFFEOMORPHISM f ON THE BRAIN SURFACE. THE TOP-LEFT

FIGURE SHOWS A SURFACE DIFFEOMORPHISM BETWEEN TWO DIFFERENT BRAIN SURFACES. THE TOP-RIGHT FIGURE SHOWS THE

BELTRAMI REPRESENTATION µ OF f . HERE, THE COLORMAP OF |µ| IS SHOWN. THE BOTTOM ROW SHOWS THE RECONSTRUCTED MAP

AFTER DIFFERENT NUMBER OF ITERATIONS N USING BHF RECONSTRUCTION. WHEN N = 20, THE MAP CLOSELY RESEMBLES THE

ORIGINAL MAP (THE BLACK DOTS SHOW THE EXACT POSITIONS UNDER THE ORIGINAL MAP.)

C. Reconstruction of Surface Diffeomorphisms from BCs

Given the Beltrami coefficient µ defined on S1. It is important to have a reconstruction scheme to

compute the associated quasi-conformal diffeomorphism fµ. This allows us to move back and forth

between BCs and surface diffeomorphisms. We propose the Beltrami holomorphic flow (BHF) method to

reconstruct the surface diffeomorphism fµ : S1 → S2 associated with a given µ. BHF iteratively flows the

identity map to fµ. In this part, we describe the BHF reconstruction method in detail.

The variation of fµ under the variation of µ can be expressed explicitly. Suppose µ̃(z) = µ(z)+tν(z)+

o(|t|) where z = x+ iy ∈ C. Then, f µ̃(z)(w) = fµ(w) + tV (fµ, ν)(w) + o(|t|), where

V (fµ, ν)(w) =

∫
D

K(z, w) dx dy, (16)

and

K(z, w) =

−
fµ(w)(fµ(w)−1)

π

(
ν(z)((fµ)z(z))2

fµ(z)(fµ(z)−1)(fµ(z)−fµ(w))

)
D = S2,

−fµ(w)(fµ(w)−1)
π

(
ν(z)((fµ)z(z))2

fµ(z)(fµ(z)−1)(fµ(z)−fµ(w))
+ ν(z)((fµ)z(z))2

fµ(z)(1−fµ(z))(1−fµ(z)fµ(w))

)
D = D.

(17)

We can also write V (fµ, ν)(w) as:

V (fµ, ν)(w) =

∫
D

(
G1ν1 +G2ν2

G3ν1 +G4ν2

)
dx dy, (18)

where ν = ν1 + iν2 and G1, G2, G3, G4 are real-valued functions defined on D. Here, we identify A+ iB
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Fig. 5

BELTRAMI REPRESENTATION AND RECONSTRUCTION OF A SURFACE DIFFEOMORPHISM f ON HIPPOCAMPAL SURFACES. THE TOP-LEFT

FIGURE SHOWS A SURFACE DIFFEOMORPHISM BETWEEN TWO DIFFERENT HIPPOCAMPAL SURFACES. THE TOP-RIGHT FIGURE SHOWS

THE BELTRAMI REPRESENTATION µ OF f . THE COLORMAP OF |µ| IS SHOWN. THE BOTTOM ROW SHOWS THE RECONSTRUCTED MAP

AFTER DIFFERENT NUMBER OF ITERATIONS N USING BHF RECONSTRUCTION. WHEN N = 20, THE MAP CLOSELY RESEMBLES THE

ORIGINAL MAP (THE BLACK DOTS SHOWS THE EXACT POSITIONS UNDER THE ORIGINAL MAP.)

as

(
A

B

)
.

Using this fact, we propose to use BHF to iteratively flow the identity map to fµ. Given the parame-

terizations φ1 : S1 → D and φ2 : S2 → D, we look for the map f̃µ = φ2 ◦ fµ ◦ φ−1
1 : D → D associated

uniquely with µ̃ = µ ◦ φ−1
1 : D → C. fµ can then be obtained by fµ = φ−1

2 ◦ f̃µ ◦ φ1.

We start with the identity map Id of which the Beltrami coefficient is identically equal to 0. Let N

be the number of iterations. Define µ̃k = kµ̃/N , k = {0, 1, 2, . . . N}. Let f̃ µ̃k be the map associated with

µ̃k. Note that f̃ µ̃0 = Id and f̃ µ̃N = f̃ µ̃. Equation 16 allows us to iteratively compute f̃ µ̃k and thus obtain

a sequence of maps flowing from Id to f̃ µ̃. The iterative scheme is given by:

f̃ µ̃k+1 = f̃ µ̃k + V (f̃ µ̃k ,
µ̃

N
); f̃ µ̃0 = Id (19)

The computational algorithm of the reconstruction scheme can be summarized in Algorithm 2. The

detailed numerical implementation can be found in Appendix.

