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Abstract
Surface registration is widely used in machine vision

and medical imaging, where 1-1 correspondences between
surfaces are computed to study their variations. Surface
maps are usually stored as the 3D coordinates each vertex
is mapped to, which often requires lots of storage memory.
This causes inconvenience in data transmission and data
storage, especially when a large set of surfaces are ana-
lyzed. To tackle this problem, we propose a novel repre-
sentation of surface diffeomorphisms using Beltrami coeffi-
cients, which are complex-valued functions defined on sur-
faces with supreme norm less than 1. Fixing any 3 points
on a pair of surfaces, there is a 1-1 correspondence between
the set of surface diffeomorphisms between them and the set
of Beltrami coefficients on the source domain. Hence, every
bijective surface map can be represented by a unique Bel-
trami coefficient. Conversely, given a Beltrami coefficient,
we can reconstruct the unique surface map associated to
it using the Beltrami Holomorphic flow (BHF) method in-
troduced in this paper. Using this representation, 1/3 of
the storage space is saved. We can further reduce the stor-
age requirement by 90% by compressing the Beltrami coeffi-
cients using Fourier approximations. We test our algorithm
on synthetic data, real human brain and hippocampal sur-
faces. Our results show high accuracy in the reconstructed
data, while the amount of storage is greatly reduced. Our
approach is compared with the Fourier compression of the
coordinate functions using the same amount of data. The
latter approach often shows jaggy results and cannot guar-
antee to preserve diffeomorphisms.

1. Introduction
In computer vision and medical imaging, it is crucial to

look for 1-1 correspondences between surfaces for further

analysis. Such process is called surface registration. There
are many approaches of surface registration. A widely
used method is to find surfaces maps satisfying certain con-
straints, such as matching landmarks, and minimizing dis-
tortions, such as that given by harmonic energy [14, 15].
Surface maps computed from registration processes can be
highly convoluted and are usually represented and stored
as 3D functions in R3. As such, a huge storage memory
is required, especially when a large set of fine surface are
to be analyzed. It causes problems for data transmission
and storage. This problem is particularly common in med-
ical imaging, in which a large set of data has to be con-
sidered. Usually, a great amount of memory and bandwidth
are needed to store and transmit the data of surface maps. In
fact, this research was initially motivated by an actual situ-
ation in Brain Mapping research. In a project to analyze the
hippocampal shape difference in patients with or without
Alzheimer’s disease, a thousand of hippocampal surfaces
have to be registered. In order to study their time-dependent
shape changes, each initial surface has to be mapped onto
several other surfaces taken at different future times. Fur-
thermore, several maps have to be constructed between each
surface pair to satisfy different matching criteria. With a
typical surface mesh size of 50k vertices, the storage re-
quirement could easily exceed 10 gigabytes, making storing
and sharing surface map data a great inconvenience. Never-
theless, very little work has been done on the compression
of bijective surface maps. This motivates us to look for a
simple representation of surface diffeomorphisms that sig-
nificantly reduces the required storage memory.

In this work, we propose a simple representation of sur-
face maps using the Beltrami coefficients. The Beltrami co-
efficient is a complex-valued function defined on surfaces
with supreme norm strictly less than 1. It measures the local
conformality distortion of surface maps. Every surface map
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is associated with a Beltrami coefficient. According to the
Quasi-conformal Teichmüller theory, fixing any 3 points,
there is an 1-1 correspondence between the set of surface
diffeomorphisms and the set of Beltrami coefficients on the
source domain. In other words, every surface map can be
represented by a unique Beltrami coefficient. Conversely,
given a Beltrami coefficient, we can reconstruct the unique
surface map associated to it. The Beltrami coefficient is a
simple representation that captures many important infor-
mation of the map. In this paper, we propose the Beltrami
Holomorphic flow (BHF) method to iteratively reconstruct
the surface map associated with a given Beltrami coeffi-
cient. Using this representation, 1/3 of the required stor-
age space is saved. Also, the Beltrami coefficient has very
little constraints. The only constraint is that its supreme
norm is strictly less than 1. It does not have any require-
ment of injectivity nor subjectivity. This allows us to further
compress the Beltrami coefficient using Fourier approxima-
tions, which can further reduce the storage requirement by
90%. Fourier compression is not possible for other repre-
sentations such as 3D coordinate functions, as the diffeo-
morphic property (1-1 and onto) of the resulting maps can-
not be guaranteed (see Figure 4, 10).

The contribution of this paper is three-fold: 1. We pro-
pose the computation of Beltrami coefficients to represent
bijective surface maps; 2. We propose the Beltrami Holo-
morphic flow (BHF) method to reconstruct surface maps
from their Beltrami coefficients; 3. We propose the further
compression of Beltrami coefficients by Fourier approxima-
tions, which further reduce the storage requirement by 90%.

While our paper focuses on the compression of sur-
face diffeomorphisms, the methodology we introduced has
much broader applications than solely mapping compres-
sion. Firstly, our method allows us to have a smaller sub-
space for modeling and let us do statistics on the Fourier
coefficients. We can also estimate new registration fields
using the reduced basis, which would be more robust to
noise. Thirdly, with the proposed algorithm, we can fur-
ther make a statistically guided registration method, which
is helpful to get a better 1-1 correspondence between sur-
faces. Furthermore, the Beltrami representation tells us a
lot of geometric information of the surface maps, such as
conformality distortion. This can be used for shape anal-
ysis between registered surfaces [16, 21]. Finally, our re-
sults show that surface diffeomorphisms can be smoothly
restored using only a small number of Fourier coefficients.
Hence our method also has a good potential for applications
in texture mapping.

This paper is laid out as follow. In Section 2, we describe
the relevant works closely related to this research. In Sec-
tion 3, we describe some basic mathematical concepts re-
lated to our algorithms. In Section 4, we describe in detail
the main algorithms we use to represent and compress sur-

face diffeomorphisms with Beltrami coefficients. We also
describe how surface maps can be reconstructed from Bel-
trami coefficients. Experimental results are shown in Sec-
tion 5. In Section 6, we draw a conclusion and describe
possible future work.

2. Related works
Surface registration has been studied extensively and

different representations of surface maps have been pro-
posed. Conformal parameterizations have been widely used
[2, 4, 5, 6, 7, 20]. For example, Gu et al. [4, 5, 20] pro-
posed to compute the conformal parameterizations of hu-
man brain surfaces for registration using harmonic energy
minimization and holomorphic 1-forms. Hurdal et al. [7]
proposed to compute the conformal parameterizations us-
ing circle packing and applied it to registration of human
brains. To obtain landmark matching surface registrations,
Wang et al. [19, 15] proposed to compute the optimized
conformal parameterizations of brain surfaces by minimiz-
ing a compounded energy. All of the above algorithms rep-
resent surface maps with their 3D coordinate functions. Lui
et al. [14] proposed the use of vector fields to represent sur-
face maps and reconstruct them through integral flow equa-
tions. They obtained shape-based landmark matching har-
monic maps by looking for the best vector fields minimizing
a shape energy. The use of vector fields to represent surface
maps makes optimization easier, but they cannot describe
all surface maps. Time dependent vector fields can be used
to represent the set of all surface maps. For example, Joshi
et al. [10] proposed the generation of large deformation dif-
feomorphisms for landmark point matching, where the reg-
istrations are generated as solutions to the transport equa-
tion of time dependent vector fields. The time dependent
vector fields facilitate the optimization procedure, although
it may not be a good representation of surface maps since it
requires more memory.

Compression of mappings has also been studied. Chai
et al. [1] proposed the depth map compression algorithm
by encoding mapppings as a simplified triangular meshes.
Lewis [13] described a technique for compressing surface
potential mapping data using transform techniques. All
these methods deal with the compression of real-valued
functions defined on 2D domains. For vector-valued func-
tions, Stachera et al. [18] developed an algorithm to com-
press normal maps by decomposing them in the frequency
domain. Ioup [8] also proposed to compress vector map
data in the frequency domain. Kolesnikov et al. [11] pro-
posed an algorithm for distortion-constrained compression
of vector maps, based on optimal polygonal approximations
and dynamic quantizations of vector data. All these meth-
ods do not deal with preverving bijective maps between sur-
faces. The bijectivity (1-1, onto) of the maps can be easily
lost due to lossy compression.
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3. Theoretical Background
In this section, we describe some basic mathematical

concepts related to our algorithms. For details, we refer the
readers to [3, 12, 17]

A surface S with a conformal structure is called a Rie-
mann surface. Given two Riemann surfaces M and N , a
map f : M → N is conformal if it preserves the surface
metric up to a multiplicative factor called the conformal fac-
tor. An immediate consequence is that every conformal map
preserves angles. With the angle-preserving property, a con-
formal map effectively preserves the local geometry of the
surface structure.