Algorithm 2. Reconstruction of Surface Diffeomorphisms from BCs

Input: Beltrami Coefficient µ on S1; conformal parameterizations of S1 and S2: φ1 and φ2; Number of

iterations N
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Output: Surface diffeomorphism fµ : S1 → S2 associated to µ.

1) Set k = 0; f̃ µ̃0 = Id.

2) Set µ̃k := kµ̃/N ; Compute f̃ µ̃k+1 = f̃ µ̃k + V (f̃ µ̃k , µ̃
N
); k = k + 1.

3) Repeat Step 2 until k = N ; Set fµ := φ−1
2 ◦ f̃ µ̃ ◦ φ1 : S1 → S2.

Figure 4 and 5 illustrate the idea of reconstructing surface diffeomorphisms from BCs on human

brain surfaces and hippocampal surfaces respectively. BHF computes a sequence of surface maps {f̃ µ̃k}
converging to f̃ µ̃. The approximation of f̃ µ̃k is more accurate with a smaller time step, or equivalently,

a larger number of iterations N . Figure 6 shows the error of the reconstructed map fRe versus different

number of iterations N used in the BHF process. The error is defined as Error = sup ||fRe− f ||, where

f is the original map. As expected, the error decreases as N increases. In practice, the approximations

are very accurate when N ≥ 15. In our experiments, we set N = 20.

Fig. 6

THE ERROR OF THE RECONSTRUCTED MAP fRe VERSUS THE NUMBER OF ITERATIONS USED IN THE BHF PROCESS.

D. BHF Optimization of Surface Registrations

We have described a simple representation scheme for surface diffeomorphisms using BCs. The space

of BCs is a simple functional space with the least amount of constraints. There are no restrictions requiring

BCs to be 1-1, surjective or satisfy some constraints on its Jacobian. With BCs, we can easily manipulate

and adjust surface maps, while ensuring the diffeomorphic(1-1, onto and smooth) property of the surface

registration.

Theorem 4.1 and 4.2 give us the variation of surface maps under the variation of their BCs (Equation

16 and 17). This allows us to perform optimization on the space of BCs, instead of working directly on

the space of surface diffeomorphisms. The diffeomorphic property of the optimal surface registration can

also be easily ensured during the optimization process.
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Given an energy functional E defined on the space of surface diffeomorphisms, we can easily refor-

mulate E and redefine it on the space of BCs. With the BHF variation, we can derive the Euler-Lagrange

equation on E to optimize BCs iteratively. To demonstrate the idea, we consider a simple example of

optimizing surface maps between two human brain surfaces.

Fig. 7

ILLUSTRATION OF BHF OPTIMIZATION SCHEME ON BRAIN SURFACES. THIS EXAMPLE SHOWS THE OPTIMIZATION RESULT OF

MATCHING TWO FEATURE FUNCTIONS F1 AND F2 ON THE TWO BRAIN SURFACES. THE BLUE GRID REPRESENTS THE INITIAL MAP,

WHILE THE BLACK GRID REPRESENTS THE OPTIMIZED MAP.

Example 4.1: Consider two different human brain surfaces S1 and S2 as shown in Figure 7. Denote

the conformal parameterizations of them by φ1 : S1 → D and φ2 : S2 → D. In surface registration, it

is often important to find an optimal 1-1 correspondence that matches some intensity feature functions

defined on each surfaces. Let F1 : S1 → R and F2 : S2 → R be two intensities (functions) defined

on S1 and S2 respectively. As an illustration, we define F1 and F2 as F1 := φ−1
1 (5.2x2 + 3.3y2) and

F2 := φ−1
2 (6.8x2 +2.8y). We propose to find f : S1 → S2 minimizing E(f) =

∫
S1
(F1(w)−F2(f(w)))

2 +

|µ(w)|2 dw. The optimized map f is a quasi-conformal map that best matches F1 and F2 while preserving

the conformality as good as possible. We can formulate the energy functional to be defined on the space

of BCs over the conformal parameter domain D. That is,

E(µ) =

∫
D

(F1(w)− F2(f
µ))2 + |µ(w)|2 dw (20)

The Euler-Lagrange equation can be derived as follow:

d

dt
|t=0E(µ+ tν) =

∫
D

d

dt
|t=0

(
(F1(w)− F2(f

µ+tν(w)))2 + |µ(w) + tν(w)|2
)
dw

= −
∫
D

2(F1 − F2(f
µ))∇F2(f

µ)
d

dt
|t=0f

µ+tν − 2µ · ν dw

= −
∫
D

∫
D

(
A

B

)
·

(
G1ν1 +G2ν2

G3ν1 +G4ν2

)
dz − 2µ · ν dw

= −
∫
D

(∫
D

(
AG1 +BG3

AG2 +BG4

)
dw −

(
2µ1

2µ2

))
·

(
ν1

ν2

)
dz,

(21)
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where

(
A

B

)
= 2(F1 − F2(f

µ))∇F2; µ = µ1 + iµ2 and ν = ν1 + iν2.