A generalization of conformal maps is the quasi-
conformal maps, which are orientation-preserving homeo-
morphisms between Riemann surfaces with bounded con-
formality distortion, in the sense that their first order
approximations takes small circles to small ellipses of
bounded eccentricity [3]. Thus, a conformal homeomor-
phism that maps a small circle to a small circle can also be
regarded as quasi-conformal. Mathematically, f : C→ C is
quasi-conformal provided that it satisfies the Beltrami equa-
tion:

∂f

∂z
= µ(z)

∂f

∂z
. (1)

for some complex valued Lebesgue measurable µ satisfying
||µ||∞ < 1. In terms of the metric tensor, consider the effect
of the pullback under f of the usual Euclidean metric ds2E ;
the resulting metric is given by:

f∗(ds2E) = |
∂f

∂z
|2|dz + µ(z)dz|2. (2)

which, relative to the background Euclidean metric dz and
dz, has eigenvalues (1 + |µ|)2 ∂f∂z and (1 − |µ|)2 ∂f∂z . µ is
called the Beltrami coefficient, which is a measure of non-
conformality. In particular, the map f is conformal around
a small neighborhood of p when µ(p) = 0. Infinitesimally,
around a point p, f may be expressed with respect to its
local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3)

Obviously, f is not conformal if and only if µ(p) 6= 0. In-
side the local parameter domain, f may be considered as
a map composed of a translation to f(p) together with a
stretch map S(z) = z + µ(p)z, which is postcomposed by
a multiplication of fz(p), which is conformal. All the con-
formal distortion of S(z) is caused by µ(p). S(z) is the
map that causes f to map a small circle to a small ellipse.
From µ(p), we can determine the angles of the directions
of maximal magnification and shrinking and the amount of
them as well. Specifically, the angle of maximal magnifi-
cation is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|;

Figure 1. Illustration of how the Beltrami coefficient µ measures
the distortion of a quasi-conformal mapping that maps a small cir-
cle to an ellipse with dilation K.

Figure 2. A flow chart representing the ideas of our algorithms.

The angle of maximal shrinking is the orthogonal angle
(arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. The
distortion or dilation is given by:

K = 1 + |µ(p)|/1− |µ(p)|. (4)

Thus, the Beltrami coefficient µ gives us all the information
about the properties of the map (See Figure 1). According
to Teichmüller Quasiconformal theory, there is a 1-1 corre-
spondence between the set of Beltrami differentials and the
set of diffeomorphisms f : S1 → S2 fixing three points. In
other word, Beltrami coefficients give us a simple way to
represent surface maps.

4. Main Algorithms

In this section, we describe in detail the main algorithms
we use to represent and compress surface diffeomorphisms
with Beltrami coefficients. We also describe how a surface
map can be reconstructed from its Beltrami coefficient. A
flow chart representing the ideas of our algorithms is illus-
trated in Figure 2.
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4.1. Surface Map Representation using Beltrami
Coefficients

In computer vision and medical imaging, it is crucial to
look for an 1-1 correspondence between surfaces for further
analysis. Surface registration is commonly represented by
3D coordinate functions in R3. This representation requires
lots of storage space and is difficult to manipulate. For ex-
ample, the 3D coordinate functions have to a satisfy certain
constraint on the Jacobian J (namely, J > 0) in order to
preserve the 1-1 correspondence of the surface maps. En-
forcing this constraint adds extra difficulty in manipulating
and adjusting surface maps. It is therefore important to have
a simpler representation with as few constraints as possible.