So, the descent direction for µ = µ1 + iµ2 is

dµ1

dt
=

∫
D

(AG1 +BG3) dw − 2µ1 and
dµ2

dt
=

∫
D

(AG2 +BG4) dw − 2µ2.; (22)

We can iteratively optimize the energy E as follow:

µn+1 = µn + dt

( ∫
D
(AnGn

1 +BnGn
3 ) dw − 2µ1∫

D
(AnGn

2 +BnGn
4 ) dw − 2µ2

)
(23)

Figure 7 shows the experimental result for this example. (A) shows the standard grid on Brain 1. The

standard grid is mapped by the initial map to Brain 2, which is shown as the blue grid. We optimize

the map such that it minimizes the energy functional. The resulting map is plotted as the black grid. (C)

shows the energy at each iteration. It decreases as the number of iterations increases. This shows that our

BHF optimization algorithm can iteratively optimize the energy functional.

Therefore, with BHF, we can perform optimizations over the space of BCs, which is a much simpler

functional space with least amount of contraints, and simplify the optimization procedure significantly.

5. APPLICATIONS

In this section, we outline some applications of our proposed optimization algorithm to surface regis-

tration. These applications are motivated from practical problems encountered in medical imaging.

A. Optimized Conformal Parameterization with Landmark Matching

With BHF, we first develop an algorithm to effectively compute landmark-matching optimized conformal

maps between surfaces. A landmark-matching optimized conformal map refers to a map that matches

corresponding landmarks across surfaces, while preserving conformality as much as possible. It is very

important for research applications in computational anatomy. For example, in human brain mapping,

neuroscientists are often interested in finding a 1-1 correspondence between brain surfaces that matches

sulcal/gyral landmark curves, which are important anatomical features [17]. Besides matching these brain

features, they also want the maps to preserve local geometry as much as possible. Conformal maps are best

known to preserve local geometry and hence are commonly used. However, landmark matching cannot

be guaranteed under conformal maps. Therefore, it is of interest to look for maps which are as conformal

as possible and match landmarks well.

Most existing algorithms for computing landmark-matching optimized conformal maps cannot ensure

exact landmark matching. Some existing algorithms can align landmarks consistently, but bijectivity is

usually not guaranteed especially when a large number of landmark constraints are imposed [18]. Here,

we introduce a variational approach to compute an optimized conformal map iteratively by minimizing

the L2 norm of a Beltrami coefficient µ (the Beltrami energy). Since µ is a measure of local distortion in

conformality, our proposed algorithm is in fact looking for the best landmark-matching map, which is as
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conformal as possible. Also, a map is bijective as long as ||µ||∞ < 1. This can be easily controlled and

guaranteed in each iteration by minimizing the Beltrami energy in our algorithm.

Fig. 8

THIS FIGURE SHOWS THE FRAMEWORK OF THE LANDMARK-MATCHING OPTIMIZED CONFORMAL PARAMETERIZATION ALGORITHM.

Given two surfaces S1 and S2 with the same topology. Denote the corresponding landmark curves on

S1 and S2 by {C̃1
k} and {C̃2

k} respectively. We first parameterize S1 and S2 conformally onto a common

parameter domain D (= D or S2 ∼= C). Let φ1 : S1 → D and φ2 : S2 → D be the parameterizations. We

proposed to look for two maps ϕ1 : D → D and ϕ2 : D → D such that ϕ−1
i ( i = 1, 2) maps landmarks

{φi(C̃i
k)} onto the consistent landmarks {Ck} on D (see Figure 8), and that it minimizes the following

energy functional:

E(ϕi) =

∫
D

|µϕi |2. (24)

Equation 24 ensures that each landmark-matching parametrization ϕi has the least conformality dis-

tortion. Hence, the local geometric distortion under ϕi is minimized. Starting from the conformal map

with µ = 0, the energy also ensures the property that |µ|∞ < 1 and so the diffeomorphic property of the

minimizer is guaranteed. A landmark-matching map f between S1 and S2 can then be obtained by the

composition map: f := φ−1
1 ◦ϕ2 ◦ϕ−1

1 ◦ φi. We can compute the Euler-Lagrange equation of Equation 24

with respect to µϕi as follow:

d

dt
|t=0E(µϕi + tv) =

∫
D

d

dt
|t = 0|µϕi + tv|2

= 2

∫
D

[Re(µϕi)Re(v)) + Im(µϕi)Im(v))]

(25)

The derivative in Equation 25 is negative when v = −2µϕi . Hence, we can iteratively minimize E(µϕi)

by the following scheme:

µn+1
ϕi
− µnϕi = −2µ

n
ϕi
dt. (26)

The detailed computational algorithm can be described as follow:
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Fig. 9

ILLUSTRATION OF LANDMARK-MATCHING OPTIMIZED CONFORMAL PARAMETERIZATIONS OF SYNTHETIC SURFACES WITH 1

LANDMARK. THE BLUE CURVES IN (A) AND (B) REPRESENT THE LANDMARKS ON THE TWO SURFACES. THE LANDMARK ON SURFACE

A CANNOT BE MAPPED ONTO THE ONE ON SURFACE B UNDER THE CONFORMAL MAP(THE BLACK CURVE IN (B)). WITH OPTIMIZED

CONFORMAL PARAMETERIZATION, THE CORRESPONDING LANDMARKS ON EACH SURFACE CAN BE EXACTLY MATCHED, AS SHOWN IN

(C). THE PERCENTAGE CHANGE IN ENERGY FUNCTIONALS OF THE OPTIMIZED CONFORMAL PARAMETERIZATIONS FOR SURFACE A

AND B ARE SHOWN IN (D) AND (E).

Algorithm 3. Optimized Conformal Parameterization with Landmark Matching

Input: Surfaces S1 and S2; Landmark curves C̃1
k on S1, C̃2

k on S2.

Output: Optimized conformal parameterization ϕ1 and ϕ2 of S1 and S2 with landmark matching.

1) Compute the initial map ϕ0
i that aligns landmark curves {φi(C̃i

k)} to {Ck} on D. Set n = 0.

2) Compute the Beltrami coefficient µnϕi of ϕni . Let µn+1
ϕi

= µnϕi − 2µnϕidt.

3) Compute ~Vn = V (ϕni ,−2µnϕi) using the BHF formula.

4) Let ϕn+1
i (p) = ϕni (p)+ δ(p)~Vn(p)dt , where δ is a smooth delta function on D that is equal to zero

around {Ci
k} and one elsewhere. This ensures landmarks are matched in each iteration. Set n =

n+1.

5) Repeat Step 2 to Step 5. If |E(µn+1
ϕi

)− E(µnϕi)| < ε, stop.

We have tested our proposed method on synthetic data as well as real medical data. Figure 9 shows the

result of matching two synthetic surfaces with one landmark on each surface. The blue curves on (A)

and (B) represent the landmarks on the two surfaces. Under a conformal map, the landmark on surface

A cannot be mapped exactly onto the one on surface B (the black curve in (B)). Using our proposed
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method, the corresponding landmarks on each surface can be exactly matched, as shown in (C). (D) and

(E) show the percentage change in energy functionals of the optimized conformal parameterizations for

surface A and B. The energies decrease as the number of iterations increases. This indicates a decrease

in the conformalilty distortion. Figure 10 shows the Beltrami coefficient of each optimized conformal

parameterization. The colormap shows the norm of the Beltrami coefficient. Note that the norm of the

Beltrami coefficient is very small except near the landmark curve. It means the conformality distortion is

accumulated around the landmarks as expected.

Fig. 10

THE BELTRAMI COEFFICIENTS OF THE OPTIMIZED CONFORMAL PARAMETERIZATIONS OF 2 SYNTHETIC SURFACES FIXING 1

LANDMARK. THE NORMS OF THE BELTRAMI COEFFICIENTS ARE PLOTTED AS COLORMAP, WHICH ARE VERY SMALL EXCEPT NEAR THE

LANDMARK CURVES. IT MEANS THAT THE CONFORMALITY DISTORTION IS ACCUMULATED AROUND THE LANDMARKS.

We have also tested our algorithm on synthetic surfaces with five landmarks as shown in Figure 11.

Again, the landmarks cannot be exactly matched under a conformal map (see black curves in (B)).

However, they are exactly matched using our proposed algorithm. As shown in (D) and (E), the per-

centage change in energies decreases as the number of iterations increases, meaning that conformality

distortion is progressively reduced. Figure 12 shows the Beltrami coefficients of the optimized conformal

parameterizations fixing landmarks. Again, the norm of the Beltrami coefficient is very small except near

the landmark curves.
Finally, we have tested our algorithm on real cortical hemispheric surfaces extracted from brain MRI

scans, acquired from normal subjects at 1.5 T(on a GE Signa scanner). Figures 13(A) and (B) show 2

different brain surfaces with 3 major sulcal curves labeled on each of them (see the blue curves). Under

a conformal map, landmarks on Brain 1 and Brain 2 are not exactly matched (see the black curves in

(B)). They are, however, exactly matched using our proposed algorithm as shown in (C). (D) and (E)

show the percentage change in the energies of the optimized conformal parameterizations of the surfaces.

The energies decrease as the number of iterations increases. This shows that the conformality distortion is

gradually reduced. Figure 14 shows the Beltrami coefficients of the optimized conformal parameterizations

of the 2 brain surfaces. Again, the norms of the Beltrami coefficients are very small except near the sulci

curves.