Given two surfaces S1 and S2 with the same topology.
According to the Teichmüller Quasiconformal theory, there
is a 1-1 correspondence between the set of Beltrami differ-
entials and the set of diffeomorphisms f : S1 → S2 fixing
three points [3]. In other words, given any surface diffeo-
morphism fµ : S1 → S2 and 3-point correspondence, we
can represent fµ with a uniquely determined Beltrami dif-
ferential µdzdz . Beltrami differential is defined on every co-
ordinate patch. For genus 0 closed surfaces or simply con-
nected open surfaces, they can be conformally parameter-
ized with a single global patch [4, 5, 20]. Beltrami coef-
ficients can then be used instead of Beltrami differentials.
The Beltrami coefficient µ is a complex-valued functions
defined on S1 with sup |µ| < 1. There are no restrictions
on µ that it has to be 1-1, surjective or satisfy some con-
straints on the Jacobian. With this representation, we can
easily manipulate surface maps.

Suppose S1 and S2 are both either genus 0 closed sur-
faces or simply connected open surfaces. Let f : S1 → S2,
and suppose 3 points {p1, p2, p3} on S1 correspond to 3
points on S2 by {p1, p2, p3} ↔ {q1 = f(p1), q2 =
f(p2), q3 = f(p3)} (for open surfaces with disk topology,
only 2-point correspondence is needed). S1 and S2 can be
conformally parameterized with a global patch [4, 9]. De-
note the parameterizations by φ1 : S1 → D and φ2 : S2 →
D, where D is either a unit sphere S2 or a 2D rectan-
gle. We fix {p1, p2, p3} and {q1, q2, q3} to consistent loca-
tions on the parameter domain. For example, in the case
that D = S2, we map {p1, p2, p3} and {q1, q2, q3} to 0
(north pole), 1 and ∞ (south pole) respectively. Here, we
have identified S2 with the extended complex plane C∗.
Now, we can compute the Beltrami coefficient µf associ-
ated uniquely to f to represent f . The Beltrami coefficient
µf can be computed by considering the composition map
f̃ = φ2 ◦f ◦φ−11 : D → D. Mathematically, µf is given by
the following formula:

µf =
∂f̃

∂z
/
∂f̃

∂z
=

1

2
(
∂f̃

∂x
+
√
−1∂f̃

∂y
)/

1

2
(
∂f̃

∂x
−
√
−1∂f̃

∂y
).

In practice, surfaces are commonly approximated by dis-
crete meshes comprising of triangular or rectangular faces.
The parameterizations map the surface meshes onto the
mesh D in C. The partial derivatives (or gradient) can be
discretely approximated on each face of D. By taking av-
erage, the partial derivatives and hence the Beltrami coeffi-
cient can be computed on each vertex.

The Beltrami coefficient consists of two real functions
only, namely the real and imaginary parts. Compared to the
representation using 3D coordinate functions, this represen-
tation reduces 1/3 of the original storage space.

4.2. Reconstruction of Surface Maps

Given the Beltrami coefficient µ defined on S1. We pro-
pose the Beltrami Holomorphic flow (BHF) method to re-
construct the surface diffeomorphism fµ : S1 → S2 asso-
ciated with µ. The BHF iteratively flows the identity map
to fµ. In this subsection, we describe the BHF method in
detail.

The variation of fµ under the variation of µ can be ex-
pressed explicitly. Suppose µ̃(z) = µ(z) + tν(z) +O(t2).
Then, f µ̃(z)(w) = fµ(w) + tV (fµ, ν)(w) +O(t2), where

V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π
×∫

D

ν(z)(fµz (z))
2dxdy

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
.

(5)

Using this fact, we propose the BHF method to itera-
tively flow the identity map to fµ. Given the parameteri-
zations φ1 : S1 → D and φ2 : S2 → D, we look for the
map f̃µ = φ2 ◦ fµ ◦ φ−11 : D → D associated uniquely
with µ̃ = µ ◦ φ−11 : D → C. fµ can then be obtained by
fµ = φ−12 ◦ f̃µ ◦ φ1.

We start with the identity map Id of which the Beltrami
coefficient is equal to 0. Let N be the number of itera-
tions. Define µ̃k = kµ̃/N , k = {0, 1, 2, ..., N}. Let f̃ µ̃k

be the map associated with µ̃k. Note that f̃ µ̃0 = Id and
f̃ µ̃N = f̃µ. Equation 5 allows us to iteratively compute
f̃ µ̃k and thus obtain a sequence of maps flowing from Id to
f̃µ. Mathematically, the iterative scheme is given by:

f̃ µ̃k+1 = f̃ µ̃k +
1

N
V (f̃ µ̃k , µ̃); f̃ µ̃0 = Id (6)