18

Fig. 11

LANDMARK-MATCHING OPTIMIZED CONFORMAL PARAMETERIZATIONS OF 2 SYNTHETIC SURFACES FIXING 5 LANDMARKS. THE BLUE

CURVES ON (A) AND (B) REPRESENT THE LANDMARKS ON THE SURFACES. THE LANDMARK ON SURFACE A CANNOT BE MAPPED TO

THE LANDMARK ON SURFACE B UNDER THE CONFORMAL MAP(BLACK CURVES IN (B)). WITH OPTIMIZED CONFORMAL

PARAMETERIZATION, THE CORRESPONDING LANDMARKS ON EACH SURFACE CAN BE EXACTLY MATCHED (SHOWN IN (C)). THE

PERCENTAGE CHANGE IN ENERGIES OF THE OPTIMIZED CONFORMAL PARAMETERIZATIONS FOR SURFACE A AND SURFACE B ARE

PLOTTED IN (D) AND (E).

B. Hippocampal Registration with Geometric Matching

In medical imaging, there are cases where anatomical landmark features cannot be easily defined

on some brain structures. In such cases, landmark-matching constraints cannot be used as a criterion

to establish good correspondence between surfaces. Finding the best 1-1 correspondence between these

structures becomes challenging. One typical example is the hippocampus(HP), which is an important

structure in the human brains. It belongs to the limbic system and plays important roles in long-term

memory and spatial navigation. Surface-based shape analysis is commonly used to study local changes

of HP surfaces due to pathologies such as Alzheimer disease (AD), schizophrenia and epilepsy [25]. On

HP surfaces, there are no well-defined anatomical landmark features. High-field structural or functional

imaging, where discrete cellular fields are evident [30], is still not routinely used. Finding meaningful

registrations between HP surfaces becomes challenging. It is thus important to develop methods to look

for good registrations between different HP surfaces without landmarks. To achieve this, we develop an

algorithm to automatically register HP surfaces with complete geometric matching and avoid the need to
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Fig. 12

THE BELTRAMI COEFFICIENT OF THE OPTIMIZED CONFORMAL PARAMETERIZATION OF 2 SYNTHETIC SURFACES FIXING 5 LANDMARKS.

THE NORM OF THE BELTRAMI COEFFICIENT IS VERY SMALL EXCEPT NEAR THE LANDMARK CURVE. IT MEANS THAT THE

CONFORMALITY DISTORTION IS ACCUMULATED AROUND THE LANDMARKS.

manually label landmark features. This is done by optimizing a compounded energy, which minimizes

the L2 norm of the Beltrami coefficient and matches curvatures defined on each surface. Given two

hippocampal surfaces S1 and S2. The compounded energy Eshape is defined mathematically as

Eshape(µ) = α

∫
D

|µ|2 + β

∫
D

(H1 −H2(f
µ))2 + γ

∫
D

(K1 −K2(f
µ))2 (27)

where H1, H2 are the mean curvatures on S1, S2 respectively, defined on the common parameter domain

D, and K1, K2 are the Gaussian curvatures. The first integral minimizes the conformality distortion of

the surface registration, and ensures the diffeomorphic property of the minimizer by controlling µ. The

second and third integrals ensure the optimized registration matches the curvatures as much as possible.

It turns out that Eshape is a complete shape index which measures the dissimilarity between two surfaces.

Specifically, Eshape = 0 if and only if S1 and S2 are geometrically equal up to a rigid motion. Therefore,

surface map minimizing Eshape is the best registration that matches the geometric information as much

as possible. We can minimize Eshape in Equation 27 iteratively, using the proposed BHF optimization

algorithm. The Euler-Lagrange equation of Equation 27 can be computed as follows:

d

dt
|t=0Eshape(µ) = α

∫
D

d

dt
|t=0|µ+ tv|2 + β

∫
D

d

dt
|t=0(H1 −H2(f

µ+tv))2

+ γ

∫
D

d

dt
|t=0(K1 −K2(f

µ+tv))2

= 2α

∫
D

µ · v − 2β

∫
D

(H1 −H2(f
µ))∇H2(f

µ) · df
µ+tv

dt
|t=0

− 2γ

∫
D

(K1 −K2(f
µ))∇K2(f

µ) · df
µ+tv

dt
|t=0

= 2

∫
w

{αµ(w)−
∫
z

[(βH̃ + γK̃) ·

(
G1

G2

)
, (βH̃ + γK̃) ·

(
G3

G4

)
]} · v(w)

(28)
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Fig. 13

LANDMARK-MATCHING OPTIMIZED CONFORMAL PARAMETERIZATIONS OF CORTICAL HEMISPHERIC SURFACES WITH 3 MAJOR SULCAL

LANDMARKS. THE BLUE CURVES ON (A) AND (B) REPRESENT THE LANDMARKS ON THE TWO SURFACES. UNDER A CONFORMAL MAP,

THE LANDMARKS ON BRAIN A CANNOT BE CORRECTLY MAPPED ONTO LANDMARKS ON BRAIN B (BLACK CURVES IN (B)). WITH

LANDMARK-MATCHING OPTIMIZED CONFORMAL PARAMETERIZATION, THE CORRESPONDING LANDMARKS ON EACH SURFACE CAN BE

EXACTLY MATCHED AS SHOWN IN (C). THE PERCENTAGE CHANGE IN ENERGIES OF THE OPTIMIZED CONFORMAL PARAMETERIZATIONS

FOR BRAIN A AND BRAIN B ARE SHOWN IN (D) AND (E).

where
∫
w
• :=

∫
D
• dw and

∫
z
• :=

∫
D
• dz are defined as the integral over variables w and z respectively,

H̃ := (H1 −H2(f
µ))∇H2(f

µ), K̃ := (K1 −K2(f
µ))∇K2(f

µ), Gi is as defined in Equation 18.

The derivative in Equation 28 is negative when v = −2(µ(w) −
∫
z
[(H̃ + K̃) · G,det(H̃ + K̃,G)] ).

Hence, we can iteratively minimize E(µ) by the following iterative scheme:

µn+1 − µn = −2(αµn −
∫
z

[(βH̃n + γK̃n) ·Gn,det(βH̃n + γK̃n, Gn)] ) dt (29)

The detailed computational algorithm can be described as follows:

Algorithm 4. BHF Registration with Geometric Matching

Input: Hippocampal surfaces S1 and S2, step length dt, threshold ε

Output: Geometric matching registration fµ and the shape index E(fµ)

1) Compute the conformal parameterizations of S1 and S2. Denote them by φ1 : S1 → D and φ2 :

S2 → D

2) Set ϕ0 := Id : D → D and n = 0.
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Fig. 14

THE BELTRAMI COEFFICIENT OF THE OPTIMIZED CONFORMAL PARAMETERIZATIONS OF 2 CORTICAL HEMISPHERIC SURFACES WITH 3

MAJOR SULCAL LANDMARKS. THE NORMS OF THE BELTRAMI COEFFICIENTS ARE SHOWN AS COLORMAP, WHICH ARE VERY SMALL

EXCEPT NEAR THE LANDMARK CURVES. AS EXPECTED, THE CONFORMALITY DISTORTION IS ACCUMULATED AROUND THE

LANDMARKS.

3) Compute the Beltrami coefficient µnϕ of ϕn (e.g. µ0
ϕ = 0). Update µn+1

ϕ by Equation 29.

4) Compute: ~Vn = V (ϕn, µn+1
ϕ − µnϕ) using Equation 16. Let ϕn+1 = ϕn + ~Vn. Set n = n+1.

5) Repeat Step 3 to Step 5. If |E(µn+1
ϕ )− E(µnϕ)| < ε, Stop.

We have tested our algorithm on 212 HP surfaces automatically extracted from 3D brain MRI scans

with a validated algorithm [23]. Scans were acquired from normal and diseased (AD) elderly subjects at

1.5 T (on a GE Signa scanner). In our experiments, we set α = 1 and β = γ = 2. Experimental results

show that our proposed algorithm is effective in registering HP surfaces with geometric matching. The

proposed shape energy can also be used to measure local shape difference between HPs. Figure 15(A)

shows two different HP surfaces. They are registered using our proposed BHF algorithm with geometric

matching. The registration is visualized using a grid map and a texture map, which shows a smooth

1-1 correspondence. The optimal shape index Eshape is plotted as a colormap in (B). Eshape effectively

captures the local shape difference between the surfaces. (C) shows the shape energy in each iteration.

With the BHF algorithm, the shape energy decreases as the number of iterations increases. (D) shows the

curvature mismatch energy (E =
∫
β(H1 − H2(f))

2 + γ(K1 −K2(f))
2). It decreases as the number of

iterations increases, meaning that the geometric matching improves. (E) shows the Beltrami coefficient

of the map in each iteration, which shows the conformality distortion of the map. Some conformality is

intentionally lost to allow better geometric matching.

Figure 16 shows the BHF registration between two normal HPs. The complete shape index Eshape is

plotted as colormap on the right. Again, Eshape can accurately capture local shape differences between

the normal HP surfaces.

Figure 17 shows the BHF hippocampal registrations between normal elderly subjects and subjects with

Alzheimer’s disease. The BHF registrations give smooth 1-1 correspondence between the HP surfaces. We

can use the complete shape index Eshape to detect local shape differences between healthy and unhealthy
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Fig. 15

SHAPE REGISTRATION WITH GEOMETRIC MATCHING USING BELTRAMI HOLOMORPHIC FLOW (BHF). THE REGISTRATION IS

VISUALIZED AS GRID MAP AND TEXTURE MAP AS SHOWN IN (A). THE OPTIMAL SHAPE ENERGY IS SHOWN IN (B). THE PERCENTAGE

CHANGES OF THE SHAPE ENERGY, CURVATURE MISMATCH ENERGY AND BELTRAMI ENERGY AFTER DIFFERENT NUMBER OF ITERATION

ARE SHOWN IN (D), (E) AND (F) RESPECTIVELY.

subjects.
We also study the temporal shape changes of normal and AD HP surfaces, as shown in Figure 18. We

compute the deformation pattern of its HP surfaces for each subject, measured at time = 0 and time = 12

months (see [22] for longitudinal scanning details). The left two panels show the temporal deformation

patterns for two normal subjects. The middle two panels show the temporal deformation patterns for two

AD subjects. The last column shows the statistical significance p-map measuring the difference in the

deformation pattern between the normal (n=47) and AD (n=53) groups, plotted on a control HP. The deep

red color highlights regions of significant statistical difference. This method can potentially be used to

study factors that influence brain changes in AD.