BHF computes a sequence of surface maps {f̃ µ̃k} con-
verging to f̃µ. The approximation of f̃ µ̃k is more accurate
with a smaller time step or equivalently a larger number of
iterations N . In practice, the approximations are very accu-
rate when N ≥ 15 (see Figure 9). In our experiments, we
set N = 20.
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4.3. Fourier Compression of Beltrami Coefficients

The Beltrami coefficient can be further compressed us-
ing Fourier approximations to reduce the storage space. An
important consideration is to preserve the diffeomorphic
property of the surface map after the compression. Under
the representation by coordinate functions, the Jacobian has
to be greater than 0 in order to ensure the diffeomorphic
property. This constraint is equivalent to an inequality in
the partial derivatives of the coordinate functions. Enforc-
ing this constraint is difficult during compression and the
diffeomorphic property is easily lost (see Figure 4, 10). The
representation by Beltrami coefficient, however, is advanta-
geous because it does not have any requirement for injectiv-
ity and subjectivity, making the Jacobian constraint unnec-
essary. The only requirement for the Beltrami coefficient
µ is that it has to be a complex-valued function defined on
the surface with supreme norm less than 1. We can there-
fore compress µ using Fourier approximations without los-
ing the diffeomorphic property.

The Beltrami coefficient µ can be approximated as fol-
low:

µ(x, y) =

N∑
j,k=−N

cj,ke
√
−1πjx/T e

√
−1πky/T ,

where

cj,k =
1

4T 2

∫ T

−T

∫ T

−T
µ(x, y)e−

√
−1πjx/T e−

√
−1πky/T dxdy.

We can use fast Fourier transform to compute the coef-
ficients cj,k efficiently. In practice, we set N = 20 and
the approximation is already very accurate (see Figure 9).
The Fourier compression significantly reduces the storage
required to 10% of the original data size. Experimental re-
sults show that the compression of µ is stable and effective.

5. Experimental Results
We test our algorithm on synthetic surface data, real hu-

man brain surfaces and real hippocampal surfaces. Experi-
mental results show that our algorithm is effective and sta-
ble.

Figure 3 shows the representation of a diffeomorphism
from the unit square to itself using the Beltrami coeffi-
cient. (A) shows the original diffeomorphism. (B) shows
the norm of the Beltrami coefficient representing the map.
(C) shows the reconstructed map from the Beltrami coef-
ficient. The dots represent the exact values of the origi-
nal map. Note that the reconstructed map closely matches
the original map. (D) shows the errors of the reconstructed
maps versus the number of iterations under the Beltrami
Holomorphic flow (BHF), which are defined as

Error = sup ||fRe − f ||, (7)

where fRe is the reconstructed map. After 20 iterations, the
BHF reconstructed map closely approximates the original
map.

Figure 4(A) shows the Fourier compression result of the
Beltrami coefficient µ. We take N = 15 in the Fourier se-
ries approximation. The reconstructed map closely matches
the original map (see dots) as well. (B) shows the Fourier
compression result of the coordinate functions. The Jaco-
bian constraint is not satisfied under the compression. The
diffeomorphic property is lost. Figure 5 shows the Fourier
compression result of µ with N = 5, 10, 15, 20 respec-
tively. The accuracy improves rapidly with increasingly
larger N ’s.

We also test our algorithm on real cortical hemispheric
surfaces extracted from brain MRI scans, acquired from
normal and unhealthy subjects at 1.5 T (on a GE Sigma
scanner). Figure 6(A) shows two different brain surfaces
and a surface map between them. The surface map can be
represented by the Beltrami coefficient. (B) shows the col-
ormap of the norm of the Beltrami coefficient. (C) shows
the reconstructed surface map from the Beltrami coefficient.
The black dots represent the exact values of the original sur-
face map. The result shows that the reconstruction of the
surface map from the Beltrami coefficient is very accurate.
The reconstructed map accurately approximates the original
map (see black dots). Figure 7 shows the Fourier compres-
sion results of µ for the brain surfaces with N = 5, 10, 15
and 20 respectively. The error reduces rapidly as N in-
creases.