6. CONCLUSION

In this paper, we propose a simple representation of bijective surface maps using Beltrami coeffi-

cients(BCs), which helps the optimization process of surface registrations. To complete the representation

scheme, we develop a reconstruction algorithm of the surface diffeomorphism from a given BC using

the Beltrami holomorphic flow method. This allows us to move back and forth between BCs and surface

diffeomorphisms. By formulating the variation of the associated surface map under the variation of BC, we

reformulate variational problems over the space of surface diffeomorphisms into variational problems over
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Fig. 16

BHF REGISTRATION BETWEEN TWO NORMAL SUBJECTS. THE SHAPE INDEX Eshape IS PLOTTED ON THE RIGHT, WHICH CAPTURES

LOCAL SHAPE DIFFERENCES.

Fig. 17

BHF REGISTRATION BETWEEN 2 NORMAL SUBJECTS AND 2 SUBJECTS WITH ALZHEIMERS DISEASE. THE LOCAL SHAPE DIFFERENCES

CAPTURED BY Eshape ARE PLOTTED ON THE SURFACES.

the space of BCs. It greatly simplifies the optimization procedure. More importantly, a bijective surface

map is always guaranteed during the optimization process. Experimental results on synthetic examples

and real medical applications show the effectiveness of our proposed algorithms for surface registration.

7. APPENDIX

I. Numerical Implementation

In this part, we give detailed numerical implementation on how the proposed algorithms can be com-

puted. In practice, all surfaces are represented by meshes which consist of vertices, edges, and triangu-

lar/rectangular faces. In our iterative scheme, the functions and their partial derivatives are defined on

each vertex and then linearly interpolated to define their values inside each triangular/rectangular face.

1. Computation of the Beltrami Coefficient
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Fig. 18

TEMPORAL HC SHAPE CHANGES OF NORMAL AND SUBJECTS WITH ALZHEIMERS DISEASE.

Let f = (f1, f2) be the diffeomorphism defined on the parameter domain D. The Beltrami coefficient

µf associated uniquely to f can be computed as follows (see Equation 15):

µf = [(
∂f1

∂x
− ∂f2

∂y
) + i(

∂f2

∂x
+
∂f1

∂y
)]/[(

∂f1

∂x
+
∂f2

∂y
) + i(

∂f2

∂x
− ∂f1

∂y
)]. (30)

In order to compute µf , we simply need to approximate the partial derivatives at each vertex: Dxfi(~v) ≈
∂fi
∂x

(~v) and Dyfi(~v) ≈ ∂fi
∂y

(~v). We first approximate the gradient ∇Tfi on each face T by solving:(
~v1 − ~v0

~v2 − ~v0

)
∇Tfi =

(
fi(~v1)−fi(~v0)
|~v1−~v0|

fi(~v2)−fi(~v0)
|~v2−~v0|

)
, (31)

where [~v0, ~v1] and [~v0, ~v2] are two edges on T . After the gradient ∇Tfi have been computed for each face

T , Dxfi(~v) and Dyfi(~v) can be computed by taking average as follows:(
Dxfi(~v)

Dyfi(~v)

)
=
∑
T∈N~v

∇Tfi/|N~v| (32)

where N~v is the set of all faces around the vertex ~v. Hence, the Beltrami coefficient µf (~v) can be computed

by:

µf (~v) =
(Dxf1(~v)−Dyf2(~v)) + i(Dxf2(~v) +Dyf1(~v))

(Dxf1(~v) +Dyf2(~v)) + i(Dxf2(~v)−Dyf1(~v))
(33)

2. Computation of the BHF Reconstruction

For the BHF reconstruction algorithm, the most important step is the computation of the variation

V (fµ, ν) of fµ under the variation of µ. We will discuss the computation of V (fµ, ν) for D = D. The

computation for D = S2 ≡ C is similar. From Equation 16 and 17,

V (fµ, ν)(w) =

∫
D

K(z, w) dx dy,
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where

K(z, w) = −f
µ(w)(fµ(w)− 1)

π(
ν(z)((fµ)z(z))

2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
+

ν(z)((fµ)z(z))
2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))

)
Now, fµ and ν are both defined on each vertex ~v. Also, (fµ)z(~v) can be approximated as:

(fµ)z(~v) ≈
(Dxf1(~v)−Dyf2(~v)) + i(Dxf2(~v) +Dyf1(~v))

2
. (34)

For each pair of vertices (~v, ~w), K(~v, ~w) can be easily approximated. In case K(~v, ~w) is singular, we

set K(~v, ~w) = 0. Now, for each vertex ~v, we define A~v as

A~v =
∑
T∈N~v

Area(T )/NT , (35)

where NT is the number of vertices on T . That is, NT = 3 if T is a triangle and NT = 4 if T is a

rectangle. Then, V (fµ, ν) can be approximated by:

V (fµ, ν)(~w) =
∑
~v

K(~v, ~w)A~v (36)

II. Proof of Theorem 4.2 :

To prove the theorem, we need the following lemma:

Lemma 7.1: Let f : D → D be a diffeomorphism of the unit disk fixing 0 and 1 and satisfying the

Beltrami equation fz = µfz with µ defined on D. Let f̃ be the extension of f to C defined as

f̃(z) =

f(z), if |z| ≤ 1,

1

f(1/z)
, if |z| > 1.

(37)

Then f̃ satisfies the Beltrami equation

f̃z = µ̃f̃z (38)

on C, where the Beltrami coefficient µ̃ is defined as

µ̃(z) =

µ(z), if |z| ≤ 1,

z2

z2µ(1/z), if |z| > 1.
(39)

Proof: We need to prove f̃ satisfies the Beltrami equation:

f̃z = µ̃f̃z (40)
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Clearly, f̃ satisfies equation (38) on D. Outside D, we consider f and f̃ as functions in z and z. Note

that:
∂

∂z
f(z, z) =

∂

∂z
f(z, z) (41)

We have:

∂f̃(z, z)

∂z
=

∂

∂z

1

f(1/z, 1/z)
= −f(1/z, 1/z)

−2 ∂

∂z
f(1/z, 1/z)

= −f(1/z, 1/z)
−2 ∂

∂z
f(1/z, 1/z) = −f(1/z, 1/z)

−2
(−1/z2)fz(1/z, 1/z)

= z−2f(1/z, 1/z)
−2
fz(1/z, 1/z).

(42)

Also,

∂f̃(z, z)

∂z
=

∂

∂z

1

f(1/z, 1/z)
= −f(1/z, 1/z)

−2 ∂

∂z
f(1/z, 1/z)

= −f(1/z, 1/z)
−2 ∂

∂z
f(1/z, 1/z) = −f(1/z, 1/z)

−2
(−1/z2)fz(1/z, 1/z)

= z−2f(1/z, 1/z)
−2
fz(1/z, 1/z) = z−2f(1/z, 1/z)

−2
µ(1/z)fz(1/z, 1/z)

(43)

Now from Equation 42,

fz(1/z, 1/z) = z2f(1/z, 1/z)
2∂f̃(z, z)

∂z
. (44)

Thus, we have,

∂f̃(z, z)

∂z
= z−2f(1/z, 1/z)

−2
µ(1/z)fz(1/z, 1/z)

= z−2f(1/z, 1/z)
−2
µ(1/z)z2f(1/z, 1/z)

2∂f̃(z, z)

∂z

=
z2

z2µ(1/z)
∂f̃(z, z)

∂z
= µ̃(z)

∂f̃(z, z)

∂z
.

(45)

a) Proof of Theorem 4.2: According to Quasiconformal Teichmuller Theory, there is a one-to-one

correspondence between the set of quasiconformal homeomorphisms of C fixing 3 points and the set

of smooth complex-valued functions µ on D for which sup |µ| = k < 1. If a diffeomorphism f on C
satisfies equations (38)(39), then 1/f(1/z) also satisfies the same equation. By the uniqueness of the

solution according to Theorem 4.1, we must have f(z) = 1/f(1/z). On ∂D, z = 1/z. This implies

f(z) = 1/f(z), and hence |f(z)| = 1 on ∂D. Therefore, by restricting the solution of equation (38) on

C fixing 0, 1 and ∞ to D, we can get a diffeomorphism of D fixing 0 and 1. Equation (11) can then

be applied to get the variational formula V (fµ, ν) of fµ under the variation ν of µ. To get V (fµ, ν), we
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evaluate the integral in equation (11).∫
C

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
C\D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

(46)

Now, outside the disk D,

ν(z) =
z2

z2ν(1/z) and
∂f(z)

∂z
= z−2f(1/z, 1/z)

−2
fz(1/z, 1/z) (47)

We have:∫
C

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
C\D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
C\D

(z2/z2)ν(1/z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

=

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy

+

∫
D

(z2/z2)ν(z)((fµ)z(1/z))
2

fµ(1/z)
−1
(fµ(1/z)

−1
− 1)(fµ(1/z)

−1
− fµ(w))

1

|z|4
dx dy

=

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy

(48)

Substituting Equation 22 into Equation 11, we get an integral flow equation on D, which is given by

V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π(∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dx dy +

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(w))
dx dy.

)
.

(49)
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