In Figure 8, we test our algorithm on real hippocam-
pal surfaces, which is an important brain structure for the
study of Alzheimer’s disease. (A) shows two different hip-
pocampal surfaces and a surface diffeomorphism between
them. We represent the surface map with the Beltrami co-
efficient and the colormap of its norm is shown in (B). (C)
shows the reconstructed map from the Beltrami coefficient.
Again, the black dots represent the exact location under the
original map. The error as defined in Equation 7 versus
the number of iterations during the Beltrami Holomorphic
Flow (BHF) is as shown in (D). The Fourier compression
results of the Beltrami coefficient for the hippocampal sur-
faces with N = 5, 10, 15, 20 are shown in Figure 9. The
error of the reconstructed maps decreases rapidly as N in-
creases.

However, the compression of 3D coordinate functions
does not give satisfactory results. Figure 10(A) and 10(B)
show the results of Fourier compression of 3D coordinate
functions for the brain and hippocampal surfaces respec-
tively. In both cases, the diffeomorphic property is com-
pletely disrupted. In comparison, Beltrami compression
gives accurate results with just a small number of coeffi-
cients.

To analyze quantitatively how well the diffeomorphic
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Figure 3. Reconstruction of the diffeomorphism of a 2D domain
from the Beltrami coefficient using Beltrami Holomorphic flow
(BHF).

property is preserved under our algorithm, we compute a
measure called the inverse Jacobian measure. It is defined
as: Inv(J) = sup |1 − J

JRe |, where JRe is the Jacobian of
the reconstructed map and J is the Jacobian of the original
map. JRe is small when overlapping occurs. Thus, a large
value of Inv(J) means an occurrence of overlapping in fRe

and a big deviation of fRe from f . Figure 11 shows the val-
ues of Inv(J) versus the number of coefficients used under
the Fourier compression of the coordinate functions and the
Beltrami coefficient respectively. The red curve shows the
values of Inv(J) under the Fourier compression of the co-
ordinate functions versus the number of Fourier coefficients
used. Note that the values of Inv(J) are quite big, meaning
that overlapping occurs in fRe and the diffeomorphic prop-
erty is seriously distorted. The blue curve shows the values
of Inv(J) under the Fourier compression of the Beltrami
coefficient versus the number of Fourier coefficients used.
The values of Inv(J) are very small, meaning that fRe pre-
serves the diffeomorphic property well and reconstructs the
original map f accurately.

6. Conclusion and Future Work
In this paper, we address the problem of finding a sim-

ple representation of surface maps that significantly reduces
the required storage memory. It is especially important in
medical imaging, in which a large set of surfaces have to be
registered. A great amount of storage capacity and band-
width are needed to store and transmit the surface map data.
Hence, an algorithm for compressing surface maps is of ut-
most importance. We propose a novel representation of sur-
face maps using Beltrami coefficients. Fixing any 3 points,

Figure 4. (A) shows the Fourier compression result of the Beltrami
coefficient; (B) shows the Fourier compression result of the coor-
dinate functions

Figure 5. The results from Fourier compression of µ with N =
5, 10, 15 and 20.

there is a 1-1 correspondence between the set of surface dif-
feomorphisms and the set of Beltrami coefficients. We pro-
pose the Beltrami Holomorphic flow (BHF) method to itera-
tively reconstruct the surface map with a given Beltrami co-
efficient. Using the Beltrami coefficient to represent the sur-
face map reduces 1/3 of the required storage space. We can
further compress the Beltrami coefficient using the Fourier
approximation, which significantly reduces the storage re-
quired by 90% further. Experimental results on synthetic
data, real human brain data and real hippocampus surfaces
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Figure 6. Reconstruction of a surface diffeomorphism between real
human brain surfaces from its Beltrami coefficient.

Figure 7. The results of Fourier compression of µ for a brain sur-
face diffeomorphism with N = 5, 10, 15 and 20.

show that our method is stable and effective in accurately
representing surface maps and requires less storage mem-
ory. In the future, we will further explore more potential
applications of our method, such as doing statistics on the
Beltrami representation for shape analysis and developing
a statistically guided registration method based on the Bel-
trami coefficient.

Figure 8. (A) shows two different hippocampal surfaces and a sur-
face diffeomorphism between them. We represent the surface map
with its Beltrami coefficient and the colormap of its norm is shown
in (B). (C) shows the reconstructed map from the Beltrami coeffi-
cient. (D) shows the errors of the intermediate maps during Bel-
trami Holomorphic Flow (BHF).
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